IRF7314Q [INFINEON]

HEXFET㈢ Power MOSFET; HEXFET㈢功率MOSFET
IRF7314Q
型号: IRF7314Q
厂家: Infineon    Infineon
描述:

HEXFET㈢ Power MOSFET
HEXFET㈢功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 光电二极管 局域网
文件: 总9页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -93945A  
IRF7314Q  
HEXFET® Power MOSFET  
Typical Applications  
VDSS  
-20V  
RDS(on) max  
0.058@VGS = -4.5V  
ID  
-5.2A  
Anti-lock Braking Systems (ABS)  
 Electronic Fuel Injection  
Air bag  
0.098@VGS = -2.7V -4.42A  
Benefits  
Advanced Process Technology  
 Dual P-Channel MOSFET  
 Ultra Low On-Resistance  
 175°C Operating Temperature  
 Repetitive Avalanche Allowed up to Tjmax  
 Automotive [Q101] Qualified  
1
2
8
S1  
G 1  
D1  
7
D 1  
3
4
6
S2  
D2  
5
G 2  
D 2  
SO-8  
Top V iew  
Description  
Specifically designed for Automotive applications, these HEXFET ® Power MOSFETs in a Dual SO-8 package utilize the  
lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these  
Automotive qualified HEXFET Power MOSFETs are a 175°C junction operating temperature, fast switching speed and  
improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device  
for use in Automotive applications and a wide variety of other applications.  
The 175°C rating for the SO-8 package provides improved thermal performance with increased safe operating area and dual  
MOSFET die capability make it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce  
board space and is also available in Tape & Reel.  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-Source Voltage  
-20  
V
ID @ TA = 25°C  
ID @ TA = 70°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
-5.2  
-4.3  
A
-43  
PD @TA = 25°C  
PD @TA = 70°C  
Maximum Power Dissipationƒ  
Maximum Power Dissipationƒ  
Linear Derating Factor  
2.4  
W
W
1.7  
16  
± 12  
mW/°C  
V
VGS  
Gate-to-Source Voltage  
EAS  
Single Pulse Avalanche Energy‚  
Avalanche Current  
610  
mJ  
A
IAR  
-5.2  
EAR  
Repetitive Avalanche Energy  
Junction and Storage Temperature Range  
See Fig.14, 15, 16  
-55 to + 175  
mJ  
°C  
TJ , TSTG  
Thermal Resistance  
Parameter  
Max.  
Units  
RθJA  
Maximum Junction-to-Ambient ƒ  
62.5  
°C/W  
www.irf.com  
1
03/20/02  
IRF7314Q  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
-20 ––– –––  
V
VGS = 0V, ID = -250µA  
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient  
––– 0.009 ––– V/°C Reference to 25°C, ID = -1mA  
––– 0.049 0.058  
––– 0.082 0.098  
-0.7 ––– –––  
6.8 ––– –––  
––– ––– -1.0  
––– ––– -25  
––– ––– -100  
––– ––– 100  
VGS = -4.5V, ID = -5.2A ‚  
VGS = -2.7V, ID = -4.42A ‚  
VDS = VGS, ID = -250µA  
VDS = 10V, ID = -5.2A  
VDS = -16V, VGS = 0V  
VDS = -16V, VGS = 0V, TJ = 150°C  
VGS = -12V  
RDS(on)  
Static Drain-to-Source On-Resistance  
VGS(th)  
gfs  
Gate Threshold Voltage  
V
S
Forward Transconductance  
IDSS  
IGSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
VGS = 12V  
Qg  
––– 19  
––– 2.1 3.2  
––– 9.3 14  
29  
ID = -5.2A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
nC  
ns  
pF  
VDS = -16V  
VGS = -4.5V  
––– 18 –––  
––– 26 –––  
––– 41 –––  
––– 38 –––  
––– 913 –––  
––– 512 –––  
––– 260 –––  
VDD = -10V  
ID = -1.0A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 6.0Ω  
VGS = -4.5V ‚  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
VDS = -15V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
showing the  
D
IS  
––– ––– -3.0  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
–––  
-43  
–––  
p-n junction diode.  
S
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
––– ––– -1.0  
V
TJ = 25°C, IS = -3.0A, VGS = 0V ‚  
TJ = 25°C, IF = -3.0A  
––– 44  
––– 54  
66  
81  
ns  
Qrr  
nC di/dt = -100A/µs ‚  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
ƒ Surface mounted on FR-4 board, t 10sec.  
„ Pulse width 300µs; duty cycle 2%.  
‚ Starting TJ = 25°C, L = 45mH  
RG = 25, IAS = -5.2A.  
2
www.irf.com  
IRF7314Q  
100  
10  
1
100  
10  
VGS  
VGS  
-7.5V  
-5.0V  
-4.5V  
-3.5V  
-3.0V  
-2.7V  
-2.0V  
TOP  
-7.5V  
-5.0V  
-4.5V  
-3.5V  
-3.0V  
-2.7V  
-2.0V  
TOP  
BOTTOM -1.5V  
BOTTOM -1.5V  
1
-1.5V  
-1.5V  
0.1  
0.01  
20µs PULSE WIDTH  
Tj = 175°C  
20µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
-V , Drain-to-Source Voltage (V)  
DS  
-V , Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.0  
100  
10  
1
-5.2A  
=
I
D
°
T = 25 C  
J
1.5  
1.0  
0.5  
0.0  
°
T = 175 C  
J
V
= -15V  
DS  
V
= -4.5V  
20µs PULSE WIDTH  
GS  
0.1  
1.0  
2.0  
3.0  
4.0 5.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
-V , Gate-to-Source Voltage (V)  
GS  
T , Junction Temperature ( C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF7314Q  
2000  
10  
8
V
= 0V,  
f = 1MHz  
C SHORTED  
ds  
I
D
= -5.2A  
GS  
C
= C + C  
V
=-16V  
iss  
gs  
gd  
gd ,  
DS  
C
= C  
rss  
C
= C + C  
1600  
1200  
800  
400  
0
oss  
ds  
gd  
6
C
iss  
4
C
oss  
2
C
rss  
0
0
8
16  
24  
32  
40  
1
10  
100  
Q
, Total Gate Charge (nC)  
-V , Drain-to-Source Voltage (V)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
100  
1000  
100  
10  
OPERATION IN THIS AREA LIMITED  
BY R  
DS(on)  
°
T = 175 C  
J
10  
100us  
1ms  
°
T = 25 C  
J
1
10ms  
°
T = 25 C  
C
°
T = 175 C  
Single Pulse  
J
V
= 0 V  
GS  
0.1  
0.2  
1
0.1  
0.5  
0.8  
1.1  
1.4  
1
10  
100  
-V ,Source-to-Drain Voltage (V)  
SD  
-V , Drain-to-Source Voltage (V)  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7314Q  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
RD  
VDS  
VGS  
D.U.T.  
RG  
-
+
VDD  
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
t
t
r
t
t
f
d(on)  
d(off)  
V
GS  
10%  
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T
C
90%  
Fig 9. Maximum Drain Current Vs.  
V
DS  
Case Temperature  
Fig 10b. Switching Time Waveforms  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
P
DM  
t
1
SINGLE PULSE  
(THERMAL RESPONSE)  
0.1  
0.01  
t
2
Notes:  
1. Duty factor D =  
t / t  
1 2  
2. Peak T =P  
J
x Z  
+ T  
thJA A  
DM  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t , Rectangular Pulse Duration (sec)  
1
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7314Q  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.430  
0.330  
0.230  
0.130  
0.030  
VGS = -2.7V  
I
= -5.2A  
D
VGS = -4.5V  
2.0  
4.0  
6.0  
8.0  
0
10  
20  
30  
40  
50  
-V  
GS,  
Gate -to -Source Voltage (V)  
-I , Drain Current ( A )  
D
Fig 11. Typical On-Resistance Vs.  
Fig 12. Typical On-Resistance Vs.  
Gate Voltage  
Drain Current  
Q
G
10 V  
1600  
1200  
800  
400  
0
I
D
Q
Q
GD  
GS  
TOP  
-2.1A  
-4.4A  
-5.2A  
V
G
BOTTOM  
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
25  
50  
75  
100  
125  
150  
175  
V
GS  
°
Starting Tj, Junction Temperature  
(
C)  
3mA  
I
I
D
G
Current Sampling Resistors  
Fig 14. Maximum Avalanche Energy  
Vs. Drain Current  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF7314Q  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
1
0.05  
0.10  
0.1  
0.01  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
1.0E+02  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 10% Duty Cycle  
= -5.2A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF7314Q  
SO-8 Package Details  
INCHES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
A1 .0040  
b
c
.013  
8
1
7
2
6
3
5
4
.0075  
.189  
.0098  
.1968  
.1574  
6
H
D
E
e
E
0.25 [.010]  
A
.1497  
.050 BAS IC  
1.27 BAS IC  
0.635 BAS IC  
e 1 .025 BAS IC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
e1  
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
A
F OOT PRINT  
8X 0.72 [.028]  
NOTES:  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUT LINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
3X 1.27 [.050]  
8X 1.78 [.070]  
Part Marking  
8
www.irf.com  
IRF7314Q  
Tape and Reel  
T E R M IN A L N U M B E R  
1
12.3 ( .48 4  
11.7 ( .46 1  
)
)
8.1 ( .31 8  
7.9 ( .31 2  
)
)
FE E D D IR E C TIO N  
N O TE S :  
1 . C O N TR O L L IN G D IM E N S IO N : M IL L IM E TE R .  
2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E TE R S (IN C H E S ).  
3 . O U TL IN E C O N FO R M S T O E IA -4 8 1 & E IA -5 4 1.  
33 0.00  
(12.992)  
M AX .  
14.40 ( .5 66  
12.40 ( .4 88  
)
)
N O TE S  
1. C O N T R O LLIN G D IM E N S IO N : M ILLIM E T ER .  
2. O U TL IN E C O N FO R M S T O E IA -481 E IA -541.  
:
&
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IRs Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.03/02  
www.irf.com  
9

相关型号:

IRF7314QPBF

Advanced Process Technology
INFINEON

IRF7314TR

Power Field-Effect Transistor, 5.3A I(D), 20V, 0.058ohm, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA,
INFINEON

IRF7314TRPBF

Generation V Technology
INFINEON

IRF7316

HEXFET POWER MOSFET
INFINEON

IRF7316GPBF

Power Field-Effect Transistor, 4.9A I(D), 30V, 0.058ohm, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, HALOGEN AND LEAD FREE, SOP-8
INFINEON

IRF7316PBF

HEXFET㈢Power MOSFET
INFINEON

IRF7316PBF-1

Power Field-Effect Transistor, P-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF7316QPBF

HEXFET Power MOSFET
INFINEON

IRF7316QTRPBF

Transistor,
INFINEON

IRF7316TRPBF

Generation V Technology
INFINEON

IRF7316TRPBF-1

Power Field-Effect Transistor
INFINEON