IRS21303DPBF [INFINEON]

3-PHASE BRIDGE DRIVER; 3相桥式驱动器
IRS21303DPBF
型号: IRS21303DPBF
厂家: Infineon    Infineon
描述:

3-PHASE BRIDGE DRIVER
3相桥式驱动器

驱动器
文件: 总23页 (文件大小:537K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Data Sheet No. PD60256 revA  
IRS2130D/IRS21303D/IRS2132D  
3-PHASE BRIDGE DRIVER  
Product Summary  
Features  
Floating channel designed for bootstrap operation  
Fully operational to +600 V  
VOFFSET  
600 V max.  
Tolerant to negative transient voltage, dV/dt immune  
Gate drive supply range from 10 V to 20 V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Three Independent half-bridge drivers  
Matched propagation delay for all channels  
2.5 V logic compatible  
Outputs out of phase with inputs  
Cross-conduction prevention logic  
All parts are LEAD-FREE  
IO+/- (min.)  
VOUT  
200 mA / 420 mA  
10 V – 20 V (IRS213(0,2)D)  
13 V – 20 V (IRS21303D)  
500 ns  
ton/off (typ.)  
Deadtime (typ.)  
2.0 µs (IRS2130D)  
0.7 µs (IRS213(2,03)D)  
Applications:  
*Motor Control  
*Air Conditioners/ Washing Machines  
*General Purpose Inverters  
Integrated bootstrap diode function  
*Micro/Mini Inverter Drives  
Description  
Packages  
The IRS213(0, 03, 2)D are high voltage, high speed  
power MOSFET and IGBT drivers with three independent  
high and low side referenced output channels. Proprietary  
HVIC technology enables ruggedized monolithic  
construction. Logic inputs are compatible with CMOS or  
LSTTL outputs, down to 2.5 V logic. A ground-referenced  
operational amplifier provides analog feedback of bridge  
current via an external current sense resistor. A current trip  
function which terminates all six outputs is also derived from  
this resistor. An open drain FAULT signal indicates if an  
over-current or undervoltage shutdown has occurred. The  
output drivers feature a high pulse current buffer stage  
designed for minimum driver cross-conduction. Propagation  
delays are matched to simplify use at high frequencies. The  
floating channels can be used to drive N-channel power  
28-Lead SOIC  
28-Lead PDIP  
44-Lead PLCC w/o 12 Leads  
MOSFETs or IGBTs in the high side configuration which operates up to 600 V.  
Typical Connection  
www.irf.com  
1
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to VSO. The thermal resistance and power dissipation ratings are  
measured under board mounted and still air conditions. Zener clamps are included between VCC & VSO (25 V), VCC  
VSS (20V), and VBx & VSx (20 V).  
&
Symbol  
Definition  
Min.  
Max.  
Units  
VB1,2,3  
High side floating supply voltage  
-0.3  
625  
VS1,2,3  
VHO1,2,3  
VCC  
High side floating offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Logic ground  
VB1,2,3 - 20  
VS1,2,3 - 0.3  
-0.3  
VB1,2,3 + 0.3  
VB1,2,3 + 0.3  
25  
VSS  
VCC - 20  
-0.3  
VCC + 0.3  
VCC + 0.3  
VLO1,2,3  
Low side output voltage  
V
(VSS + 15) or  
(VCC + 0.3),  
whichever is  
lower  
Logic input voltage ( HIN1,2,3, LIN1,2,3 & ITRIP)  
VIN  
VSS -0.3  
VFLT  
VCAO  
VCA-  
FAULT output voltage  
VSS -0.3  
VCC +0.3  
VCC +0.3  
VCC +0.3  
50  
Operational amplifier output voltage  
Operational amplifier inverting input voltage  
Allowable offset supply voltage transient  
VSS -0.3  
VSS -0.3  
dVS/dt  
V/ns  
W
(28 lead PDIP)  
1.5  
PD  
Package power dissipation @ TA +25 °C  
(28 lead SOIC)  
(44 lead PLCC)  
(28 lead PDIP)  
(28 lead SOIC)  
(44 lead PLCC)  
1.6  
2.0  
83  
Rth,JA  
Thermal resistance, junction to ambient  
°C/W  
°C  
78  
63  
TJ  
TS  
TL  
Junction temperature  
150  
Storage temperature  
-55  
150  
Lead temperature (soldering, 10 seconds)  
300  
www.irf.com  
2
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the  
recommended conditions. All voltage parameters are absolute voltage referenced to VSO. The VS offset rating is tested  
with all supplies biased at a 15 V differential.  
Symbol  
Definition  
Min.  
Max.  
Units  
IRS213(0,2)D  
IRS21303D  
VS1,2,3 +10  
VB1,2,3  
High side floating supply voltage  
VS1,2,3 +20  
V
S1,2,3 +13  
Note 1  
VS1,2,3  
High side floating offset voltage  
High side floating output voltage  
600  
VHO1,2,3  
VS1,2,3  
10  
13  
VB1,2,3  
IRS213(0,2)D  
IRS21303D  
VCC  
Low side and logic fixed supply voltage  
20  
V
VSS  
VLO1,2,3  
VIN  
Logic ground  
-5  
5
Low side output voltage  
0
VCC  
Logic input voltage (HIN1,2,3, LIN1,2,3 & ITRIP)  
VSS  
VSS  
VSS  
VSS  
-40  
VSS + 5  
VCC  
FAULT output voltage  
VFLT  
VCAO  
VCA-  
TA  
Operational amplifier output voltage  
Operational amplifier inverting input voltage  
Ambient temperature  
VSS + 5  
VSS + 5  
125  
°C  
Note 1: Logic operational for VS of (VSO - 8 V) to (VSO + 600 V). Logic state held for VS of (VSO - 8 V) to (VSO – VBS .  
)
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: The CAO pin and all input pins (except CA-) are internally clamped with a 5.2 V zener diode.  
www.irf.com  
3
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Static Electrical Characteristics  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters  
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters are  
referenced to VSO1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
VIH  
VIL  
Logic “0” input voltage (OUT = LO)  
Logic “1” input voltage (OUT = HI)  
ITRIP input positive going threshold  
2.2  
V
0.8  
VIT,TH+  
400 490 580  
mV  
V
VOH  
VOL  
ILK  
High level output voltage, VBIAS - VO  
Low level output voltage, VO  
Offset supply leakage current  
Quiescent VBS supply current  
Quiescent VCC supply current  
30  
4
1
400  
50  
70  
6
VIN = 0 V, Io= 20 mA  
mV VIN = 5 V, Io= 20 mA  
VB = VS = 600 V  
µA  
IQBS  
IQCC  
IIN+  
IIN-  
IITRIP+  
IITRIP-  
VIN = 0 V  
mA  
µA  
nA  
Logic “1” input bias current (OUT = HI)  
Logic “0” input bias current (OUT = LO)  
“High” ITRIP bias current  
300 400  
220 300  
5
VIN = 5 V  
ITRIP = 5 V  
ITRIP = 0 V  
100  
10  
“Low” ITRIP bias current  
VBS supply undervoltage  
positive going threshold  
IRS213(0,2)D 7.5 8.35 9.2  
IRS21303D 11 13  
IRS213(0,2)D 7.1 7.95 8.8  
VBSUV+  
VBSUV-  
VCCUV+  
VCCUV-  
VCCUVH  
VBS supply undervoltage  
negative going threshold  
IRS21303D  
IRS213(0,2)D 8.3  
9
9
11  
9.7  
13  
9.4  
11  
VCC supply undervoltage  
positive going threshold  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
11  
8
9
8.7  
0.3  
2
V
VCC supply undervoltage  
negative going threshold  
Hysteresis  
0.4  
2
VBSUVH  
Ron, FLT  
IO+  
Hysteresis  
FAULT low on-resistance  
55  
75  
VO = 0 V, VIN = 0 V  
PW 10 µs  
VO = 15 V, VIN = 5 V  
PW 10 µs  
Output high short circuit pulsed current  
Output low short circuit pulsed current  
200 250  
420 500  
mA  
IO-  
RBS  
VOS  
ICA-  
Integrated bootstrap diode resistance  
Operational amplifier input offset voltage  
CA- input bias current  
200  
10  
50  
mV  
nA  
VSO = VCA- = 0.2 V  
VCA- = 2.5 V  
Operational amplifier common mode  
rejection ratio  
Operational amplifier power supply  
rejection ratio  
VSO = VCA- = 0.1 V &  
1.1 V  
VSO = VCA- = 0.2 V  
VCC = 10 V & 20 V  
CMRR  
PSRR  
TBD 80  
TBD 75  
dB  
Operational amplifier high level output  
voltage  
Operational amplifier low level output  
voltage  
VOH,AMP  
VOL,AMP  
4.9  
5.2  
5.4  
30  
V
VCA- = 0 V, VSO =1 V  
VCA- = 1 V, VSO =0 V  
mV  
Note: Please refer to Feature Description section for integrated bootstrap functionality information.  
www.irf.com  
4
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Static Electrical Characteristics - (Continued)  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters  
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters are  
referenced to VSO1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
VCA- = 0 V, VSO =1 V  
ISRC,AMP  
Operational amplifier output source current  
4
1
7
2.1  
10  
4
VCAO = 4 V  
VCA- = 1 V, VSO =0 V  
VCAO = 2 V  
VCA- = 0 V, VSO =5 V  
VCAO = 0 V  
ISNK,AMP  
IO+,AMP  
IO-,AMP  
Operational amplifier output sink current  
mA  
Operational amplifier output high short circuit  
current  
Operational amplifier output low short circuit  
current  
VCA- = 5 V, VSO =0 V  
VCAO = 5 V  
Dynamic Electrical Characteristics  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS , CL = 1000 pF, TA = 25 °C unless otherwise specified.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
ton  
toff  
t r  
Turn-on propagation delay  
400 500 700  
400 500 700  
Turn-off propagation delay  
Turn-on rise time  
80  
35  
125  
55  
VS1,2,3 = 0 V to 600 V  
tf  
Turn-off fall time  
titrip  
tbl  
ITRIP to output shutdown propagation delay  
ITRIP blanking time  
400 660 920  
400  
350 550 870  
325  
ns  
ITRIP to FAULT indication delay  
tflt  
tflt, in  
Input filter time (all six inputs)  
LIN1,2,3 to FAULT clear time IRS213(0,2)D  
LIN1,2,3 & HIN1,2,3 to FAULT clear time  
IRS21303D  
tfltclr  
DT  
5300 8500 13700  
1300 2000 3100  
IRS2130D  
Deadtime  
IRS213(2,03)D 500 700 1100  
SR+  
SR-  
Operational amplifier slew rate (+)  
Operational amplifier slew rate (-)  
5
10  
V/µs  
1 V input step  
2.4  
3.2  
NOTE: For high side PWM, HIN pulse width must be > 1.5 µs.  
www.irf.com  
5
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Fig. 1. Input/Output Timing Diagram  
Fig. 2. Detime Waveform Definitions  
Fig. 3. Input/OutSwitching Time Waveform nitions  
www.irf.com  
6
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Fig. 4. Overcurrent Shutdown Switching Time Waveform Definitions  
Fig. 5. Input Filter Function  
Fig. 6. Diagnoic Feedback Operational Amplifier Circuit  
www.irf.com  
7
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Lead Definitions  
Symbol  
Description  
HIN1,2,3  
LIN1,2,3  
FAULT  
Logic input for high side gate driver outputs (HO1,2,3), out of phase  
Logic input for low side gate driver output (LO1,2,3), out of phase  
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic  
Low side and logic fixed supply  
VCC  
ITRIP  
CAO  
Input for over-current shutdown  
Output of current amplifier  
CA-  
Negative input of current amplifier  
VSS  
Logic ground  
VB1,2,3  
HO1,2,3  
VS1,2,3  
LO1,2,3  
VSO  
High side floating supply  
High side gate drive output  
High side floating supply return  
Low side gate drive output  
Low side return and positive input of current amplifier  
Lead Assignments  
www.irf.com  
8
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Functional Block Diagram  
www.irf.com  
9
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Functional Block Diagram  
www.irf.com  
10  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
-
at a very high PWM duty cycle due to the  
1 Features Description  
bootstrap FET equivalent resistance (RBS  
see page 4).  
,
1.1 Integrated Bootstrap Functionality  
In these cases, better performances can be achieved  
by using the IRS213(0,03,2) non D version with an  
external bootstrap network.  
The IRS213(0,03,2)D family embeds an integrated  
bootstrap FET that allows an alternative drive of the  
bootstrap supply for a wide range of applications.  
2 PCB Layout Tips  
There is one bootstrap FET for each channel and it is  
connected between each of the floating supply (VB1,  
VB2, VB3) and VCC (see Fig. 7).  
2.1 Distance from H to L Voltage  
The IRS213(0,03,2)J package lacks some pins (see  
page 8) in order to maximizing the distance between  
the high voltage and low voltage pins. It’s strongly  
recommended to place the components tied to the  
floating voltage in the respective high voltage portions  
of the device (VB1,2,3, VS1,2,3) side.  
The bootstrap FET of each channel follows the state  
of the respective low side output stage (i.e., bootFet  
is ON when LO is high, it is OFF when LO is low),  
unless the VB voltage is higher than approximately  
1.1(VCC). In that case the bootstrap FET stays off  
until the VB voltage returns below that threshold (see  
Fig. 8).  
2.2 Ground Plane  
To minimize noise coupling ground plane must not be  
placed under or near the high voltage floating side.  
2.3 Gate Drive Loops  
Current loops behave like an antenna able to receive  
and transmit EM noise (see Fig. 9). In order to reduce  
EM coupling and improve the power switch turn on/off  
performances, gate drive loops must be reduced as  
much as possible. Moreover, current can be injected  
inside the gate drive loop via the IGBT collector-to-  
gate parasitic capacitance. The parasitic auto-  
inductance of the gate loop contributes to develop a  
voltage across the gate-emitter increasing the  
possibility of self turn-on effect.  
IGC  
VBX (VCC)  
Fig. 7. Simplified BootFet Connection  
gate  
resistance  
CGC  
HOX (LOX )  
Vth~17V  
Vcc=15V  
Gate Drive  
Loop  
Phase voltage  
LO  
VGE  
( Vs0 )  
VSX  
BootFet  
OFF  
Bootstrap FET  
state  
BootFet  
ON  
BootFet  
ON  
Fig. 9. Antenna Loops  
Fig. 8. State Diagram  
2.4 Supply Capacitors  
Bootstrap FET is suitable for most PWM modulation  
schemes and can be used either in parallel with the  
external bootstrap network (diode + resistor) or as a  
replacement of it. The use of the integrated bootstrap  
as a replacement of the external bootstrap network  
may have some limitations in the following situations:  
Supply capacitors must be placed as close as  
possible to the device pins (VCC and VSS for the  
ground tied supply, VB and VS for the floating supply)  
in order to minimize parasitic inductance/resistance.  
-
when used in non-complementary PWM  
schemes (typically 6-step modulations)  
www.irf.com  
11  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
In order to avoid such undervoltage it is highly  
recommended to minimize high side emitter to low  
side collector distance and low side emitter to  
negative bus rail stray inductance. See DT04-4 at  
www.irf.com for more detailed information.  
2.5 Routing and Placement  
Power stage PCB parasitic may generate dangerous  
voltage transients for the gate driver and the control  
logic. In particular it’s recommended to limit phase  
voltage negative transients.  
www.irf.com  
12  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Figures 10-40 provide information on the experimental performance of the IRS2132DS HVIC. The line plotted in  
each figure is generated from actual lab data. A large number of individual samples from multiple wafer lots were  
tested at three temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The line  
labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have been  
connected together to illustrate the understood trend. The individual data points on the curve were determined by  
calculating the averaged experimental value of the parameter (for a given temperature).  
1000  
800  
600  
400  
200  
0
1500  
1200  
900  
600  
300  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 11. Turn-Off Propagation Delay vs. Temperature  
Fig. 10. Turn-On Propagation Delay vs. Temperature  
125  
100  
75  
250  
200  
150  
50  
100  
Exp.  
Exp.  
50  
0
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 12. Turn-On Rise Time vs. Temperature  
Fig. 13. Turn-Off Fall Time vs. Temperature  
www.irf.com  
13  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
1500  
1200  
1500  
1200  
900  
600  
300  
0
Exp.  
900  
Exp.  
600  
300  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 15. TITRIP Propagation Delay vs. Temperature  
Fig. 14. DT Propagation Delay vs. Temperature  
1500  
250  
200  
150  
100  
1200  
900  
600  
300  
0
Exp.  
50  
Exp.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 16. ITRIP to FAULT Propagation Delay vs.  
Temperature  
Fig.17. FAULT Low On Resistance vs. Temperature  
10  
100  
8
6
4
2
0
80  
60  
40  
20  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 18. VCC Quiescent Current vs. Temperature  
Fig. 19. VBS Quiescent Current vs. Temperature  
www.irf.com  
14  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
11  
10  
9
11  
10  
Exp.  
9
Exp.  
8
8
7
6
7
6
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 20. VCCUV+ Threshold vs. Temperature  
Fig. 21. VCCUV- Threshold vs. Temperature  
11  
10  
9
11  
10  
9
Exp.  
Exp.  
8
8
7
7
6
6
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 22. VBSUV+ Threshold vs. Temperature  
Fig. 23. VBSUV- Threshold vs. Temperature  
750  
500  
250  
0
750  
500  
250  
0
EXP.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 24. ITRIP Positive Going Threshold vs. Temperature  
Fig. 25. ITRIP Negative Going Threshold vs.  
Temperature  
www.irf.com  
15  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
750  
500  
400  
300  
200  
100  
0
600  
Exp.  
450  
300  
150  
0
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 27. Output Low Short Circuit Current vs.  
Temperature  
Fig. 26. Output High Short Circuit Pulsed Current vs.  
Temperature  
25  
20  
15  
10  
25  
20  
15  
10  
5
Exp.  
5
Exp.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 29. "Low" ITRIP Bias Current vs. Temperature  
Fig. 28. "High" ITRIP Bias Current vs. Temperature  
8
25  
20  
15  
10  
5
Exp.  
6
Exp.  
4
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 30. VOH,AMP vs. Temperature  
Fig. 31. VOL,AMP vs. Temperature  
www.irf.com  
16  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
20  
15  
10  
5
5
4
Exp.  
3
Exp.  
2
1
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 32. SR+,AMP vs. Temperature  
Fig. 33. SR-,AMP vs. Temperature  
12  
5
4
3
2
1
0
10  
8
Exp.  
Exp.  
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 34. ISNK,AMP vs. Temperature  
Fig. 35. ISRC,AMP vs. Temperature  
15  
20  
16  
12  
8
12  
9
Exp.  
6
Exp.  
3
4
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 37. IO+,AMP vs. Temperature  
Fig. 36. IO-,AMP vs. Temperature  
www.irf.com  
17  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
90  
70  
50  
30  
10  
-10  
125  
100  
Exp.  
75  
50  
25  
0
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 39. PSRR vs. Temperature  
Fig. 38. VOS,AMP vs. Temperature  
150  
125  
100  
75  
Exp.  
50  
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Fig. 40. CMRR vs. Temperature  
www.irf.com  
18  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Case Outlines  
www.irf.com  
19  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
Case Outlines  
www.irf.com  
20  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 28SOICW  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
11.90  
3.90  
23.70  
11.40  
10.80  
18.20  
1.50  
Max  
12.10  
4.10  
24.30  
11.60  
11.00  
18.40  
n/a  
Min  
Max  
0.476  
0.161  
0.956  
0.456  
0.433  
0.724  
n/a  
0.468  
0.153  
0.933  
0.448  
0.425  
0.716  
0.059  
0.059  
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 28SOICW  
Metric  
Imperial  
Min  
Code  
A
B
C
D
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
30.40  
29.10  
26.40  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.196  
1.145  
1.039  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
E
F
98.00  
n/a  
G
H
26.50  
24.40  
1.04  
0.96  
www.irf.com  
21  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 44PLCC  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
23.90  
3.90  
31.70  
14.10  
17.90  
17.90  
2.00  
Max  
24.10  
4.10  
32.30  
14.30  
18.10  
18.10  
n/a  
Min  
0.94  
Max  
0.948  
0.161  
1.271  
0.562  
0.712  
0.712  
n/a  
0.153  
1.248  
0.555  
0.704  
0.704  
0.078  
0.059  
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 44PLCC  
Metric  
Imperial  
Max  
Code  
A
B
C
D
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
13.001  
0.844  
0.519  
0.096  
4.015  
1.511  
1.409  
1.303  
E
F
98.00  
n/a  
102.00  
38.4  
G
34.7  
35.8  
1.366  
1.283  
H
32.6  
33.1  
www.irf.com  
22  
IRS2130D/IRS21303D/IRS2132D (J&S)PbF  
PRELIMINARY  
ORDER INFORMATION  
28-Lead PDIP IRS2130DPbF  
28-Lead PDIP IRS21303DPbF  
28-Lead PDIP IRS2132DPbF  
28-Lead SOIC IRS2130DSPbF  
28-Lead SOIC IRS21303DSPbF  
28-Lead SOIC IRS2132DSPbF  
44-Lead PLCC IRS2132DJPbF  
44-Lead PLCC IRS21303DJPbF  
44-Lead PLCC IRS2132DJPbF  
28-Lead SOIC Tape & Reel IRS2130DSTRPbF  
28-Lead SOIC Tape & Reel IRS21303DSTRPbF  
28-Lead SOIC Tape & Reel IRS2132DSTRPbF  
44-Lead PLCC Tape & Reel IRS2130DJTRPbF  
44-Lead PLCC Tape & Reel IRS21303DJTRPbF  
44-Lead PLCC Tape & Reel IRS2132DJTRPbF  
WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105  
This part has been qualified per industrial level  
http://www.irf.com Data and specifications subject to change without notice.5/19/2006  
www.irf.com  
23  

相关型号:

IRS21303DSPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DSTRPBF

Half Bridge Based Peripheral Driver, PDSO28, LEAD FREE, MS-013AE, PLASTIC, SOIC-28
INFINEON

IRS21303JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303JTRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303PBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303STRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS2130D

3-PHASE BRIDGE DRIVER
INFINEON

IRS2130DJPBF

Half Bridge Based Peripheral Driver, PQCC44, LEAD FREE, MS-018AC, PLASTIC, LCC-44
INFINEON

IRS2130DJTRPBF

Half Bridge Based Peripheral Driver, PQCC44, LEAD FREE, MS-018AC, PLASTIC, LCC-44
INFINEON

IRS2130DPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS2130DSPBF

3-PHASE BRIDGE DRIVER
INFINEON