IRLS3036 [INFINEON]

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装;
IRLS3036
型号: IRLS3036
厂家: Infineon    Infineon
描述:

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装

文件: 总11页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97358  
IRLS3036PbF  
IRLSL3036PbF  
HEXFET® Power MOSFET  
Applications  
D
S
l DC Motor Drive  
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
60V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
1.9mΩ  
2.4m  
270A  
G
195A  
Benefits  
l Optimized for Logic Level Drive  
l Very Low RDS(ON) at 4.5V VGS  
l Superior R*Q at 4.5V VGS  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
D
S
D
G
D2Pak  
G
TO-262  
IRLSL3036PbF  
IRLS3036PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
270  
190  
195  
1100  
380  
2.5  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
A
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
W/°C  
V
VGS  
±16  
8.0  
Gate-to-Source Voltage  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
Operating Junction and  
-55 to + 175  
300  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
290  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
11  
Rθ  
JC  
Junction-to-Case  
Rθ  
JA  
–––  
Junction-to-Ambient (PCB Mount, steady state)  
www.irf.com  
1
12/08/08  
IRLS/SL3036PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.061 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
Breakdown Voltage Temp. Coefficient  
–––  
–––  
1.0  
1.9  
2.2  
2.4  
2.8  
2.5  
20  
VGS = 10V, ID = 165A  
VGS = 4.5V, ID = 140A  
VDS = VGS, ID = 250µA  
VDS = 60V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
VGS = 16V  
RDS(on)  
Static Drain-to-Source On-Resistance  
m
VGS(th)  
IDSS  
Gate Threshold Voltage  
–––  
V
Drain-to-Source Leakage Current  
––– –––  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -16V  
RG(int)  
–––  
2.0  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 165A  
ID = 165A  
340 ––– –––  
S
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
91  
31  
51  
40  
66  
140  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
VDS = 30V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 4.5V  
ID = 165A, VDS =0V, VGS = 4.5V  
VDD = 39V  
Turn-On Delay Time  
Rise Time  
––– 220 –––  
––– 110 –––  
––– 110 –––  
––– 11210 –––  
––– 1020 –––  
––– 500 –––  
––– 1430 –––  
––– 1880 –––  
ID = 165A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.1Ω  
VGS = 4.5V  
Ciss  
Coss  
Crss  
Input Capacitance  
VGS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz  
pF  
C
oss eff. (ER)  
oss eff. (TR)  
VGS = 0V, VDS = 0V to 48V  
C
VGS = 0V, VDS = 0V to 48V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
––– –––  
MOSFET symbol  
270  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
––– –––  
G
ISM  
1100  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 165A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
–––  
–––  
62  
66  
ns  
IF = 165A  
di/dt = 100A/µs  
Qrr  
Reverse Recovery Charge  
––– 310 –––  
––– 360 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
4.4  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calcuted continuous current based on maximum allowable junction  
temperature Bond wire current limit is 195A. Note that current  
limitation arising from heating of the device leds may occur with  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time as  
Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For  
recommended footprint and soldering techniquea refer to applocation  
note # AN- 994 echniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.021mH  
RG = 25, IAS = 165A, VGS =10V. Part not recommended for use  
above this value .  
„ ISD 165A, di/dt 430A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Š Limited by TJmax, see Fig. 14, 15, 22a, 22b for typical repetitive  
avalanche performance.  
RθJC value shown is at time zero.  
11  
2
www.irf.com  
IRLS/SL3036PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
2.7V  
VGS  
15V  
10V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
2.7V  
TOP  
TOP  
BOTTOM  
BOTTOM  
2.7V  
1
2.7V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 165A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
6
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
5.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 165A  
D
V
V
= 48V  
= 30V  
DS  
DS  
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
rss  
oss  
gd  
4.0  
3.0  
2.0  
1.0  
0.0  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
20  
Q
40  
60  
80  
100  
120  
1
10  
, Drain-to-Source Voltage (V)  
100  
, Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRLS/SL3036PbF  
10000  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
1msec  
T
= 25°C  
J
Limited by  
package  
10msec  
DC  
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
1
0.1  
0
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
75  
70  
65  
60  
55  
300  
Id = 5mA  
Limited By Package  
250  
200  
150  
100  
50  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Case Temperature  
3.0  
1200  
I
D
TOP  
27A  
50A  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
800  
600  
400  
200  
0
BOTTOM 165A  
-10  
0
10 20 30  
40 50 60 70  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRLS/SL3036PbF  
1
D = 0.50  
0.20  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.10  
0.05  
0.01115 0.000009  
τ
τ
J τJ  
τ
Cτ  
0.08360 0.000080  
0.18950 0.001295  
0.11519 0.006726  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.02  
0.01  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 165A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRLS/SL3036PbF  
3.0  
14  
12  
10  
8
I = 110A  
F
V
= 51V  
R
2.5  
2.0  
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
1.5  
1.0  
0.5  
6
4
2
-75 -50 -25  
0
25 50 75 100 125 150175 200  
, Temperature ( °C )  
0
100  
200  
300  
400  
500  
T
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
12  
900  
I = 110A  
I = 165A  
F
F
800  
700  
600  
500  
400  
300  
200  
100  
V
= 51V  
V
= 51V  
R
R
10  
8
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
600  
I = 165A  
F
V
= 51V  
R
T = 25°C  
J
500  
400  
300  
200  
T = 125°C  
J
0
100  
200  
300  
400  
500  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRLS/SL3036PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRLS/SL3036PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRLS/SL3036PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRLS/SL3036PbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 12/2008  
10  
www.irf.com  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRLS3036-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036-7PPBF

HEXFET Power MOSFET
INFINEON

IRLS3036-7PPBF_10

HEXFETPower MOSFET
INFINEON

IRLS3036PBF

HEXFET Power MOSFET
INFINEON

IRLS3036TRL-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRL7PP

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRLPBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRLS3813PBF

Power Field-Effect Transistor,
INFINEON

IRLS4030

100V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRLS4030-7PPBF

HEXFET Power MOSFET
INFINEON

IRLS4030PBF

HEXFET Power MOSFET
INFINEON

IRLS4030TRL7PP

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, D2PAK- 7
INFINEON