IRFS3006-7PPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFS3006-7PPBF
型号: IRFS3006-7PPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 PC
文件: 总9页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96187  
IRFS3006-7PPbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
D
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
60V  
1.5m  
2.1m  
293A  
240A  
G
l Hard Switched and High Frequency Circuits  
S
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
S
S
S
S
G
D2Pak 7 Pin  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
293  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
207  
A
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
240  
1172  
375  
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
2.5  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
11  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
303  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.4  
Units  
RθJC  
Junction-to-Case  
°C/W  
RθJA  
–––  
40  
Junction-to-Ambient (PCB Mount)  
www.irf.com  
1
10/06/08  
IRFS3006-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.07 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
1.5  
2.1  
4.0  
20  
VGS = 10V, ID = 168A  
VDS = VGS, ID = 250µA  
mΩ  
V
VGS(th)  
–––  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
V
V
V
V
DS = 60V, VGS = 0V  
DS = 60V, VGS = 0V, TJ = 125°C  
GS = 20V  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
GS = -20V  
RG(int)  
–––  
2.1  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 25V, ID = 168A  
290 ––– –––  
S
Qg  
Total Gate Charge  
––– 200 300  
ID = 168A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
–––  
–––  
37  
60  
–––  
–––  
VDS = 30V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V  
––– 140 –––  
ID = 168A, VDS =0V, VGS = 10V  
VDD = 39V  
Turn-On Delay Time  
–––  
–––  
14  
61  
–––  
–––  
Rise Time  
ID = 168A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
––– 118 –––  
––– 69 –––  
RG = 2.7Ω  
VGS = 10V  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 8850 –––  
––– 1007 –––  
––– 525 –––  
––– 1460 –––  
––– 1915 –––  
V
GS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz (See Fig 5)  
pF  
Coss eff. (ER)  
oss eff. (TR)  
V
GS = 0V, VDS = 0V to 48V (See Fig 11)  
GS = 0V, VDS = 0V to 48V  
C
V
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
––– ––– 293  
A
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 1172  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 168A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
–––  
–––  
–––  
–––  
44  
48  
51  
62  
ns  
IF = 168A  
di/dt = 100A/µs  
Qrr  
Reverse Recovery Charge  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
––– 2.03 –––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calcuted continuous current based on maximum allowable junction  
temperature Bond wire current limit is 240A. Note that current  
limitation arising from heating of the device leds may occur with  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.021mH  
RG = 25, IAS = 168A, VGS =10V. Part not recommended for use  
above this value .  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For  
recommended footprint and soldering techniquea refer to applocation  
note # AN-994 echniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
.
.
ŠRθJC value shown is at time zero  
„ ISD 168A, di/dt 1410 A/µs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
IRFS3006-7PPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
3.5V  
1
60µs PULSE WIDTH  
Tj = 175°C  
3.5V  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 168A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
16.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 168A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 48V  
= 30V  
ds  
gd  
DS  
DS  
12.0  
8.0  
C
iss  
C
oss  
C
rss  
4.0  
100  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
40  
80  
120 160 200 240 280  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFS3006-7PPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
100  
10  
1msec  
10msec  
LIMITED BY PACKAGE  
T
= 25°C  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1.0  
0.1  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.1  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
350  
300  
250  
200  
150  
100  
50  
80  
Limited By Package  
Id = 5mA  
75  
70  
65  
60  
55  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1400  
2.5  
I
D
35A  
70A  
1200  
1000  
800  
600  
400  
200  
0
TOP  
2.0  
1.5  
1.0  
0.5  
0.0  
BOTTOM 168A  
0
10  
V
20  
30  
40  
50  
60  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFS3006-7PPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.02  
0.01  
Ri (°C/W) τi (sec)  
0.01  
0.0062  
0.0431  
0.1462  
0.2047  
0.000005  
0.000045  
0.001067  
0.010195  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
350  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 168A  
Single Pulse  
300  
250  
200  
150  
100  
50  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFS3006-7PPbF  
20  
16  
12  
8
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
I = 112A  
D
D
D
F
V
= 51V  
R
T = 25°C  
J
T = 125°C  
J
4
0
0
200  
400  
600  
800 1000 1200  
-75 -50 -25  
0
25 50 75 100 125 150 175  
di /dt (A/µs)  
T , Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
20  
600  
I = 168A  
I = 112A  
F
F
V
= 51V  
V
= 51V  
R
500  
400  
300  
200  
100  
0
R
16  
12  
8
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
4
0
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
600  
I = 168A  
F
V
= 51V  
500  
400  
300  
200  
100  
0
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800 1000 1200  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFS3006-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFS3006-7PPbF  
D2Pak (TO-263CB) 7 Long Leads Package Outline  
Dimensions are shown in milimeters (inches)  
D2Pak - 7 Pin Part Marking Information  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
8
www.irf.com  
IRFS3006-7PPbF  
D2Pak - 7 Pin Tape and Reel  
Dimensions are shown in milimeters (inches)  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/2008  
www.irf.com  
9

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY