IRFSL4410ZTRRPBF [INFINEON]

Power Field-Effect Transistor, 75A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN;
IRFSL4410ZTRRPBF
型号: IRFSL4410ZTRRPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 75A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN

文件: 总11页 (文件大小:839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97278B  
IRFB4410ZPbF  
IRFS4410ZPbF  
IRFSL4410ZPbF  
HEXFET® Power MOSFET  
D
S
Applications  
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
100V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
7.2m  
9.0m  
:
:
G
97  
c
75A  
Benefits  
D
D
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
S
D
S
S
SOA  
D
D
G
G
G
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D2Pak  
IRFS4410ZPbF  
TO-262  
TO-220AB  
IRFSL4410ZPbF  
IRFB4410ZPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
97c  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current d  
69c  
A
75  
390  
PD @TC = 25°C  
230  
W
Maximum Power Dissipation  
1.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
16  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
242  
mJ  
A
Avalanche Currentꢀc  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.65  
–––  
62  
Units  
RθJC  
Junction-to-Case k  
RθCS  
RθJA  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
2
–––  
40  
Junction-to-Ambient (PCB Mount) , D Pak  
jk  
www.irf.com  
1
06/01/07  
IRF/B/S/SL4410ZPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.12 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
7.2  
9.0  
4.0  
20  
VGS = 10V, ID = 58A g  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 150µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 100V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
––– 0.70 –––  
V
DS = 80V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA VGS = 20V  
GS = -20V  
V
RG  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
140 ––– –––  
Conditions  
VDS = 10V, ID = 58A  
S
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
83  
19  
27  
56  
16  
52  
43  
57  
120  
–––  
nC ID = 58A  
VDS =50V  
VGS = 10V g  
ID = 58A, VDS =0V, VGS = 10V g  
ns VDD = 65V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
Qgd  
Qsync  
–––  
–––  
–––  
–––  
–––  
td(on)  
tr  
ID = 58A  
td(off)  
Turn-Off Delay Time  
Fall Time  
RG =2.7Ω  
VGS = 10V g  
tf  
Ciss  
Input Capacitance  
––– 4820 –––  
––– 340 –––  
––– 170 –––  
––– 420 –––  
––– 690 –––  
pF VGS = 0V  
DS = 50V  
ƒ = 1.0MHz, See Fig.5  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
V
Crss  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V i, See Fig.11  
GS = 0V, VDS = 0V to 80V hꢀ  
Effective Output Capacitance (Energy Related)  
iꢀ  
V
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
97  
c
(Body Diode)  
Pulsed Source Current  
(Body Diode)ꢀd  
showing the  
integral reverse  
G
ISM  
––– ––– 390  
A
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
57  
V
TJ = 25°C, IS = 58A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
–––  
–––  
–––  
38  
46  
53  
82  
2.5  
ns  
IF = 58A  
di/dt = 100A/µs g  
69  
Qrr  
Reverse Recovery Charge  
80  
nC  
120  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.143mH  
RG = 25, IAS = 58A, VGS =10V. Part not recommended for use  
above this value.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
„ ISD 58A, di/dt 610A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF/B/S/SL4410ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
4.5V  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 58A  
V
= 50V  
D
DS  
V
= 10V  
60µs PULSE WIDTH  
GS  
T
= 25°C  
J
T
= 175°C  
J
1
0.1  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 58A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
V
= 80V  
= 40V  
= 20V  
DS  
DS  
DS  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
C
oss  
rss  
100  
0
20  
40  
60  
80  
100  
1
10  
100  
Q , Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRF/B/S/SL4410ZPbF  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
1msec  
100  
10  
1
T
= 175°C  
J
10msec  
DC  
T
= 25°C  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
100  
80  
60  
40  
20  
0
125  
120  
115  
110  
105  
100  
95  
Id = 5mA  
Limited By Package  
90  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
I
D
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
6.4A  
9.4A  
BOTTOM 58A  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
V
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRF/B/S/SL4410ZPbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R2  
R2  
R1  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
0.237  
0.000178  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.02  
0.01  
0.413  
0.003772  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 58A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRF/B/S/SL4410ZPbF  
20  
15  
10  
5
4.5  
4.0  
3.5  
3.0  
2.5  
I
= 39A  
= 85V  
F
V
T
R
= 25°C _____  
= 125°C ----------  
J
T
J
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
2.0  
1.5  
1.0  
0
100  
200  
300  
400  
500  
600  
700  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
di /dt (A/µs)  
f
T
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
20  
15  
10  
5
I
= 39A  
= 85V  
I
= 58A  
= 85V  
F
F
V
T
V
T
R
R
= 25°C _____  
= 125°C ----------  
= 25°C _____  
= 125°C ----------  
J
J
T
T
J
J
0
0
100  
200  
300  
400  
500  
600  
700  
100  
200  
300  
400  
500  
600  
700  
di /dt (A/µs)  
f
di /dt (A/µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
450  
I
= 58A  
= 85V  
F
V
T
400  
350  
300  
250  
200  
150  
100  
50  
R
= 25°C _____  
= 125°C  
J
T
J
----------  
0
100  
200  
300  
400  
500  
600  
700  
di /dt (A/µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRF/B/S/SL4410ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
t
15V  
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VGS  
90%  
+
-
VDD  
D.U.T  
10%  
VDS  
VGS  
Second Pulse Width < 1µs  
Duty Factor < 0.1%  
td(off)  
td(on)  
tf  
tr  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRF/B/S/SL4410ZPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
(;$03/(ꢅ 7+,6ꢀ,6ꢀ$1ꢀ,5)ꢁꢆꢁꢆꢀ  
/27ꢀ&2'(ꢀꢁꢂꢃꢄ  
3$57ꢀ180%(5  
,17(51$7,21$/  
5(&7,),(5  
/2*2  
$66(0%/('ꢀ21ꢀ::ꢀꢁꢄꢉꢀꢊꢆꢆꢆ  
,1ꢀ7+(ꢀ$66(0%/<ꢀ/,1(ꢀꢇ&ꢇ  
'$7(ꢀ&2'(  
<($5ꢀꢆꢀ ꢀꢊꢆꢆꢆ  
:((.ꢀꢁꢄ  
1RWHꢅꢀꢇ3ꢇꢀLQꢀDVVHPEO\ꢀOLQHꢀSRVLWLRQ  
LQGLFDWHVꢀꢇ/HDGꢀꢈꢀ)UHHꢇ  
$66(0%/<  
/27ꢀ&2'(  
/,1(ꢀ&  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
8
www.irf.com  
IRF/B/S/SL4410ZPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
25  
TO-262 packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
www.irf.com  
9
IRF/B/S/SL4410ZPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
25  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
10  
www.irf.com  
IRF/B/S/SL4410ZPbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/07  
www.irf.com  
11  

相关型号:

IRFSL4510PBF

HEXFETPower MOSFET
INFINEON

IRFSL4610

IRFB4610 IRFS4610 IRFSL4610
INFINEON

IRFSL4610PBF

HEXFET Power MOSFET
INFINEON

IRFSL4610TRL

Power Field-Effect Transistor, 73A I(D), 100V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL4610TRR

Power Field-Effect Transistor, 73A I(D), 100V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL4615PBF

HEXFET Power MOSFET
INFINEON

IRFSL4620PBF

HEXFET Power MOSFET
INFINEON

IRFSL4710

Power MOSFET(Vdss=100v, Rds(on)max=0.014ohm, Id=75A)
INFINEON

IRFSL4710PBF

HEXFET㈢ Power MOSFET
INFINEON

IRFSL52N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.032ohm, Id=50A)
INFINEON

IRFSL52N15DPBF

HEXFET Power MOSFET
INFINEON

IRFSL5615PBF

DIGITAL AUDIO MOSFET
INFINEON