IRFSL4010 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFSL4010
型号: IRFSL4010
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总11页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96186A  
IRFS4010PbF  
IRFSL4010PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
D
VDSS  
RDS(on) typ.  
100V  
3.9m  
4.7m  
180A  
G
max.  
l Hard Switched and High Frequency Circuits  
ID  
S
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
S
S
D
G
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
D2Pak  
IRFS4010PbF  
TO-262  
IRFSL4010PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
180  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
127  
A
720  
PD @TC = 25°C  
W
375  
Maximum Power Dissipation  
Linear Derating Factor  
2.5  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
31  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
318  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
Rθ  
Junction-to-Case  
JC  
°C/W  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
www.irf.com  
1
07/07/11  
IRFS/SL4010PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.10 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
2.0  
3.9  
4.7  
4.0  
20  
VGS = 10V, ID = 106A  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 250μA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
VDS = 100V, VGS = 0V  
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 20V  
GS = -20V  
nA  
V
RG(int)  
–––  
2.0  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 25V, ID = 106A  
189 ––– –––  
S
––– 143 215  
ID = 106A  
Qgs  
Gate-to-Source Charge  
–––  
–––  
–––  
–––  
–––  
38  
50  
93  
21  
86  
–––  
–––  
–––  
–––  
–––  
VDS = 50V  
nC  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V  
Qsync  
ID = 106A, VDS =0V, VGS = 10V  
VDD = 65V  
td(on)  
Turn-On Delay Time  
tr  
Rise Time  
ID = 106A  
ns  
td(off)  
Turn-Off Delay Time  
––– 100 –––  
––– 77 –––  
RG = 2.7Ω  
VGS = 10V  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 9575 –––  
––– 660 –––  
––– 270 –––  
––– 757 –––  
––– 1112 –––  
V
GS = 0V  
Coss  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz See Fig.5  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
V
GS = 0V, VDS = 0V to 80V See Fig.11  
GS = 0V, VDS = 0V to 80V  
V
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
––– ––– 180  
A
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 720  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 106A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
72  
81  
ns  
IF = 106A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
––– 210 –––  
––– 268 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
5.3  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.057mH  
RG = 25Ω, IAS = 106A, VGS =10V. Part not recommended for use  
above this value .  
ƒ ISD 106A, di/dt 1319A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
†Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering echniques refer to application note #AN-994.  
ˆRθ is measured at TJ approximately 90°C  
‰RθJC value shown is at time zero  
2
www.irf.com  
IRFS/SL4010PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
4.0V  
4.0V  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 106A  
= 10V  
D
V
GS  
T = 175°C  
J
T
= 25°C  
= 50V  
J
1
V
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
I = 106A  
D
= C  
12.0  
rss  
oss  
gd  
V
V
= 80V  
= 50V  
DS  
DS  
= C + C  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
1
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFS/SL4010PbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
100μsec  
J
100  
10  
1msec  
T
= 25°C  
10msec  
DC  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
V
= 0V  
GS  
0.01  
1.0  
0.1  
1
10  
100  
1000  
0.2  
0.6  
1.0  
1.4  
1.8  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
130  
125  
120  
115  
110  
105  
100  
95  
200  
Id = 5mA  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Case Temperature  
4.0  
1400  
I
D
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1200  
1000  
800  
600  
400  
200  
0
TOP  
12.5A  
17A  
BOTTOM 106A  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRFS/SL4010PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
τ
0.17537  
0.000343  
J τJ  
τ
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
0.22547  
0.006073  
2τ2  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
350  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 106A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFS/SL4010PbF  
4.5  
4.0  
3.5  
3.0  
35  
30  
25  
20  
15  
10  
5
I = 70A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
2.5  
2.0  
1.5  
1.0  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
1100  
35  
I = 70A  
I = 106A  
F
F
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
V
= 85V  
30  
25  
20  
15  
10  
5
V
= 85V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1100  
I = 106A  
F
V
1000  
900  
800  
700  
600  
500  
400  
300  
200  
= 85V  
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFS/SL4010PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFS/SL4010PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEEK 19  
A = AS S E MBLY S IT E CODE  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFS/SL4010PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DAT E CODE  
YEAR 0 = 2000  
WE EK 02  
AS S E MBL Y  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DATE CODE  
P = DESIGNATES LEAD - FREE  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
AS S E MB L Y  
LOT CODE  
WEEK 02  
A = AS S E MB L Y S IT E CODE  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFS/SL4010PbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 07/2011  
www.irf.com  
10  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFSL4010PBF

Power Field-Effect Transistor, 180A I(D), 100V, 0.0047ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN
INFINEON

IRFSL4020PBF

Power Field-Effect Transistor, 18A I(D), 200V, 0.105ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN
INFINEON

IRFSL4115

Power Field-Effect Transistor, 99A I(D), 150V, 0.0121ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, PLASTIC, TO-262, 3 PIN
INFINEON

IRFSL4115PBF

HEXFET Power MOSFET
INFINEON

IRFSL4127

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFSL4127PBF

HEXFET Power MOSFET
INFINEON

IRFSL41N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.045ohm, Id=41A)
INFINEON

IRFSL41N15DPBF

HEXFET Power MOSFET
INFINEON

IRFSL41N15DTRL

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL41N15DTRLPBF

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL41N15DTRR

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL41N15DTRRPBF

Power Field-Effect Transistor, 41A I(D), 150V, 0.045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON