IRS21531DS [INFINEON]

EiceDRIVER™ 600 V half-bridge gate driver IC with typical 0.18 A source and 0.26 A sink currents in 8 Lead SOIC package for IGBTs and MOSFETs. Also available in 8 Lead PDIP.;
IRS21531DS
型号: IRS21531DS
厂家: Infineon    Infineon
描述:

EiceDRIVER™ 600 V half-bridge gate driver IC with typical 0.18 A source and 0.26 A sink currents in 8 Lead SOIC package for IGBTs and MOSFETs. Also available in 8 Lead PDIP.

驱动 双极性晶体管 光电二极管
文件: 总14页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60238 revE  
IRS2153(1)D(S)PbF  
SELF-OSCILLATING HALF-BRIDGE DRIVER IC  
Features  
Product Summary  
Integrated 600 V half-bridge gate driver  
„
VOFFSET  
600 V Max  
50%  
„ CT, RT programmable oscillator  
„ 15.4 V Zener clamp on VCC  
„ Micropower startup  
Duty cycle  
„ Non-latched shutdown on CT pin (1/6th VCC  
)
Driver source/sink  
current  
Internal bootstrap FET  
„
180 mA/260 mA typ.  
15.4 V typ.  
„ Excellent latch immunity on all inputs and outputs  
„ +/- 50 V/ns dV/dt immunity  
Vclamp  
„ ESD protection on all pins  
„ 8-lead SOIC or PDIP package  
„ Internal deadtime  
1.1 µs typ. (IRS2153D)  
0.6 µs typ. (IRS21531D)  
Deadtime  
Description  
Package  
The IRS2153(1)D is based on the popular IR2153 self-  
oscillating half-bridge gate driver IC using a more  
advanced silicon platform, and incorporates a high  
voltage half-bridge gate driver with a front end oscillator  
similar to the industry standard CMOS 555 timer. HVIC  
and latch immune CMOS technologies enable rugged  
monolithic construction. The output driver features a high  
pulse current buffer stage designed for minimum driver  
cross-conduction. Noise immunity is achieved with low  
di/dt peak of the gate drivers.  
PDIP8  
IRS2153(1)DPbF  
SO8  
IRS2153(1)DSPbF  
Typical Connection Diagram  
+ AC Rectified Line  
RVCC  
VCC  
VB  
1
8
7
6
5
CBOOT  
MHS  
RT  
HO  
VS  
LO  
2
RT  
L
CT  
3
CVCC  
CT  
RL  
MLS  
COM  
4
- AC Rectified Line  
1
IRS2153(1)D  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All  
voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead.  
The thermal resistance and power dissipation ratings are measured under board mounted and still air  
conditions.  
Parameter  
Symbol  
VB  
Definition  
Min.  
-0.3  
Max.  
625  
Units  
High side floating supply voltage  
VS  
High side floating supply offset voltage  
High side floating output voltage  
Low side output voltage  
RT pin current  
VB - 25  
VS – 0.3  
-0.3  
VB + 0.3  
VB + 0.3  
V
VHO  
VLO  
VCC + 0.3  
IRT  
-5  
5
mA  
V
VRT  
VCT  
ICC  
RT pin voltage  
-0.3  
VCC + 0.3  
VCC + 0.3  
20  
CT pin voltage  
-0.3  
Supply current (Note 1)  
---  
mA  
V/ns  
W
Maximum allowable current at LO and HO due to external  
power transistor Miller effect.  
IOMAX  
-500  
500  
Allowable offset voltage slew rate  
-50  
---  
50  
1.0  
dVS/dt  
PD  
Maximum power dissipation @ TA +25 ºC, 8-Pin DIP  
Maximum power dissipation @ TA +25 ºC, 8-Pin SOIC  
Thermal resistance, junction to ambient, 8-Pin DIP  
Thermal resistance, junction to ambient, 8-Pin SOIC  
Junction temperature  
PD  
---  
0.625  
85  
RthJA  
RthJA  
TJ  
---  
ºC/W  
ºC  
---  
128  
150  
150  
300  
-55  
-55  
---  
TS  
Storage temperature  
TL  
Lead temperature (soldering, 10 seconds)  
This IC contains a zener clamp structure between the chip VCC and COM which has a nominal  
breakdown voltage of 15.4 V. Please note that this supply pin should not be driven by a DC, low  
impedance power source greater than the VCLAMP specified in the Electrical Characteristics section.  
Note 1:  
2
IRS2153(1)D  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Parameter  
Symbol  
VBS  
Definition  
High side floating supply voltage  
Steady state side floating supply offset voltage  
Supply voltage  
Min.  
VCC - 0.7  
-3.0 (Note 2)  
VCCUV+ +0.1 V  
(Note 3)  
Max.  
VCLAMP  
600  
Units  
V
VS  
VCC  
ICC  
VCC CLAMP  
5
Supply current  
mA  
ºC  
TJ  
Junction temperature  
-40  
125  
It is recommended to avoid output switching conditions where the negative-going spikes at the VS  
node would decrease VS below ground by more than -5 V.  
Note 2:  
Note 3:  
Enough current should be supplied to the  
clamping the voltage at this pin.  
pin of the IC to keep the internal 15.6 V zener diode  
VCC  
Recommended Component Values  
Parameter  
Symbol  
RT  
Component  
Min.  
1
Max.  
---  
Units  
kΩ  
Timing resistor value  
CT pin capacitor value  
CT  
330  
---  
pF  
VBIAS (VCC, VBS) = 14 V, VS=0 V and TA = 25 °C, CLO = CHO = 1 nF.  
Frequency vs. RT  
1,000,000  
CT Values  
100,000  
10,000  
1,000  
100  
330pf  
470pF  
1nF  
2.2nF  
4.7nF  
10nF  
10  
1,000  
10,000  
100,000  
1,000,000  
RT (Ohm)  
For further information, see Fig. 12.  
3
IRS2153(1)D  
Electrical Characteristics  
VBIAS (VCC, VBS) = 14 V, CT = 1 nF, VS=0 V and TA = 25 °C unless otherwise specified. The output voltage and current (VO and IO) parameters are  
referenced to COM and are applicable to the respective output leads: HO or LO. CLO = CHO = 1 nF.  
Test Conditions  
Symbol  
Definition  
Min Typ Max Units  
Low Voltage Supply Characteristics  
VCCUV  
+
Rising VCC undervoltage lockout threshold  
Falling VCC undervoltage lockout threshold  
10.0  
8.0  
1.6  
---  
11.0  
9.0  
12.0  
10.0  
2.4  
V
VCCUV  
-
VCCUVHYS VCC undervoltage lockout hysteresis  
2.0  
IQCCUV  
IQCC  
ICC  
Micropower startup VCC supply current  
Quiescent supply current  
130  
800  
1.8  
170  
1000  
---  
VCC VCCUV-  
µA  
---  
VCC  
supply current  
---  
mA  
V
RT = 36.9 kΩ  
VCC  
VCC zener clamp voltage  
Floating Supply Characteristics  
VCC  
14.4  
15.4  
16.8  
ICC = 5 mA  
CLAMP  
IQBS  
Quiescent VBS supply current  
BS supply undervoltage positive going  
threshold  
BS supply undervoltage negative going  
---  
60  
80  
µA  
V
V
VBSUV+  
8.0  
9.0  
9.5  
V
VBSUV-  
ILK  
7.0  
---  
8.0  
---  
9.0  
50  
threshold  
Offset supply leakage current  
VB = VS = 600 V  
µA  
Oscillator I/O Characteristics  
18.4  
88  
---  
19.0  
93  
19.6  
100  
---  
RT = 36.5 kΩ  
RT = 7.15 kΩ  
fo < 100 kHz  
fOSC  
Oscillator frequency  
kHz  
%
d
RT pin duty cycle  
50  
0.02  
0.30  
9.32  
4.66  
2.3  
10  
ICT  
CT pin current  
---  
1.0  
0.6  
---  
µA  
ICTUV  
VCT+  
VCT-  
VCTSD  
UV-mode CT pin pulldown current  
Upper CT ramp voltage threshold  
Lower CT ramp voltage threshold  
CT voltage shutdown threshold  
0.20  
---  
mA  
VCC = 7 V  
V
---  
---  
2.2  
---  
2.4  
50  
IRT = -100 µA  
IRT = -1 mA  
IRT = 100 µA  
IRT = 1 mA  
VRT+  
High-level RT output voltage, VCC - VRT  
---  
100  
10  
300  
50  
---  
VRT-  
Low-level RT output voltage  
UV-mode RT output voltage  
---  
100  
0
300  
100  
VRTUV  
---  
VCC VCCUV-  
mV  
IRT = -100 µA,  
---  
---  
10  
50  
VCT = 0 V  
VRTSD  
SD-mode RT output voltage, VCC - VRT  
IRT = -1 mA,  
VCT = 0 V  
100  
300  
4
IRS2153(1)D  
Electrical Characteristics  
V
(V , V ) = 14 V, C = 1 nF, V =0 V and T = 25 °C unless otherwise specified. The output voltage and current (VO and IO)  
BIAS CC BS  
T
S
A
parameters are referenced to COM and are applicable to the respective output leads: HO or LO. CLO = CHO = 1 nF.  
Test Conditions  
Symbol  
Definition  
Min  
Typ  
Max Units  
Gate Driver Output Characteristics  
VOH  
VOL  
VCC  
High-level output voltage  
Low-level output voltage  
---  
---  
---  
IO = 0 A  
COM  
---  
V
IO = 0 A  
VCC VCCUV-  
,
VOL_UV  
UV-mode output voltage  
---  
COM  
---  
Output rise time  
---  
---  
120  
50  
220  
tr  
tf  
ns  
Output fall time  
80  
---  
Shutdown propagation delay  
Output deadtime (HO or LO) (IRS2153D)  
---  
350  
1.1  
tsd  
td  
0.65  
1.75  
µs  
µs  
Output deadtime (HO or LO) (IRS21531D)  
Output source current  
0.35  
---  
0.6  
180  
260  
0.85  
---  
td  
IO+  
IO-  
mA  
Output sink current  
---  
---  
Bootstrap FET Characteristics  
VB_ON  
IB_CAP  
IB_10V  
VB when the bootstrap FET is on  
VB source current when FET is on  
VB source current when FET is on  
---  
40  
10  
13.7  
55  
---  
---  
---  
V
CBS=0.1 uF  
VB=10 V  
mA  
12  
5
IRS2153(1)D  
Lead Definitions  
VCC  
RT  
VB  
HO  
VS  
LO  
1
2
3
4
8
7
6
5
CT  
COM  
Lead  
Description  
Symbol  
VCC  
RT  
Logic and internal gate drive supply voltage  
Oscillator timing resistor input  
CT  
Oscillator timing capacitor input  
COM IC power and signal ground  
LO  
VS  
Low-side gate driver output  
High voltage floating supply return  
High-side gate driver output  
HO  
VB  
High side gate driver floating supply  
6
IRS2153(1)D  
Functional Block Diagram  
2
RT  
8
7
VB  
R
R
Q
HV  
LEVEL  
SHIFT  
+
-
R
S
HO  
PULSE  
FILTER  
DEAD  
TIME  
R
S
Q
Q
PULSE  
GEN  
6
1
VS  
+
-
BOOTSTRAP  
DRIVE  
VCC  
DEAD  
TIME  
15.4V  
R/2  
R/2  
Q
S
5
4
LO  
DELAY  
+
-
R1  
R2  
3
CT  
COM  
M1  
UV  
DETECT  
7
IRS2153(1)D  
Timing Diagram  
Operating Mode  
VCCUV+  
VCC  
Fault Mode:  
CT <1/6*VCC  
2/3 VCC  
VCT  
1/3 VCC  
1/6 VCC  
VCC  
LO  
DT  
VCC  
HO  
DT  
VCC  
VRT  
IRT  
Switching Time Waveform  
Deadtime Waveform  
90%  
LO  
HO  
10%  
tr  
tf  
DTLO  
DTHO  
90%  
10%  
90%  
HO  
LO  
10%  
8
IRS2153(1)D  
Bootstrap MOSFET  
Functional Description  
The internal bootstrap FET and supply capacitor (CBOOT) comprise  
the supply voltage for the high side driver circuitry. The internal  
boostrap FET only turns on when LO is high. To guarantee that  
the high-side supply is charged up before the first pulse on pin  
HO, the first pulse from the output drivers comes from the LO pin.  
Under-voltage Lock-Out Mode (UVLO)  
The under-voltage lockout mode (UVLO) is defined as the state  
the IC is in when VCC is below the turn-on threshold of the IC. The  
IRS2153(1)D under voltage lock-out is designed to maintain an  
ultra low supply current of less than 170 µA, and to guarantee the  
IC is fully functional before the high and low side output drivers  
are activated. During under voltage lock-out mode, the high and  
low-side driver outputs HO and LO are both low.  
Normal operating mode  
Once the VCCUV+ threshold is passed, the MOSFET M1 opens, RT  
increases to approximately VCC (VCC-VRT+) and the external CT  
capacitor starts charging. Once the CT voltage reaches VCT  
-
Supply voltage  
(about 1/3 of VCC), established by an internal resistor ladder, LO  
turns on with a delay equivalent to the deadtime (td). Once the CT  
voltage reaches VCT+ (approximately 2/3 of VCC), LO goes low, RT  
goes down to approximately ground (VRT-), the CT capacitor  
discharges and the deadtime circuit is activated. At the end of the  
deadtime, HO goes high. Once the CT voltage reaches VCT-, HO  
goes low, RT goes high again, the deadtime is activated. At the  
end of the deadtime, LO goes high and the cycle starts over  
again.  
+ AC Rectified Line  
RVCC  
VCC  
RT  
VB  
HO  
VS  
LO  
1
2
3
4
8
7
6
5
CBOOT  
MHS  
RT  
CT  
L
The following equation provides the oscillator frequency:  
CVCC  
CT  
COM  
RL  
MLS  
1
f ~  
1.453× RT ×CT  
- AC Rectified Line  
Fig. 1 Typical Connection Diagram  
This equation can vary slightly from actual measurements due to  
internal comparator over- and under-shoot delays. For a more  
accurate determination of the output frequency, the frequency  
characteristic curves should be used (RT vs. Frequency, page 3).  
Fig. 1 shows an example of supply voltage. The start-up capacitor  
(CVCC) is charged by current through supply resistor (RVCC) minus  
the start-up current drawn by the IC. This resistor is chosen to  
provide sufficient current to supply the IRS2153(1)D from the DC  
bus. CVCC should be large enough to hold the voltage at Vcc  
above the UVLO threshold for one half cycle of the line voltage as  
it will only be charged at the peak, typically 0.1 uF. It will be  
necessary for RVCC to dissipate around 1 W.  
Shut-down  
If CT is pulled down below  
(approximately 1/6 of VCC) by  
V
CTSD  
an external circuit, CT doesn’t charge up and oscillation stops.  
LO is held low and the bootstrap FET is off. Oscillation will  
resume once CT is able to charge up again to VCT-  
.
The use of a two diode charge pump made of DC1, DC2 and  
CVS (Fig. 2) from the half bridge (VS) is also possible however  
the above approach is simplest and the dissipation in RVCC should  
not be unacceptably high.  
+ AC Rectified Line  
RVCC  
VCC  
RT  
VB  
HO  
VS  
LO  
1
2
3
4
8
7
6
5
CBOOT  
MHS  
DC2  
RT  
CT  
L
CVCC  
CVS  
CT  
COM  
RL  
MLS  
DC1  
- AC Rectified Line  
Fig. 2 Charge pump circuit  
The supply resistor (RVCC) must be selected such that enough  
supply current is available over all operating conditions.  
Once the capacitor voltage on VCC reaches the start-up threshold  
VCCUV+, the IC turns on and HO and LO begin to oscillate.  
9
IRS2153(1)D  
100  
98  
96  
94  
92  
90  
19  
18.8  
18.6  
18.4  
18.2  
18  
-25  
0
25  
50  
75  
100  
125  
11  
12  
13  
14  
15  
16  
Temperature(C)  
VCC(V)  
FREQ vs VCC  
FREQ vs TEMP  
Fig. 3  
Fig. 4  
1.25  
1.4  
1.3  
1.2  
1.1  
1
1.15  
1.05  
0.95  
0.85  
0.75  
0.9  
-25  
0
25  
50  
75  
100  
125  
11  
12  
13  
14  
15  
16  
Temperature(C)  
VCC(V)  
DT vs TEMP  
Fig. 6 (IRS2153D)  
DT vs VCC  
Fig. 5 (IRS2153D)  
17  
16  
15  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-25  
0
25  
50  
75  
100  
125  
20  
70  
120  
Temperature (°C)  
Frequency(kHz)  
VCC CLAMP vs TEMP  
Tj vs. Frequency (SOIC)  
Fig. 7  
Fig. 8  
10  
IRS2153(1)D  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
IsinkLO  
IsinkHO  
IsourceHO  
IsourceLO  
0
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature(C)  
Temperature(C)  
IsourceHO,IsinkHO vs Temp  
IsourceLO,IsinkLO vs Temp  
Fig. 10  
Fig. 9  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOH_HO vs. Frequency  
IB_CAP  
With External BS diode  
No external BS diode  
16  
14  
12  
10  
8
IBS_10V  
6
4
-25  
0
25  
50  
75  
100  
125  
2
Temperature(C)  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
IBCAP, IBS10V vs TEMP  
Frequency (kHz)  
T=25°C, VS=0V, CHO = 1nF  
Fig. 11  
Fig. 12  
VOH_HO vs. Frequency vs. Temp  
VCC=14V, CHO=1nF, VS=0V  
14  
12  
10  
8
6
4
2
0
K
20  
K
50  
K
75  
hz  
0K  
10  
5K  
12  
0K  
15  
0K  
0
2
46K  
.
1
Frequency (kHz)  
T=25c T=75c  
Fig. 13  
T=-25c  
T=125c  
11  
IRS2153(1)D  
IRS2153(1)DPbF  
IRS2153(1)DSPbF  
12  
IRS2153(1)D  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 8SOICN  
Metric  
Imperial  
Min  
0.311  
0.153  
0.46  
Code  
A
B
C
D
E
F
G
H
Min  
7.90  
3.90  
11.70  
5.45  
6.30  
5.10  
1.50  
1.50  
Max  
8.10  
4.10  
12.30  
5.55  
6.50  
5.30  
n/a  
Max  
0.318  
0.161  
0.484  
0.218  
0.255  
0.208  
n/a  
0.214  
0.248  
0.200  
0.059  
0.059  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 8SOICN  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
329.60  
20.95  
12.80  
1.95  
98.00  
n/a  
14.50  
12.40  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
18.40  
17.10  
14.40  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
0.724  
0.673  
0.566  
0.570  
0.488  
13  
IRS2153(1)D  
PART MARKING INFORMATION  
ORDER INFORMATION  
8-Lead PDIP IRS2153DPbF  
8-Lead PDIP IRS21531DPbF  
8-Lead SOIC IRS2153DSPbF  
8-Lead SOIC IRS21531DSPbF  
8-Lead SOIC Tape & Reel IRS2153DSTRPbF  
8-Lead SOIC Tape & Reel IRS21531DSTRPbF  
The SOIC-8 is MSL2 qualified.  
This product has been designed and qualified for the industrial level.  
Qualification standards can be found at www.irf.com <http://www.irf.com>  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105  
Data and specifications subject to change without notice. 6/27/2006  
14  

相关型号:

IRS21531DSPBF

SELF-OSCILLATING HALF-BRIDGE DRIVER IC
INFINEON

IRS21531DSTRPBF

Half Bridge Based Peripheral Driver, CMOS, PDSO8, LEAD FREE, PLASTIC, MS-012AA, SOIC-8
INFINEON

IRS2153D

SELF-OSCILLATING HALF-BRIDEGE DRIVER IC
INFINEON

IRS2153DPBF

SELF-OSCILLATING HALF-BRIDEGE DRIVER IC
INFINEON

IRS2153DSPBF

SELF-OSCILLATING HALF-BRIDEGE DRIVER IC
INFINEON

IRS2153DSTRPBF

Half Bridge Based Peripheral Driver, CMOS, PDSO8, LEAD FREE, PLASTIC, MS-012AA, SOIC-8
INFINEON

IRS21571D

FULLY INTEGRATED BALLAST CONTROL IC
INFINEON

IRS21571DSPBF

Power Factor And Fluorescent Light Controller, 0.5A, 48.3kHz Switching Freq-Max, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
INFINEON

IRS21571DSTRPBF

Power Factor And Fluorescent Light Controller, 0.5A, 48.3kHz Switching Freq-Max, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
INFINEON

IRS2158D

Ballast control and half-bridge driver in one IC
INFINEON

IRS2158DPBF

Ballast control and half-bridge driver in one IC
INFINEON

IRS2158DS

Ballast control and half-bridge driver in one IC
INFINEON