IRF7101 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF7101
型号: IRF7101
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 开关 光电二极管
文件: 总10页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94594D  
IRF7832  
HEXFET® Power MOSFET  
Applications  
l Synchronous MOSFET for Notebook  
Processor Power  
l Synchronous Rectifier MOSFET for  
Isolated DC-DC Converters in  
Networking Systems  
VDSS  
RDS(on) max  
Qg  
4.0m @VGS = 10V  
30V  
34nC  
A
A
D
1
2
3
4
8
S
S
S
G
Benefits  
7
D
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
6
D
5
D
SO-8  
Top View  
l 20V VGS Max. Gate Rating  
Absolute Maximum Ratings  
Parameter  
Max.  
30  
Units  
V
VDS  
Drain-to-Source Voltage  
V
Gate-to-Source Voltage  
± 20  
20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
16  
A
160  
2.5  
DM  
P
P
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
Power Dissipation  
W
D
D
1.6  
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 155  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
RθJL  
RθJA  
–––  
50  
Notes  through „ are on page 10  
www.irf.com  
1
1/14/04  
IRF7832  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
V
VDSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.023 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
3.1  
3.7  
4.0  
4.8  
VGS = 10V, ID = 20A  
m
VGS = 4.5V, ID = 16A  
DS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
1.39 –––  
2.32  
V
V
VGS(th)  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
77  
5.7  
–––  
–––  
–––  
–––  
–––  
34  
––– mV/°C  
IDSS  
1.0  
150  
100  
-100  
–––  
51  
µA VDS = 24V, VGS = 0V  
V
V
V
V
DS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
GS = 20V  
GS = -20V  
gfs  
Qg  
DS = 15V, ID = 16A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
8.6  
2.9  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 15V  
Qgs2  
Qgd  
nC VGS = 4.5V  
ID = 16A  
Qgodr  
Gate Charge Overdrive  
10.5  
14.9  
23  
See Fig. 16  
Qsw  
Switch Charge (Qgs2 + Qgd)  
Qoss  
td(on)  
tr  
Output Charge  
nC  
VDS = 16V, VGS = 0V  
Turn-On Delay Time  
Rise Time  
12  
VDD = 15V, VGS = 4.5V  
ID = 16A  
6.7  
21  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
ns Clamped Inductive Load  
13  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 4310 –––  
VGS = 0V  
–––  
–––  
990  
450  
–––  
–––  
pF  
VDS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Typ.  
–––  
–––  
Max.  
Units  
mJ  
EAS  
IAR  
260  
16  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
–––  
–––  
3.1  
MOSFET symbol  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
160  
integral reverse  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
41  
1.0  
62  
59  
V
T = 25°C, I = 16A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 16A, VDD = 10V  
J F  
Qrr  
ton  
di/dt = 100A/µs  
39  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF7832  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.25V  
5.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
2.25V  
BOTTOM  
BOTTOM  
1
2.25V  
2.25V  
0.1  
0.01  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 16A  
D
V
= 4.5V  
GS  
100  
10  
1
T = 150°C  
J
T
= 25°C  
J
V
= 15V  
DS  
20µs PULSE WIDTH  
0
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
2.0  
2.5  
3.0 3.5  
4.0  
Junction Temperature (°C )  
V
, Gate-to-Source Voltage (V)  
J,  
GS  
Fig 4. Normalized On-Resistance  
Fig 3. Typical Transfer Characteristics  
Vs. Temperature  
www.irf.com  
3
IRF7832  
6
5
4
3
2
1
0
100000  
V
= 0V,  
f = 1 MHZ  
I = 16A  
GS  
D
C
= C + C , C SHORTED  
iss  
gs gd ds  
V
V
= 24V  
= 15V  
DS  
DS  
C
= C  
gd  
rss  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
C
iss  
C
C
oss  
rss  
100  
1
10  
100  
0
10  
20  
30  
40  
50  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
1
T
= 150°C  
J
100µsec  
T
= 25°C  
J
1msec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
10msec  
V
GS  
= 0V  
1
0.1  
1
10  
, Drain-to-Source Voltage (V)  
100  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
, Source-to-Drain Voltage (V)  
V
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7832  
2.5  
2.0  
1.5  
1.0  
0.5  
24  
20  
16  
12  
8
I
= 250µA  
D
4
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
, Temperature (°C)  
25  
50  
T
75  
100  
125  
150  
T
J
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current Vs.  
Fig 10. Threshold Voltage Vs. Temperature  
Case Temperature  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
1
0.02  
0.01  
0.1  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7832  
10  
600  
500  
400  
300  
200  
100  
0
I
= 20A  
D
I
D
TOP  
7.0A  
13A  
8
BOTTOM 16A  
6
T = 125°C  
J
4
T = 25°C  
J
2
0
2
3
4
5
6
7
8
9
10  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
V
, Gate -to -Source Voltage (V)  
GS  
Fig 13. Maximum Avalanche Energy  
Fig 12. On-Resistance vs. Gate Voltage  
vs. Drain Current  
Current Regulator  
Same Type as D.U.T.  
V
(BR)DSS  
t
15V  
p
50KΩ  
.2µF  
12V  
.3µF  
DRIVER  
+
L
V
DS  
+
V
DS  
D.U.T.  
-
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
VGS  
0.01  
t
p
I
AS  
3mA  
I
I
D
G
Fig 14. Unclamped Inductive Test Circuit  
Current Sampling Resistors  
andWaveform  
Fig 15. Gate Charge Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
D.U.T  
10%  
VGS  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 17. Switching Time Waveforms  
Fig 16. Switching Time Test Circuit  
6
www.irf.com  
IRF7832  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 19. Gate Charge Waveform  
www.irf.com  
7
IRF7832  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF7832  
SO-8 Package Details  
SO-8 Part Marking  
www.irf.com  
9
IRF7832  
SO-8 Tape and Reel  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 2.0mH, RG = 25, IAS = 16A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ When mounted on 1 inch square copper board.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.01/04  
10  
www.irf.com  

相关型号:

IRF7101PBF

HEXFET㈢ Power MOSFET
INFINEON

IRF7101TRPBF

Power Field-Effect Transistor, 3.5A I(D), 20V, 0.1ohm, 2-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, LEAD FREE, SO-8
INFINEON

IRF7102

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 50V V(BR)DSS | 2A I(D) | SO
ETC

IRF7102PBF

Power Field-Effect Transistor, 2A I(D), 50V, 0.3ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, SOP-8
INFINEON

IRF7102TR

Power Field-Effect Transistor, 2A I(D), 50V, 0.3ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRF7103

Power MOSFET(Vdss=50V, Rds(on)=0.130ohm, Id=3.0A)
INFINEON

IRF7103IPBF

HEXFET Power MOSFET
INFINEON

IRF7103ITRPBF

暂无描述
INFINEON

IRF7103PBF

HEXFET Power MOSFET
INFINEON

IRF7103PBF-1

Power Field-Effect Transistor
INFINEON

IRF7103Q

Power MOSFET(Vdss=50V)
INFINEON

IRF7103QHR

Small Signal Field-Effect Transistor, 3A I(D), 50V, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SOP-8
INFINEON