IRS2112S [INFINEON]

600 V 高边和低边驱动器 IC,具有典型的 0.29 A 拉电流和 0.6 A 灌电流,采用 16 引脚 SOICWB 封装,适用于 IGBT 和 MOSFET。也有 14 引脚 PDIP 封装可选。;
IRS2112S
型号: IRS2112S
厂家: Infineon    Infineon
描述:

600 V 高边和低边驱动器 IC,具有典型的 0.29 A 拉电流和 0.6 A 灌电流,采用 16 引脚 SOICWB 封装,适用于 IGBT 和 MOSFET。也有 14 引脚 PDIP 封装可选。

驱动 双极性晶体管 光电二极管 驱动器
文件: 总19页 (文件大小:1831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60251  
(
)
IRS2112 -1,-2,S PbF  
HIGH AND LOW SIDE DRIVER  
Features  
Product Summary  
· Floating channel designed for bootstrap operation  
· Fully operational to +600 V  
V
600 V max.  
200 mA / 440 mA  
10 V - 20 V  
OFFSET  
· Tolerant to negative transient voltage, dV/dt  
immune  
I +/-  
O
· Gate drive supply range from 10 V to 20 V  
· Undervoltage lockout for both channels  
· 3.3 V logic compatible  
V
OUT  
· Separate logic supply range from 3.3 V to 20 V  
· Logic and power ground +/- 5 V offset  
· CMOS Schmitt-triggered inputs with pull-down  
· Cycle by cycle edge-triggered shutdown logic  
· Matched propagation delay for both channels  
· Outputs in phase with inputs  
t
(typ.)  
135 ns & 105 ns  
30 ns  
on/off  
Delay Matching  
Packages  
RoHS compliant  
14-Lead PDIP  
IRS2112  
Description  
The IRS2112 is a high voltage, high speed power  
16-Lead PDIP  
M
OSFET and IGBT driver with independent high- and  
(w/o leads 4 & 5)  
IRS2112-2  
low-side referenced output channels. Proprietary HVIC  
and latch immune CMOS technologies enable rug-  
gedized monolithic construction. Logic inputs are com-  
patible with standard CMOS or LSTTL outputs, down  
to 3.3 V logic. The output drivers feature a high pulse  
current buffer stage designed for minimum driver  
cross-conduction. Propagation delays are matched  
to simplify use in high frequency applications. The  
14-Lead PDIP  
(w/o lead 4)  
IRS2112-1  
16-Lead SOIC  
IRS2112S  
floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration  
which operates up to 600 V.  
up to 600 V  
Typical Connection  
HO  
VDD  
HIN  
SD  
VB  
VS  
VDD  
HIN  
SD  
TO  
LOAD  
LIN  
VSS  
VCC  
COM  
LO  
LIN  
VSS  
VCC  
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please  
refer to our Application Notes and DesignTips for proper circuit board layout.  
www.irf.com  
1
IRS2112(-1,-2,S)PbF  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High-side floating supply voltage  
-0.3  
625  
B
S
V
High-side floating supply offset voltage  
High-side floating output voltage  
Low-side fixed supply voltage  
Low-side output voltage  
V
- 25  
V
+ 0.3  
+ 0.3  
25  
B
B
V
HO  
V
- 0.3  
V
B
S
V
CC  
-0.3  
-0.3  
-0.3  
V
V
LO  
V
+ 0.3  
+ 25  
+ 0.3  
+ 0.3  
CC  
V
DD  
Logic supply voltage  
V
SS  
CC  
DD  
V
SS  
Logic supply offset voltage  
V
- 25  
V
V
CC  
SS  
V
IN  
Logic input voltage (HIN, LIN & SD)  
Allowable offset supply voltage transient (Fig. 2)  
V
- 0.3  
dV /dt  
s
50  
V/ns  
W
(14 Lead DIP)  
1.6  
1.25  
75  
P
Package power dissipation @ TA £ +25 °C  
D
(16 Lead SOIC)  
(14 Lead DIP)  
(16 Lead SOIC)  
°C/W  
°C  
RTH  
JA  
Thermal resistance, junction to ambient  
100  
150  
150  
300  
T
Junction temperature  
J
T
S
T
L
Storage temperature  
-55  
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the  
recommended conditions. The V and V offset ratings are tested with all supplies biased at 15 V differential. Typical  
S
SS  
ratings at other bias conditions are shown in Figs. 36 and 37.  
Symbol  
Definition  
High-side floating supply absolute voltage  
High-side floating supply offset voltage  
High-side floating output voltage  
Low-side fixed supply voltage  
Low-side output voltage  
Min.  
Max.  
Units  
V
V
S
+ 10  
V + 20  
S
B
S
V
Note 1  
600  
V
HO  
V
S
V
B
V
CC  
10  
0
20  
V
V
LO  
V
CC  
V
DD  
Logic supply voltage  
V
SS  
+ 3  
V
SS  
+ 20  
V
SS  
Logic supply offset voltage  
-5 (Note 2)  
5
V
Logic input voltage (HIN, LIN & SD)  
Ambient temperature  
V
V
DD  
IN  
SS  
T
-40  
125  
°C  
A
Note 1: Logic operational for V of -5 V to +600 V. Logic state held for V of -5 V to -V . (Please refer to the Design  
BS  
S
S
Tip DT97-3 for more details).  
Note 2: When VDD < 5 V, the minimum VSS offset is limited to -VDD  
.
www.irf.com  
2
IRS2112(-1,-2,S)PbF  
Dynamic Electrical Characteristics  
V
BIAS  
(V , V , V ) = 15 V, C = 1000 pF, T = 25 °C and V  
= COM unless otherwise specified. The dynamic  
CC BS DD SS  
L
A
electrical characteristics are measured using the test circuit shown in Fig. 3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
VS = 0 V  
135  
130  
130  
75  
180  
160  
160  
130  
65  
on  
t
off  
Turn-off propagation delay  
Shutdown propagation delay  
Turn-on rise time  
V
S
= 600 V  
t
sd  
ns  
t
r
t
f
Turn-off fall time  
35  
MT  
Delay matching, HS & LS Turn-on/off  
30  
Static Electrical Characteristics  
V
(V , V , V ) = 15 V, T = 25 °C and V = COM unless otherwise specified. The V , V , and I parameters  
BIAS CC BS DD SS IN TH IN  
A
are referenced to V and are applicable to all three logic input leads: HIN, LIN, and SD. The V and I parameters are  
SS  
referenced to COM and are applicable to the respective output leads: HO or LO.  
O
O
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” input voltage  
9.5  
6.0  
0.2  
0.1  
50  
IH  
V
IL  
Logic “0” input voltage  
V
V
OH  
High level output voltage, V  
- V  
O
0.05  
0.02  
BIAS  
I
O
= 2 mA  
V
Low level output voltage, V  
O
OL  
LK  
I
Offset supply leakage current  
V
B
= V = 600 V  
S
I
I
Quiescent V  
Quiescent V  
Quiescent V  
supply current  
supply current  
supply current  
25  
100  
180  
30  
QBS  
BS  
CC  
DD  
80  
V
IN  
= 0 V or V  
QCC  
DD  
µA  
I
2.0  
20  
QDD  
I
Logic “1” input bias current  
Logic “0” input bias current  
40  
V = V  
IN DD  
IN+  
I
IN-  
1.0  
V
IN  
= 0 V  
V
supply undervoltage positive going  
BS  
threshold  
supply undervoltage negative going  
V
7.4  
7.0  
7.6  
7.2  
200  
420  
8.5  
8.1  
8.6  
8.2  
290  
600  
9.6  
9.2  
9.6  
9.2  
BSUV+  
V
BS  
threshold  
supply undervoltage positive going  
V
BSUV-  
CCUV+  
V
V
CC  
threshold  
supply undervoltage negative going  
V
V
CC  
V
CCUV-  
threshold  
V
O
= 0 V, V = V  
IN  
DD  
I
Output high short circuit pulsed current  
O+  
PW £ 10 µs  
mA  
V
O
= 15 V, V = 0 V  
IN  
I
O-  
Output low short circuit pulsed current  
PW £ 10 µs  
www.irf.com  
3
IRS2112(-1,-2,S)PbF  
Functional Block Diagram  
VB  
UV  
DETECT  
VDD  
R
R
S
Q
HV  
LEVEL  
SHIFT  
HO  
PULSE  
FILTER  
R
Q
S
VDD/VCC  
LEVEL  
SHIFT  
HIN  
SD  
PULSE  
GEN  
VS  
VCC  
UV  
DETECT  
VDD/VCC  
LEVEL  
SHIFT  
LIN  
VSS  
LO  
S
R
Q
DELAY  
COM  
Lead Definitions  
Symbol Description  
V
Logic supply  
DD  
HIN  
SD  
Logic input for high-side gate driver output (HO), in phase  
Logic input for shutdown  
LIN  
Logic input for low-side gate driver output (LO), in phase  
Logic ground  
V
V
SS  
B
High-side floating supply  
HO  
High-side gate drive output  
High-side floating supply return  
Low-side supply  
V
V
S
CC  
LO  
Low-side gate drive output  
COM  
Low-side return  
www.irf.com  
4
IRS2112(-1,-2,S)PbF  
Lead Assignments  
14 Lead PDIP  
16 Lead SOIC (Wide Body)  
IRS2112  
IRS2112S  
16 Lead PDIP w/o leads 4 & 5  
14 Lead PDIP w/o lead 4  
IRS2112-2  
IRS2112-1  
Part Number  
www.irf.com  
5
IRS2112(-1,-2,S)PbF  
VCC = 15 V  
HV = 10 V to 600 V  
10 k F6  
6
0.1  
mF  
10  
mF  
HIN  
LIN  
100  
mF  
200  
10 k  
mH  
0.1  
mF  
F6  
9
3
5
7
10  
SD  
HO  
11  
12  
dV  
s
1
10 k F6  
ct  
OUTPUT  
MONITOR  
HO  
LO  
13  
2
IRF820  
Figure 1. Input/Output Timing Diagram  
Figure 2. Floating Supply Voltage Transient Test  
Circuit  
VCC = 15 V  
HV = 10 V to 600 V  
0.1  
VB  
10  
mF  
mF  
10  
mF  
0.1  
mF  
+
50%  
t
50%  
HIN  
LIN  
15 V  
9
6
3
-
VS  
5
7
10  
(0 V to 600 V)  
CL  
HIN  
t
t
t
f
on  
off  
r
HO  
10  
mF  
11  
12  
1
SD  
90%  
90%  
LO  
LIN  
CL  
HO  
LO  
10%  
10%  
2
13  
Figure 3. Switching Time Test Circuit  
Figure 4. Switching Time Waveform Definition  
50%  
50%  
HIN  
LIN  
50%  
SD  
LO  
HO  
t
sd  
10%  
HO  
LO  
90%  
MT  
MT  
90%  
LO  
HO  
Figure 5. Shutdown Waveform Definitions  
www.irf.com  
Figure 6. Delay Matching Waveform Definitions  
6
IRS2112(-1,-2,S)PbF  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
M ax  
M ax.  
Typ.  
Typ.  
0
0
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75  
100 125  
V
/ V Supply Voltage (V)  
Temperature(oC)  
CC  
BS  
Figure 7A. Turn-On Propagation Delay Time  
vs. Temperature  
Figure 7B. Turn-On Propagation Delay Time  
vs. VCC/VBS Supply Voltage  
400  
250  
200  
M ax.  
300  
150  
Max.  
200  
Typ.  
100  
Typ.  
100  
0
50  
0
-50  
-25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10 12 14 16 18 20  
Temperature(oC)  
VDD Supply Voltage (V)  
Figure 8A. Turn-Off Propagation Delay Time  
vs. Temperature  
Figure 7C. Turn-On Propagation Delay Time  
vs. VDD Supply Voltage  
250  
400  
M ax.  
M ax.  
200  
300  
200  
100  
0
150  
Typ.  
100  
50  
0
Typ.  
0
2
4
6
8
10 12 14 16 18 20  
10  
12  
14  
16  
18  
20  
VDD Supply Voltage (V)  
VCC/VBS Supply Voltage (V)  
Figure 8B. Turn-Off Propagation Delay Time  
vs. VCC/VBS Supply Voltage  
Figure 8C. Turn-Off Propagation Delay Time  
vs. VDD Supply Voltage  
www.irf.com  
7
IRS2112(-1,-2,S)PbF  
250  
250  
M ax.  
Typ.  
200  
150  
100  
50  
200  
150  
100  
Max.  
Typ .  
50  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature(oC)  
VCC/V BS Supply Voltage (V)  
Figure 9A. Shutdown Delay Time  
vs. Temperature  
Figure 9B. Shutdown Delay Time  
vs. VCC/VBS Supply Voltage  
400  
250  
M ax.  
200  
150  
100  
50  
300  
200  
100  
0
M ax.  
Typ.  
Typ.  
0
0
2
4
6
8
10 12 14 16 18 20  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (oC)  
VDD Supply Voltage (V)  
Figure 10A. Turn-On Rise Time vs. Temperature  
Figure 9C. Shutdown Time vs. VDD Supply Voltage  
125  
100  
75  
250  
200  
M ax  
150  
M ax.  
50  
100  
Typ  
25  
50  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
VBIAS Supply Voltage (V)  
Figure 11A. Turn-Off Fall Time vs. Temperature  
Figure 10B. Turn-On Rise Time vs. Voltage  
www.irf.com  
8
IRS2112(-1,-2,S)PbF  
125  
15  
100  
75  
12  
9
Min.  
M ax  
Typ  
6
50  
3
25  
0
0
-50 -25  
0
25 50 75 100 125  
10  
12  
14  
16  
18  
20  
V
Supply Voltage (V)  
BIAS  
Temperature (°C)  
Figure 11B. Turn-Off Fall Time vs. Supply Voltage  
Figure 12A. Logic “I” Input Threshold  
vs. Temperature  
15  
12  
9
Min.  
Max.  
6
3
0
2.5  
5
7.5 10 12.5 15 17.5 20  
Logic Supply Voltage (V)  
-5 0 -25  
0
2 5  
50  
7 5  
10 0 1 25  
Temperature (°C)  
V
DD  
Figure 13A. Logic “0” Input Threshold  
vs. Temperature  
Figure 12B. Logic “I” Input Threshold  
vs. Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
Max.  
M ax.  
0.0  
-50 -25  
0
25  
50  
75  
100 125  
2.5  
5
7.5 10 12.5 15 17.5 20  
Temperature (oC)  
VDD Logic Supply Voltage (V)  
Figure 14A. High Level Output Voltage  
Figure 13B. Logic “0” Input Threshold  
vs. Voltage  
vs. Temperature (I = 2 mA)  
o
www.irf.com  
9
(
)
IRS2112 -1,-2,S PbF  
1.0  
0.8  
1.0  
0.8  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
M ax  
Max  
0.0  
0.0  
-50 -25  
0
25  
50  
75  
100 125  
10  
12  
14  
VBAIS Supply Voltage (V)  
Figure 14B. High Level Output Voltage  
16  
18  
20  
Temperature (oC)  
Figure 15A. Low Level Output Voltage  
vs. Temperature (I = 2 mA)  
vs. Supply Voltage (I = 2 mA)  
o
o
1.0  
0.8  
200  
150  
100  
50  
0.6  
0.4  
0.2  
Max.  
M ax  
Typ.  
0.0  
0
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75 100 125  
VBAIS Supply Voltage (V)  
Temperature (oC)  
Figure 15B. Low Level Output Voltage vs.  
Supply Voltage ( = 2 mA)  
Figure 16A. VBS Supply Current vs. Temperature  
I
o
200  
150  
100  
50  
100  
80  
60  
Max.  
40  
Max.  
Typ.  
20  
Typ.  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100 125  
Tem perature (°C)  
V BS Supply Voltage (V)  
Figure 16B. VBS Supply Current vs.  
Voltage  
Figure 17A. VBS Supply Current vs. Temperature  
www.irf.com  
10  
IRS2112(-1,-2,S)PbF  
100  
80  
60  
40  
20  
0
300  
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
Floating Supply Voltage (V)  
BS  
Figure 18A. VCC Supply Current vs. Temperature  
Figure 17B. VBS Supply Current vs. Voltage  
300  
12  
250  
200  
150  
100  
50  
10  
Max.  
8
6
Max.  
Typ.  
Typ.  
4
2
0
0
10  
12  
V
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (°C)  
Fixed Supply Voltage (V)  
cc  
Figure 18B. VCC Supply Current vs. Voltage  
Figure 19A. VDD Supply Current vs. Temperature  
100  
80  
12  
10  
8
60  
Max.  
Typ.  
6
Max.  
40  
4
20  
2
Typ.  
0
0
0
2
4
6
8
10 12 14 16 18 20  
-50  
-25  
0
25  
50  
75  
100 125  
V
Logic Supply Voltage (V)  
Temperature (°C)  
DD  
Figure 19B. VDD Supply Current vs. VDD Voltage  
Figure 20A. Logic “I” Input Current vs. Temperature  
www.irf.com  
11  
(
)
IRS2112 -1,-2,S PbF  
6
5
4
3
2
1
0
100  
80  
60  
40  
20  
0
Max  
Max.  
Typ.  
0
2
4
6
8
10 12 14 16 18 20  
-50  
-25  
0
25  
50  
75  
100  
125  
V
Logic Supply Voltage (V)  
DD  
Temperature (°C)  
Figure 20B. Logic “1” Input Current vs. VDD Voltage  
Figure 21A. Logic "0" Input Bias Current  
vs. Temperature  
6
11  
5
4
3
Max  
10  
9
8
2
1
0
7
6
10  
12  
14  
16  
18  
20  
-50 -25  
0
25  
50  
75  
100 125  
Supply Voltage (V)  
Temperature (°C)  
Figure 22. VBS Undervoltage (+) vs. Temperature  
Figure 21B. Logic "0" Input Bias Current  
vs. Voltage  
11  
11  
10  
9
10  
Max.  
Max.  
9
Typ.  
Typ.  
Min.  
8
8
Min.  
7
6
7
6
-50 -25  
0
25  
50  
75  
(oC)  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature  
Figure 23. VBS Undervoltage (-) vs. Temperature  
Figure 24. VCC Undervoltage (-) vs. Temperature  
www.irf.com  
12  
IRS2112(-1,-2,S)PbF  
11  
10  
9
500  
400  
300  
200  
100  
Typ.  
M in.  
Max.  
Typ.  
8
Min.  
7
0
6
-50 -25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (°C)  
Figure 25. VCC Undervoltage (-) vs. Temperature  
Figure 26A. Output Source Current vs.  
Temperature  
500  
400  
300  
750  
Typ.  
600  
450  
300  
150  
M in.  
200  
Typ .  
100  
M in.  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
10  
12  
14  
16  
18  
20  
Temperature (oC)  
V BIA S Supply Voltage (V)  
Figure 27A. Output Sink Current  
vs. Temperature  
Figure 26B. Output Source Current  
vs. Supply Voltage  
750  
600  
450  
300  
150  
Typ.  
M in.  
0
10  
12  
14  
16  
18  
20  
VBIA S Supply Voltage (V)  
Figure 27B. Output Sink Current vs. Supply Voltage  
www.irf.com  
13  
IRS2112(-1,-2,S)PbF  
150  
125  
100  
75  
150  
125  
100  
75  
320 V  
140 V  
320 V  
140 V  
10 V  
10 V  
50  
50  
25  
25  
0
0
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 28. IRS2112 TJ vs. Frequency (IRFBC20)  
RGATE = 33 W, VCC = 15 V  
Figure 29. IRS2112 TJ vs. Frequency (IRFBC30)  
RGATE = 22 W, VCC = 15 V  
320 V 140 V 10 V  
320 V  
150  
150  
125  
100  
75  
50  
25  
0
125  
100  
75  
50  
25  
0
140 V  
10 V  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 30. IRS2112 TJ vs. Frequency (IRFBC40)  
RGATE = 15 W, VCC = 15 V  
Figure 31. IRS2112 TJ vs. Frequency (IRFPE50)  
RGATE = 10 W, VCC = 15 V  
320 V 140 V  
150  
125  
100  
75  
150  
125  
100  
75  
320 V  
140 V  
10 V  
10 V  
50  
50  
25  
25  
0
0
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 32. IRS2112S TJ vs. Frequency (IRFBC20)  
RGATE = 33 W, VCC = 15 V  
Figure 33. IRS2112S TJ vs. Frequency (IRFBC30)  
RGATE = 22 W, VCC = 15 V  
www.irf.com  
14  
IRS2112(-1,-2,S)PbF  
320 V  
320 V 140 V 10 V  
150  
125  
100  
75  
150  
125  
100  
75  
140 V  
10 V  
50  
50  
25  
25  
0
0
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 34. IRS2112S TJ vs. Frequency (IRFBC40)  
RGATE = 15 W, VCC = 15 V  
Figure 35. IRS2112S TJ vs. Frequency (IRFPE50)  
RGATE = 10 W, VCC = 15 V  
0.0  
20.0  
-3.0  
Typ.  
16.0  
12.0  
8.0  
-6.0  
-9.0  
Typ.  
-12.0  
-15.0  
4.0  
0.0  
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
20  
V
V
CC  
Floating Supply Voltage (V)  
Fixed Supply Voltage (V)  
BS  
Figure 36. Maximum VS Negative Offset vs.  
VBS Supply Voltage  
Figure 37. Maximum VSS Positive Offset vs.  
VCC Supply Voltage  
www.irf.com  
15  
IRS2112(-1,-2,S)PbF  
Case outline  
01-6010  
01-3002 03 (MS-001AC)  
14-Lead PDIP  
01-6010  
01-3008 02 (MS-001AC)  
14-Lead PDIP w/o Lead 4  
www.irf.com  
16  
IRS2112(-1,-2,S)PbF  
01-6015  
01-3010 02  
16 Lead PDIP w/o Leads 4 & 5  
01 6015  
01-3014 03 (MS-013AA)  
16-Lead SOIC (wide body)  
www.irf.com  
17  
IRS2112(-1,-2,S)PbF  
LOADED TAPE FEED DIRECTION  
B
Tape & Reel  
16-Lead SOIC  
A
H
D
F
C
N OTE : CONTROLLING  
D IMENSION IN MM  
E
G
C A R R IE R TA P E D IM E NS IO N FO R 1 6 S O IC W  
M etr ic  
Im p erial  
C o d e  
M in  
11 .9 0  
3 .9 0  
15 .7 0  
7 .4 0  
10 .8 0  
10 .6 0  
1 .5 0  
M ax  
1 2.10  
4.1 0  
1 6.30  
7.6 0  
1 1.00  
1 0.80  
n/a  
M in  
M ax  
0 .4 76  
0 .1 61  
0 .6 41  
0 .2 99  
0 .4 33  
0 .4 25  
n/a  
A
B
C
D
E
F
0.46 8  
0.15 3  
0.61 8  
0.29 1  
0.42 5  
0.41 7  
0.05 9  
0.05 9  
G
H
1 .5 0  
1.6 0  
0 .0 62  
F
D
B
C
A
E
G
H
R E E L D IM E NS IO N S FO R 1 6 SO IC W  
M etr ic  
Im p erial  
C o d e  
M in  
32 9.60  
20 .9 5  
12 .8 0  
1 .9 5  
98 .0 0  
n /a  
18 .5 0  
16 .4 0  
M ax  
3 30 .2 5  
2 1.45  
1 3.20  
2.4 5  
1 02 .0 0  
2 2.40  
2 1.10  
1 8.40  
M in  
1 2 .9 76  
0.82 4  
0.50 3  
0.76 7  
3.85 8  
n /a  
M ax  
13 .0 0 1  
0 .8 44  
0 .5 19  
0 .0 96  
4 .0 15  
0 .8 81  
0 .8 30  
0 .7 24  
A
B
C
D
E
F
G
H
0.72 8  
0.64 5  
www.irf.com  
18  
IRS2112(-1,-2,S)PbF  
LEADFREE PART MARKING INFORMATION  
Part number  
Date code  
IRSxxxx  
YWW?  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
14-Lead PDIP IRS2112PbF  
14-Lead PDIP IRS2112-1PbF  
16-Lead PDIP IRS2112-2PbF  
16-Lead SOIC IRS2112SPbF  
16-Lead SOIC Tape & Reel IRS2112STRPbF  
The SOIC-16 is MSL3 qualified.  
This product has been designed and qualified for the industrial level.  
Qualification standards can be found at www.irf.com  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 11/27/2006  
www.irf.com  
19  

相关型号:

IRS2112SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2112STRPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113-1

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113-1PBF

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113-2

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113-2PBF

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113MPBF

HIGH- AND LOW-SIDE DRIVER
INFINEON

IRS2113MTRPBF

HIGH- AND LOW-SIDE DRIVER
INFINEON

IRS2113PBF

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113S

HIGH AND LOW SIDE DRIVER
INFINEON

IRS2113SPBF

HIGH AND LOW SIDE DRIVER
INFINEON