IRFU2607Z [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRFU2607Z
型号: IRFU2607Z
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

文件: 总11页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96892  
IRFR2607Z  
IRFU2607Z  
AUTOMOTIVE MOSFET  
Features  
HEXFET® Power MOSFET  
O
Advanced Process Technology  
D
O
O
O
O
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
VDSS = 75V  
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 22mΩ  
G
Description  
ID = 42A  
Specifically designed for Automotive applications,  
this HEXFET® Power MOSFET utilizes the latest  
processingtechniquestoachieveextremelylowon-  
resistance per silicon area. Additional features of  
thisdesign area175°Cjunctionoperatingtempera-  
ture, fast switching speed and improved repetitive  
avalanche rating . These features combine to make  
thisdesignanextremelyefficientandreliabledevice  
foruseinAutomotiveapplicationsandawidevariety  
of other applications.  
S
D-Pak  
I-Pak  
IRFU2607Z  
IRFR2607Z  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
I
I
I
I
@ T = 25°C  
45  
D
D
D
C
@ T = 100°C  
32  
42  
A
C
@ T = 25°C  
C
180  
110  
DM  
P
@T = 25°C Power Dissipation  
W
D
C
Linear Derating Factor  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
0.72  
± 20  
W/°C  
V
V
GS  
EAS (Thermally limited)  
96  
mJ  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (Tested )  
96  
IAR  
See Fig.12a, 12b, 15, 16  
A
Repetitive Avalanche Energy  
Operating Junction and  
EAR  
mJ  
T
T
-55 to + 175  
J
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.38  
40  
Units  
Junction-to-Case  
RθJC  
RθJA  
RθJA  
Junction-to-Ambient (PCB mount)  
Junction-to-Ambient  
°C/W  
110  
www.irf.com  
1
9/21/04  
IRFR/U2607Z  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.074 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
V
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
17.6  
–––  
–––  
–––  
–––  
–––  
22  
4.0  
–––  
20  
VGS = 10V, ID = 30A  
VDS = VGS, ID = 50µA  
Forward Transconductance  
36  
S
V
V
V
DS = 25V, ID = 30A  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
DS = 75V, VGS = 0V  
250  
200  
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 20V  
GS = -20V  
ID = 30A  
DS = 60V  
––– -200  
V
Qg  
Qgs  
Qgd  
td(on)  
tr  
34  
8.9  
14  
14  
59  
39  
28  
4.5  
51  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC  
V
VGS = 10V  
VDD = 38V  
ID = 30A  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
ns  
RG = 15 Ω  
Fall Time  
VGS = 10V  
LD  
Internal Drain Inductance  
Between lead,  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
DS = 25V  
pF ƒ = 1.0MHz  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 1440 –––  
Output Capacitance  
–––  
–––  
–––  
–––  
–––  
190  
110  
720  
130  
230  
–––  
–––  
–––  
–––  
–––  
V
Reverse Transfer Capacitance  
Output Capacitance  
V
V
V
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
Output Capacitance  
GS = 0V, VDS = 60V, ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 60V  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
I
Continuous Source Current  
–––  
–––  
45  
MOSFET symbol  
S
(Body Diode)  
A
showing the  
I
Pulsed Source Current  
–––  
–––  
180  
integral reverse  
SM  
(Body Diode)  
p-n junction diode.  
V
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
–––  
–––  
–––  
–––  
30  
1.3  
45  
42  
V
T = 25°C, I = 30A, V = 0V  
J S GS  
SD  
t
ns T = 25°C, I = 30A, VDD = 38V  
J F  
rr  
di/dt = 100A/µs  
Q
28  
nC  
rr  
t
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
2
www.irf.com  
IRFR/U2607Z  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
1
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
60  
T
= 25°C  
J
50  
40  
30  
20  
10  
0
100.0  
10.0  
1.0  
T
= 175°C  
J
T
= 175°C  
J
5°C  
= 2  
T
J
V
= 20V  
DS  
60µs PULSE WIDTH  
V
= 10V  
DS  
380µs PULSE WIDTH  
0.1  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0 10.0  
0
10  
20  
30  
40  
V
, Gate-to-Source Voltage (V)  
GS  
I
Drain-to-Source Current (A)  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRFR/U2607Z  
2400  
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 30A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 60V  
DS  
C
= C  
2000  
1600  
1200  
800  
400  
0
rss  
gd  
VDS= 30V  
VDS= 12V  
C
= C + C  
oss  
ds  
gd  
Ciss  
4
Coss  
Crss  
FOR TEST CIRCUIT  
SEE FIGURE 13  
0
0
10  
20  
30  
40  
50  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
10.0  
1.0  
100  
10  
1
T
= 175°C  
J
100µsec  
T
= 25°C  
10msec  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
1
10  
100  
1000  
0.0  
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRFR/U2607Z  
2.5  
2.0  
1.5  
1.0  
0.5  
50  
40  
30  
20  
10  
0
I
= 30A  
LIMITED BY PACKAGE  
D
V
= 10V  
GS  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.71826 0.000423  
0.66173 0.004503  
τ
J τJ  
τ
0.05  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.02  
0.01  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFR/U2607Z  
400  
300  
200  
100  
0
15V  
I
D
TOP  
3.5A  
4.8A  
30A  
DRIVER  
+
L
V
BOTTOM  
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
GS  
GD  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
V
G
ID = 50µA  
Charge  
Fig 13a. Basic Gate Charge Waveform  
L
VCC  
DUT  
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
1K  
T
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRFR/U2607Z  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
100  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 1% Duty Cycle  
= 30A  
Single Pulse  
I
80  
60  
40  
20  
0
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRFR/U2607Z  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRFR/U2607Z  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
2.38 (.094)  
2.19 (.086)  
6.73 (.265)  
6.35 (.250)  
1.14 (.045)  
0.89 (.035)  
- A -  
1.27 (.050)  
5.46 (.215)  
0.58 (.023)  
0.46 (.018)  
0.88 (.035)  
5.21 (.205)  
4
6.45 (.245)  
5.68 (.224)  
6.22 (.245)  
5.97 (.235)  
10.42 (.410)  
9.40 (.370)  
1.02 (.040)  
1.64 (.025)  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
0.51 (.020)  
MIN.  
- B -  
3 - SOURCE  
4 - DRAIN  
1.52 (.060)  
1.15 (.045)  
0.89 (.035)  
0.64 (.025)  
3X  
0.58 (.023)  
0.46 (.018)  
1.14 (.045)  
0.76 (.030)  
2X  
0.25 (.010)  
M A M B  
NOTES:  
2.28 (.090)  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH.  
4.57 (.180)  
3 CONFORMS TO JEDEC OUTLINE TO-252AA.  
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,  
SOLDER DIP MAX. +0.16 (.006).  
D-Pak (TO-252AA) Part Marking Information  
EXAMPLE: THIS IS AN IRFR120  
PART NUMBER  
WIT H AS S EMBLY  
LOT CODE 1234  
ASSEMBLED ON WW 16, 1999  
IN THE ASSEMBLY LINE "A"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 9 = 1999  
WEEK 16  
IRFR120  
916A  
34  
12  
LINE A  
Note: "P" in assembly line  
position indicates "Lead-Free"  
AS S E MB L Y  
LOT CODE  
OR  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFR120  
P916A  
34  
P = DESIGNATES LEAD-FREE  
PRODUCT (OPTIONAL)  
YEAR 9 = 1999  
12  
AS S E MB L Y  
LOT CODE  
WE E K 16  
A= ASSEMBLY SITE CODE  
www.irf.com  
9
IRFR/U2607Z  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
6.73 (.265)  
6.35 (.250)  
2.38 (.094)  
2.19 (.086)  
- A -  
0.58 (.023)  
0.46 (.018)  
1.27 (.050)  
5.46 (.215)  
0.88 (.035)  
5.21 (.205)  
LEAD ASSIGNMENTS  
1 - GATE  
4
2 - DRAIN  
6.45 (.245)  
5.68 (.224)  
3 - SOURCE  
4 - DRAIN  
6.22 (.245)  
5.97 (.235)  
1.52 (.060)  
1.15 (.045)  
1
2
3
- B -  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH.  
2.28 (.090)  
1.91 (.075)  
9.65 (.380)  
8.89 (.350)  
3 CONFORMS TO JEDEC OUTLINE TO-252AA.  
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,  
SOLDER DIP MAX. +0.16 (.006).  
1.14 (.045)  
0.76 (.030)  
1.14 (.045)  
0.89 (.035)  
3X  
0.89 (.035)  
0.64 (.025)  
3X  
0.25 (.010)  
M A M B  
0.58 (.023)  
0.46 (.018)  
2.28 (.090)  
2X  
I-Pak (TO-251AA) Part Marking Information  
PART NUMBER  
EXAMPLE: THIS IS AN IRFU120  
INTERNATIONAL  
RECTIFIER  
LOGO  
WITH ASSEMBLY  
LOT CODE 5678  
ASSEMBLED ON WW 19, 1999  
IN THE ASSEMBLY LINE "A"  
DATE CODE  
YEAR 9 = 1999  
WEEK 19  
IRFU120  
919A  
78  
56  
LINE A  
ASSEMBLY  
LOT CODE  
Note: "P" in assembly line  
pos ition indicates "L ead-F ree"  
OR  
PART NUMBER  
DATE CODE  
P = DESIGNATES LEAD-FREE  
PRODUCT (OPTIONAL)  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFU120  
56 78  
YEAR 9 = 1999  
AS S E MB L Y  
LOT CODE  
WEEK 19  
A= ASSEMBLY SITE CODE  
10  
www.irf.com  
IRFR/U2607Z  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Notes:  
„ Coss eff. is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.21mH  
RG = 25, IAS = 30A, VGS =10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
This value determined from sample failure population. 100%  
tested to this value in production.  
When mounted on 1" square PCB (FR-4 or G-10 Material) .  
For recommended footprint and soldering techniques refer to  
application note #AN-994  
ˆ
Rθ is measured at TJ approximately 90°C  
Data and specifications subject to change without notice.  
This product has been designed for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.9/04  
www.irf.com  
11  

相关型号:

IRFU2607ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRFU2607ZPBF

AUTOMOTIVE MOSFET
KERSEMI

IRFU2905Z

AUTOMOTIVE MOSFET
INFINEON

IRFU2905Z

Advanced Process Technology
KERSEMI

IRFU2905ZPBF

HEXFET㈢ Power MOSFET ( VDSS = 55V , RDS(on) = 14.5mヘ , ID = 42A )
INFINEON

IRFU2905ZPBF

AUTOMOTIVE MOSFET
KERSEMI

IRFU310

Power MOSFET(Vdss=400V, Rds(on)=3.6ohm, Id=1.7A)
INFINEON

IRFU310

Power MOSFET
VISHAY

IRFU310

Power MOSFET
KERSEMI

IRFU310A

Advanced Power MOSFET
FAIRCHILD

IRFU310B

400V N-Channel MOSFET
FAIRCHILD

IRFU310PBF

HEXFET POWER MOSFET ( VDSS=400V , RDS(on)=3.6ヘ , ID=1.7A )
INFINEON