IRFS3307TRR [INFINEON]

暂无描述;
IRFS3307TRR
型号: IRFS3307TRR
厂家: Infineon    Infineon
描述:

暂无描述

文件: 总11页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96901A  
IRFB3307  
IRFS3307  
IRFSL3307  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
75V  
5.0m  
6.3m  
:
:
G
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
ID  
130A  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
G D S  
G D S  
G D S  
D2Pak  
IRFS3307  
TO-262  
IRFSL3307  
TO-220AB  
IRFB3307  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current d  
Max.  
130c  
91c  
Units  
A
510  
PD @TC = 25°C  
250  
W
Maximum Power Dissipation  
Linear Derating Factor  
1.6  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
11  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
270  
mJ  
A
Avalanche Currentꢀc  
IAR  
See Fig. 14, 15, 16a, 16b  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.61  
–––  
62  
Units  
RθJC  
Junction-to-Case k  
RθCS  
RθJA  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
2
–––  
40  
Junction-to-Ambient (PCB Mount) , D Pak  
jk  
www.irf.com  
1
11/04/04  
IRFB3307/IRFS3307/IRFSL3307  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.069 ––– V/°C Reference to 25°C, ID = 1mAd  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
5.0  
6.3  
4.0  
20  
VGS = 10V, ID = 75A g  
mΩ  
V
VGS(th)  
–––  
V
V
V
DS = VGS, ID = 150µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
DS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
nA VGS = 20V  
GS = -20V  
f = 1MHz, open drain  
V
RG  
–––  
1.5  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
98 ––– –––  
––– 120 180  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
DS = 60V  
VGS = 10V g  
DD = 48V  
S
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
35  
46  
26  
–––  
–––  
–––  
V
ns  
V
––– 120 –––  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
51  
63  
–––  
–––  
RG = 3.9Ω  
VGS = 10V g  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 5150 –––  
––– 460 –––  
––– 250 –––  
––– 570 –––  
––– 700 –––  
pF VGS = 0V  
DS = 50V  
ƒ = 1.0MHz  
Output Capacitance  
Reverse Transfer Capacitance  
V
Coss eff. (ER)  
Effective Output Capacitance (Energy Related)  
VGS = 0V, VDS = 0V to 60V i, See Fig.11  
GS = 0V, VDS = 0V to 60V h, See Fig. 5  
Coss eff. (TR)  
V
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
––– –––  
A
MOSFET symbol  
130  
c
(Body Diode)  
Pulsed Source Current  
(Body Diode)d  
showing the  
integral reverse  
G
ISM  
––– ––– 510  
A
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
57  
V
TJ = 25°C, IS = 75A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
38  
46  
65  
86  
2.8  
ns  
IF = 75A  
di/dt = 100A/µs g  
69  
Qrr  
Reverse Recovery Charge  
98  
nC  
130  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.096mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
„ ISD 75A, di/dt 530A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB3307/IRFS3307/IRFSL3307  
1000  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
100  
10  
1
BOTTOM  
BOTTOM  
1
4.5V  
4.5V  
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
12.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 75A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
V
V
V
= 60V  
= 38V  
= 15V  
rss  
oss  
gd  
DS  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
20  
40  
60  
80  
100 120 140  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB3307/IRFS3307/IRFSL3307  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
1msec 100µsec  
10msec  
T
= 25°C  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
V
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
100  
95  
90  
85  
80  
75  
70  
140  
120  
100  
80  
60  
40  
20  
0
Limited By Package  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
T
T
, Case Temperature (°C)  
J
C
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
1.4  
1200  
I
D
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TOP  
8.6A  
12A  
1000  
800  
600  
400  
200  
0
BOTTOM 75A  
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB3307/IRFS3307/IRFSL3307  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
0.02  
0.01  
Ri (°C/W) τi (sec)  
0.2911 0.000484  
0.01  
τ
J τJ  
τ
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.3196 0.005529  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
0.01  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
Single Pulse  
BOTTOM 1% Duty Cycle  
= 75A  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB3307/IRFS3307/IRFSL3307  
5.0  
4.5  
4.0  
3.5  
20  
15  
10  
5
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
3.0  
2.5  
2.0  
1.5  
I
= 30A  
= 64V  
F
V
T
R
= 25°C _____  
= 125°C ----------  
J
T
J
0
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
di /dt (A/µs)  
f
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
400  
20  
350  
300  
250  
200  
150  
100  
50  
15  
10  
5
I
= 30A  
= 64V  
I
= 45A  
= 64V  
F
F
V
T
V
T
R
R
= 25°C _____  
= 125°C ----------  
= 25°C _____  
= 125°C ----------  
J
J
T
T
J
J
0
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/µs)  
f
di /dt (A/µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
400  
350  
300  
250  
200  
150  
100  
50  
I
= 45A  
= 64V  
F
V
R
T
= 25°C _____  
= 125°C ----------  
J
T
J
0
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB3307/IRFS3307/IRFSL3307  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
D.U.T  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB3307/IRFS3307/IRFSL3307  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
Note: "P" in assembly line  
position indicates "Lead-Free"  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRFB3307/IRFS3307/IRFSL3307  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
IGBT  
1- GATE  
2- COLLECTOR  
3- EMITTER  
4- COLLECTOR  
TO-262 Part Marking Information  
OR  
www.irf.com  
9
IRFB3307/IRFS3307/IRFSL3307  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
OR  
10  
www.irf.com  
IRFB3307/IRFS3307/IRFSL3307  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 11/04  
www.irf.com  
11  

相关型号:

IRFS3307TRRPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3307ZPBF

HEXFET Power MOSFET
INFINEON

IRFS3307ZPBFTRL

Power Field-Effect Transistor, 75A I(D), 75V, 0.0058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3307ZTRLPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3307ZTRRPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3307_06

High Efficiency Synchronous Rectification in SMPS, Uninterruptible Power Supply
INFINEON

IRFS33N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.056ohm, Id=33A)
INFINEON

IRFS33N15DPB

High frequency DC-DC converters
INFINEON

IRFS33N15DPBF

SMPS MOSFET HEXFET Power MOSFET
INFINEON

IRFS33N15DTRR

暂无描述
INFINEON

IRFS340

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 6.9A I(D) | SOT-186VAR
ETC

IRFS340A

Advanced Power Mosfet
FAIRCHILD