IRFBA1404 [INFINEON]

Power MOSFET(Vdss=40V, Rds(on)=3.7mohm, Id=206A); 功率MOSFET ( VDSS = 40V ,导通电阻Rds ( ON)= 3.7mohm ,ID = 206A )
IRFBA1404
型号: IRFBA1404
厂家: Infineon    Infineon
描述:

Power MOSFET(Vdss=40V, Rds(on)=3.7mohm, Id=206A)
功率MOSFET ( VDSS = 40V ,导通电阻Rds ( ON)= 3.7mohm ,ID = 206A )

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总9页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 93806  
AUTOMOTIVE MOSFET  
IRFBA1404P  
HEXFET® Power MOSFET  
Typical Applications  
l
l
l
l
Anti-lock Braking Systems (ABS)  
Electric Power Steering (EPS)  
Electric Braking  
D
VDSS = 40V  
Radiator Fan Control  
Benefits  
l
l
l
l
l
l
l
Advanced Process Technology  
RDS(on) = 3.7mΩ  
Ultra Low On-Resistance  
G
Increase Current Handling Capability  
175°C Operating Temperature  
Fast Switching  
ID = 206A†  
S
Dynamic dv/dt Rating  
Repetitive Avalanche Allowed up to Tjmax  
Description  
Specifically designed for Automotive applications, this Stripe Planar  
design of HEXFET® Power MOSFETs utilizes the latest processing  
techniques to achieve extremely low on-resistance per silicon area.  
Additional features of this MOSFET are a 175oC junction operating  
temperature, fast switching speed and improved ruggedness in  
single and repetitive avalanche. The Super-220 TM is a package that  
has been designed to have the same mechanical outline and pinout  
as the industry standard TO-220 but can house a considerably  
larger silicon die. The result is significantly increased current  
handling capability over both the TO-220 and the much larger TO-  
247 package. The combination of extremely low on-resistance  
silicon and the Super-220 TM package makes it ideal to reduce the  
component count in multiparalled TO-220 applications, reduce  
system power dissipation, upgrade existing designs or have TO-247  
performance in a TO-220 outline. This package has been designed  
to meet automotive, Q101, qualification standard.  
Super-220™  
These benefits make this design an extremely efficient and reliable  
device for use in Automotive applications and a wide variety of other  
applications.  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
206†  
145†  
A
650  
PD @TC = 25°C  
Power Dissipation  
300  
W
W/°C  
V
Linear Derating Factor  
2.0  
± 20  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy‚  
Avalanche Current  
See Fig.12a, 12b, 15, 16  
mJ  
A
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
30  
5.0  
mJ  
V/ns  
-40 to + 175  
-55 to + 175  
300 (1.6mm from case )  
20  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Recommended clip force  
°C  
N
www.irf.com  
1
10/24/00  
IRFBA1404P  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.036 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance ––– ––– 3.7  
mVGS = 10V, ID = 95A „  
Gate Threshold Voltage  
2.0  
––– 4.0  
V
S
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 60A  
VDS = 40V, VGS = 0V  
VDS = 32V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Forward Transconductance  
106 ––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 160 200  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 95A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
35 –––  
42 60  
17 –––  
nC  
ns  
VDS = 32V  
VGS = 10V  
VDD = 20V  
––– 140 –––  
ID = 95A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
72 –––  
26 –––  
RG = 2.5Ω  
RD = 0.21„  
Between lead,  
6mm (0.25in.)  
D
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
2.0 –––  
nH  
pF  
G
from package  
–––  
5.0  
and center of die contact  
VGS = 0V  
S
Ciss  
Input Capacitance  
––– 7360 –––  
––– 1680 –––  
––– 240 –––  
––– 6630 –––  
––– 1490 –––  
––– 1540 –––  
Coss  
Output Capacitance  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
206†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 650  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
––– ––– 1.3  
––– 71 110  
––– 180 270  
V
TJ = 25°C, IS = 95A, VGS = 0V „  
ns  
TJ = 25°C, IF = 95A  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
0.5  
Max.  
0.50  
–––  
58  
Units  
RθJC  
RθCS  
RθJA  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
°C/W  
–––  
2
www.irf.com  
IRFBA1404P  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
°
T = 175 C  
J
20µs PULSE WIDTH  
T = 25 C  
J
°
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.5  
159A  
=
I
D
°
T = 25 C  
J
°
2.0  
1.5  
1.0  
0.5  
0.0  
T = 175 C  
J
100  
V
= 25V  
DS  
V
= 10V  
GS  
20µs PULSE WIDTH  
10  
4.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
5.0  
6.0  
7.0 8.0 9.0  
T , Junction Temperature ( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRFBA1404P  
20  
16  
12  
8
12000  
I
D
= 95A  
V
= 0V,  
f = 1MHz  
C
GS  
C
= C + C  
SHORTED  
ds  
iss  
gs  
gd ,  
gd  
C
= C  
gd  
V
V
= 32V  
= 20V  
rss  
DS  
DS  
10000  
8000  
6000  
4000  
2000  
0
C
= C + C  
oss  
ds  
C
iss  
C
oss  
4
FOR TEST CIRCUIT  
SEE FIGURE 13  
C
rss  
0
1
10  
100  
0
40  
80  
120  
160  
200  
240  
V
, Drain-to-Source Voltage (V)  
Q
, Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
10000  
1000  
100  
10  
1000  
OPERATION IN THIS AREA LIMITED  
BY R  
DS(on)  
°
T = 175 C  
J
10us  
100  
10  
1
100us  
°
T = 25 C  
J
1ms  
10ms  
°
T = 25 C  
C
J
°
T = 175 C  
V
= 0 V  
Single Pulse  
GS  
2.0  
1
1
10  
100  
0.4  
0.8  
1.2  
1.6  
2.4  
V
, Drain-to-Source Voltage (V)  
V
,Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRFBA1404P  
RD  
240  
180  
120  
60  
VDS  
LIMITED BY PACKAGE  
VGS  
10V  
D.U.T.  
RG  
+VDD  
-
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
V
DS  
90%  
0
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
SINGLE PULSE  
(THERMAL RESPONSE)  
0.02  
0.01  
P
DM  
0.01  
t
1
t
2
Notes:  
1. Duty factor D =  
t / t  
1 2  
2. Peak T = P  
x Z  
+ T  
thJC C  
J
DM  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFBA1404P  
1000  
800  
600  
400  
200  
0
15V  
I
D
TOP  
39A  
67A  
95A  
BOTTOM  
DRIVER  
L
V
G
D S  
D.U .T  
R
+
V
D D  
-
I
A
AS  
20V  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
°
Starting T , Junction Temperature ( C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
50  
48  
46  
44  
42  
40  
Q
Q
GD  
GS  
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
0
20  
I
40  
60  
80  
100  
V
GS  
, Avalanche Current ( A)  
3mA  
AV  
I
I
D
G
Current Sampling Resistors  
Fig 12d. Typical Drain-to-Source Voltage  
Vs. Avalanche Current  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRFBA1404P  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 10% Duty Cycle  
= 95A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRFBA1404P  
Peak Diode Recovery dv/dt Test Circuit  
+
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T  
ƒ
-
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
+
-
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
VDD  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
=10V  
*
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. For N-Channel HEXFET Power MOSFETs  
8
www.irf.com  
IRFBA1404P  
Super-220™ Package Outline  
9.00 [.354]  
8.00 [.315]  
11.00 [.433]  
B
A
5.00 [.196]  
4.00 [.158]  
10.00 [.394]  
0.25 [.010]  
B A  
1.50 [.059]  
0.50 [.020]  
13.50 [.531]  
12.50 [.493]  
4
15.00 [.590]  
14.00 [.552]  
1
2
3
4.00 [.157]  
3.50 [.138]  
14.50 [.570]  
13.00 [.512]  
1.00 [.039]  
0.70 [.028]  
4X  
1.30 [.051]  
0.90 [.036]  
3X  
3.00 [.118]  
2.50 [.099]  
2.55 [.100]  
2X  
0.25 [.010]  
B
A
LEAD ASSIGNMENTS  
NOTES :  
MOS F E T  
IGBT  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONT R OL L ING DIME NS ION: MIL L IME T E R .  
1 - GATE  
1 - GATE  
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
2 - COL L E CT OR  
3 - EMITTER  
4 - COL L E CT OR  
3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES ].  
4. OU T L INE CONF OR MS T O JE DE C OU T L INE T O-273AA.  
Notes:  
Repetitive rating; pulse width limited by  
„Pulse width 400µs; duty cycle 2%.  
max. junction temperature.  
Coss eff. is a fixed capacitance that gives the same charging time  
‚Starting TJ = 25°C, L = 0.12mH  
RG = 25, IAS = 95A.  
as Coss while VDS is rising from 0 to 80% VDSS . Refer to AN-1001  
†
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 95A.  
ƒISD 95A, di/dt 150A/µs, VDD V(BR)DSS  
TJ 175°C  
,
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000  
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200  
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590  
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111  
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086  
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630  
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936  
Data and specifications subject to change without notice. 10/00  
www.irf.com  
9

相关型号:

IRFBA1404P

Power MOSFET(Vdss=40V, Rds(on)=3.7mohm, Id=206A)
INFINEON

IRFBA1404PPBF

AUTOMOTIVE MOSFET HEXFET㈢ Power MOSFET
INFINEON

IRFBA1405

Power MOSFET(Vdss=55V, Rds(on)=5.0mohm, Id=174A)
INFINEON

IRFBA1405P

Power MOSFET(Vdss=55V, Rds(on)=5.0mohm, Id=174A)
INFINEON

IRFBA1405PPBF

HEXFET㈢ Power MOSFET
INFINEON

IRFBA22N50

Power MOSFET(Vdss=500V, Rds(on)max=0.23ohm, Id=24A)
INFINEON

IRFBA22N50A

Power MOSFET(Vdss=500V, Rds(on)max=0.23ohm, Id=24A)
INFINEON

IRFBA22N50APBF

HEXFET㈢Power MOSFET
INFINEON

IRFBA31N50L

HEXFET Power MOSFET
INFINEON

IRFBA31N50LPBF

Power Field-Effect Transistor, 31A I(D), 500V, 0.152ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SUPER-220, 4 PIN
INFINEON

IRFBA32N50K

HEXFET㈢ Power MOSFET
INFINEON

IRFBA32N50KPBF

暂无描述
INFINEON