IRLU3110ZPBF [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRLU3110ZPBF
型号: IRLU3110ZPBF
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总11页 (文件大小:736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97175A  
AUTOMOTIVE MOSFET  
IRLR3110ZPbF  
IRLU3110ZPbF  
Features  
HEXFET® Power MOSFET  
l
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
D
VDSS = 100V  
Repetitive Avalanche Allowed up to Tjmax  
G
RDS(on) = 14mΩ  
Description  
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistancepersiliconarea. Additionalfeatures  
of this design are a 175°C junction operating  
temperature, fast switching speed and improved  
repetitive avalanche rating . These features com-  
binetomakethisdesignanextremelyefficientand  
reliable device for use in Automotive applications  
and a wide variety of other applications.  
S
D-Pak  
I-Pak  
IRLU3110ZPbF  
IRLR3110ZPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
63  
Units  
I
I
I
I
@ T = 25°C  
C
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
D
D
D
@ T = 100°C  
C
45  
A
@ T = 25°C  
C
42  
250  
140  
DM  
P
@T = 25°C  
Power Dissipation  
C
W
D
Linear Derating Factor  
0.95  
±16  
W/°C  
V
V
Gate-to-Source Voltage  
GS  
EAS (Thermally limited)  
110  
140  
mJ  
Single Pulse Avalanche Energy  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
mJ  
Repetitive Avalanche Energy  
T
J
-55 to + 175  
Operating Junction and  
T
°C  
Storage Temperature Range  
STG  
Reflow Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.05  
40  
Units  
Rθ  
JC  
Junction-to-Case  
Rθ  
JA  
Rθ  
JA  
°C/W  
Junction-to-Ambient (PCB mount)  
Junction-to-Ambient  
110  
HEXFET® isaregisteredtrademarkofInternationalRectifier.  
www.irf.com  
1
03/09/06  
IRLR/U3110ZPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
100 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
V(BR)DSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.077 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.0  
11  
14  
16  
VGS = 10V, ID = 38A  
12  
VGS = 4.5V, ID = 32A  
VDS = VGS, ID = 100µA  
VDS = 25V, ID = 38A  
VGS(th)  
Gate Threshold Voltage  
–––  
–––  
–––  
–––  
–––  
2.5  
–––  
20  
V
S
gfs  
IDSS  
Forward Transconductance  
Drain-to-Source Leakage Current  
52  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
V
V
DS = 100V, VGS = 0V  
250  
200  
DS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 16V  
GS = -16V  
ID = 38A  
––– -200  
V
Qg  
Qgs  
Qgd  
td(on)  
tr  
34  
10  
48  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC  
V
V
DS = 50V  
GS = 4.5V  
15  
24  
VDD = 50V  
ID = 38A  
Rise Time  
110  
33  
td(off)  
tf  
Turn-Off Delay Time  
ns  
RG = 3.7Ω  
VGS = 4.5V  
Fall Time  
48  
D
S
LD  
Internal Drain Inductance  
4.5  
Between lead,  
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
DS = 25V  
pF ƒ = 1.0MHz  
Ciss  
Input Capacitance  
––– 3980 –––  
Coss  
Output Capacitance  
–––  
–––  
310  
130  
–––  
–––  
V
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
Coss  
––– 1820 –––  
V
V
V
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
GS = 0V, VDS = 80V, ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 80V  
Coss  
Output Capacitance  
–––  
–––  
170  
320  
–––  
–––  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
I
Continuous Source Current  
–––  
–––  
63  
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
I
–––  
–––  
250  
SM  
S
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
34  
1.3  
51  
63  
V
T = 25°C, I = 38A, V = 0V  
SD  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 38A, VDD = 50V  
J F  
rr  
di/dt = 100A/µs  
Q
t
42  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
2
www.irf.com  
IRLR/U3110ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
2.5V  
0.1  
0.01  
2.5V  
1
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
150  
125  
100  
75  
T
= 25°C  
J
T
= 175°C  
J
T
= 175°C  
J
50  
T
= 25°C  
J
1
V
= 10V  
25  
DS  
V
= 25V  
DS  
300µs PULSE WIDTH  
60µs PULSE WIDTH  
0.1  
0
0
2
4
6
8 10 12 14 16  
0
25  
50 75  
I
,Drain-to-Source Current (A)  
D
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRLR/U3110ZPbF  
100000  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 38A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 80V  
= 50V  
ds  
gd  
10000  
1000  
100  
DS  
DS  
C
iss  
C
oss  
C
rss  
10  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
10  
20  
30  
40  
V
Q
G
Total Gate Charge (nC)  
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
T
J
100µsec  
1msec  
= 25°C  
J
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-to-Drain Voltage (V)  
0
1
10  
100  
1000  
V
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRLR/U3110ZPbF  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 63A  
D
V
= 10V  
Limited By Package  
GS  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100120140160180  
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
T
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
0.383  
0.000267  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.02  
0.01  
0.667  
0.003916  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRLR/U3110ZPbF  
300  
250  
200  
150  
100  
50  
15V  
I
D
TOP  
4.4A  
6.5A  
BOTTOM 38A  
DRIVER  
L
V
DS  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
I
I
I
I
= 100µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
L
VCC  
DUT  
0
1K  
-75 -50 -25  
0
T
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
J
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRLR/U3110ZPbF  
100  
10  
1
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
0.01  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
∆Τ  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
150  
125  
100  
75  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long as  
neither Tjmax nor Iav (max) is exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 1% Duty Cycle  
= 38A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
50  
6. Iav = Allowable avalanche current.  
25  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
vs.Temperature  
www.irf.com  
7
IRLR/U3110ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRLR/U3110ZPbF  
D-Pak (TO-252AA) Package Outline  
D-Pak (TO-252AA) Part Marking Information  
25  
www.irf.com  
9
IRLR/U3110ZPbF  
I-Pak(TO-251AA)PackageOutline  
I-Pak (TO-251AA) Part Marking Information  
10  
www.irf.com  
IRLR/U3110ZPbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Notes:  
„
†
‡
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.16mH  
RG = 25, IAS = 38A, VGS =10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
This value determined from sample failure population. 100%  
tested to this value in production.  
When mounted on 1" square PCB (FR-4 or G-10 Material).  
ˆ Rθ is measured at TJ approximately 90°C.  
Data and specifications subject to change without notice.  
This product has been designed for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.03/06  
www.irf.com  
11  

相关型号:

IRLU3110ZTRLPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRLU3114Z

Power Field-Effect Transistor, 42A I(D), 40V, 0.0065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251AA, PLASTIC, IPAK-3
INFINEON

IRLU3114ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRLU3303

Power MOSFET
INFINEON

IRLU3303PBF

HEXFET Power MOSFET
INFINEON

IRLU3410

HEXFET Power MOSFET
INFINEON

IRLU3410PBF

HEXFET㈢ Power MOSFET
INFINEON

IRLU3636PBF

HEXFET Power MOSFET
INFINEON

IRLU3705Z

Specifically designed for Automotive applications,this HEXFET Power MOSFET
INFINEON

IRLU3705ZPBF

AUTOMOTIVE MOSFET HEXFET Power MOSFET
INFINEON

IRLU3714

SMPS MOSFET
INFINEON

IRLU3714PBF

HEXFET Power MOSFET ( VDSS = 20V , RDS(on)max = 20mヘ , ID = 36A )
INFINEON