IRG4PC60FPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR Fast Speed IGBT; 绝缘栅双极晶体管速度快IGBT
IRG4PC60FPBF
型号: IRG4PC60FPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR Fast Speed IGBT
绝缘栅双极晶体管速度快IGBT

晶体 晶体管 功率控制 双极性晶体管 栅 局域网
文件: 总9页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95566  
IRG4PC60FPbF  
Fast Speed IGBT  
INSULATED GATE BIPOLAR TRANSISTOR  
Features  
C
• Fast: Optimized for medium operating  
frequencies ( 1-5 kHz in hard switching, >20  
kHz in resonant mode).  
VCES=600V  
• Generation 4 IGBT design provides tighter  
parameter distribution and higher efficiency.  
VCE(on)typ. =1.50V  
G
• Industry standard TO-247AC package.  
• Lead-Free  
@VGE = 15V, IC = 60A  
E
n-channel  
Benefits  
• Generation 4 IGBT's offer highest efficiency available  
• IGBT's optimized for specified application conditions  
• Designed for best performance when used with  
IR Hexfred & IR Fred companion diodes.  
TO-247AC  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
90  
Units  
V
VCES  
Collector-to-Emitter Breakdown Voltage  
Continuous Collector Current  
Continuous Collector Current  
Pulsed Collector Current   
IC @ TC = 25°C  
IC @ TC = 100°C  
60  
A
ICM  
120  
120  
± 20  
200  
520  
210  
ILM  
Clamped Inductive Load Current ‚  
Gate-to-Emitter Voltage  
VGE  
V
EARV  
Reverse Voltage Avalanche Energy ƒ  
Maximum Power Dissipation  
mJ  
PD @ TC = 25°C  
W
PD @ TC = 100°C  
Maximum Power Dissipation  
TJ  
Operating Junction and  
-55 to + 150  
TSTG  
Storage Temperature Range  
°C  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw.  
300 (0.063 in. (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
0.24  
–––  
40  
Units  
°C/W  
RθJC  
RθCS  
RθJA  
Wt  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient, typical socket mount  
Weight  
0.24  
–––  
6 (0.21)  
–––  
g (oz)  
www.irf.com  
1
07/15/04  
IRG4PC60FPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 250µA  
VGE = 0V, IC = 1.0A  
V(BR)CES  
V(BR)ECS  
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Breakdown Voltage  
600  
—
—
—
—
—
V
V
Emitter-to-Collector Breakdown Voltage „ 16  
—
—
—
—
3.0  
—
36  
—
—
—
—
0.13  
V/°C VGE = 0V, IC = 1.0mA  
IC = 60A  
1.5 1.8  
VGE = 15V  
VCE(ON)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
Gate Threshold Voltage  
1.7  
1.5  
—
—
—
IC = 90A  
V
See Fig.2, 5  
IC = 60A , TJ = 150°C  
VCE = VGE, IC = 250µA  
6.0  
—
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
-11  
69—  
—
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance ꢀ  
S
V
CE = 100V, IC = 60A  
VGE = 0V, VCE = 600V  
250  
2.0  
ICES  
Zero Gate Voltage Collector Current  
µA  
—
VGE = 0V, VCE = 10V, TJ = 25°C  
VGE = 0V, VCE = 600V, TJ = 150°C  
—
1000  
IGES  
Gate-to-Emitter Leakage Current  
—
±100 nA VGE = ±20V  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
IC = 40A  
Qg  
Qge  
Qgc  
td(on)  
tr  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
RiseTime  
—
—
—
—
—
—
—
—
—
290 340  
40 47  
100 130  
nC  
ns  
VCC = 400V  
VGE = 15V  
See Fig. 8  
42  
66  
—
—
TJ = 25°C  
td(off)  
tf  
Turn-Off Delay Time  
FallTime  
310 360  
170 220  
IC = 60A, VCC = 480V  
VGE = 15V, RG = 5.0Ω  
Energy losses include "tail"  
See Fig. 10, 11, 13, 14  
Eon  
Eoff  
Ets  
Turn-On Switching Loss  
Turn-Off Switching Loss  
0.30  
4.6  
—
—
—
mJ  
ns  
Total  
Switching  
Delay  
Loss  
Time  
4.96.3  
39—  
—
td(on)  
tr  
td(off)  
tf  
Turn-On  
—
J =T150°C,  
RiseTime  
—
—
—
—
—
—
—
—
66  
IC = 60A, VCC = 480V  
VGE = 15V, RG = 5.0Ω  
Energy losses include "tail"  
See Fig. 13, 14  
Turn-Off Delay Time  
FallTime  
470  
300  
8.8  
13  
—
—
Ets  
Total Switching Loss  
—
mJ  
nH  
LE  
Internal Emitter Inductance  
Input Capacitance  
—
Measured 5mm from package  
VGE = 0V  
Cies  
Coes  
Cres  
6050  
360  
66  
—
Output Capacitance  
—
pF  
VCC = 30V  
ƒ = 1.0MHz  
See Fig. 7  
Reverse Transfer Capacitance  
—
Notes:  

‚
ƒ
Repetitive rating; VGE = 20V, pulse width limited by  
max. junction temperature. ( See fig. 13b )  
„
Pulse width 80µs; duty factor 0.1%.  
Pulse width 5.0µs, single shot.  
VCC = 80%(VCES), VGE = 20V, L = TBD µH,  
RG = 5.0. (See fig. 13a)  
Repetitive rating; pulse width limited by maximum  
junction temperature.  
2
www.irf.com  
IRG4PC60FPbF  
160  
120  
80  
40  
0
Square wave:  
Triangular wave:  
60% of rated  
voltage  
Clamp voltage:  
80% of rated  
Ideal diodes  
For both:  
Duty cycle : 50%  
Tj = 125°C  
Tsink = 90°C  
Gate drive as specified  
Power Dissipation = 73W  
0.1  
1
10  
100  
f , Frequency ( kHz )  
Fig. 1 - Typical Load Current vs. Frequency  
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK  
)
1000  
1000  
T
= 150°C  
100  
10  
J
100  
10  
T
= 150°C  
J
1
1
T
= 25°C  
T
= 25°C  
J
J
0.1  
0.01  
0.1  
0.01  
V
= 10V  
V
= 15V  
CC  
5µs PULSE WIDTH  
GE  
20µs PULSE WIDTH  
4
5
6
7
8
9
10  
11  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
V
Gate-to-Emitter Voltage (V)  
V
, Collector-to-Emitter Voltage (V)  
GE,  
CE  
Fig. 2 - Typical Output Characteristics  
Fig. 3 - Typical Transfer Characteristics  
www.irf.com  
3
IRG4PC60FPbF  
3.0  
2.0  
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 15V  
GE  
80µs PULSE WIDTH  
V
= 15V  
GE  
I
= 120A  
C
I
= 60A  
= 30A  
C
I
C
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
25  
50  
T
75  
100  
125  
150  
, Junction Temperature (°C)  
, Case Temperature (°C)  
J
C
Fig. 4 - Maximum Collector Current vs. Case  
Fig. 5 - Typical Collector-to-Emitter Voltage  
Temperature  
vs. Junction Temperature  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
0.02  
P
DM  
0.01  
SINGLE PULSE  
(THERMAL RESPONSE)  
t
0.01  
1
t
2
Notes:  
1. Duty factor D =  
t
/ t  
1 2  
2. Peak T = P  
x
Z
+ T  
J
DM  
thJC  
C
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig.6-MaximumEffectiveTransientThermalImpedance,Junction-to-Case  
4
www.irf.com  
IRG4PC60FPbF  
100000  
10000  
1000  
100  
20  
15  
10  
5
V
= 0V,  
f = 1 MHZ  
V
I
= 400V  
= 40A  
CC  
C
GE  
C
= C + C  
,
C
SHORTED  
ies  
ge gc  
ce  
C
= C  
res  
ce  
C
= C + C  
ce gc  
oes  
Cies  
Coes  
Cres  
10  
0
0
100  
200  
300  
400  
500  
0
50  
100  
150  
200  
250  
300  
Q
, Total Gate Charge (nC)  
V
(V)  
G
CE  
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-EmitterVoltage  
Gate-to-EmitterVoltage  
100  
8.00  
7.00  
6.00  
5.00  
4.00  
V
V
= 480V  
= 15V  
= 5.0  
R
CC  
GE  
G
V
V
= 15V  
GE  
CC  
T = 25°C  
= 480V  
J
I
= 120A  
I
= 60A  
C
C
10  
I
= 60A  
= 30A  
C
I
C
1
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
0
10  
20  
30  
40  
50  
T , Junction Temperature (°C)  
R
, Gate Resistance (  
)
J
G
Fig. 10 - Typical Switching Losses vs.  
Fig. 9 - Typical Switching Losses vs. Gate  
Junction Temperature  
Resistance  
www.irf.com  
5
IRG4PC60FPbF  
30.0  
1000  
100  
10  
V
T
= 20V  
= 5.0  
TJ = 150°C  
R
GE  
= 125°  
G
J
V
= 15V  
GE  
CC  
V
= 480V  
20.0  
10.0  
0.0  
SAFE OPERATING AREA  
1
30  
50  
70  
90  
110  
130  
0.1  
1
10  
100  
1000  
I , Collector Current (A)  
V
DS  
, Drain-to-Source Voltage (V)  
C
Fig. 11 - Typical Switching Losses vs.  
Fig. 12 - Turn-Off SOA  
Collector-to-Emitter Current  
6
www.irf.com  
IRG4PC60FPbF  
L
D.U.T.  
480V  
4 X IC@25°C  
V *  
RL  
=
C
50V  
0 - 480V  
1000V  
480µF  
960V  
* Driver same type as D.U.T.; Vc = 80% of Vce(max)  
* Note: Due to the 50V power supply, pulse width and inductor  
will increase to obtain rated Id.  
Fig. 13b - Pulsed Collector  
Fig. 13a - Clamped Inductive  
Load Test Circuit  
Current Test Circuit  
I
C
L
Fig. 14a - Switching Loss  
D.U.T.  
Driver*  
V
C
Test Circuit  
50V  
1000V  
* Driver same type  
as D.U.T., VC = 480V  
90%  
10%  
V
C
90%  
Fig. 14b - Switching Loss  
t
d(off)  
Waveforms  
10%  
5%  
I
C
t
t
f
r
t
d(on)  
t=5µs  
E
E
off  
on  
E
= (E +E  
)
off  
ts  
on  
www.irf.com  
7
IRG4PC60FPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
EXAMPLE: THIS IS AN IRFPE30  
WIT H AS S EMBLY  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 5657  
IRFPE30  
035H  
57  
ASSEMBLED ON WW 35, 2000  
IN THE ASSEMBLYLINE "H"  
56  
DAT E CODE  
YEAR 0 = 2000  
WEEK 35  
Note: "P" in assembly line  
position indicates "Lead-Free"  
ASSEMBLY  
LOT CODE  
LINE H  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/04  
8
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRG4PC60U

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG4PC60U-EP

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-247AD, TO-247AD, 3 PIN
INFINEON

IRG4PC60U-P

INSULATED GATE BIPOLAR TRANSISTOR UltraFast Speed IGBT
INFINEON

IRG4PC60U-PPBF

INSULATED GATE BIPOLAR TRANSISTOR UltraFast Speed IGBT
INFINEON

IRG4PC60UPBF

INSULATED GATE BIPOLAR TRANSISTOR UltraFast Speed IGBT
INFINEON

IRG4PE40FD

Fit Rate / Equivalent Device Hours
INFINEON

IRG4PE40KD

Fit Rate / Equivalent Device Hours
INFINEON

IRG4PE40MD

Fit Rate / Equivalent Device Hours
INFINEON

IRG4PE40SD

Fit Rate / Equivalent Device Hours
INFINEON

IRG4PE40UD

Fit Rate / Equivalent Device Hours
INFINEON

IRG4PF40FD

Fit Rate / Equivalent Device Hours
INFINEON

IRG4PF40KD

Fit Rate / Equivalent Device Hours
INFINEON