IRL7486M [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRL7486M
型号: IRL7486M
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总12页 (文件大小:1166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRL7486MTRPbF  
Application  
Brushed Motor drive applications  
BLDC Motor drive applications  
Battery powered circuits  
VDSS  
40V  
Half-bridge and full-bridge topologies  
Synchronous rectifier applications  
Resonant mode power supplies  
OR-ing and redundant power switches  
DC/DC and AC/DC converters  
DC/AC Inverters  
RDS(on) typ.  
1.0m  
max  
@ VGS = 10V  
1.25m  
1.5m  
RDS(on) typ.  
max  
@ VGS = 4.5V  
2.0m  
Benefits  
Optimized for Logic Level Drive  
ID (Silicon Limited)  
209A  
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness  
Fully Characterized Capacitance and Avalanche SOA  
Enhanced body diode dv/dt and di/dt Capability  
Lead-Free, RoHS Compliant  
S
S
S
S
S
D
D
G
DirectFET® ISOMETRIC  
ME  
Standard Pack  
Form  
Tape and Reel  
Base part number  
Package Type  
Orderable Part Number  
Quantity  
DirectFET® ME  
IRL7486MPbF  
4800  
IRL7486MTRPbF  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
1
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
209  
Units  
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)  
132  
A
Pulsed Drain Current   
Maximum Power Dissipation  
Linear Derating Factor  
836  
IDM  
104  
PD @TC = 25°C  
W
W/°C  
V
0.83  
Gate-to-Source Voltage  
Operating Junction and  
Storage Temperature Range  
± 20  
VGS  
TJ  
-55 to + 150  
°C  
TSTG  
Avalanche Characteristics  
EAS (Thermally limited) Single Pulse Avalanche Energy   
80  
mJ  
Single Pulse Avalanche Energy   
Single Pulse Avalanche Energy Tested Value   
Avalanche Current   
EAS (Thermally limited)  
EAS (tested)  
IAR  
190  
111  
A
See Fig.15,16, 23a, 23b  
EAR  
Repetitive Aval`anche Energy   
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
60  
Units  
Junction-to-Ambient   
RJA  
Junction-to-Ambient   
Junction-to-Ambient   
Junction-to-Case   
Junction-to-PCB Mounted  
–––  
–––  
1.2  
RJA  
°C/W  
RJA  
RJC  
–––  
0.75  
–––  
RJ-PCB  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
Conditions  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
––– –––  
V
VGS = 0V, ID = 250µA  
–––  
35 ––– mV/°C  
Reference to 25°C, ID = 1.0mA  
VGS = 10V, ID = 123A   
VGS = 4.5V, ID = 62A   
VDS = VGS, ID = 150µA  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
V(BR)DSS/TJ  
RDS(on)  
––– 1.0 1.25  
––– 1.5 2.0  
1.0 1.8 2.5  
m  
VGS(th)  
Gate Threshold Voltage  
V
––– ––– 1.0  
––– ––– 150  
––– ––– 100  
––– ––– -100  
––– 0.97 –––  
IDSS  
IGSS  
Drain-to-Source Leakage Current  
µA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
RG  
Notes:  
Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
TC measured with thermocouple mounted to top (Drain) of part.  
Used double sided cooling , mounting pad with large heatsink.  
Mounted to a PCB with small clip  
heatsink (still air)  
Mounted on minimum footprint full size  
board with metalized back and with  
small clip heatsink (still air)  
Surface mounted on 1 in. square Cu  
board (still air).  
2
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 123A  
ID = 123A  
gfs  
Qg  
427 ––– –––  
S
–––  
–––  
–––  
–––  
–––  
76  
27  
33  
41  
35  
111  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
VDS = 20V  
nC  
VGS = 4.5V   
ID = 123A, VDS =0V, VGS = 10V  
VDD = 20V  
Rise Time  
––– 110 –––  
ID = 30A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
54  
47  
–––  
–––  
RG = 2.7  
VGS = 4.5V   
Ciss  
Coss  
Crss  
Input Capacitance  
––– 6904 –––  
––– 939 –––  
––– 607 –––  
VGS = 0V  
Output Capacitance  
VDS = 25V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
pF  
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1150 –––  
VGS = 0V, VDS = 0V to 32V   
VGS = 0V, VDS = 0V to 32V   
Coss eff. (TR) Effective Output Capacitance (Time Related)  
––– 1376 –––  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
(Body Diode)  
MOSFET symbol  
––– –––  
––– –––  
104  
836  
showing the  
integral reverse  
A
V
G
ISM  
Pulsed Source Current  
(Body Diode)   
Diode Forward Voltage  
S
p-n junction diode.  
VSD  
––– ––– 1.2  
TJ= 25°C,IS =123A, VGS = 0V  
dv/dt  
TJ =150°C,IS =123A,  
VDS = 40V  
Peak Diode Recovery   
––– 3.6 ––– V/ns  
trr  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
43  
44  
55  
56  
–––  
–––  
–––  
–––  
TJ = 25° C VR = 34V,  
ns  
IF = 123A  
TJ = 125°C  
Qrr  
IRRM  
Reverse Recovery Charge  
Reverse Recovery Current  
TJ = 25°C di/dt = 100A/µs   
TJ = 125°C  
nC  
A
––– 2.1 –––  
TJ = 25°C  
Notes:  
Coss eff. (ER) is a fixed capacitance that gives the  
Repetitive rating; pulse width limited by max. junction  
temperature.  
same energy as Coss while VDS is rising from 0 to  
80% VDSS  
.
Limited by TJmax, starting TJ = 25°C, L = 0.011mH  
RG = 50, IAS = 123A, VGS =10V.  
Ris measured at TJ approximately 90°C.  
This value determined from sample failure population,  
starting TJ = 25°C, L= 0.011mH, RG = 50, VGS =10V.  
Limited by TJmax, starting TJ = 25°C, L = 1.0mH  
RG = 50, IAS = 19.5A, VGS =10V.  
ISD ≤ 123A, di/dt ≤ 1056A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C.  
Pulse width ≤ 400µs; duty cycle ≤ 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to 80%  
VDSS  
.
3
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
Rev. 2.1, 2021-07-01  
4
IRL7486MTRPbF  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode Forward Voltage  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical Coss Stored Energy  
Fig 13. Typical On-Resistance vs. Drain Current  
5
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-  
Fig 15. Avalanche Current vs. Pulse Width  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1.Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
23a, 23b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax  
(assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)· av  
t
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Fig 17. Threshold Voltage vs. Temperature  
Fig 18. Typical Recovery Current vs. dif/dt  
Fig 20. Typical Stored Charge vs. dif/dt  
Fig 19. Typical Recovery Current vs. dif/dt  
Fig 21. Typical Stored Charge vs. dif/dt  
7
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(B R )D S S  
t
p
15V  
DRIVER  
L
V
G
DS  
D.U.T  
AS  
R
+
V
DD  
-
I
A
20V  
I
0.01  
t
A S  
p
Fig 23a. Unclamped Inductive Test Circuit  
Fig 23b. Unclamped Inductive Waveforms  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Vds  
Vgs  
VDD  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 25b. Gate Charge Waveform  
Fig 25a. Gate Charge Test Circuit  
8
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
DirectFET® Board Footprint, ME Outline  
(Medium Size Can, E-Designation)  
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
G
S
S
S
S
S
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
DirectFET® Outline Dimension, ME Outline  
(Medium Size Can, E-Designation)  
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all  
recommendations for stencil and substrate designs.  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.024  
0.044  
0.038  
0.052  
0.017  
0.024  
0.036  
0.083  
0.144  
0.028  
A
B
6.25 6.35  
4.80 5.05  
3.85 3.95  
0.35 0.45  
0.58 0.62  
1.08 1.12  
0.93 0.97  
1.28 1.32  
0.38 0.42  
0.58 0.62  
0.88 0.92  
2.08 2.12  
3.63 3.67  
0.59 0.70  
0.246  
0.189  
0.152  
0.014  
0.023  
0.043  
0.037  
0.050  
0.015  
0.023  
0.035  
0.082  
0.143  
0.023  
C
D
E
F
G
H
J
J1  
K
L
L1  
M
N
P
0.02 0.08 0.0008 0.003  
0.08 0.17  
0.003  
0.007  
DirectFET® Part Marking  
LOGO  
GATE MARKING  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
DirectFET® Tape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. Ordered as IRL7486MTRPBF.  
DIMENSIONS  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
REEL DIMENSIONS  
CODE  
MIN  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MIN  
MAX  
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
STANDARD OPTION (QTY 4800)  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
METRIC  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
0.520  
N.C  
G
H
100.0  
N.C  
N.C  
1.60  
0.063  
0.724  
0.567  
0.606  
G
H
0.488  
0.469  
12.4  
11.9  
Note: For the most current drawing please refer to IR webite at http://www.irf.com/package/  
Qualification Information  
Industrial  
(per JEDEC JESD47Fguidelines)  
Qualification Level  
MSL1  
Moisture Sensitivity Level  
RoHS Compliant  
DFET 1.5  
(per JEDEC J-STD-020D†)  
Yes  
† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Rev.  
2.1  
Comments  
Updated registered trademark from DirectFETTM to DirectFET® on page 1,9 and 10.  
05/14/2015  
07/01/2021  
Updated Eas notes  
2.2  
11  
Rev. 2.1, 2021-07-01  
IRL7486MTRPbF  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, Cꢀꢁꢁ™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™,  
GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™,  
OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REALꢂ™, SmartLEWIS™, SOLID  
FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™  
Trademarks updated November ꢃꢄꢀꢅ  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
Edition ꢀꢁꢂꢃ-ꢁ4-ꢂꢄ  
Published by  
Infineon Technologies AG  
ꢅꢂꢆꢀꢃ Munich, Germany  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies oꢆice  
www.infineon.comꢈ.  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics ꢀꢁBeschaꢇenheitsgarantieꢂꢃ .  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
Please note that this product is not qualified  
according to the AEC Qꢀꢄꢄ or AEC Qꢀꢄꢀ documents  
of the Automotive Electronics Council.  
© ꢀꢁꢂꢃ Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
WARNINGS  
Due to technical requirements products may  
Email: erratum@infineon.com  
In addition, any information given in this contain dangerous substances. For information on  
document is subject to customers compliance the types in question please contact your nearest  
with its obligations stated in this document and Infineon Technologies oꢆice.  
any applicable legal requirements, norms and  
Document reference  
ifxꢂ  
standards concerning customer’s products and  
Except as otherwise explicitly approved by Infineon  
any use of the product of Infineon Technologies in  
Technologies in a written document signed by  
customers applications.  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologiesproducts  
may not be used in any applications where a  
failure of the product or any consequences of the  
use thereof can reasonably be expected to result in  
personal injury.  
The data contained in this document is exclusively  
intended for technically trained staꢆ. It is the  
responsibility  
of  
customers  
technical  
departments to evaluate the suitability of the  
product for the intended application and the  
completeness of the product information given in  
this document with respect to such application.  
12  
Rev. 2.1, 2021-07-01  

相关型号:

IRL7486MPBF

Brushed Motor drive applications
INFINEON

IRL7486MPBF_15

Brushed Motor drive applications
INFINEON

IRL7486MTRPBF

Power Field-Effect Transistor, 209A I(D), 40V, 0.00125ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRL7833

HEXFETPower MOSFET
INFINEON

IRL7833L

HEXFETPower MOSFET
INFINEON

IRL7833LPBF

HEXFET㈢Power MOSFET
INFINEON

IRL7833PBF

HEXFET㈢Power MOSFET
INFINEON

IRL7833S

HEXFETPower MOSFET
INFINEON

IRL7833SPBF

HEXFET㈢Power MOSFET
INFINEON

IRL7N1404

HEXFET POWER MOSFET SURFACE MOUNT (SMD-1)
INFINEON

IRL7NJ3802

HEXFET POWER MOSFET SURFACE MOUNT (SMD-0.5)
INFINEON

IRL7Y1905C

HEXFET POWER MOSFET THRU-HOLE (TO-257AA) 50V, N-CHANNEL
INFINEON