IRMCS2011 [INFINEON]

Complete Encoder Based Servo Drive Design Platform iMOTION Development System; 完成基于编码器的伺服驱动器设计平台的iMOTION开发系统
IRMCS2011
型号: IRMCS2011
厂家: Infineon    Infineon
描述:

Complete Encoder Based Servo Drive Design Platform iMOTION Development System
完成基于编码器的伺服驱动器设计平台的iMOTION开发系统

驱动器 编码器
文件: 总25页 (文件大小:678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRMCS2011  
!
International Rectifier 233 Kansas Street, El Segundo, CA 90245 USA  
IRMCS2011  
Complete Encoder Based Servo Drive Design Platform  
iMOTIONTM Development System  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 3/18/2004  
REFERENCE DESIGN  
IRMCS2011  
Complete Encoder Based Servo Drive Design Platform  
iMOTIONTM Development System  
Features  
Product Summary  
Low cost complete AC servo drive design platform  
Current loop bandwidth (-3dB)  
Speed loop bandwidth (adjustable)  
PWM carrier frequency  
5 kHz (typ)  
400 Hz (typ)  
70 kHz max  
6 µsec  
IRMCK201 IC for complete servo control  
Simple design with IR2175 current sensing HVIC  
230V/750W maximum output power with 600V/16A  
advanced Plug-N-DriveTM IGBT module  
Hardware current loop execution time  
High bandwidth torque loop response  
Flexible drive configuration (PMAC or induction  
Enhanced low speed regulation by 1/T algorithm  
motor)  
Continuous output current  
Overload output current  
Max SPI comm. speed  
Slave SPI configuration  
Max RS232C speed  
5.0 Arms (750W)  
Quadrature encoder interface  
Low cost A/D interface with multiplexer  
15 Arms  
6 MHz  
ServoDesignerTM tool for easy operation  
RS232C/RS422 and fast SPI interface (standard)  
Parallel interface for microcontroller expansion or  
debug port  
57.6 kbps  
Over-current and ground fault protection  
Over-voltage / Under-voltage protection  
Dynamic Braking control with brake IGBT/FWD  
Discrete I/Os (START, STOP, FAULT, FLTCLR,  
SYNC, IFBCAL, PWMACTIVE)  
Configuration data retention at power up/down  
Description  
IRMCS2011 is a complete servo drive design platform for AC servo drive applications up to 750W. The system contains the  
latest advanced motion control IC, IRMCK201, and the ServoDesignerTM software. The complete B/Ms and schematics are  
provided so that the user can adapt and tailor the design per application needs. The system does not require any software  
code development due to unique Motion Control Engine implemented in the IRMCK201 IC. User can readily evaluate high  
performance servo control without spending development effort usually required in the traditional DSP or microcontroller  
based system. IRMCS2011 contains advanced iMOTIONTM chipset such as IR2175 monolithic current sensing ICs and  
IRAMX16UP60A intelligent power module which enables simple and cost effective motion control design.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
REFERENCE DESIGN  
IRMCS2011  
Table of Contents  
1. Overview.......................................................................................................................................................................4  
2. Getting Started ..............................................................................................................................................................5  
2.1 Safety Precautions...................................................................................................................................................5  
2.2 Unpacking and Inspecting.......................................................................................................................................6  
3. Preparing the Motor ......................................................................................................................................................7  
3.1 Readily Drivable Motor List ...................................................................................................................................7  
3.2 Assembling Encoder Connector..............................................................................................................................7  
3.3 Motor Power Cable .................................................................................................................................................8  
4. Hardware Installation....................................................................................................................................................8  
4.1 Safety Precautions...................................................................................................................................................8  
4.2 Input Power Wiring.................................................................................................................................................9  
4.3 Motor Wiring ..........................................................................................................................................................9  
4.4 Encoder Connection..............................................................................................................................................10  
4.5 RS232 Connection ................................................................................................................................................10  
5. Software Installation ...................................................................................................................................................11  
5.1 Installing from the CD ..........................................................................................................................................11  
5.2 ServoDesigner Startup ..........................................................................................................................................11  
Step 1. RS232 Connection ......................................................................................................................................11  
Step 2. Numeric Format ..........................................................................................................................................11  
6. Running the System ....................................................................................................................................................13  
6.1 Power-On ..............................................................................................................................................................13  
6.2 Running motor with ServoDesigner......................................................................................................................13  
Step 1. Opening the Configuration File ..................................................................................................................13  
Step 2. Checking Communication Status................................................................................................................13  
Step 3. Motor Configuration ...................................................................................................................................14  
Step 4. Starting Angle .............................................................................................................................................14  
Step 5. Running the Motor......................................................................................................................................14  
Step 6. Reference Speed..........................................................................................................................................14  
Step 7. Drive Status.................................................................................................................................................15  
7. Motion Control Engine ...............................................................................................................................................16  
7.1 Motion Control Engine (MCE) Based Complete Servo Control...........................................................................16  
8. New Motor Adaptation ...............................................................................................................................................17  
9. Appendix.....................................................................................................................................................................19  
9.1 External I/O...........................................................................................................................................................19  
9.2 RS232C Connector ...............................................................................................................................................19  
9.3 Parallel Interface Port............................................................................................................................................20  
10. Specifications............................................................................................................................................................23  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
2
REFERENCE DESIGN  
IRMCS2011  
List of Figures  
Figure 1. IRMCS2011 System Block Diagram.................................................................................................................4  
Figure 2. Encoder Interface Connector, J2........................................................................................................................7  
Figure 3. Power Terminal Block, J1 .................................................................................................................................9  
Figure 4. Motor Wiring Connection .................................................................................................................................9  
Figure 5. Encoder Connector, J2.....................................................................................................................................10  
Figure 6. RS232 Connector, J6 .......................................................................................................................................10  
Figure 7. The Connection Dialog....................................................................................................................................11  
Figure 8. The Numeric Display Format Dialog ..............................................................................................................12  
Figure 9. Open a Configuration File ...............................................................................................................................13  
Figure 10. Communication Status Indicator ...................................................................................................................14  
Figure 11. Setup for Reference Speed Function .............................................................................................................15  
Figure 12. IRMCK201 Based Complete Servo Control .................................................................................................16  
Figure 13. EXCEL Spreadsheet Inputs...........................................................................................................................18  
Figure 14. External I/O Connector, J7 ............................................................................................................................19  
Figure 15. RS232C Connector, J6 ..................................................................................................................................19  
Figure 16. Parallel Interface Port, J9...............................................................................................................................20  
Figure 17. Register Write/Read Timing (Intel)...............................................................................................................21  
Figure 18. Register Write/Read Timing (Motorola) .......................................................................................................22  
List of Tables  
Table 1. Motor Connections..............................................................................................................................................9  
Table 2. Microprocessor Interface Module Signal Definitions.......................................................................................20  
Table 3. IRMCS2011 Electrical Specification................................................................................................................23  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
3
REFERENCE DESIGN  
IRMCS2011  
1. Overview  
The IRMCS2011 is a design platform for a complete servo drive system based on IRMCK201 IC. The system is based  
on configurable Motion Control Engine implemented by hardware logics in the IRMCK201. The system has a simple  
and low cost yet very flexible structure, made possible by advanced IR motion components including the  
IRAMX16UP60A IGBT module, and IR2175 monolithic current sensing high voltage IC. These components together  
with IRMCK201 IC simplify hardware construction, and perform complete servo amplifier functions. Figure 1 shows  
the IRMCS2011 system block diagram. Since all control logic is implemented in hardware logic as opposed to  
programmed software, unmatched parallel computation is achieved resulting in high bandwidth torque control.  
Despite the fact that technology is based on hardware logic implementation, its design flexibility allows the user to  
configure different types of motors, position feedback devices, and communication protocols. The system also allows  
feedforward control in addition to existing PI control.  
Design cycle time can be greatly shortened. Unlike a traditional DSP or microcontroller, the architecture is based on  
configurable register interface, and does not require any programming to complete customization for specific  
application needs. The user only has to configure the drive using ServoDesignerTM interactive design tool and it takes  
just a matter of hours instead of months and years.  
Once the user become satisfied with function and performance, he can generate his own design using IRMCS2011  
schematics and B/Ms.  
AC Power  
EEPROM  
Analog Speed  
Reference  
TM  
iMOTION Chip Set  
select  
IRMCK201  
A/D  
interface  
A/D MUX  
DC bus feedback  
DC bus dynamic  
brake control  
RS232C  
or  
RS422  
IGBT  
module  
BRAKE  
Multi-Axis  
Host  
+
+
IRAMX16UP60A  
Space  
ejθ  
Dead  
time  
-
-
Vector  
PWM  
Host  
Register  
Interface  
SPI  
Interface  
+
or  
-
FAULT  
other host  
controller  
Parallel  
Interface  
+
+
Configuration  
Registers  
Ks  
dt  
Monitoring  
Registers  
Period/Duty  
counters  
IR2175  
IR2175  
ejθ  
2/3  
Period/Duty  
counters  
1/T counter  
speed  
measurement  
Quadrature  
Decoding  
Encoder  
Motor  
Figure 1. IRMCS2011 System Block Diagram  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
4
 
 
REFERENCE DESIGN  
IRMCS2011  
2. Getting Started  
2.1 Safety Precautions  
In addition to the precautions listed throughout this manual, you must read and understand the following statements  
regarding hazards associated with AC servo development system.  
ATTENTION: Some ground potential of the IRMCS2011 system is biased to a negative  
DC bus voltage potential and kept high voltage potential while power is on. When measuring  
voltage waveform by oscilloscope, the scope ground needs to be isolated. Failure to do so  
may result in personal injury or death.  
Darkened display LED is not an indication that capacitors have discharged to safe voltage  
levels.  
!
ATTENTION: The IRMCS2011 system contains high voltage capacitors which take time to  
discharge after removal of main supply. Before working on drive system, ensure isolation of  
mains supply from line inputs [R, S, T]. Wait three minutes for capacitors to discharge to  
safe voltage levels. Failure to do so may result in personal injury or death.  
Darkened display LED is not an indication that capacitors have discharged to safe voltage  
levels.  
!
ATTENTION: Only personnel familiar with the drive and associated machinery should  
plan or implement the installation, start-up, and subsequent maintenance of the system.  
Failure to comply may result in personal injury and/or equipment damage.  
!
ATTENTION: The surface temperatures of the drive may become hot, which may cause  
injury.  
!
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
5
 
REFERENCE DESIGN  
IRMCS2011  
ATTENTION: The IRMCS2011 system contains ESD (Electrostatic Discharge) sensitive  
parts and assemblies. Static control precautions are required when installing, testing,  
servicing or repairing this assembly. Component damage may result if ESD control  
procedures are not followed. If you are not familiar with static control procedures, reference  
applicable ESD protection handbook and guideline.  
!
!
ATTENTION: An incorrectly applied or installed drive can result in component damage or  
reduction in product life. Wiring or application errors such as undersizing the motor,  
supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may  
result in system malfunction.  
2.2 Unpacking and Inspecting  
The IRMCS2011 system is shipped with packing materials that need to be removed prior to installation.  
ATTENTION: Failure to remove all debris and packing materials, which are unnecessary  
for system installation, may result in overheating or abnormal operating condition.  
!
After unpacking, check the items. The following hardware pieces are contained in the IRMCS2011 system.  
IRMCS2011 board with integrated heat sink  
Serial RS232C cable with 9-pin D-sub connectors for ServoDesignerTM development tool  
Installation CD  
Before you install and start up the system, check if there is any damaged component. In that case, stop proceeding and  
contact our technical support.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
6
 
REFERENCE DESIGN  
IRMCS2011  
3. Preparing the Motor  
3.1 Readily Drivable Motor List  
If the motor is one of the following, it can be run immediately without commissioning.  
Sanyo Denki 400W 8-pole servo motor with 2000-pulse encoder (P30B06040DXS00M,)  
Sanyo Denki 750W 8-pole servo motor with 2000-pulse encoder (P30B08075DXS00M)  
Sanyo Denki 1.5kW 8-pole servo motor with 2000-pulse encoder (P20B10150DXS00M)  
Glentek 160W 4-pole servo motor with 2000-pulse encoder (GMB2010-17-E-02100005)  
Glentek 1.0kW 6-pole servo motor with 5000-pulse encoder (GMB3530-24-E-02200109)  
Glentek 1.2kW 6-pole servo motor with 5000-pulse encoder (GMB3530-37-E-02200109)  
Glentek 600W 6-pole servo motor with 5000-pulse encoder (GMB3530-48-E-02200109)  
Pacific Scientific 800W 8-pole servo motor with 2048-pulse encoder (PMB23C-00114-00)  
Reliance Electric 2HP 4-pole induction motor with 1024-pulse encoder (P14A5805)  
If any other motor is used, adaptation and re-configuration is required, which can be accomplished using the  
ServoDesignerTM tool.  
3.2 Assembling Encoder Connector  
Prepare the connector assembly to the encoder cables.  
Assemble 15-pin male D-Sub connector, referring to Figure 2.  
Make sure that the encoder is a 5V type. If it is not a 5V type, proper modification is required.  
For permanent magnet motors:  
Eleven pins are used: A+ (pin 2), A- (pin 3), B+ (pin 4), B- (pin 5), Z+ (pin 6), Z- (pin 7), HALL_A (pin 10),  
HALL_B (pin 11), HALL_C (pin 12), 5V(pin 1 or pin 9) and GND (pin 8 or pin 15).  
If hall sensors have differential output, connect only positive sides and leave negative sides open.  
For induction motors:  
Only six pins are used because z-pulse is not necessary for an induction machine. The six pins are: A+ (pin  
2), A- (pin 3), B+ (pin 4), B- (pin 5), 5V(pin 1 or pin 9) and GND (pin 8 or pin 15).  
Disable Z_pulse by connecting Z+ to GND and Z- to 5V.  
J2  
1
2
3
4
5
6
7
8
Sanyo Denki’s encoder cable wire  
HVDD  
A+  
A-  
B+  
B-  
Z+  
A+ = Blue  
A- = Brown  
B+ = Green  
B- = Purple  
Z+ = White  
Z- = Yellow  
Z-  
8
1
VSS  
HVDD  
HALL-A  
HALL-B  
HALL-C  
NA  
9
10  
11  
12  
13  
14  
15  
15  
9
+5V_BB (5V) = Red  
VSS (0V) = Black  
NA  
VSS  
DSUB-15  
Figure 2. Encoder Interface Connector, J2  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
7
 
 
REFERENCE DESIGN  
IRMCS2011  
3.3 Motor Power Cable  
Prepare the motor power cable, which has four wires: U, V, W and E (earth ground). Proper size and length of cable  
should be used.  
4. Hardware Installation  
4.1 Safety Precautions  
ATTENTION: Remove and lock out power from the drive before you disconnect or reconnect  
wires or perform service. Wait three minutes after removing power to discharge the bus voltage.  
Do not attempt to service the drive until bus voltage has discharged to zero. Failure to do so may  
result in bodily injury or death.  
!
ATTENTION: The drive is intended to be commanded by control input that will start and stop  
the motor. A device that routinely disconnects then reapplies input power to the drive for the  
purpose of starting and stopping the motor should not be used. Failure to follow this guideline  
may result in damage of equipment, and/or bodily injury or death.  
!
ATTENTION: Do not connect power factor correction capacitors to drive output terminals U,  
V, and W. Failure to do so may result in equipment damage or bodily injury.  
!
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
8
 
REFERENCE DESIGN  
IRMCS2011  
4.2 Input Power Wiring  
Connect AC 115V or single-phase 230V or three-phase 230V power. For single phase 100V-230V AC power, use R  
and T for connection. For three phase 230V power, use R/S/T for connection as shown in Figure 3. Insert a power  
contactor switch rated at 250V/30A in series with AC power cables.  
Figure 3. Power Terminal Block, J1  
If full power rating is needed, use three-phase 230V power. Otherwise output power should be de-rated. Proper size  
and length of cable should be used.  
4.3 Motor Wiring  
Connect motor power and ground wires to terminal block J1 of IRMCS2011 board as shown in Figure 4.  
Figure 4. Motor Wiring Connection  
For Sanyo Denki, Glentek or Pacific Scientific motors, the colored wires should be connected to the associated  
Terminal Block pins of the IRMCS2011 board as shown in Table 1.  
Sanyo Denki’s motor  
cable wire  
Glentek motor  
cable wire  
Pacific Scientific motor  
cable wire  
Terminal block pin  
RED  
WHITE  
BLACK  
RED (pin A)  
BLUE  
VIOLET  
BROWN  
U
V
W
E
BLUE (pin C)  
BLACK (pin B)  
GREEN (pin D)  
GREEN/YELLOW  
GREEN/YELLOW  
Table 1. Motor Connections  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
9
 
 
 
 
REFERENCE DESIGN  
IRMCS2011  
4.4 Encoder Connection  
Plug the encoder connector into J2 as shown in Figure 5. Make sure that encoder signals are connected properly.  
Incorrect connection of encoder signals will result in improper rotor position and/or incorrect communication. The  
shell of the connector is grounded to the chassis for shield termination.  
Figure 5. Encoder Connector, J2  
4.5 RS232 Connection  
Connect the serial cable between the computer COM port and J6 as shown in Figure 6. If there is more than one COM  
port, please remember which one you are using. Make sure that the cable is connected properly. Incorrect connection  
of the serial cable will result in communication errors and/or incorrect communication. The shell of the connector is  
grounded to the chassis for shield termination.  
Figure 6. RS232 Connector, J6  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
10  
 
 
 
REFERENCE DESIGN  
IRMCS2011  
5. Software Installation  
5.1 Installing from the CD  
The distributed CD contains all necessary documents and software files. Load the CD into the CD-ROM drive on your  
PC and double-click “IRMCS2011.exe”. It will ask you for a password, which is in the file “iMOTION Install  
IRMCS2011.pdf”. After you enter the password, an automated procedure will install all necessary software on your  
PC. The default location for the installation is “C:\Program Files\iMOTION”.  
5.2 ServoDesigner Startup  
You should follow the instructions in this section the first time you use ServoDesigner to verify your installation and  
test the reference design. These “quick start” instructions assume that you’re using one of the supported motors  
listed in section 3.1. If not, you’ll need to enter motor configuration parameters before you can begin testing. Refer to  
“ServoDesigner User’s Guide” and “IRMCK201 Application Developer’s Guide” for more information.  
Step 1. RS232 Connection  
ServoDesigner communicates with the IRMCS2011 using a COM port on your PC. Before you start the application,  
you should attach an RS232 cable to the DB9 connector on the reference platform and connect it to an available COM  
port on your PC.  
The first time you start ServoDesigner, a Connection dialog (shown in Figure 7) appears and presents you with a list of  
available COM ports on your system. Select the COM port to which you have connected the RS232 cable.  
Figure 7. The Connection Dialog  
The Connection dialog also allows you to enable and disable product ID and version checking and status polling. You  
should have “Product ID and version checking” disabled and “Status polling” enabled!  
When you click OK in the Connection dialog, your selections are saved so they can be used next time you start the  
application. (The dialog won’t appear on startup again.) If you want to change your selections later on, you can access  
the Connection dialog through the Preferences menu.  
The currently configured COM port is shown on the status bar at the bottom of ServoDesigner’s main display.  
Step 2. Numeric Format  
The first time you start ServoDesigner, the Numeric Display Format dialog appears, as shown in Figure 8. This dialog  
allows you to select either decimal or hexadecimal format for numeric display. Click the blue button to switch between  
hexadecimal and decimal. When you click OK, your setting is saved so it can be used next time you run  
ServoDesigner. (The dialog won’t appear on startup again.) If you want to change the setting later on, you can  
access the Numeric Display Format dialog through the Preferences menu.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
11  
 
 
REFERENCE DESIGN  
IRMCS2011  
Figure 8. The Numeric Display Format Dialog  
Note: Regardless of which display option you choose, you can always enter values in decimal or hexadecimal.  
ServoDesigner interprets a value you enter as hexadecimal if it begins with “0x” (0x222), and otherwise as decimal  
(222).  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
12  
 
REFERENCE DESIGN  
IRMCS2011  
6. Running the System  
6.1 Power-On  
Apply AC 115V – AC 230V power to the system. Immediately after power-on, the red LED (surface mount LED  
located at the right side of the board) will lit on/off indicating the on-board DC bus has been established.  
6.2 Running motor with ServoDesigner  
Step 1. Opening the Configuration File  
You need to open a configuration file. The configuration file contains the register, functional and monitor definitions  
that make up ServoDesigner’s tree view. To start, you should open one of the default files that are shipped with the  
release. Later, when you’ve modified the register values, function definitions and/or tunable parameters, you’ll want to  
save your custom configuration in another file.  
A default configuration file for each supported motor is shipped with the release. The file names include the part  
number of your product and the part number of the motor, with the file extension “.irc”. For example, one of the  
configuration files for the IRMCS2011 product is named “IRMCK201-GMB2010-17-E.irc”. The files are located in  
the iMOTION\ServoDesignerdirectory. To open a configuration file, select Open from the File menu or click the  
toolbar button that shows an open folder. Browse for the file you want and click OK. An example is shown in Figure  
9.  
Figure 9. Open a Configuration File  
Note: Configuration files are saved in text format, but you should not edit the files manually. If you need to make  
changes to a configuration file, open the file in ServoDesigner, make the changes as described later in this document,  
and then save the changes by selecting Save or Save As… from the File menu.  
Step 2. Checking Communication Status  
Until you open a configuration file, the COM port status at the bottom of ServoDesigner’s main display shows  
“Inactive”. When you open a file, ServoDesigner attempts to establish contact with the IRMCS2011 by executing a  
read operation. If ServoDesigner receives a reply to its request, the COM port status shows “Up.” If no reply is  
received, the status changes to “Down.” A “Down” status usually means the reference platform is not powered on, the  
RS232 cable is not connected, or the cable is connected to the wrong COM port. Figure 10 shows how communication  
status should appear before you continue your testing .  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
13  
 
 
REFERENCE DESIGN  
IRMCS2011  
Figure 10. Communication Status Indicator  
Note: If you disable status polling in the Connection dialog, ServoDesigner does not attempt to establish contact  
with the reference platform, and the COM port status shows “Inactive” even after you open a configuration file.  
Step 3. Motor Configuration  
The Configure Motor function is one of the pre-defined operations in ServoDesigner’s Function Definitions section.  
This function initializes the host registers for normal operation. If you click the Configure Motor entry in the tree  
view, a list of the registers that are written when this operation is executed is displayed in the right pane of the main  
window. The “Value to Write” column shows the value that will be written to each register. You can click the “+”  
symbol to the left of the Configure Motor function to access detailed information about each of the registers.  
To execute the Configure Motor function, click the Configure Motor toolbar button (the icon shows a hammer  
and wrench) or double-click on the Configure Motor entry in the tree view.  
Once this function is executed correctly, the LED will turn to blinking green.  
Step 4. Starting Angle  
For induction motor operation, skip this step. This function reads the Hall A, B, C inputs and uses the motor magnet  
position data read from your configuration file to determine the starting position of the motor. (See “ServoDesinger  
User’s Guide” for more information about motor configuration parameters.)  
To execute the function, click the Starting Angle toolbar button (the icon shows the characters “ABC”) or  
double-click the Starting Angle entry in the tree view.  
Step 5. Running the Motor  
Start Motor and Stop Motor functions are also pre-defined Function Definitions.  
To start the motor, click the Start Motor toolbar button (the green traffic signal) or double-click the Start Motor  
entry in the tree view.  
To stop the motor, click the Stop Motor toolbar button (the red traffic signal) or double-click the Stop Motor  
entry in the tree view.  
When the motor is running, the far right hand status bar pane should show drive status “Run” with a green indicator.  
When the motor is stopped, the drive status should be “Stop” with a yellow indicator. If a drive fault occurs, the  
status changes to “Fault” with a red indicator. The status is “Inactive” (blue indicator) when the COM port status is  
“Down” or “Inactive.”  
Step 6. Reference Speed  
ServoDesigner provides a special built-in function that allows you to easily control the motor’s reference speed and  
direction. To modify the settings, see Figure 11. First, locate the Reference Speed entry in the Function Definitions  
section of the tree view. Right-click on the entry and select Properties. In the Properties dialog, you can enter the  
desired speed in RPM and the direction (forward or reverse). In the dialog, you can also specify the host register to  
which the speed/direction setting is written. You should not modify this setting unless you redefine the host register  
map.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
14  
 
REFERENCE DESIGN  
IRMCS2011  
After entering a speed and selecting forward or reverse, click OK in the dialog and then double-click the Reference  
Speed entry in the tree view to execute the operation. ServoDesigner calculates the appropriate value to be written the  
host register (based on your specified speed and direction) and performs the write operation.  
Figure 11. Setup for Reference Speed Function  
Step 7. Drive Status  
The Info button on the toolbar (letter “i”) executes the pre-defined Drive Status function, which reads a group of host  
registers associated with the function.  
To get drive status, click the Info button or double-click the Drive Status entry in the tree view. After you’ve  
executed the function, click on Drive Status in the tree view (if it’s not already selected). In the right pane of  
the main window, the values read from the Drive Status registers are shown in the Current Value column.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
15  
 
REFERENCE DESIGN  
IRMCS2011  
7. Motion Control Engine  
7.1 Motion Control Engine (MCE) Based Complete Servo Control  
Figure 12 shows the detailed algorithm block diagram including various parameters which can be configured  
through the host register interface.  
Closed loop current and velocity control are implemented in the IRMCK201 IC on the IRMCS2011 board. The  
closed loop current control algorithm is based on a synchronously rotating frame. The velocity control is available  
as an outer loop control of the current control and can be disabled in order to configure torque control mode.  
Additional configuration allows feedforward control, selection of the position feedback devices, induction machine  
vector control, and selection of communication protocol.  
2
Closed Loop Velocity Control, Sequencing Control  
Closed Loop Current Control  
MUX  
Update Rate = PWM carrier frequency / 2  
Update Rate = PWM carrier frequency x1 or x 2  
8 channel  
Serial  
A/D  
EXT_REF  
CNVST  
CLK  
DCV_FDBK  
A/D  
interface  
Interface  
Feedforward  
path enable  
DATA  
2
VQLIM+  
VQLIM-  
CURKI  
Optional  
CurrentSense  
SPDKI  
DC bus dynamic  
brake control  
Velocity  
Control  
BRAKE  
SPDKP  
Enable  
IQREF  
GSenseL  
GSenseU  
CURKP  
INT_REF  
ModScl  
+
+
Reference  
Select  
6
VQS  
VDS  
+
+
VQ  
Gate  
Signals  
START  
PI  
PI  
PI  
RAMP  
-
-
ejθ  
STOP  
DIR  
Space  
Vector PWM time  
Dead  
VD  
Sequence  
Control  
+
IQLIM-  
IQLIM+  
FLTCLR  
SYNC  
IDREF  
FAULT  
Accel Rate  
-
FAULT  
VDLIM-  
VDLIM+  
Decel  
Rate  
PWMmode  
PWMen  
2Pen  
Dtime  
PWM ACTIVE  
AngleScale MaxEncCount  
Slip gain 4096  
I2I1 x I2I3  
Slip gain  
enable  
RCV  
SND  
SpdScale InitZval  
RS232C/  
RS422  
Interface  
3
+
+
RTS  
CTS  
Encoder  
A/B/Z  
I1  
O
dt  
Configuration  
Registers  
Quadrature  
Decoding  
I3  
Encoder  
Hall A/B/C  
3
0
SCK  
SDO  
SDI  
CS  
SPI  
Slave  
Interface  
EncType  
IQ scale  
4096  
Zpol  
InitZ  
Optional  
CurrentSense  
Motor  
Phase  
Current V  
IQ  
IV  
Host Register  
Interface  
I2I1 x I2I3  
I3  
IR2175  
interface  
O
O
I1  
Monitoring  
Registers  
ejθ  
Data  
Address  
Control  
2/3  
17  
Motor  
Phase  
Current W  
ID  
IW  
Parallel  
Interface  
I1 x I2  
I3  
IR2175  
interface  
I1  
I2  
I3  
4096  
ID scale  
I2C  
EEPROM  
Interface  
2
Current  
Offset V  
Serial  
EEPROM  
Current  
Offset W  
Communication Modules  
Figure 12. IRMCK201 Based Complete Servo Control  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
16  
 
 
REFERENCE DESIGN  
IRMCS2011  
8. New Motor Adaptation  
New motor can be configured by simple EXCEL spreadsheet. EXCEL spreadsheet template is provided in the  
shipment with the filename “IRMCx201-DriveParams.xls”.  
This spreadsheet facilitates configuration of parameters which need to go into each host registers inside of the  
IRMCK201 IC. The spreadsheet calculates current feedback/speed feedback scaling, Proportional plus Integral (PI)  
gains of current and speed regulators, PWM carrier frequency, deadtime, etc, based on simple motor nameplate and  
published data input. The output of this spreadsheet is text file containing one-to-one corresponding each registers’  
values. User can use the ServoDesignerTM to read this output into the associated registers.  
For detailed operation, please refer to “3.1 Drive Parameter Setup” in IRMCK201 Application Developer’s Guide.  
1
P30B06040DXS00M  
password : 201  
Motor Selection :  
(Type the number here!)  
"=================== Motor Information ========================="  
(RPM) Rated Speed  
3000rpm  
0.00644H  
(Lq) L_phase  
(line to line Inductance) / 2  
(line to line Resistor) / 2  
(R_Stator) R_phase  
(Amps) Rated Amps  
(NLC)No Load Current  
(Jm) Inertia of Motor  
(Kt) Torque Constant  
(Ke) Voltage Constant  
Poles  
1.4ohms/ph  
2.7Arms  
0Arms  
(necessary for IM)  
2.55E-05Kg-m2  
0.533N-m/Arms  
18.6V ln-rms/krpm  
8
voltage is line to neutral rms  
(PPR) Encoder PPR  
Wire-Saving Encoder?  
2000pulse/revolution  
TRUE( TRUE / FALSE )  
"================== Application Information ======================"  
"-------------------------- General ---------------------------"  
Max RPM  
4500rpm  
310Volts  
3pu  
(Vdc_Nom) Nominal Vdc  
(OvLoad) Max pu motor current at rated speed  
"--------------- Speed Regulator Tuning ---------------"  
Speed Regulator BW  
200rad/sec  
Positive Speed Rate limit  
1000rpm/sec  
Negative Speed Rate limit  
1000sec to rate speed  
0Kg-m2  
Inertia of Load  
SpdLpRate  
(measured)  
21 SpdLoop per this # of CurLoop  
"--------------------- Current Limits ----------------------"  
Motoring Limit  
200%  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
17  
 
REFERENCE DESIGN  
IRMCS2011  
Regen Limit  
200%  
"---------- Inverter Switching Frequency -------------"  
(fc) Pwm carrier freq  
10KHz  
Dead_Time  
0.5usec  
" ------------ Current Regulator Tuning --------------- "  
(Ireg_BW) Current Reg BW  
2500rad/sec  
"============== Advance Information (Platform fixed) ==============="  
Note: Below values are fixed for IRMCS2011 platform however can be changed for other  
platform  
(Clk) IRMCK201 clock freq  
DC Bus Scaling (Vdc_Scl)  
33.333MHz  
8.1875cts/Volt  
4095cts for rated Amps  
2355Cts  
I_Torque  
(I_Trq_Rated)  
(Mod_Pk) - U_Alpha U_Beta max linear modulation  
" ---------- Desired Speed feedback Scaling ---------"  
(Spd_Scale)  
16384cts/(Max RPM)  
" -------------- Current Feedback Scaling -------------"  
Current Shunt Resistor  
Max H/W Current  
10mOhm  
26Apeak  
"================== Commutation Information ===================="  
Angle of Z-pulse (based on UV line to line voltage)  
Mid Angle when Hall CBA is 001  
Mid Angle when Hall CBA is 010  
Mid Angle when Hall CBA is 011  
Mid Angle when Hall CBA is 100  
Mid Angle when Hall CBA is 101  
Mid Angle when Hall CBA is 110  
272degree  
120degree  
240degree  
180degree  
0degree  
60degree  
300degree  
Figure 13. EXCEL Spreadsheet Inputs  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
18  
 
REFERENCE DESIGN  
IRMCS2011  
9. Appendix  
9.1 External I/O  
Connect External I/O Connector (J7) as needed. All inputs are 5V tolerant and high true logic.  
Pin definition  
Pin 1: Analog input (+/-10V)  
Pin 2: Analog GND  
Pin 3: N/A (open)  
User supplied  
power supply  
-10V +10V GND  
10k ohm  
Pin 4: N/A (open)  
potentiometer  
Pin 5: N/A (open)  
Pin 6: Digital GND  
J7 Top View  
Pin 7: FAULT status output (3.3V when FAULT)  
Pin 8: SYNC status output (3usec width of active low  
pulse at every carrier frequency period)  
Pin 9: PWMACTIVE output (3.3V when PWM active)  
Pin 10: +5V  
GND  
1
2
GND  
Pin 11: START input (high to activate)  
Pin 12: STOP input (high to activate)  
Pin 13: Ifb offset calibration input (high to activate)  
Pin 14: Fault Clear input (high to activate)  
Pin 15: N/A (open)  
START  
5V  
STOP  
FLTCLR  
IFBCAL  
GND  
15  
16  
Pin 16: Digital GND  
Figure 14. External I/O Connector, J7  
9.2 RS232C Connector  
IRMCS2011 has one serial RS232C connector (J6) on the board. The connector is D-sub 9 pin standard PC female  
connector and directly connectable to PC serial port. As shown in Figure 15, pin 2 is send-signal and pin 3 is  
receive-signal, and both are 10V signal level. The baud rate is fixed at 57.6 kbps. The signal format is 8 bits, no  
parity, 1 stop bit.  
J6  
1
TX1  
RX1  
2
3
4
5
6
7
8
9
No connection  
DB9RF  
Figure 15. RS232C Connector, J6  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
19  
 
 
REFERENCE DESIGN  
IRMCS2011  
9.3 Parallel Interface Port  
IRMCS2011 provides an 8bit parallel interface port to facilitate microprocessor interface. Interface is generic and able  
to interface most common 8bit parallel interface such as MCS8051, some Motorola 8bit uP, MicroChip, etc. Figure 16  
shows the connection diagram. The connector, J5, is a 2-by-10 header connector pins.  
Each signal is 3.3V level and data bus is multiplexed. Table 2 summarizes each signal definition.  
+3.3V_BB  
J5  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
HP_Data0  
HP_Data1  
HP_Data2  
HP_Data3  
HP_Data4  
HP_Data5  
HP_Data6  
HP_Data7  
NA  
NA  
NA  
NA  
HP_nCS  
HP_nWE  
HP_nOE  
HP_A  
HDR2X10  
Figure 16. Parallel Interface Port, J9  
Signal  
HP_nCS  
HP_nOE  
HP_nWE  
HP_A  
I/O1  
Description  
Active low Host Port Chip Select  
Active Low Host Port Output Enable  
I
I
I
I
Active low Host Port Write Enable  
Host Port Register Address. 1 = Address register, 0 = Data Register  
Bidirectional Host Port data bus  
HP_Data  
I/O  
Table 2. Microprocessor Interface Module Signal Definitions  
Figure 17 and Figure 18 show detailed timing requirements for register read and write operations depending on the  
type of microprocessor (Intel or Motorola type). All values are in nanoseconds. The data bus output is activated by  
the logical combination (!nCS && !nOE && new), which allows read and write operations to be either nWe/nOE  
(Intel) or nCS (Motorola) driven.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
20  
 
 
 
REFERENCE DESIGN  
IRMCS2011  
Row  
1
2
3
4
5
6
7
Name  
Min  
10  
0
60  
60  
Max  
Comment  
C
C
C
C
C
D
D
TsuADDR  
TsuData  
Tpw_nCSnWE  
ThData  
ThAddr  
Tacc  
HP_A to HPnCS or HP_nWE (which ever occurs last) low setup time  
HP_D to HPnCS or HP_nWE (which ever occurs last) low setup time  
Minimum pulswidth for nCS and nWE  
Minimum data hold time from HP_nWE or HPnCS (whichever occurs last) low  
Minimum address hold time from HP_nWE or HPnCS (whichever occurs last) low  
HP_nCS or HP_nOE (whichever occurs last) to Data access time  
HP_nCS or HP_nOE (whichever occurs last) to Data invalid/Hi-  
0
0
35  
35  
ThData  
TsuADDR  
TsuData  
ThAddr  
HP_A  
Tpw_nCSnWE  
ThData  
HP_nCS  
HP_nWE  
HP_nOE  
Tacc  
ThData  
HP_DATA  
Figure 17. Register Write/Read Timing (Intel)  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
21  
 
REFERENCE DESIGN  
IRMCS2011  
Row  
1
2
3
4
5
6
7
Name  
Min  
10  
0
60  
60  
Max  
Comment  
C
C
C
C
C
D
D
TsuADDR  
TsuData  
Tpw_nCSnWE  
ThData  
ThAddr  
Tacc  
HP_A to HPnCS low setup time  
HP_D to HPnCS low setup time  
Minimum pulswidth for nCS  
Minimum data hold time from HPnCS low  
Minimum address hold time from HPnCS low  
HP_nCS to Data access time  
0
0
35  
35  
ThData  
HP_nCS to Data invalid/Hi-Z  
TsuADDR  
TsuData  
ThAddr  
HP_A  
Tpw_nCSnWE  
ThData  
HP_nCS  
HP_nWE  
HP_nOE  
Tacc  
ThData  
HP_DATA  
Figure 18. Register Write/Read Timing (Motorola)  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
22  
 
REFERENCE DESIGN  
IRMCS2011  
10. Specifications  
TC=25°C unless specified  
Parameters  
Values  
Conditions  
Input Power  
Voltage  
115V-230Vrms, -20%, +10%  
50/60 Hz  
Frequency  
Input current  
Input line impedance  
Output Power  
Watt  
7A rms @nominal output  
4%8% recommended  
TA=40°C, RthSA=1.0 °C/W  
750W continuous power  
5.0 Arms nominal, 15 Arms Overload  
3.3V logic level  
Vin=230V AC, fPWM=10kHz, fO=60Hz,  
TA=40°C, RthSA=1.0 °C/W  
ZthSA limits TC to 10°C during overload  
Current  
Host interface (SPI)  
SCLK,CS,MISO,MOSI, SYNC  
Isolated, maximum 6MHz  
Host interface (RS232C/422)  
10V  
Maximum 57.6k bps, single ended,  
configurable for RS422 up to 1Mbps  
Tx, Rx  
Host interface (Parallel Port)  
3.3V  
8 bit parallel interface compatible with 8051,  
MicroChip, other µP.  
HP_nCS, HP_nOE, HP_nWE,  
HP_A, HP_DATA[8]  
D/A  
8 bit 4 Channel  
A/D  
0-3.3V output  
Output is buffered with 4mA drive capability  
12 bit 2 channel  
±10V for reference input, 5V for DC bus  
input  
Discrete I/O  
Input  
4 bit, START, STOP, FLTCLR, IFBCAL 5V tolerant, Isolated, Active High logic  
3 bit, PWMACTIVE, FAULT, SYNC  
Output  
Current feedback  
Current sensing device  
Resolution  
IR2175, direct interface  
10 bit (7.5 nanoseconds counting  
resolution)  
133 MHz internal IRMCK201 clock  
IR2175 PWM output (130 kHz)  
Latency  
8.3 usec  
Protection  
Output current trip level  
Ground fault trip level  
Over-temperature trip level  
Short circuit delay time  
DC bus voltage  
35A peak, ±10%  
35A peak, ±10%  
110°C, ±5%  
Case temperature  
line-to-line short, line-to-DC bus (-) short  
2.5 µsec  
Maximum DC bus voltage  
Minimum DC bus voltage  
Encoder Interface  
Incremental encoder  
400V  
120V  
Should not exceed 400V for > 30 sec  
VCC=15V ± 10%, VDD=5V ± 5%  
Maximum 2 MHz  
All differential signals are converted to single  
ended signals including index pulse  
Hall A/B/C initialization  
Programmable wire saving/dedicated  
A/B/C  
Power Module  
IRAMX16UP60A  
3-phase HVIC  
System environment  
Ambient temperature  
6 IGBT/FRED + IR2136 gate driver,  
integrated overtemp protection  
Bootstrap power supply for high side circuit  
95%RH max. (non-condensing)  
0 to 40°C  
Table 3. IRMCS2011 Electrical Specification  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
23  
 
REFERENCE DESIGN  
IRMCS2011  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105  
http://www.irf.com  
Data and specifications subject to change without notice.  
Sales Offices, Agents and Distributors in Major Cities Throughout the World.  
This document is the property of International Rectifier and may not be copied or distributed without expressed consent.  
24  

相关型号:

IRMCS2031

Complete Sensorless Drive Design Platform iMOTION Development System
INFINEON

IRMCS2031_07

Complete Sensorless Drive Design Platform iMOTIONTM Development System
INFINEON

IRMCS2033

Low Voltage Sensorless Drive Design Platform for Permanent Magnet Motors
INFINEON

IRMCS3041

Sensorless Motor Drive Platform for Appliance Based on iMOTION Chipset
INFINEON

IRMCS3043

Sensorless Motor Drive Platform with Integrated PFC for Appliance Based on iMOTIONTM Chipset
INFINEON

IRMCT3UF1

Complete Integrated High Performance Sensorless Speed Control in a Compact, Ruggedized Package
INFINEON

IRMCT3UF1AH

Complete Integrated High Performance Sensorless Speed Control in a Compact, Ruggedized Package
INFINEON

IRMCT3UF1AP

Complete Integrated High Performance Sensorless Speed Control in a Compact, Ruggedized Package
INFINEON

IRMCT3UF1H

Complete Integrated High Performance Sensorless Speed Control in a Compact, Ruggedized Package
INFINEON

IRMCT3UF1P

Complete Integrated High Performance Sensorless Speed Control in a Compact, Ruggedized Package
INFINEON

IRMCV201

Complete Motion Control Verilog Library Accelerator Verilog Code Development Tool
INFINEON

IRMD22141SS

Demo Board For 3-phase / 380V motor drives
INFINEON