IRF6717M [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRF6717M
型号: IRF6717M
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总10页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97345C  
IRF6717MPbF  
IRF6717MTRPbF  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l RoHs Compliant and Halgen Free   
l Low Profile (<0.7 mm)  
VDSS  
VGS  
RDS(on)  
RDS(on)  
25V max ±20V max  
0.95m@ 10V 1.6m@ 4.5V  
l Dual Sided Cooling Compatible   
l Ultra Low Package Inductance  
Qg tot Qgd  
Qgs2  
Qrr  
Qoss Vgs(th)  
l Optimized for High Frequency Switching   
l Ideal for CPU Core DC-DC Converters  
l Optimized for Sync. FET socket of Sync. Buck Converter  
l Low Conduction and Switching Losses  
46nC  
14nC  
6.6nC  
31nC  
35nC  
1.8V  
l Compatible with existing Surface Mount Techniques   
l100% Rg tested  
DirectFET™ ISOMETRIC  
MX  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
MQ  
MT  
MP  
MX  
Description  
The IRF6717MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve  
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows  
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.  
The IRF6717MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and  
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of  
processors operating at higher frequencies. The IRF6717MPbF has been optimized for parameters that are critical in synchronous buck  
including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6717MPbF offers particularly low Rds(on) and high Cdv/dt  
immunity for synchronous FET applications.  
Absolute Maximum Ratings  
Max.  
25  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
38  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
30  
A
@ TA = 70°C  
@ TC = 25°C  
220  
300  
290  
30  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
6
5
4
3
2
1
0
14.0  
12.0  
10.0  
8.0  
I
= 30A  
I = 30A  
D
D
V
= 20V  
= 13V  
DS  
V
DS  
6.0  
T
= 125°C  
J
4.0  
2.0  
T = 25°C  
J
0.0  
2
4
6
8
10 12 14 16 18 20  
0
20  
40  
60  
80  
100  
120  
Q
Total Gate Charge (nC)  
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.64mH, RG = 25, IAS = 30A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
06/01/12  
IRF6717MPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250μA  
Reference to 25°C, I = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
25  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
140  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
V
/ T  
J
 DSS   
18  
––– mV/°C  
D
VGS = 10V, ID = 38A  
RDS(on)  
0.95 1.25  
m  
VGS = 4.5V, ID = 30A  
1.6  
1.8  
-6.7  
–––  
–––  
–––  
–––  
–––  
46  
2.1  
VDS = VGS, ID = 150μA  
VGS(th)  
Gate Threshold Voltage  
2.35  
V
V
/ T  
GS(th)   
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
J
VDS = 20V, VGS = 0V  
IDSS  
1.0  
150  
100  
-100  
–––  
69  
μA  
nA  
S
VDS = 20V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 13V, ID =30A  
gfs  
Qg  
VDS = 13V  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
14  
–––  
–––  
–––  
–––  
–––  
–––  
2.2  
VGS = 4.5V  
ID = 30A  
Qgs2  
Qgd  
6.6  
14  
nC  
Qgodr  
11  
See Fig. 15  
Qsw  
20.6  
35  
VDS = 16V, VGS = 0V  
Qoss  
RG  
nC  
Gate Resistance  
1.3  
25  
VDD = 13V, VGS = 4.5V  
ID = 30A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
Rise Time  
37  
R = 1.8  
Turn-Off Delay Time  
19  
ns  
G
Fall Time  
15  
V
GS = 0V  
DS = 13V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 6750 –––  
––– 1700 –––  
V
Output Capacitance  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
–––  
730  
–––  
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS  
MOSFET symbol  
Continuous Source Current  
–––  
–––  
–––  
–––  
120  
300  
showing the  
(Body Diode)  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
p-n junction diode.  
TJ = 25°C, IS = 30A, VGS = 0V  
TJ = 25°C, IF =30A  
di/dt = 175A/μs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
27  
1.0  
41  
47  
V
ns  
nC  
Qrr  
31  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRF6717MPbF  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.8  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
D
D
D
P
J
1.8  
96  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RJA  
Junction-to-Ambient  
RJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
1.3  
RJA  
RJC  
–––  
1.0  
RJ-PCB  
Junction-to-PCB Mounted  
Linear Derating Factor  
–––  
0.022  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
Ri (°C/W) i (sec)  
0.0116  
0.0289  
0.2249  
0.3032  
0.7515  
2.7510  
17.682  
23.053  
0.000007  
3.55E-06  
0.000076  
0.006892  
0.001645  
0.009995  
38.19138  
1.05185  
1
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
R6  
R6  
R7  
R7  
R8  
R8  
J  
A  
J  
1  
A  
2  
3  
4  
5  
6  
7  
0.1  
1  
2  
3  
4  
5  
6  
7  
Ci= iRi  
Ci= iRi  
0.01  
0.001  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient   
Notes:  
Š R is measured at TJ of approximately 90°C.  
  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
‰ Mounted on minimum  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with  
small clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
www.irf.com  
3
IRF6717MPbF  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 150°C  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
100  
10  
1
BOTTOM  
BOTTOM  
2.5V  
2.5V  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
V
= 15V  
I
= 38A  
DS  
D
60μs PULSE WIDTH  
V
V
= 10V  
GS  
GS  
= 4.5V  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
0.1  
1
2
3
4
5
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
6
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
T
= 25°C  
J
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
Vgs = 3.5V  
Vgs = 4.0V  
Vgs = 4.5V  
Vgs = 5.0V  
Vgs = 10V  
= C  
5
4
3
2
1
0
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
50  
100  
150  
200  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
I
, Drain Current (A)  
D
Fig 9. Typical On-Resistance vs.  
Drain Current and Gate Voltage  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
4
www.irf.com  
IRF6717MPbF  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA LIMITED  
BY R (on)  
DS  
100μsec  
1msec  
200μsec  
DC  
10msec  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
1
Ta = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0
0.01  
0.1  
1
10  
100  
0.0  
0.5  
SD  
1.0  
1.5  
2.0  
2.5  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
2.5  
240  
200  
160  
120  
80  
2.0  
I
= 150μA  
D
1.5  
1.0  
0.5  
40  
0
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T , Temperature ( °C )  
, Case Temperature (°C)  
J
C
Fig 13. Typical Threshold Voltage vs. Junction  
Fig 12. Maximum Drain Current vs. Case Temperature  
Temperature  
1200  
I
D
TOP  
19A  
24A  
1000  
800  
600  
400  
200  
0
BOTTOM 30A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
www.irf.com  
5
IRF6717MPbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
1K  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
L
V
DS  
V
GS  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
20V  
t
0.01  
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
10%  
VGS  
VGS  
Pulse Width µs  
Duty Factor   
td(on)  
td(off)  
tr  
tf  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF6717MPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Board Footprint, MX Outline  
(Medium Size Can, X-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
www.irf.com  
7
IRF6717MPbF  
DirectFET™ Outline Dimension, MX Outline  
(Medium Size Can, X-Designation).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.250  
0.201  
0.156  
0.018  
0.028  
0.028  
0.056  
0.033  
0.017  
0.040  
0.095  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.25 6.35  
4.80 5.05  
3.85 3.95  
0.35 0.45  
0.68 0.72  
0.68 0.72  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.054  
0.031  
0.015  
0.035  
0.090  
0.023  
0.001  
0.003  
G
H
J
1.38  
1.42  
0.80 0.84  
0.38 0.42  
0.88 1.02  
2.28 2.42  
0.59 0.70  
0.03 0.08  
0.08 0.17  
K
L
M
N
P
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
IRF6717MPbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6717MTRPBF). For 1000 parts on 7"  
reel, order IRF6717MTR1PBF  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
METRIC IMPERIAL  
TR1 OPTION (QTY 1000)  
METRIC IMPERIAL  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
MAX  
N.C  
MIN  
MAX  
N.C  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
177.77  
19.06  
13.5  
1.5  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
LOADED TAPE FEED DIRECTION  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
MIN  
CODE  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
A
B
C
D
E
F
G
H
1.60  
0.063  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/12  
www.irf.com  
9
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRF6717MPBF

DirectFETPower MOSFET
INFINEON

IRF6717MTR1PBF

RoHs Compliant and Halgen Free
INFINEON

IRF6717MTRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6718L2PBF

Ultra Low Package Inductance
INFINEON

IRF6718L2PBF_15

RoHS Compliant Containing No Lead and Bromide
INFINEON

IRF6718L2TR

DirectFET Power MOSFET
INFINEON

IRF6718L2TR1PBF

DirectFET Power MOSFET
INFINEON

IRF6718L2TRPBF

DirectFET Power MOSFET
INFINEON

IRF6720S2TR1PBF

DirectFET TM Power MOSFET
INFINEON

IRF6720S2TR1PBF_09

DirectFETPower MOSFET
INFINEON

IRF6720S2TRPBF

DirectFET TM Power MOSFET
INFINEON

IRF6721SPBF

DirectFETPower MOSFET
INFINEON