IRFI4410ZPBF [INFINEON]

High Efficiency Synchronous Rectification in SMPS; 高效率同步整流开关电源
IRFI4410ZPBF
型号: IRFI4410ZPBF
厂家: Infineon    Infineon
描述:

High Efficiency Synchronous Rectification in SMPS
高效率同步整流开关电源

晶体 开关 晶体管 脉冲 局域网
文件: 总8页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97475A  
IRFI4410ZPbF  
HEXFET® Power MOSFET  
Applications  
VDSS  
RDS(on) typ.  
100V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
7.9m  
9.3m  
:
:
max.  
ID  
43A  
Benefits  
D
S
D
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
S
G
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D
G
TO-220AB Full-Pak  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
Max.  
43  
Units  
A
30  
170  
PD @TC = 25°C  
47  
Maximum Power Dissipation  
Linear Derating Factor  
W
0.3  
W/°C  
V
VGS  
±30  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy d  
EAS (Thermally limited)  
310  
mJ  
°C  
TJ  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Junction-to-Case f  
Junction-to-Ambient f  
Typ.  
–––  
–––  
Max.  
3.2  
Units  
RθJC  
RθJA  
°C/W  
65  
www.irf.com  
1
4/19/11  
IRFI4410ZPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250μA  
V
100  
–  
–  
2.0  
– –––  
V
(BR)DSS  
Reference to 25°C, I = 5mA  
V(BR)DSS/ TJ Breakdown Voltage Temp. Coefficient  
95  
––– mV/°C  
D
RDS(on)  
VGS(th)  
IDSS  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
7.9  
9.3  
4.0  
20  
m
VGS = 10V, ID = 26A  
–  
–  
V
V
V
V
V
V
DS = VGS, ID = 150μA  
DS = 100V, VGS = 0V  
DS = 100V, VGS = 0V, TJ = 125°C  
GS = 20V  
Drain-to-Source Leakage Current  
–  
–  
–  
–  
–  
μA  
– 250  
– 100  
– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
GS = -20V  
RG(int)  
0.9  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Qgs  
Qgd  
td(on)  
Parameter  
Forward Transconductance  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 26A  
nC ID = 26A  
DS = 50V  
80  
– –––  
S
–  
–  
–  
–  
–  
–  
–  
81  
18  
23  
15  
27  
43  
30  
110  
–––  
–––  
–––  
–––  
–––  
–––  
V
VGS = 10V  
VDD = 65V  
ID = 26A  
ns  
t
Rise Time  
r
td(off)  
Turn-Off Delay Time  
Fall Time  
RG = 2.7  
t
V
GS = 10V  
VGS = 0V  
DS = 50V  
ƒ = 1.0MHz  
f
Cis s  
Coss  
Crss  
Input Capacitance  
– 4910 –––  
pF  
V
Output Capacitance  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
–  
–  
–  
–  
330 –––  
–––  
420 –––  
680 –––  
150  
Coss eff. (ER)  
V
V
GS = 0V, VDS = 0V to 80V , See Fig.11  
GS = 0V, VDS = 0V to 80V  
Coss eff. (TR) Effective Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
Diode Forward Voltage  
Reverse Recovery Time  
–  
–  
A
A
V
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
TJ = 25°C, IS = 26A, VGS = 0V  
43  
D
S
ISM  
–  
– 170  
G
VSD  
–  
–  
–  
–  
–  
–  
–  
47  
54  
110 160  
140 210  
2.5  
1.3  
71  
81  
t
rr  
ns TJ = 25°C  
TJ = 125°C  
nC TJ = 25°C  
TJ = 125°C  
VR = 85V,  
IF = 26A  
di/dt = 100A/μs  
Q
Reverse Recovery Charge  
rr  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
TJ = 25°C  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Pulse width 400μs; duty cycle 2%.  
„ Rθ is measured at TJ approximately 90°C  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.91mH  
RG = 25Ω, IAS = 26A, VGS =10V. Part not recommended for use  
above this value.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
2
www.irf.com  
IRFI4410ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
60μs PULSE WIDTH  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
Tj = 25°C  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
1
60μs PULSE WIDTH  
Tj = 175°C  
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 26A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
1
V
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
8000  
6000  
4000  
2000  
0
16  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 26A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
C
= C  
V
V
V
= 80V  
= 50V  
= 20V  
rss  
gd  
DS  
DS  
DS  
C
= C + C  
oss  
ds  
gd  
12  
8
C
iss  
4
C
oss  
C
0
rss  
0
20  
40  
60  
80  
100  
120  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFI4410ZPbF  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100  
100μsec  
T
= 175°C  
J
1msec  
10  
1
DC  
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.0  
0.5  
1.0  
1.5  
V
, Drain-toSource Voltage (V)  
DS  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
50  
40  
30  
20  
10  
0
130  
125  
120  
115  
110  
105  
100  
Id = 5mA  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, CaseTemperature (°C)  
C
T
, Temperature ( °C )  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2.0  
1.5  
1.0  
0.5  
0.0  
1400  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
8.6A  
14A  
26A  
BOTTOM  
0
20  
40  
60  
80  
100  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFI4410ZPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
τι (sec)  
Ri (°C/W)  
R1  
0.1  
τJ  
0.117574 0.000176  
1.337531 0.7389  
1.260992 0.103059  
0.508931 0.008379  
τC  
0.02  
0.01  
τJ  
τ1  
τ
τ
τ
3τ3  
τ4  
2 τ2  
τ1  
τ4  
Ci= τi/Ri  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
320  
240  
160  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 10% Duty Cycle  
= 26A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFI4410ZPbF  
16  
14  
12  
10  
8
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
I
I
I
I
= 1.0A  
D
D
D
D
= 1.0mA  
= 250μA  
= 150μA  
6
I
= 17A  
= 85V  
F
V
4
R
T = 25°C  
J
2
T = 125°C  
J
1.0  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
100  
200  
300  
400  
500  
600  
700  
T
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
16  
14  
12  
10  
8
350  
300  
250  
200  
150  
100  
50  
6
I
= 26A  
= 85V  
I
= 17A  
V = 85V  
R
F
F
4
2
0
V
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
100  
200  
300  
400  
500  
600  
700  
100  
200  
300  
400  
500  
600  
700  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
350  
300  
250  
200  
150  
100  
50  
I
= 26A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
0
100  
200  
300  
400  
500  
600  
700  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFI4410ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1μs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFI4410ZPbF  
TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Full-Pak Part Marking Information  
EXAMPLE: THIS IS AN IRFI840G  
WITH ASSEMBLY  
LOT CODE 3432  
INTERNATIONAL  
ASSEMBLED ON WW 24, 2001  
PART NUMBER  
IRFI840G  
RECTIFIER  
LOGO  
124K  
32  
IN THE ASSEMBLY LINE "K"  
34  
DATE CODE  
YEAR 1 = 2001  
WEEK 24  
ASSEMBLY  
LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-F ree"  
LINE K  
TO-220AB Full-Pak packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/11  
8
www.irf.com  

相关型号:

IRFI460

TRANSISTOR N-CHANNEL(Vdss=500V, Rds(on)=0.27ohm, Id=21A)
INFINEON

IRFI460D

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 21A I(D) | TO-259VAR
ETC

IRFI460U

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 21A I(D) | TO-259VAR
ETC

IRFI48NPBF

Power Field-Effect Transistor, 40A I(D), 55V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRFI4905

HEXFET Power MOSFET
INFINEON

IRFI4905-101

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-101PBF

41A, 55V, 0.02ohm, P-CHANNEL, Si, POWER, MOSFET
INFINEON

IRFI4905-102

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-102PBF

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI4905-103

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI4905-103PBF

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI4905-104

Power Field-Effect Transistor, 41A I(D), 55V, 0.02ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON