IRFB4115GPBF [INFINEON]

HEXFETPower MOSFET; HEXFETPower MOSFET
IRFB4115GPBF
型号: IRFB4115GPBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
HEXFETPower MOSFET

文件: 总8页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96216  
IRFB4115GPbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
D
VDSS  
150V  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
RDS(on) typ.  
9.3m  
G
max.  
11m  
ID  
104A  
S
(Silicon Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
S
D
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
l Halogen-Free  
TO-220AB  
IRFB4115GPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
104  
Units  
74  
A
420  
PD @TC = 25°C  
380  
Maximum Power Dissipation  
Linear Derating Factor  
W
W/°C  
V
2.5  
VGS  
dv/dt  
TJ  
± 20  
Gate-to-Source Voltage  
18  
Peak Diode Recovery  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lbf in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
EAS (Thermally limited)  
220  
Single Pulse Avalanche Energy  
mJ  
A
IAR  
See Fig. 14, 15, 22a, 22b  
Avalanche Current  
EAR  
Repetitive Avalanche Energy  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
Junction-to-Case  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
www.irf.com  
1
01/06/09  
IRFB4115GPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
150 ––– –––  
V
Reference to 25°C, ID = 3.5mA  
VGS = 10V, ID = 62A  
V
/ T  
J
––– 0.18 ––– V/°C  
(BR)DSS  
RDS(on)  
VGS(th)  
IDSS  
–––  
3.0  
9.3  
11  
5.0  
20  
mΩ  
V
VDS = VGS, ID = 250µA  
–––  
VDS = 150V, VGS = 0V  
VDS = 150V, VGS = 0V, TJ = 125°C  
VGS = 20V  
Drain-to-Source Leakage Current  
––– –––  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
RG  
–––  
2.3  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Conditions  
VDS = 50V, ID = 62A  
ID = 62A  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
97  
––– –––  
S
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
77  
28  
26  
51  
18  
73  
41  
39  
120  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC  
VDS = 75V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
VGS = 10V  
Qgd  
ID = 62A, VDS =0V, VGS = 10V  
VDD = 98V  
Qsync  
td(on)  
ns  
ID = 62A  
tr  
Rise Time  
td(off)  
RG = 2.2Ω  
VGS = 10V  
Turn-Off Delay Time  
tf  
Fall Time  
VGS = 0V  
Ciss  
Input Capacitance  
––– 5270 –––  
––– 490 –––  
––– 105 –––  
pF  
VDS = 50V  
Coss  
Output Capacitance  
Crss  
ƒ = 1.0 MHz, See Fig. 5  
VGS = 0V, VDS = 0V to 120V , See Fig. 11  
VGS = 0V, VDS = 0V to 120V  
Reverse Transfer Capacitance  
Coss eff. (ER)  
Coss eff. (TR)  
Effective Output Capacitance (Energy Related) ––– 460 –––  
Effective Output Capacitance (Time Related) ––– 530 –––  
Diode Characteristics  
Conditions  
Symbol  
Parameter  
Min. Typ. Max. Units  
D
IS  
MOSFET symbol  
Continuous Source Current  
––– ––– 104  
A
showing the  
integral reverse  
p-n junction diode.  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
G
ISM  
––– ––– 420  
A
S
TJ = 25°C, IS = 62A, VGS = 0V  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
––– 86  
1.3  
V
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 130V,  
IF = 62A  
–––  
ns  
––– 110 –––  
––– 300 –––  
––– 450 –––  
Qrr  
Reverse Recovery Charge  
nC  
di/dt = 100A/µs  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
6.5  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.11mH  
RG = 25, IAS = 62A, VGS =10V. Part not recommended for use  
above this value.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
‡ Rθ is measured at TJ approximately 90°C.  
ƒ ISD 62A, di/dt 1040A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB4115GPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
5.0V  
1
60µs PULSE WIDTH  
Tj = 175°C  
5.0V  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 62A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 50V  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10 12 14 16  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
100  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 62A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
V
V
V
= 120V  
= 75V  
= 30V  
DS  
DS  
DS  
12.0  
10.0  
8.0  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
6.0  
C
rss  
4.0  
2.0  
10  
0.0  
1
10  
100  
1000  
0
20  
40  
60  
80  
100  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB4115GPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
100  
10  
1
J
100µsec  
1msec  
DC  
T
J
= 25°C  
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
3.0  
GS  
0.1  
1
0.0  
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.5  
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
120  
100  
80  
60  
40  
20  
0
200  
190  
180  
170  
160  
150  
140  
Id = 3.5mA  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
900  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I
D
800  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
10A  
22A  
BOTTOM 62A  
-20  
0
20 40 60 80 100 120 140 160  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFB4115GPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.0500 0.000052  
0.1461 0.000468  
0.2041 0.004702  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
/
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 62A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB4115GPbF  
50  
40  
30  
20  
10  
0
6.0  
I = 42A  
F
V
= 130V  
R
5.0  
4.0  
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
3.0  
2.0  
1.0  
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
di /dt (A/µs)  
T
, Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
50  
2500  
I = 62A  
I = 42A  
F
F
V
= 130V  
V
= 130V  
R
R
40  
30  
20  
10  
0
2000  
1500  
1000  
500  
0
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
3000  
I = 62A  
F
V
= 130V  
R
2400  
1800  
1200  
600  
0
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB4115GPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB4115GPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.01/2009  
www.irf.com  
8

相关型号:

IRFB4115PBF

HEXFET Power MOSFET
INFINEON

IRFB4127

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4127PBF

HEXFETPower MOSFET
INFINEON

IRFB4137PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFB41N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.045ohm, Id=41A)
INFINEON

IRFB41N15DPBF

HEXFET Power MOSFET
INFINEON

IRFB41N15DTRL

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
INFINEON

IRFB41N15DTRLPBF

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
INFINEON

IRFB41N15DTRR

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
INFINEON

IRFB41N15DTRRPBF

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
INFINEON

IRFB4212PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4215

HEXFET Power MOSFET
INFINEON