IRU3037ACFTRPBF [INFINEON]

Switching Controller, Voltage-mode, 0.5A, 440kHz Switching Freq-Max, BIPolar, PDSO8, PLASTIC, TSSOP-8;
IRU3037ACFTRPBF
型号: IRU3037ACFTRPBF
厂家: Infineon    Infineon
描述:

Switching Controller, Voltage-mode, 0.5A, 440kHz Switching Freq-Max, BIPolar, PDSO8, PLASTIC, TSSOP-8

控制器
文件: 总21页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD94173  
IRU3037 / IRU3037A  
8-PIN SYNCHRONOUS PWM CONTROLLER  
FEATURES  
DESCRIPTION  
Synchronous Controller in 8-Pin Package  
Operating with single 5V or 12V supply voltage  
Internal 200KHz Oscillator  
The IRU3037 controller IC is designed to provide a low  
cost synchronous Buck regulator for on-board DC to DC  
converter applications. With the migration of today’s ASIC  
products requiring low supply voltages such as 1.8V and  
lower, together with currents in excess of 3A, traditional  
linear regulators are simply too lossy to be used when  
input supply is 5V or even in some cases with 3.3V  
input supply. The IRU3037 together with dual N-channel  
MOSFETs such as IRF7313, provide a low cost solution  
for such applications. This device features an internal  
200KHz oscillator (400KHz for "A" version), under-volt-  
age lockout for both Vcc and Vc supplies, an external  
programmable soft-start function as well as output un-  
der-voltage detection that latches off the device when an  
output short is detected.  
(400KHz for IRU3037A)  
Soft-Start Function  
Fixed Frequency Voltage Mode  
500mA Peak Output Drive Capability  
Protects the output when control FET is shorted  
APPLICATIONS  
DDR memory source sink Vtt application  
Low cost on-board DC to DC such as 5V to 3.3V,  
2.5V or 1.8V  
Graphic Card  
Hard Disk Drive  
TYPICAL APPLICATION  
5V  
12V  
L1  
1uH  
C3  
1uF  
C4  
1uF  
C2  
C1  
47uF  
10TPB100M,  
100uF, 55m  
Vcc  
Vc  
Q1  
1/2 of IRF7313  
HDrv  
LDrv  
Fb  
L2  
D05022P-562, 5.6uH, 5.3A  
SS/SD  
1.5V/5A  
U1  
C8  
0.1uF  
IRU3037  
Q2  
C7  
1/2 of IRF7313  
2x 6TPC150M,  
150uF, 40m  
R3  
Comp  
C9  
249, 1%  
2200pF  
Gnd  
R5  
1.24K, 1%  
R4  
24k  
Figure 1 - Typical application of IRU3037 or IRU3037A.  
PACKAGE ORDER INFORMATION  
TA (°C)  
0 To 70  
0 To 70  
0 To 70  
0 To 70  
DEVICE  
PACKAGE  
FREQUENCY  
200KHz  
200KHz  
400KHz  
400KHz  
IRU3037CF  
IRU3037CS  
IRU3037ACF  
IRU3037ACS  
8-Pin Plastic TSSOP (F)  
8-Pin Plastic SOIC NB (S)  
8-Pin Plastic TSSOP (F)  
8-Pin Plastic SOIC NB (S)  
Rev. 2.8  
03/10/03  
www.irf.com  
1
IRU3037 / IRU3037A  
ABSOLUTE MAXIMUM RATINGS  
Vcc Supply Voltage .................................................. 25V  
Vc Supply Voltage ...................................................... 30V (not rated for inductive load)  
Storage Temperature Range ...................................... -65°C To 150°C  
Operating Junction Temperature Range .....................  
0°C To 125°C  
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device.  
PACKAGE INFORMATION  
8-PIN PLASTIC TSSOP (F)  
8-PIN PLASTIC SOIC (S)  
1
2
3
4
8
7
6
5
Fb  
Vcc  
SS/SD  
Comp  
Vc  
Fb  
1
2
3
4
8
7
6
5
SS/SD  
Comp  
Vc  
Vcc  
LDrv  
Gnd  
LDrv  
Gnd  
HDrv  
HDrv  
qJA=124°C/W  
qJA=160°C/W  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc=5V, Vc=12V and TA=0 to 70°C. Typical values refer  
to TA=25°C. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient  
temperature.  
PARAMETER  
Reference Voltage  
Fb Voltage  
SYM  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
VFB  
IRU3037  
IRU3037A  
5<Vcc<12  
1.225  
0.784  
1.250  
0.800  
0.2  
1.275  
0.816  
0.35  
V
%
Fb Voltage Line Regulation  
UVLO  
LREG  
UVLO Threshold - Vcc  
UVLO Hysteresis - Vcc  
UVLO Threshold - Vc  
UVLO Hysteresis - Vc  
UVLO Threshold - Fb  
UVLO Vcc Supply Ramping Up  
UVLO Vc Supply Ramping Up  
4.0  
3.1  
4.2  
0.25  
3.3  
0.2  
0.6  
0.4  
0.1  
4.4  
3.5  
V
V
V
V
V
UVLO Fb Fb Ramping Down (IRU3037)  
(IRU3037A)  
0.4  
0.3  
0.8  
0.5  
UVLO Hysteresis - Fb  
V
Supply Current  
Vcc Dynamic Supply Current Dyn Icc Freq=200KHz, CL=1500pF  
2
2
1
5
7
3.3  
1
8
10  
6
mA  
mA  
mA  
mA  
Vc Dynamic Supply Current  
Vcc Static Supply Current  
Vc Static Supply Current  
Soft-Start Section  
Dyn Ic  
Freq=200KHz, CL=1500pF  
SS=0V  
SS=0V  
ICCQ  
ICQ  
0.5  
4.5  
Charge Current  
SSIB  
SS=0V  
-10  
-20  
-30  
µA  
Rev. 2.8  
05/10/04  
www.irf.com  
2
IRU3037 / IRU3037A  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
Error Amp  
Fb Voltage Input Bias Current  
Fb Voltage Input Bias Current  
Transconductance  
Oscillator  
IFB1  
IFB2  
gm  
SS=3V, Fb=1V  
SS=0V, Fb=1V  
µA  
µA  
µmho  
-0.1  
-64  
600  
830  
410  
Frequency  
Freq IRU3037  
IRU3037A  
VRAMP  
180  
345  
1.225  
200  
400  
1.25  
220  
440  
1.275  
KHz  
V
Ramp-Amplitude Voltage  
Output Drivers  
Rise Time  
Tr  
Tf  
CL=1500pF  
CL=1500pF  
50  
50  
150  
90  
0
100  
100  
250  
95  
ns  
ns  
ns  
%
%
Fall Time  
Dead Band Time  
Max Duty Cycle  
Min Duty Cycle  
TDB  
TON  
50  
85  
0
Fb=1V, Freq=200KHz  
TOFF Fb=1.5V  
PIN DESCRIPTIONS  
PIN#  
PIN SYMBOL  
PIN DESCRIPTION  
1
Fb  
This pin is connected directly to the output of the switching regulator via resistor divider to  
provide feedback to the Error amplifier.  
2
Vcc  
This pin provides biasing for the internal blocks of the IC as well as power for the low side  
driver. A minimum of 1µF, high frequency capacitor must be connected from this pin to  
ground to provide peak drive current capability.  
3
4
LDrv  
Gnd  
Output driver for the synchronous power MOSFET.  
This pin serves as the ground pin and must be connected directly to the ground plane. A  
high frequency capacitor (0.1 to 1µF) must be connected from V5 and V12 pins to this pin  
for noise free operation.  
5
6
HDrv  
Vc  
Output driver for the high side power MOSFET. Connect a diode, such as BAT54 or 1N4148,  
from this pin to ground for the application when the inductor current goes negative (Source/  
Sink), soft-start at no load and for the fast load transient from full load to no load.  
This pin is connected to a voltage that must be at least 4V higher than the bus voltage of  
the switcher (assuming 5V threshold MOSFET) and powers the high side output driver. A  
minimum of 1µF, high frequency capacitor must be connected from this pin to ground to  
provide peak drive current capability.  
7
8
Comp  
Compensation pin of the error amplifier. An external resistor and capacitor network is  
typically connected from this pin to ground to provide loop compensation.  
SS / SD  
This pin provides soft-start for the switching regulator. An internal current source charges  
an external capacitor that is connected from this pin to ground which ramps up the output  
of the switching regulator, preventing it from overshooting as well as limiting the input  
current. The converter can be shutdown by pulling this pin below 0.5V.  
Rev. 2.8  
03/10/03  
www.irf.com  
3
IRU3037 / IRU3037A  
BLOCK DIAGRAM  
Vcc  
3V  
Bias  
Generator  
1.25V  
0.2V  
0.2V  
POR  
4.0V  
Vc  
3V  
20uA  
3.5V  
6 Vc  
SS/SD  
POR  
64uA Max  
8
Oscillator  
5 HDrv  
Ct  
S
R
1.25V  
Q
Error Comp  
Error Amp  
25K  
25K  
2 Vcc  
Reset Dom  
Fb  
1
3 LDrv  
FbLo Comp  
0.5V  
4 Gnd  
Comp 7  
POR  
Figure 2 - Simplified block diagram of the IRU3037.  
THEORY OF OPERATION  
Introduction  
the Power On Reset (POR) signal. Soft-start function  
The IRU3037 is a fixed frequency, voltage mode syn- operates by sourcing an internal current to charge an  
chronous controller and consists of a precision refer- external capacitor to about 3V. Initially, the soft-start func-  
ence voltage, an error amplifier, an internal oscillator, a tion clamps the E/A’s output of the PWM converter. As  
PWM comparator, 0.5A peak gate driver, soft-start and the charging voltage of the external capacitor ramps up,  
shutdown circuits (see Block Diagram).  
the PWM signals increase from zero to the point the  
feedback loop takes control.  
The output voltage of the synchronous converter is set  
and controlled by the output of the error amplifier; this is Short-Circuit Protection  
the amplified error signal from the sensed output voltage The outputs are protected against the short-circuit. The  
and the reference voltage.  
IRU3037 protects the circuit for shorted output by sens-  
ing the output voltage (through the external resistor di-  
This voltage is compared to a fixed frequency linear vider). The IRU3037 shuts down the PWM signals, when  
sawtooth ramp and generates fixed frequency pulses of the output voltage drops below 0.6V (0.4V for IRU3037A).  
variable duty-cycle, which drives the two N-channel ex-  
ternal MOSFETs.The timing of the IC is provided through The IRU3037 also protects the output from over-voltaging  
an internal oscillator circuit which uses on-chip capaci- when the control FET is shorted. This is done by turning  
tor to set the oscillation frequency to 200 KHz (400 KHz on the sync FET with the maximum duty cycle.  
for “A” version).  
Under-Voltage Lockout  
Soft-Start  
The under-voltage lockout circuit assures that the  
The IRU3037 has a programmable soft-start to control MOSFET driver outputs remain in the off state whenever  
the output voltage rise and limit the current surge at the the supply voltage drops below set parameters. Lockout  
start-up. To ensure correct start-up, the soft-start se- occurs if Vc or Vcc fall below 3.3V and 4.2V respec-  
quence initiates when the Vc and Vcc rise above their tively. Normal operation resumes once Vc and Vcc rise  
threshold (3.3V and 4.2V respectively) and generates above the set values.  
Rev. 2.8  
05/10/04  
www.irf.com  
4
IRU3037 / IRU3037A  
APPLICATION INFORMATION  
Design Example:  
Soft-Start Programming  
The following example is a typical application for IRU3037, The soft-start timing can be programmed by selecting  
the schematic is Figure 18 on page 14.  
the soft start capacitance value. The start up time of the  
converter can be calculated by using:  
VIN = 5V  
VOUT = 3.3V  
IOUT = 4A  
VOUT = 100mV  
fS = 200KHz  
t
START = 75×Css (ms)  
---(2)  
Where:  
CSS is the soft-start capacitor (µF)  
Output Voltage Programming  
For a start-up time of 7.5ms, the soft-start capacitor will  
Output voltage is programmed by reference voltage and be 0.1µF. Choose a ceramic capacitor at 0.1µF.  
external voltage divider. The Fb pin is the inverting input  
of the error amplifier, which is internally referenced to Shutdown  
1.25V (0.8V for IRU3037A). The divider is ratioed to pro- The converter can be shutdown by pulling the soft-start  
vide 1.25V at the Fb pin when the output is at its desired pin below 0.5V. The control MOSFET turns off and the  
value. The output voltage is defined by using the follow- synchronous MOSFET turns on during shutdown.  
ing equation:  
Boost Supply Vc  
R6  
R5  
To drive the high-side switch it is necessary to supply a  
gate voltage at least 4V greater than the bus voltage.  
This is achieved by using a charge pump configuration  
VOUT = VREF × 1 +  
---(1)  
( )  
When an external resistor divider is connected to the as shown in Figure 18. The capacitor is charged up to  
output as shown in Figure 3.  
approximately twice the bus voltage. A capacitor in the  
range of 0.1µF to 1µF is generally adequate for most  
applications. In application, when a separate voltage  
source is available the boost circuit can be avoided as  
shown in Figure 1.  
V
OUT  
IRU3037  
R
6
Fb  
Input Capacitor Selection  
R5  
The input filter capacitor should be based on how much  
ripple the supply can tolerate on the DC input line. The  
larger capacitor, the less ripple expected but consider  
should be taken for the higher surge current during the  
power-up. The IRU3037 provides the soft-start function  
which controls and limits the current surge. The value of  
the input capacitor can be calculated by the following  
formula:  
Figure 3 - Typical application of the IRU3037 for  
programming the output voltage.  
Equation (1) can be rewritten as:  
VOUT  
R6 = R5 ×  
- 1  
(VREF )  
IIN × ∆t  
CIN =  
---(3)  
V  
Choose R5 = 1KΩ  
This will result toR6 = 1.65KΩ  
Where:  
CIN is the input capacitance (µF)  
If the high value feedback resistors are used, the input  
bias current of the Fb pin could cause a slight increase  
in output voltage. The output voltage set point can be  
more accurate by using precision resistor.  
IIN is the input current (A)  
t is the turn on time of the high-side switch (µs)  
V is the allowable peak to peak voltage ripple (V)  
Rev. 2.8  
03/10/03  
www.irf.com  
5
IRU3037 / IRU3037A  
Assuming the following:  
i  
t  
1
fS  
VOUT  
VIN  
VIN - VOUT = L×  
; t = D×  
; D =  
---(5)  
V = 1%(VIN), Efficiency(η) = 90%  
VOUT  
1
fS  
L = (VIN - VOUT)×  
t = D ×  
t = 3.3µs  
VIN×∆i×fS  
Where:  
VO × IO  
η × VIN  
IIN =  
IIN = 2.93A  
VIN = Maximum Input Voltage  
VOUT = Output Voltage  
Di = Inductor Ripple Current  
fS = Switching Frequency  
Dt = Turn On Time  
By using equation (3), CIN = 193.3µF  
For higher efficiency, low ESR capacitor is recommended.  
Choose two 100µF capacitors.  
D = Duty Cycle  
The Sanyo TPB series PosCap capacitor 100µF, 10V  
with 55mESR is a good choice.  
If i = 20%(IO), then the output inductor will be:  
L = 7µH  
Output Capacitor Selection  
The criteria to select the output capacitor is normally The Toko D124C series provides a range of inductors in  
based on the value of the Effective Series Resistance different values, low profile suitable for large currents,  
(ESR). In general, the output capacitor must have low 10µH, 4.2A is a good choice for this application. This  
enough ESR to meet output ripple and load transient will result to a ripple approximately 14% of output cur-  
requirements, yet have high enough ESR to satisfy sta- rent.  
bility requirements. The ESR of the output capacitor is  
calculated by the following relationship:  
Power MOSFET Selection  
The IRU3037 uses two N-Channel MOSFETs. The se-  
lections criteria to meet power transfer requirements is  
based on maximum drain-source voltage (VDSS), gate-  
source drive voltage (VGS), maximum output current, On-  
resistance RDS(ON) and thermal management.  
VO  
IO  
ESR ≤  
---(4)  
Where:  
VO = Output Voltage Ripple  
IO = Output Current  
VO=100mV and IO=4A  
Results to ESR=25mΩ  
The MOSFET must have a maximum operating voltage  
(VDSS) exceeding the maximum input voltage (VIN).  
The Sanyo TPC series, PosCap capacitor is a good  
choice. The 6TPC150M 150µF, 6.3V has an ESR 40m. The gate drive requirement is almost the same for both  
Selecting two of these capacitors in parallel, results to MOSFETs. Logic-level transistor can be used and cau-  
an ESR of @ 20mwhich achieves our low ESR goal.  
tion should be taken with devices at very low VGS to pre-  
vent undesired turn-on of the complementary MOSFET,  
The capacitor value must be high enough to absorb the which results a shoot-through current.  
inductor's ripple current. The larger the value of capaci-  
tor, the lower will be the output ripple voltage.  
The total power dissipation for MOSFETs includes con-  
duction and switching losses. For the Buck converter  
the average inductor current is equal to the DC load cur-  
Inductor Selection  
The inductor is selected based on output power, operat- rent. The conduction loss is defined as:  
ing frequency and efficiency requirements. Low inductor  
2
PCOND (Upper Switch) = ILOAD × RDS(ON) × D × ϑ  
value causes large ripple current, resulting in the smaller  
size, but poor efficiency and high output noise. Gener-  
ally, the selection of inductor value can be reduced to  
desired maximum ripple current in the inductor (Di). The  
optimum point is usually found between 20% and 50%  
ripple of the output current.  
2
PCOND (Lower Switch) = ILOAD × RDS(ON) × (1 - D) × ϑ  
ϑ = RDS(ON) Temperature Dependency  
The RDS(ON) temperature dependency should be consid-  
For the buck converter, the inductor value for desired ered for the worst case operation. This is typically given  
operating ripple current can be determined using the fol- in the MOSFET data sheet. Ensure that the conduction  
lowing relation:  
losses and switching losses do not exceed the package  
ratings or violate the overall thermal budget.  
Rev. 2.8  
05/10/04  
www.irf.com  
6
IRU3037 / IRU3037A  
For this design, IRF7301 is a good choice. The device These values are taken under a certain condition test.  
provides low on-resistance in a compact SOIC 8-Pin For more detail please refer to the IRF7301 data sheet.  
package.  
By using equation (6), we can calculate the switching  
The IRF7301 has the following data:  
losses.  
PSW = 0.186W  
VDSS = 20V  
ID = 5.2A  
RDS(ON) = 0.05Ω  
Feedback Compensation  
The IRU3037 is a voltage mode controller; the control  
loop is a single voltage feedback path including error  
amplifier and error comparator. To achieve fast transient  
response and accurate output regulation, a compensa-  
tion circuit is necessary. The goal of the compensation  
network is to provide a closed loop transfer function with  
the highest 0dB crossing frequency and adequate phase  
margin (greater than 458).  
The total conduction losses will be:  
PCON(TOTAL)=PCON(Upper Switch)+PCON(Lower Switch)  
PCON(TOTAL) = IL2OAD × RDS(ON) × ϑ  
ϑ = 1.5 according to the IRF7301 data sheet for  
1508C junction temperature  
PCON(TOTAL) = 1.2W  
The switching loss is more difficult to calculate, even The output LC filter introduces a double pole, –40dB/  
though the switching transition is well understood. The decade gain slope above its corner resonant frequency,  
reason is the effect of the parasitic components and and a total phase lag of 1808 (see Figure 5). The Reso-  
switching times during the switching procedures such nant frequency of the LC filter expressed as follows:  
as turn-on / turnoff delays and rise and fall times. With a  
1
linear approximation, the total switching loss can be ex-  
pressed as:  
FLC =  
---(7)  
2π×  
LO×CO  
VDS(OFF)  
tr + tf  
PSW =  
×
× ILOAD  
---(6)  
Figure 5 shows gain and phase of the LC filter. Since we  
already have 1808 phase shift just from the output filter,  
the system risks being unstable.  
2
T
Where:  
VDS(OFF) = Drain to Source Voltage at off time  
tr = Rise Time  
tf = Fall Time  
T = Switching Period  
ILOAD = Load Current  
Gain  
0dB  
Phase  
08  
-40dB/decade  
The switching time waveform is shown in figure 4.  
V
DS  
-180  
8
90%  
FLC  
Frequency  
FLC Frequency  
Figure 5 - Gain and phase of LC filter.  
The IRU3037’s error amplifier is a differential-input  
transconductance amplifier. The output is available for  
DC gain control or AC phase compensation.  
10%  
VGS  
t
d
(ON)  
td(OFF)  
tr  
tf  
The E/A can be compensated with or without the use of  
local feedback. When operated without local feedback  
the transconductance properties of the E/A become evi-  
dent and can be used to cancel one of the output filter  
poles. This will be accomplished with a series RC circuit  
from Comp pin to ground as shown in Figure 6.  
Figure 4 - Switching time waveforms.  
From IRF7301 data sheet we obtain:  
tr = 42ns  
tf = 51ns  
Rev. 2.8  
03/10/03  
www.irf.com  
7
IRU3037 / IRU3037A  
Note that this method requires that the output capacitor  
should have enough ESR to satisfy stability requirements.  
In general the output capacitor’s ESR generates a zero  
typically at 5KHz to 50KHz which is essential for an  
acceptable phase margin.  
Where:  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
Fo = Crossover Frequency  
FESR = Zero Frequency of the Output Capacitor  
FLC = Resonant Frequency of the Output Filter  
R5 and R6 = Resistor Dividers for Output Voltage  
Programming  
The ESR zero of the output capacitor expressed as fol-  
lows:  
1
2π × ESR × Co  
gm = Error Amplifier Transconductance  
FESR =  
---(8)  
For:  
VIN = 5V  
VOUT  
VOSC = 1.25V  
Fo = 30KHz  
FESR = 26.52KHz  
FLC = 2.9KHz  
R5 = 1K  
R
6
Fb  
Comp  
Ve  
E/A  
R
5
C
9
R6 = 1.65K  
gm = 600µmho  
V
REF  
R4  
Gain(dB)  
This results to R4=104.4K. Choose R4=105KΩ  
H(s) dB  
To cancel one of the LC filter poles, place the zero be-  
fore the LC filter resonant frequency pole:  
FZ @ 75%FLC  
Frequency  
F
Z
1
FZ @ 0.75 ×  
---(13)  
Figure 6 - Compensation network without local  
feedback and its asymptotic gain plot.  
2π LO × CO  
For:  
Lo = 10µH  
Co = 300µF  
FZ = 2.17KHz  
R4 = 86.6KΩ  
The transfer function (Ve / VOUT) is given by:  
R5  
1 + sR4C9  
sC9  
H(s) = gm ×  
×
---(9)  
(
)
R6 + R5  
Using equations (11) and (13) to calculate C9, we get:  
The (s) indicates that the transfer function varies as a  
function of frequency. This configuration introduces a gain  
and zero, expressed by:  
C9 = 698pF  
Choose C9 = 680pF  
One more capacitor is sometimes added in parallel with  
C9 and R4. This introduces one more pole which is mainly  
R5  
R6×R5  
|H(s)| = gm×  
× R4  
---(10)  
used to supress the switching noise. The additional pole  
1
is given by:  
1
FZ =  
---(11)  
2π×R4×C9  
FP =  
The gain is determined by the voltage divider and E/A's  
transconductance gain.  
C9 × CPOLE  
2π × R4 ×  
C9 + CPOLE  
First select the desired zero-crossover frequency (Fo):  
The pole sets to one half of switching frequency which  
results in the capacitor CPOLE:  
Fo > FESR and FO (1/5 ~ 1/10)× fS  
1
1
Use the following equation to calculate R4:  
1
CPOLE =  
@
π×R4×fS  
1
C9  
π×R4×fS -  
VOSC  
VIN  
Fo×FESR  
R5 + R6  
R5  
R4 =  
×
×
×
---(12)  
2
fS  
2
gm  
FLC  
for FP <<  
Rev. 2.8  
05/10/04  
www.irf.com  
8
IRU3037 / IRU3037A  
For a general solution for unconditionally stability for any  
type of output capacitors, in a wide range of ESR values  
we should implement local feedback with a compensa-  
tion network. The typically used compensation network  
for voltage-mode controller is shown in Figure 7.  
FP1 = 0  
FP2 =  
1
2π×R8×C10  
1
1
FP3 =  
@
2π×R7×C12  
C12×C11  
(C12+C11)  
2π×R7×  
VOUT  
Z
IN  
C12  
1
C10  
FZ1 =  
FZ2 =  
R7  
C11  
2π×R7×C11  
R8  
R6  
Z
f
1
1
@
2π×C10×(R6 + R8)  
2π×C10×R6  
Fb  
Ve  
E/A  
Cross Over Frequency:  
R5  
Comp  
VIN  
VOSC  
1
FO = R7×C10×  
×
---(15)  
VREF  
2π×Lo×Co  
Gain(dB)  
Where:  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
Lo = Output Inductor  
H(s) dB  
Co = Total Output Capacitors  
Frequency  
F
Z
1
F
Z
2
F
P
2
FP3  
The stability requirement will be satisfied by placing the  
poles and zeros of the compensation network according  
to following design rules. The consideration has been  
taken to satisfy condition (14) regarding transconduc-  
tance error amplifier.  
Figure 7 - Compensation network with local  
feedback and its asymptotic gain plot.  
In such configuration, the transfer function is given by:  
1 - gmZf  
1 + gmZIN  
Ve  
VOUT  
=
1) Select the crossover frequency:  
Fo < FESR and Fo (1/10 ~ 1/6)× fS  
The error amplifier gain is independent of the transcon-  
ductance under the following condition:  
2
2) Select R7, so that R7 >>  
gm  
gmZf >> 1  
and  
gmZIN >>1  
---(14)  
3) Place first zero before LC’s resonant frequency pole.  
By replacing ZIN and Zf according to Figure 7, the trans-  
former function can be expressed as:  
FZ1 @ 75% FLC  
1
C11 =  
2π × FZ1 × R7  
(1+sR7C11)×[1+sC10(R6+R8)]  
C12×C11  
1
H(s)=  
×
sR6(C12+C11)  
4) Place third pole at the half of the switching frequency.  
1+sR7  
[ (C12+C11 )]  
×(1+sR8C10)  
fS  
FP3 =  
2
As known, transconductance amplifier has high imped-  
ance (current source) output, therefore, consider should  
be taken when loading the E/A output. It may exceed its  
source/sink output current capability, so that the ampli-  
fier will not be able to swing its output voltage over the  
necessary range.  
1
C12 =  
2π × R7 × FP3  
C12 > 50pF  
If not, change R7 selection.  
5) Place R7 in (15) and calculate C10:  
The compensation network has three poles and two ze-  
ros and they are expressed as follows:  
2π × Lo × Fo × Co  
VOSC  
VIN  
C10 ≤  
×
R7  
Rev. 2.8  
03/10/03  
www.irf.com  
9
IRU3037 / IRU3037A  
6) Place second pole at the ESR zero.  
Start to place the power components, make all the con-  
nection in the top layer with wide, copper filled areas.  
The inductor, output capacitor and the MOSFET should  
be close to each other as possible. This helps to reduce  
the EMI radiated by the power traces due to the high  
switching currents through them. Place input capacitor  
directly to the drain of the high-side MOSFET, to reduce  
the ESR replace the single input capacitor with two par-  
allel units. The feedback part of the system should be  
kept away from the inductor and other noise sources,  
and be placed close to the IC. In multilayer PCB use  
one layer as power ground plane and have a control cir-  
cuit ground (analog ground), to which all signals are ref-  
erenced. The goal is to localize the high current path to  
a separate loop that does not interfere with the more  
sensitive analog control function. These two grounds  
must be connected together on the PC board layout at a  
single point.  
FP2 = FESR  
1
R8 =  
2π × C10 × FP2  
1
Check if R8 >  
gm  
If R8 is too small, increase R7 and start from step 2.  
7) Place second zero around the resonant frequency.  
FZ2 = FLC  
1
R6 =  
- R8  
2π × C10 × FZ2  
8) Use equation (1) to calculate R5.  
VREF  
VOUT - VREF  
R5 =  
× R6  
These design rules will give a crossover frequency ap-  
proximately one-tenth of the switching frequency. The  
higher the band width, the potentially faster the load tran-  
sient speed. The gain margin will be large enough to  
provide high DC-regulation accuracy (typically -5dB to -  
12dB). The phase margin should be greater than 458 for  
overall stability.  
Figure 8 shows a suggested layout for the critical com-  
ponents, based on the schematic on page 14.  
PGnd  
PGnd  
C1  
C2A, B  
C7A, B  
PGnd  
L1  
Vin  
Vout  
L2  
IC Quiescent Power Dissipation  
Power dissipation for IC controller is a function of ap-  
plied voltage, gate driver loads and switching frequency.  
The IC's maximum power dissipation occurs when the  
IC operating with single 12V supply voltage (Vcc=12V  
and Vc@24V) at 400KHz switching frequency and maxi-  
mum gate loads.  
Q1  
3
Single Point  
Analog Gnd  
Connect to  
D
3
D
2
D
1
C
5
5
4
Power Ground plane  
U1  
IRU3037  
C4  
6
3
PGnd  
R4 C9  
7
2
C3  
Analog Gnd  
Figures 9 and 10 show voltage vs. current, when the  
gate drivers loaded with 470pF, 1150pF and 1540pF ca-  
pacitors. The IC's power dissipation results to an exces-  
sive temperature rise. This should be considered when  
using IRU3037A for such application.  
R5  
R6  
C8  
8
1
Analog Gnd  
Figure 8 - Suggested layout.  
(Topside shown only)  
Layout Consideration  
The layout is very important when designing high fre-  
quency switching converters. Layout will affect noise  
pickup and can cause a good design to perform with  
less than expected results.  
Rev. 2.8  
05/10/04  
www.irf.com  
10  
IRU3037 / IRU3037A  
TYPICAL PERFORMANCE CHARACTERISTICS  
IRU3037A  
Vcc vs. Icc  
TA = 258C  
@470PF, 1150PF and 1540PF Gate Load  
14  
12  
10  
8
CLOAD =1540pF  
CLOAD =1150pF  
6
CLOAD =470pF  
4
2
0
0
2
4
6
8
10  
12  
14  
Vcc (V)  
Figure 9 - Vcc vs. Icc  
IRU3037A  
Vc vs. Ic  
TA = 258C  
@470PF, 1150PF and 1540PF Gate Load  
30  
25  
20  
15  
10  
5
CLOAD =1540pF  
CLOAD =1150pF  
CLOAD =470pF  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Vc (V)  
Figure 10 - Vc vs. Ic  
Rev. 2.8  
03/10/03  
www.irf.com  
11  
IRU3037 / IRU3037A  
TYPICAL PERFORMANCE CHARACTERISTICS  
I R U 3 0 3 7  
I R U 3 0 3 7  
O u t p u t V o l t a g e  
O u t p u t F r e q u e n c y  
1.3  
1.28  
1.26  
2 4 0  
2 3 0  
2 2 0  
2 1 0  
M a x  
M a x  
2 0 0  
1 9 0  
1.24  
1.22  
1.2  
Min  
Min  
1 8 0  
1 7 0  
1 6 0  
-40°C  
0 ° C  
Output Voltage  
+50°C  
Spec Max.  
+100°C  
Spec Min.  
+ 1 5 0 ° C  
-40°C  
0°C  
+50°C  
+ 1 0 0 ° C  
Spec Min.  
+ 1 5 0 ° C  
Oscillation Frequency  
Spec Max.  
Figure 11 - Output Voltage  
Figure 12 - Output Frequency  
IRU3037  
MaximumDutyCycle  
92.0%  
90.0%  
88.0%  
86.0%  
84.0%  
82.0%  
80.0%  
-40°C  
-25°C  
0°C  
+25°C  
+50°C  
+75°C +100°C +125°C +150°C  
Max Duty Cycle  
Figure 13 - Maximum Duty Cycle  
www.irf.com  
Rev. 2.8  
05/10/04  
12  
IRU3037 / IRU3037A  
TYPICAL PERFORMANCE CHARACTERISTICS  
I R U 3 0 3 7 A  
IRU3037A  
Output Voltage  
O u t p u t F r e q u e n c y  
8 2 0  
8 1 0  
8 0 0  
7 9 0  
7 8 0  
4 6 0  
4 4 0  
4 2 0  
M a x  
M a x  
4 0 0  
3 8 0  
3 6 0  
Min  
Min  
3 4 0  
3 2 0  
3 0 0  
7 7 0  
7 6 0  
-40°C  
-25°C  
0°C  
+25°C  
+50°C  
+75°C  
+100°C +150°C  
-40°C  
-25°C  
0°C  
+25°C  
+50°C  
+75°C +100°C +150°C  
Spec Min.  
Output Voltage  
Spec Max.  
Spec Min.  
Oscillation Frequency  
Spec Max.  
Figure 14 - Output Voltage  
Figure 15 - Output Frequency  
IRU3037 / IRU3037A  
Transconductance ( GM )  
IRU3037 / IRU3037A  
Rise Time / Fall Time  
CL=1500pF  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-40°C  
-25°C  
0°C  
+25°C  
Rise Time  
+50°C  
Fal time  
+75°C  
+100°C  
-40°C  
-25°C  
0°C  
+25°C  
+50°C  
+75°C  
+100°C  
Positive load GM  
Negative load GM  
Figure 16 - Transconductance  
Figure 17 - Rise Time and Fall Time  
Rev. 2.8  
03/10/03  
www.irf.com  
13  
IRU3037 / IRU3037A  
TYPICAL APPLICATION  
Single Supply 5V Input  
5V  
D1  
1N4148  
L1  
D3  
1N4148  
1uH  
D2  
1N4148  
C1  
47uF  
Tantalum  
C2  
2x 10TPB100ML,  
100uF, 55m  
C5  
0.1uF  
C3  
1uF  
C4  
1uF  
Vcc  
Vc  
HDrv  
Q1  
1/2 of IRF7301  
L2  
D05022P-103, 10uH, 4.3A  
3.3V  
@ 4A  
SS/SD  
U1  
IRU3037  
C8  
0.1uF  
Q2  
C7  
2x 6TPC150M,  
150uF, 40m  
LDrv  
1/2 of IRF7301  
R6  
Comp  
C9  
680pF  
Fb  
1.65K, 1%  
Gnd  
R4  
105K  
R5  
1K, 1%  
Figure 18 - Typical application of IRU3037 in an on-board DC-DC converter  
using a single 5V supply.  
Rev. 2.8  
05/10/04  
www.irf.com  
14  
IRU3037 / IRU3037A  
TYPICAL APPLICATION  
Dual Supply, 5V Bus and 12V Bias Input  
5V  
L1  
12V  
1uH  
C2  
10TPB100M, 100uF,  
55m , 1.5A rms  
C1  
47uF  
C4  
1uF  
C1  
1uF  
1.8V/1A  
IRU1206-18  
C3  
47uF  
Vc  
HDrv  
Vcc  
Q1  
1/2 of IRF7752  
2.5V/2A  
L2  
CTX5-2P, 3.5uH @ 2.5A  
U1  
SS/SD  
C7  
0.1uF  
IRU3037  
Q2  
C6  
6TPB150M, 150uF, 55m  
LDrv  
1/2 of IRF7752  
R1  
Comp  
C8  
2200pF  
Fb  
1K, 1%  
Gnd  
R3  
1K  
1%  
R2  
14K  
L2  
C6  
6TPB150M, 150uF, 55m  
(Qty 2)  
(Qty 1)  
CTX5-2P, 3.5uH @ 2.5A  
CTX10-5P, 5.7uH @ 2.5A  
6TPB150M, 150uF, 55m  
C9  
10TPB100M, 100uF,  
55m , 1.5A rms  
C10  
1uF  
C11  
1uF  
Vc  
HDrv  
Vcc  
Q3  
1/2 of IRF7752  
3.3V/1.8A  
L3  
CTX5-1P, 3.4uH @ 2A  
U2  
SS/SD  
C13  
0.1uF  
IRU3037  
Q4  
C12  
6TPB150M, 150uF, 55m  
LDrv  
1/2 of IRF7752  
R4  
Comp  
Fb  
C14  
2200pF  
1.65K, 1%  
Gnd  
R6  
1K, 1%  
R5  
14K  
Figure 19 - Typical application of IRU3037 or IRU3037A in an on-board DC-DC converter providing the Core,  
GTL+, and Clock supplies for the Pentium II microprocessor.  
Rev. 2.8  
03/10/03  
www.irf.com  
15  
IRU3037 / IRU3037A  
TYPICAL APPLICATION  
1.8V to 7.5V / 0.5A Boost Converter  
L1  
Vpwr (1.5V Min)  
Vc/Vcc  
1uH (CoilTronics UP2B-1R0)  
C1  
2x 68uF  
V
OUT  
C5  
1uF  
D1  
1N5817  
(7.5V / 0.5A)  
C9  
2x 47uF  
R1  
20K  
Q3  
IRF7402  
Q2  
2N2222  
R2  
10K  
C4  
0.01uF  
C10  
100pF  
C5  
0.1uF  
R4  
25K  
Q1  
2N2222  
Comp  
HDrv  
SS/SD  
Vc  
U1  
R3  
20K  
IRU3037  
Fb Vcc LDrv Gnd  
C8  
1uF  
Gnd  
R5  
1K, 1%  
R6  
5K, 1%  
Figure 20 - Typical application of IRU3037 as a boost converter.  
Rev. 2.8  
05/10/04  
www.irf.com  
16  
IRU3037 / IRU3037A  
DEMO-BOARD APPLICATION  
5V or 12V to 3.3V @ 10A  
L1  
V
IN  
1uH  
D1  
LL4148  
5V or 12V  
C2A  
47uF  
16V  
C2B  
47uF  
16V  
D4  
C1  
33uF  
16V  
LL4148  
D2  
Gnd  
LL4148  
C3  
1uF  
C19  
1uF  
C6  
0.1uF  
Vcc  
Vc  
HDrv  
C8  
1uF  
Q1  
IRF7457  
L2  
V
3.3V  
@ 10A  
OUT  
SS/SD  
3.3uH  
U1  
C5  
0.1uF  
C7  
470pF  
IRU3037  
C13  
1uF  
C9B  
150uF  
6.3V  
C9C  
150uF  
6.3V  
Q2  
R4  
4.7  
LDrv  
IRF7460  
Comp  
Gnd  
C4  
R6  
2200pF  
Fb  
Gnd  
1.65K  
R5  
1K  
R3  
20K  
Figure 21 - Demo-board application of IRU3037.  
Application Parts List  
Ref Desig  
Description  
MOSFET  
MOSFET  
Controller  
Diode  
Value  
Qty  
1
1
Part#  
IRF7457  
IRF7460  
IRU3037  
LL4148  
D03316P-102HC  
D05022P-332HC  
ECS-T1CD336R  
16TPB47M  
Manuf  
Q1  
Q2  
20V, 7m, 15A  
20V, 10m, 12A  
Synchronous PWM  
Fast Switching  
1µH, 10A  
IR  
IR  
IR  
U1  
1
3
1
D1, D2, D4  
L1  
Inductor  
Inductor  
Coilcraft  
L2  
C1  
3.3µH, 12A  
1
1
2
Coilcraft  
Panasonic  
Sanyo  
Capacitor, Tantalum 33µF, 16V  
C2A, C2B  
Capacitor, Poscap  
Capacitor, Poscap  
Capacitor, Ceramic  
Capacitor, Ceramic  
Capacitor, Ceramic  
Capacitor, Ceramic  
Capacitor, Ceramic  
Resistor  
47µF, 16V, 70mΩ  
C9B, C9C  
C5, C6  
150µF, 6.3V, 40mΩ  
0.1µF, Y5V, 25V  
1µF, X7R, 25V  
2200pF, X7R, 50V  
470pF, X7R  
1µF, Y5V, 16V  
20K, 5%  
4.7, 5%  
2
2
1
6TPC150M  
Sanyo  
ECJ-2VF1E104Z  
ECJ-3YB1E105K  
ECJ-2VB1H222K  
ECJ-2VB2D471K  
ECJ-2VF1C105Z  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
C3  
C4  
C7  
1
1
3
C8, C13, C19  
R3  
R4  
R5  
R6  
1
1
1
Resistor  
Resistor  
1K, 1%  
Resistor  
1.65K, 1%  
1
Rev. 2.8  
03/10/03  
www.irf.com  
17  
IRU3037 / IRU3037A  
DEMO-BOARD WAVEFORMS  
IRU3037  
VIN  
IN  
OUT  
V =5.0V, V =3.3V  
100  
90  
VOUT  
80  
70  
0
1
2
3
4
5
6
7
8
9
10 11  
Output Current (A)  
Figure 22 - Efficiency for IRU3037 Evaluation Board.  
Figure 23 - Start-up time @ IOUT=5A.  
IRU3037  
Vss  
IRU3037  
VOUT  
IOUT = 5V  
Figure 24 - Shutdown the output by  
pulling down the soft-start.  
Figure 25 - 3.3V output voltage ripple @ IOUT=5A.  
IRU3037  
IRU3037  
2A  
4A  
0A  
0A  
Figure 26 - Transient response @ IOUT = 0 to 2A.  
Figure 27 - Transient response @ IOUT = 0 to 4A.  
Rev. 2.8  
05/10/04  
www.irf.com  
18  
IRU3037 / IRU3037A  
(F) TSSOP Package  
8-Pin  
A
L
Q
R1  
R
C
B
1.0 DIA  
E
N
M
P
O
F
D
DETAIL A  
PIN NUMBER 1  
G
DETAIL A  
J
H
K
8-PIN  
NOM  
0.65 BSC  
4.40  
SYMBOL  
DESIG  
A
MIN  
4.30  
0.19  
MAX  
4.50  
0.30  
B
C
6.40 BSC  
---  
D
E
1.00  
F
1.00  
G
H
2.90  
---  
3.00  
3.10  
1.10  
0.95  
0.15  
---  
J
0.85  
0.05  
0.90  
K
---  
L
128 REF  
128 REF  
---  
M
N
08  
88  
O
P
1.00 REF  
0.60  
0.50  
0.75  
Q
R
0.20  
0.09  
0.09  
---  
---  
---  
R1  
---  
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 2.8  
03/10/03  
www.irf.com  
19  
IRU3037 / IRU3037A  
(S) SOIC Package  
8-Pin Surface Mount, Narrow Body  
H
A
B
C
E
DETAIL-A  
L
D
PIN NO. 1  
DETAIL-A  
I
0.38±0.015 x 458  
K
T
F
J
G
8-PIN  
SYMBOL  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
4.80  
4.98  
1.27 BSC  
0.53 REF  
0.36  
0.46  
3.99  
1.72  
0.25  
3.81  
1.52  
0.10  
78 BSC  
0.19  
5.80  
08  
0.25  
6.20  
88  
J
K
L
0.41  
1.37  
1.27  
1.57  
T
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 2.8  
05/10/04  
www.irf.com  
20  
IRU3037 / IRU3037A  
PACKAGE SHIPMENT METHOD  
PKG  
PACKAGE  
PIN  
PARTS  
PARTS  
T & R  
DESIG  
DESCRIPTION  
COUNT  
PER TUBE  
PER REEL  
Orientation  
F
S
TSSOP Plastic  
8
8
100  
95  
2500  
2500  
Fig A  
Fig B  
SOIC, Narrow Body  
1
1
1
1
1
1
Feed Direction  
Figure A  
Feed Direction  
Figure B  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 2.8  
03/10/03  
www.irf.com  
21  

相关型号:

IRU3037ACS

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3037ACSPBF

Switching Controller, Voltage-mode, 0.5A, 440kHz Switching Freq-Max, BIPolar, PDSO8, LEAD FREE, PLASTIC, SOIC-8
INFINEON

IRU3037ACSTR

暂无描述
INFINEON

IRU3037ACSTRPBF

暂无描述
INFINEON

IRU3037CF

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3037CFPBF

Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, BIPolar, PDSO8, PLASTIC, TSSOP-8
INFINEON

IRU3037CFTRPBF

Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, TSSOP-8
INFINEON

IRU3037CS

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3037CSPBF

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3037CSTR

Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, SOIC-8
INFINEON

IRU3037CSTRPBF

Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, SOIC-8
INFINEON

IRU3038

SYNCHRONOUS PWM CONTROLLER FOR TERMINATION POWER SUPPLY APPLICATIONS
INFINEON