IRFH7004 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFH7004
型号: IRFH7004
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总12页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRFH7004PbF  
HEXFET® Power MOSFET  
Applications  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
l DC/AC Inverters  
VDSS  
RDS(on) typ.  
max.  
40V  
1.1mΩ  
1.4mΩ  
259A  
ID (Silicon Limited)  
ID  
100A  
(Package Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
PQFN 5X6 mm  
l Enhanced body diode dV/dt and dI/dt Capability  
l RoHS Compliant containing no Lead, no Bromide,  
and no Halogen  
Base Part Number  
Package Type  
Standard Pack  
Form  
Tape and Reel  
Orderable Part Number  
Quantity  
4000  
IRFH7004PBF  
PQFN 5mm x 6mm  
IRFH7004TRPBF  
6.0  
4.0  
2.0  
0.0  
300  
250  
200  
150  
100  
50  
I
= 100A  
D
Limited By Package  
T
= 125°C  
J
T
= 25°C  
J
0
4
6
8
10 12 14  
16 18 20  
25  
50  
75  
100  
125  
150  
T
, Case Temperature (°C)  
C
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
1
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
Units  
259  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
164  
100  
1247  
156  
1.3  
A
Maximum Power Dissipation  
PD @TC = 25°C  
W
Linear Derating Factor  
W/°C  
V
Gate-to-Source Voltage  
± 20  
VGS  
TJ  
Operating Junction and  
-55 to + 150  
°C  
Storage Temperature Range  
TSTG  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
191  
479  
mJ  
Single Pulse Avalanche Energy  
Avalanche Current  
EAS (Thermally limited)  
IAR  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
0.5  
Max.  
Units  
Junction-to-Case  
Junction-to-Case  
Junction-to-Ambient  
Junction-to-Ambient  
0.8  
RθJC (Bottom)  
RθJC (Top)  
–––  
–––  
–––  
15  
34  
21  
°C/W  
RθJA  
RθJA (<10s)  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
–––  
V
VGS = 0V, ID = 250μA  
V / T  
(BR)DSS Δ  
––– 0.033 –––  
V/°C Reference to 25°C, ID = 1.0mA  
Δ
J
m
m
RDS(on)  
–––  
–––  
2.2  
1.1  
1.7  
1.4  
–––  
3.9  
VGS = 10V, ID = 100A  
VGS = 6.0V, ID = 50A  
VDS = VGS, ID = 150μA  
VDS = 40V, VGS = 0V  
Ω
Ω
VGS(th)  
IDSS  
Gate Threshold Voltage  
3.0  
V
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
2.4  
1.0  
μA  
nA  
Ω
150  
100  
-100  
–––  
VDS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
VGS = -20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
V
RG  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package is limited to 100A by production test  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
capability. Note that current limitations arising from heating of the  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
device leads may occur with some lead mounting arrangements.  
(RefertoAN-1140)  
.
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ˆ When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of  
FR-4material.  
‰ Rθ is measured at TJ approximately 90°C.  
Š Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 31A,  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.038mH  
RG = 50Ω, IAS = 100A, VGS =10V.  
„ ISD 100A, di/dt 1366A/μs, VDD V(BR)DSS, TJ 150°C.  
VGS =10V.  
2
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter  
Forward Transconductance  
Min.  
117  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
129  
34  
Max.  
–––  
194  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Units  
S
Conditions  
gfs  
Qg  
VDS = 10V, ID = 100A  
Total Gate Charge  
nC  
ID = 100A  
VDS =20V  
VGS = 10V  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
40  
169  
15  
ns  
VDD = 20V  
ID = 30A  
Rise Time  
51  
td(off)  
tf  
Turn-Off Delay Time  
73  
R = 2.7  
Ω
G
Fall Time  
49  
VGS = 10V  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 6419 –––  
pF  
Output Capacitance  
–––  
–––  
952  
656  
–––  
–––  
V
DS = 25V  
ƒ = 1.0 MHz  
VGS = 0V, VDS = 0V to 32V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Coss eff. (ER)  
oss eff. (TR)  
––– 1161 –––  
––– 1305 –––  
C
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
100  
IS  
Continuous Source Current  
–––  
–––  
A
MOSFET symbol  
D
S
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
–––  
––– 1247  
A
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
dv/dt  
trr  
Diode Forward Voltage  
Peak Diode Recovery  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.95  
2.5  
35  
1.3  
–––  
–––  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 100A, VGS = 0V  
V/ns TJ = 175°C, IS = 100A, VDS = 40V  
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Current  
ns  
nC  
A
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
35  
IF = 100A  
di/dt = 100A/μs  
Qrr  
26  
27  
IRRM  
1.5  
3
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.0V  
4.5V  
4.25V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.0V  
4.5V  
4.25V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.25V  
60μs PULSE WIDTH  
Tj = 150°C  
60μs PULSE WIDTH  
Tj = 25°C  
4.25V  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
10000  
1000  
100  
10  
1.8  
I
= 100A  
= 10V  
D
V
GS  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
T
= 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60μs PULSE WIDTH  
1.0  
3
4
5
6
7
8
9
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 100A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
= 32V  
= 20V  
DS  
ds  
gd  
V
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
DS  
C
iss  
C
oss  
C
rss  
100  
0
20 40 60 80 100 120 140 160  
0.1  
1
10  
100  
Q , Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
T
= 150°C  
J
1msec  
Limited by  
package  
10msec  
DC  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 150°C  
0.1  
V
= 0V  
Single Pulse  
GS  
0.01  
1.0  
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
1.0  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
V
= 0V to 32V  
Id = 1.0mA  
DS  
0.8  
0.6  
0.4  
0.2  
0.0  
0
5
10 15 20  
25 30 35 40  
-60 -40 -20  
0
20 40 60 80 100 120140 160  
, Temperature ( °C )  
T
V
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
40  
V
V
V
V
V
= 5.0V  
GS  
GS  
GS  
GS  
GS  
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
30  
20  
10  
0
0
200 400 600 800 1000 1200 1400  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
5
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 125°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 125°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
140  
120  
100  
80  
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
60  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
40  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
20  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
0
25  
50  
75  
100  
125  
150  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
4.0  
3.0  
2.0  
1.0  
10  
8
I = 60A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
6
I
I
I
= 150μA  
= 1.0mA  
= 1.0A  
D
D
D
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
10  
300  
I = 100A  
F
I = 60A  
F
V
= 34V  
V
= 34V  
R
R
250  
200  
150  
100  
50  
8
6
4
2
0
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
250  
I = 100A  
F
V
= 34V  
R
200  
150  
100  
50  
T = 25°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
7
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test  
Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
www.irf.com © 2015 International Rectifier  
Fig 24b. Gate Charge Waveform  
8
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
PQFN 5x6 Outline "B" Package Details  
For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136:  
http://www.irf.com/technical-info/appnotes/an-1136.pdf  
For more information on package inspection techniques, please refer to application note AN-1154:  
http://www.irf.com/technical-info/appnotes/an-1154.pdf  
PQFN 5x6 Part Marking  
INTERNATIONAL  
RECTIFIER LOGO  
DATE CODE  
PART NUMBER  
XXXX  
(“4 or 5 digits”)  
ASSEMBLY  
SITE CODE  
(Per SCOP 200-002)  
MARKING CODE  
XYWWX  
XXXXX  
(Per Marking Spec)  
PIN 1  
IDENTIFIER  
LOT CODE  
(Eng Mode - Min last 4 digits of EATI#)  
(Prod Mode - 4 digits of SPN code)  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com © 2015 International Rectifier Submit Datasheet Feedback  
9
March 17, 2015  
IRFH7004PbF  
PQFN 5x6 Tape and Reel  
REEL DIMENSIONS  
TAPE DIMENSIONS  
CODE  
Ao  
DES CRIPTION  
Dimension design to accommodate the component width  
Dimension design to accommodate the component lenght  
Dimension design to accommodate the component thickness  
Overall width of the carrier tape  
Bo  
Ko  
W
P
1
Pitch between s ucces sive cavity centers  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Note: All dimens ion are nominal  
Package  
Type  
Reel  
Diameter  
(Inch)  
QTY  
Reel  
Width  
W1  
Ao  
Bo  
Ko  
P1  
W
Pin 1  
(mm)  
(mm)  
(mm)  
(mm)  
(mm)  
Quadrant  
(mm)  
5 X 6 PQFN  
13  
4000  
12.4  
6.300  
5.300  
1.20  
8.00  
12  
Q1  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IRFH7004PbF  
Qualification information†  
Industrial  
Qualification level  
(per JEDEC JESD47F †† guidelines )  
MS L 1  
(per JEDEC J-S TD-020D†† )  
Moisture Sensitivity Level  
RoHS compliant  
PQFN 5mm x 6mm  
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Comment  
Updated EAS (L =1mH) = 479mJ on page 2  
2/19/2015  
Ω
Updated note 10 “Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50 , IAS = 31A, VGS =10V”. on page 2  
3/17/2015  
Updated package outline and tape and reel on pages 9 and 10.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
11  
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
March 17, 2015  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFH7004PBF

Brushed Motor drive applications
INFINEON

IRFH7004PBF_15

Brushed Motor drive applications
INFINEON

IRFH7004TRPBF

Power Field-Effect Transistor, 100A I(D), 40V, 0.0014ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, 6 X 5 MM, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, B, QFN-8
INFINEON

IRFH7084PBF

Half-bridge and full-bridge topologies
INFINEON

IRFH7084PBF_15

Half-bridge and full-bridge topologies
INFINEON

IRFH7084TRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRFH7085PBF

Half-bridge and full-bridge topologies
INFINEON

IRFH7085PBF_15

Half-bridge and full-bridge topologies
INFINEON

IRFH7085TRPBF

Power Field-Effect Transistor
INFINEON

IRFH7107PBF

Secondary Side Synchronous Rectification
INFINEON

IRFH7107PBF_15

Secondary Side Synchronous Rectification
INFINEON

IRFH7110PBF

Secondary Side Synchronous Rectification
INFINEON