IRU3046CFPBF [INFINEON]

Dual Switching Controller, Voltage-mode, 0.5A, 450kHz Switching Freq-Max, PDSO24, PLASTIC, TSSOP-24;
IRU3046CFPBF
型号: IRU3046CFPBF
厂家: Infineon    Infineon
描述:

Dual Switching Controller, Voltage-mode, 0.5A, 450kHz Switching Freq-Max, PDSO24, PLASTIC, TSSOP-24

开关 光电二极管
文件: 总20页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD94251  
IRU3046  
DUAL SYNCHRONOUS PWM CONTROLLER WITH  
CURRENT SHARING CIRCUITRY AND LDO CONTROLLER  
PRELIMINARY DATA SHEET  
FEATURES  
DESCRIPTION  
The IRU3046 IC combines a Dual synchronous Buck  
controller and a linear regulator controller, providing a  
cost-effective, high performance and flexible solution for  
Dual Synchronous Controller in 24-Pin Package  
with 1808 out-of-phase operation  
LDO Controller with Independent Bias Supply  
Can be configured as 2-Independent or 2-Phase multi-output applications. The Dual synchronous con-  
PWM Controller troller can be configured as 2-independent or 2-phase  
Programmable Current Sharing in 2-Phase Configu- controller. In 2-phase configuration, the IRU3046 provides  
ration  
a programmable current sharing which is ideal when the  
output power exceeds any single input power budget.  
IRU3046 provides a separate adjustable output by driv-  
Flexible, Same or Separate Supply Operation  
Operation from 4V to 25V Input  
Programmable Switching Frequency up to 400KHz ing a switch as a linear regulator. This device features  
Soft-Start controls all outputs  
programmable switching frequency up to 400KHz per  
phase, under-voltage lockout for all input supplies, an  
external programmable soft-start function as well as out-  
put under-voltage detection that latches off the device  
when an output short is detected.  
Precision Reference Voltage Available  
500mA Peak Output Drive Capability  
Short Circuit Protection for all outputs  
Power Good Output  
Synchronizable with External Clock  
APPLICATIONS  
Graphic Card  
Hard Disk Drive  
Dual-Phase Power Supply  
DDR Memory Source Sink Vtt Application  
Power supplies requiring multiple outputs  
TYPICAL APPLICATION  
D1  
D2  
12V  
L1  
C12  
C11  
5V  
L2  
C1  
C2  
C3  
C4  
C13  
VCL  
Vcc  
VcH1 VcH2  
HDrv1  
Q2  
Q3  
C14  
L3  
R5  
C5  
VOUT1  
C16  
VccLDO  
VSEN33  
C15  
R6  
LDrv1  
3.3V  
Q1  
VOUT3  
C6  
PGnd  
VREF  
Vp2  
Fb1  
R1  
C7  
U1  
IRU3046  
VOUT2  
Fb3  
R7  
R8  
Rt  
R2  
Sync  
Comp1  
R3  
C8  
C9  
Fb2  
R4  
C17  
Q4  
Q5  
Comp2  
HDrv2  
L4  
R9  
C18  
R10  
PGood  
PGood  
SS  
LDrv2  
Gnd  
C10  
Figure 1 - Typical application of IRU3046 configured as 2-phase converter with current sharing.  
PACKAGE ORDER INFORMATION  
TA (°C)  
DEVICE  
PACKAGE  
FREQUENCY  
0 To 70  
IRU3046CF  
24-Pin Plastic TSSOP (F)  
200-400KHz  
Rev. 1.9  
09/27/02  
www.irf.com  
1
IRU3046  
ABSOLUTE MAXIMUM RATINGS  
Vcc Supply Voltage .................................................. 25V  
VccLDO, VcH1, VcH2 and VCL Supply Voltage ........... 30V (not rated for inductive load)  
Storage Temperature Range ...................................... -65°C To 150°C  
Operating Junction Temperature Range .....................  
0°C To 125°C  
PACKAGE INFORMATION  
24-PIN PLASTIC TSSOP (F)  
TOP VIEW  
VREF 1  
Vp2 2  
Fb2 3  
24 Gnd  
qJA = 84°C/W  
23 PGood  
22 V  
SEN33  
Vcc  
Comp1  
Comp2  
Rt  
4
5
6
7
21 Fb1  
20  
SS  
19 Fb3  
18  
VOUT3  
17 VccLDO  
16  
Sync 8  
9
VcH2  
HDrv2 10  
11  
VcH1  
15 HDrv1  
14  
LDrv2  
PGnd 12  
LDrv1  
13 VCL  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc=5V, VcH1=VcH2=VCL=VccLDO=12V and TA=0 to  
70°C. Typical values refer to TA=25°C. Low duty cycle pulse testing is used which keeps junction and case tem-  
peratures equal to the ambient temperature.  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP  
MAX UNITS  
Reference Voltage Section  
Fb Voltage  
Fb Voltage Line Regulation  
UVLO Section  
VFB  
LREG  
1.225 1.250 1.275  
0.2  
V
%
5<Vcc<12  
UVLO Threshold - Vcc  
UVLOVCC Supply Ramping Up  
UVLOVCCLDO Supply Ramping Up  
UVLOVCH1 Supply Ramping Up  
UVLOVCH2 Supply Ramping Up  
UVLOFb Fb Ramping Down  
UVLOVSEN33 Supply Ramping Up  
4.2  
0.25  
4.2  
0.25  
3.5  
0.2  
3.5  
0.2  
0.6  
0.1  
2.5  
0.2  
V
V
V
V
V
V
V
V
V
V
V
V
UVLO Hysteresis - Vcc  
UVLO Threshold - VccLDO  
UVLO Hysteresis - VccLDO  
UVLO Threshold - VcH1  
UVLO Hysteresis - VcH1  
UVLO Threshold - VcH2  
UVLO Hysteresis - VcH2  
UVLO Threshold - Fb  
UVLO Hysteresis - Fb  
UVLO Threshold - VSEN33  
UVLO Hysteresis - VSEN33  
Supply Current Section  
Vcc Dynamic Supply Current  
VcH1 Dynamic Supply Current  
VcH2 Dynamic Supply Current  
Vcc Static Supply Current  
VcH1 Static Supply Current  
VcH2 Static Supply Current  
VccLDO Static Supply Current  
Dyn ICC  
Freq=200KHz, CL=1500pF  
5
7
7
3.5  
2
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Dyn ICH1 Freq=200KHz, CL=1500pF  
Dyn ICH2 Freq=200KHz, CL=1500pF  
ICCQ  
SS=0V  
SS=0V  
SS=0V  
SS=0V  
ICH1Q  
ICH2Q  
ICLDO  
1
Rev. 1.9  
09/27/02  
www.irf.com  
2
IRU3046  
PARAMETER  
SYM  
TEST CONDITION  
SS=0V  
MIN  
TYP  
MAX UNITS  
Soft-Start Section  
Charge Current  
SSIB  
15  
25  
30  
µA  
Power Good Section  
Fb1 Lower Trip Point  
Fb1 Upper Trip Point  
Fb2 Lower Trip Point  
Fb2 Upper Trip Point  
Fb3 Lower Trip Point  
Fb3 Upper Trip Point  
Power Good Voltage OK  
Error Amp Section  
Fb Voltage Input Bias Current  
Fb Voltage Input Bias Current  
Transconductance 1  
Transconductance 2  
Input Offset Voltage for PWM2  
Oscillator Section  
PGFB1L  
PGFB1H  
PGFB2L  
PGFB2H  
PGFB3L  
PGFB3H  
VPG  
Fb1 Ramping Down  
Fb1 Ramping Up  
Fb2 Ramping Down  
Fb2 Ramping Up  
Fb3 Ramping Down  
Fb3 Ramping Up  
5K resistor pulled up to 5V  
0.9VREF  
1.1VREF  
0.9VREF  
1.1VREF  
0.9VREF  
1.1VREF  
4.8  
V
V
V
V
V
V
V
4.5  
-2  
5
IFB1  
IFB2  
gm1  
SS=3V  
SS=0V  
-0.1  
-64  
400  
600  
0
µA  
µA  
µmho  
µmho  
mV  
gm2  
VOS(ERR)2  
Fb2 to VP2  
+2  
Frequency  
Freq  
Rt=Open  
Rt=Gnd  
180  
300  
200  
350  
1.25  
220  
450  
KHz  
V
Ramp Amplitude  
Output Drivers Section  
Rise Time  
VRAMP  
Tr  
Tf  
TDB  
TON  
TOFF  
CL=1500pF  
CL=1500pF  
35  
50  
150  
90  
0
100  
100  
250  
ns  
ns  
ns  
%
%
Fall Time  
Dead Band Time  
Max Duty Cycle  
Min Duty Cycle  
LDO Controller Section  
Drive Current  
50  
85  
0
Fb=1V, Freq=200KHz  
Fb=1.5V  
ILDO  
VFBLDO  
ILDO(BIAS)  
30  
1.225  
45  
mA  
V
µA  
Fb Voltage  
Input Bias Current  
1.25 1.275  
0.5  
2
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
1
2
VREF  
Vp2  
Reference Voltage.  
Non-inverting input to the second error amplifier. In the current sharing mode, it is con-  
nected to the programming resistor. In independent 2-channel mode it is connected to  
VREF pin when Fb2 is connected to the resistor divider to set the output voltage.  
Inverting inputs to the error amplifiers. In current sharing mode, Fb1 is connected to a  
resistor divider to set the output voltage and Fb2 is connected to programming resistor to  
achieve current sharing. In independent 2-channel mode, these pins work as feedback  
inputs for each channel.  
3
21  
Fb2  
Fb1  
4
Vcc  
Supply voltage for the internal blocks of the IC.  
5,6 Comp1, Comp2 Compensation pins for the error amplifiers.  
7
Rt  
The switching frequency can be programmed between 200KHz and 400KHz by connect-  
ing a resistor between Rt and Gnd. By floating the pin, the switching frequency will be  
200KHz and by grounding the pin, the switching frequency will be 400KHz.  
The internal oscillator may be synchronized to an external clock via this pin.  
Supply voltage for the high side output drivers. These are connected to voltages that must  
be at least 4V higher than their bus voltages (assuming 5V threshold MOSFET). A mini-  
mum of 1µF, high frequency capacitor must be connected from these pins to PGnd to  
provide peak drive current capability.  
8
9
16  
Sync  
VcH2  
VcH1  
Rev. 1.9  
09/27/02  
www.irf.com  
3
IRU3046  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
10,15 HDrv2, HDrv1 Output driver for the high side power MOSFET. Connect a diode, such as BAT54 or 1N4148,  
from these pins to ground for the application when the inductor current goes negative  
(Source/Sink), soft-start at no load and for the fast load transient from full load to no load.  
11,14 LDrv2, LDrv1  
Output driver for the synchronous power MOSFET.  
12  
PGnd  
This pin serves as the separate ground for MOSFET’s driver and should be connected to  
the system’s ground plane. A high frequency capacitor (0.1 to 1µF) must be connected  
from Vcc, VCL, VcH1 and VcH2 pins to this pin for noise free operation.  
Supply voltage for the low side output drivers.  
Separate input supply for LDO controller.  
Driver signal for the LDO’s external transistor.  
LDO’s feedback pin, connected to a resistor divider to set the output voltage of LDO.  
This pin provides soft-start for the switching regulator. An internal current source charges  
an external capacitor that is connected from this pin to ground which ramps up the output  
of the switching regulator, preventing it from overshooting as well as limiting the input  
current. The converter can be shutdown by pulling this pin below 0.5V.  
Sense the LDO input voltage for UVLO.  
13  
17  
18  
19  
20  
VCL  
VccLDO  
VOUT3  
Fb3  
SS  
22  
23  
VSEN33  
PGood  
Power good pin. This pin is a collector output that switches Low when any of the outputs  
are outside of the specified under voltage trip point.  
24  
Gnd  
Analog ground for internal reference and control circuitry. Connect to PGnd with a short  
trace.  
BLOCK DIAGRAM  
4
16 VcH1  
15 HDrv1  
Vcc  
VSEN33  
SS  
10K  
25uA  
3V  
Bias  
Generator  
22  
20  
1.25V  
64uA Max  
4.2V  
2.5V  
/
/
4.0V  
2.3V  
POR  
UVLO  
Vsen33  
VcH1  
3.5V  
3.5V  
4.2V  
/
/
3.3V  
3.3V  
4.0V  
VcH2  
13  
14  
VCL  
/
POR  
VccLDO  
PWM Comp1  
Error Amp1  
LDrv1  
25K  
25K  
1.25V  
S
R
SS>2V  
Q
Fb1 21  
Ramp1  
Ramp2  
Set1  
Set2  
5
Comp1  
Rt  
9
ResetDom  
VcH2  
Two Phase  
Oscillator  
7
10  
HDrv2  
8
1
Sync  
VREF  
S
1.25V  
25K  
PWM Comp2  
Q
Error Amp2  
Vp2  
Fb2  
2
R
ResetDom  
25K  
3
6
0.5V  
11 LDrv2  
Fb2 Monitor Shut Down  
PGnd  
12  
POR  
Comp2  
Fb1  
PGood  
Fb2  
Fb3  
PGood  
23  
17 VccLDO  
25K  
1.25V  
VOUT3  
Gnd  
18  
24  
2V  
SS  
25K  
Fb3 19  
40mA LDO Controller  
Figure 2 - Block diagram of the IRU3046.  
www.irf.com  
Rev. 1.9  
09/27/02  
4
IRU3046  
THEORY OF OPERATION  
Introduction  
Soft-Start  
The IRU3046 is designed for multi-outputs applications. The IRU3046 has a programmable soft start to control  
It includes two synchronous buck controllers and a lin- the output voltage rise and limit the current surge at the  
ear regulator controller. The two synchronous controller start-up. To ensure correct start-up, the soft-start se-  
operates with fixed frequency voltage mode and can be quence initiates when the Vcc, VcH1, VcH2, VccLDO  
configured as two independent controller or 2-phase con- and VSEN33 rise above their threshold and generates the  
troller with current sharing. The timing of the IC is pro- Power On Reset (POR) signal. Soft-start function oper-  
vided through an internal oscillator circuit. These are two ates by sourcing an internal current to charge an exter-  
out of phase oscillators and can be programmed by us- nal capacitor to about 3V. Initially, the soft-start function  
ing an external resistor from 200KHz to 400KHz per clamps the E/A’s output of the PWM converter. As the  
phase. Figure 11 shows switching frequency versus ex- charging voltage of the external capacitor ramps up, the  
ternal resistor.  
PWM signals increase from zero to the point the feed-  
back loop takes control.  
Independent Mode  
In this mode the IRU3046 provides two independent out- Shutdown  
puts with either common or different input voltages. The The converter can be shutdown by pulling the soft-start  
output voltage of the individual channel is set and con- pin below 0.5V. This can be easily done by using an  
trolled by the output of the error amplifier, this is the external small signal transistor. During shutdown the  
amplified error signal from the sensed output voltage and MOSFET drivers and the LDO controller turn off.  
the reference voltage. This voltage is compared to the  
ramp signal and generates fixed frequency pulses of vari- Power Good  
able duty-cycle, which drives the two N-channel exter- The IRU3046 provides a power good signal. This is an  
nal MOSFETs.  
open collector output and it is pulled low if the output  
voltages are not within the specified threshold. This pin  
can be left floating if not used.  
Current Sharing Mode  
In the current sharing mode, the two converter’s outputs  
tied together and provide one single output (see Figure Short-Circuit Protection  
1). In this mode, one control loop acts as a master and The outputs are protected against the short circuit. The  
sets the output voltage as a regular Voltage Mode buck IRU3046 protects the circuit for shorted output by sens-  
controller and the other control loop acts as a slave and ing the output voltages. The IRU3046 shuts down the  
monitors the current information for current sharing. The PWM signals and LDO controller, when the output volt-  
current sharing is programmable and sets by using two ages drops below the set values.  
external resistors in output currents’ path. The slave's  
error amplifier, error amplifier 2 (see Block Diagram) mea- Under-Voltage Lockout  
sures the voltage drops across the current sense resis- The under-voltage lockout circuit assures that the  
tors, the differential of these signals is amplified and MOSFET driver outputs and LDO controller remain in  
compared with the ramp signal and generate the fixed the off state whenever the supply voltages drop below  
frequency pulses of variable duty cycle to match the set parameters. Normal operation resumes once the  
output currents.  
supply voltages rise above the set values.  
Out of Phase Operation  
Frequency Synchronization  
The IRU3046 drives its two output stages 180o out of The IRU3046 can be synchronized with an external clock  
phase. In 2-phase configuration, the two inductor ripple signal. The synchronizing pulses must have a minimum  
currents cancel each other and result to a reduction of pulse width of 100ns. If the sync function is not used,  
the output current ripple and contribute to a smaller out- the Sync pin can be either connected to ground or be  
put capacitor for the same ripple voltage requirement.  
floating.  
In application with single input voltage, the 2-phase con-  
figuration reduces the input ripple current. This results in  
much smaller RMS current in the input capacitor and  
reduction of input capacitor.  
Rev. 1.9  
09/27/02  
www.irf.com  
5
IRU3046  
APPLICATION INFORMATION  
Design Example:  
Soft-Start Programming  
The following example is a typical application for IRU3046 The soft-start timing can be programmed by selecting  
in current sharing mode. The schematic is Figure 13 on the soft start capacitance value. The start up time of the  
page 15.  
converter can be calculated by using:  
For Switcher:  
For Linear Regulator:  
VIN3 = 3.3V  
VOUT2 = 2.5V  
IOUT2 = 2A  
t
START = 75 × Css (ms)  
---(2)  
VIN1(MASTER) = 5V  
VIN2(SLAVE) = 12V  
VOUT1 = 1.5V  
IOUT = 16A  
VOUT = 75mV  
fS = 200KHz  
Where:  
CSS is the soft-start capacitor (µF)  
For a start-up time of 7.5ms, the soft-start capacitor will  
be 0.1µF. Choose a ceramic capacitor at 0.1µF.  
PWM Section  
Boost Supply  
To drive the high-side switch it is necessary to supply a  
gate voltage at least 4V greater than the bus voltage.  
Output Voltage Programming  
Output voltage is programmed by reference voltage and This is achieved by using a charge pump configuration  
external voltage divider. The Fb1 pin is the inverting input as shown in Figure 1. The capacitor is charged up to  
of the error amplifier, which is internally referenced to approximately twice the bus voltage. A capacitor in the  
1.25V. The divider is ratioed to provide 1.25V at the Fb1 range of 0.1µF to 1µF is generally adequate for most  
pin when the output is at its desired value. The output applications.  
voltage is defined by using the following equation:  
Sense Resistor Selection  
R6  
R5  
These resistors will determine the current sharing  
between two channels. The relationship between the  
Master and Slave output currents is expressed by:  
VOUT1 = VREF × 1 +  
---(1)  
( )  
When an external resistor divider is connected to the  
output as shown in Figure 3.  
RSEN1 × IMASTER = RSEN2 × ISLAVE  
---(3)  
For an equal current sharing, RSEN1=RSEN1  
Choose RSEN1=RSEN2=5mΩ  
VOUT1  
IRU3046  
Fb1  
Input Capacitor selection  
R
6
The input filter capacitor should be based on how much  
ripple the supply can tolerate on the DC input line. The  
ripple current generated during the on time of control  
MOSFET should be provided by input capacitor. The RMS  
value of this ripple is expressed by:  
R5  
Figure 3 - Typical application of the IRU3046 for  
programming the output voltage.  
IRMS = IOUT  
D×(1-D)  
---(4)  
Where:  
Equation (1) can be rewritten as:  
D is the Duty Cycle, simply D=VOUT/VIN.  
IRMS is the RMS value of the input capacitor current.  
IOUT is the output current for each channel.  
VOUT1  
R6 = R5 ×  
- 1  
( VREF )  
For VIN1=5V, IOUT1=8A and D1=0.3  
Results to: IRMS1=3.6A  
This will result to:  
VOUT1 = 1.5V, VREF = 1.25V, R5 = 1K, R6 = 200Ω  
If the high value feedback resistors are used, the input  
bias current of the Fb pin could cause a slight increase  
in output voltage. The output voltage set point can be  
more accurate by using precision resistor.  
And for VIN2=12V, IOUT2=8A and D2=0.125  
Results to: IRMS2=2.6A  
Rev. 1.9  
09/27/02  
www.irf.com  
6
IRU3046  
For higher efficiency, a low ESR capacitor is recom- For the buck converter, the inductor value for desired  
mended.  
operating ripple current can be determined using the fol-  
lowing relation:  
i  
t  
VOUT  
VIN  
For VIN1=5V, choose two Poscap from Sanyo  
6TPB330M (6.3V, 330µF, 40m, 3A)  
1
fS  
VIN - VOUT = L×  
; t = D×  
; D =  
VOUT  
VIN×∆i×fS  
L = (VIN - VOUT)×  
---(6)  
For VIN2=12V, choose two 16TPB47M (16V, 47µF,  
70m, 1.4A).  
Where:  
VIN = Maximum Input Voltage  
VOUT = Output Voltage  
Di = Inductor Ripple Current  
fS = Switching Frequency  
Dt = Turn On Time  
Output Capacitor Selection  
The criteria to select the output capacitor is normally  
based on the value of the Effective Series Resistance  
(ESR). In general, the output capacitor must have low  
enough ESR to meet output ripple and load transient  
requirements, yet have high enough ESR to satisfy sta-  
bility requirements. The ESR of the output capacitor is  
calculated by the following relationship:  
D = Duty Cycle  
For i1=30% of I1, we get: L1=2.18µH  
For i2=30% of I2, we get: L2=2.7µH  
VO  
IO  
The Coilcraft DO5022HC series provides a range of in-  
ductors in different values and low profile for large cur-  
rents.  
ESR ≤  
---(5)  
Where:  
VO = Output Voltage Ripple  
IO = Output Current  
For L1 choose: DO5022P-222HC (2.2µH,12A)  
For L2 choose: DO5022P-332HC (3.3µH,10A)  
VO=75mV and IO=10A, result to ESR=7.5mΩ  
Power MOSFET Selection  
The Sanyo TPC series, Poscap capacitor is a good choice. The selections criteria to meet power transfer require-  
The 6TPC150M 150µF, 6.3V has an ESR 40m. Se- ments is based on maximum drain-source voltage (VDSS),  
lecting six of these capacitors in parallel, results to an gate-source drive voltage (VGS), maximum output cur-  
ESR of @ 7mwhich achieves our low ESR goal.  
rent, On-resistance RDS(ON) and thermal management.  
The capacitor value must be high enough to absorb the The MOSFET must have a maximum operating voltage  
inductor's ripple current. The larger the value of capaci- (VDSS) exceeding the maximum input voltage (VIN).  
tor, the lower will be the output ripple voltage.  
The gate drive requirement is almost the same for both  
The resulting output ripple current is smaller then each MOSFETs. Caution should be taken with devices at very  
channel ripple current due to the 1808 phase shift. These low VGS to prevent undesired turn-on of the complemen-  
currents cancel each other. The cancellation is not the tary MOSFET, which results a shoot-through current.  
maximum because of the different duty cycle for each  
channel.  
The total power dissipation for MOSFETs includes con-  
duction and switching losses. For the Buck converter  
the average inductor current is equal to the DC load cur-  
Inductor Selection  
The inductor is selected based on output power, operat- rent. The conduction loss is defined as:  
2
ing frequency and efficiency requirements. Low induc-  
tor value causes large ripple current, resulting in the  
smaller size, but poor efficiency and high output noise.  
Generally, the selection of inductor value can be reduced  
PCOND (Upper Switch) = ILOAD × RDS(ON) × D × ϑ  
2
PCOND (Lower Switch) = ILOAD × RDS(ON) × (1 - D) × ϑ  
to desired maximum ripple current in the inductor (Di);  
the optimum point is usually found between 20% and  
ϑ = RDS(ON) Temperature Dependency  
50% ripple of the output current.  
The total conduction loss is defined as:  
PCON(TOTAL)=PCON(Upper Switch)ϑ + PCON(Lower Switch)ϑ  
Rev. 1.9  
09/27/02  
www.irf.com  
7
IRU3046  
The RDS(ON) temperature dependency should be consid- From IRF7460 data sheet we obtain:  
ered for the worst case operation. This is typically given  
in the MOSFET data sheet. Ensure that the conduction  
losses and switching losses do not exceed the package  
ratings or violate the overall thermal budget.  
IRF7460  
tr = 6.9ns  
tf = 4.3ns  
These values are taken under a certain condition test.  
Choose IRF7460 for control MOSFET and IRF7457 for For more detail please refer to the IRF7460 and IRF7457  
synchronous MOSFET. These devices provide low on- data sheets.  
resistance in a compact SOIC 8-Pin package.  
By using equation (7), we can calculate the switching  
The MOSFETs have the following data:  
losses.  
IRF7460  
IRF7457  
PSW(MASTER) = 44.8mW  
VDSS = 20V  
VDSS = 20V  
PSW(SLAVE) = 107.5mW  
ID = 10A @ 758C  
RDS(ON) = 10m@  
VGS=10V  
ϑ = 1.8 for 1508C  
(Junction Temperature) (Junction Temperature)  
ID = 12A @ 708C  
RDS(ON) = 7.5m@  
VGS=10V  
Feedback Compensation  
The control scheme for master and slave channels is  
based on voltage mode control, but the compensation of  
these two feedback loops is slightly different.  
ϑ = 1.5 for 1508C  
The total conduction losses for the master channel is:  
The Master channel sets the output voltage and its feed-  
back loop should take care of double pole introduced by  
the output filter as a regular voltage mode control loop.  
The goal is to provide a close loop transfer function with  
the highest 0dB crossing frequency and adequate phase  
margin. The slave feedback loop acts slightly different  
PCON(MASTER) = 0.85W  
The total conduction losses for the slave channel is:  
PCON(SLAVE) = 0.77W  
The control MOSFET contributes to the majority of the and its goal is using the current information for current  
switching losses in synchronous Buck converter. The sharing.  
synchronous MOSFET turns on under zero-voltage con-  
dition, therefore the turn on losses for synchronous The master feedback loop sees the output filter. The out-  
MOSFET can be neglected. With a linear approxima- put LC filter introduces a double pole, -40dB/decade gain  
tion, the total switching loss can be expressed as:  
slope above its corner resonant frequency, and a total  
phase lag of 1808 (see Figure 5). The resonant frequency  
of the LC filter expressed as follows:  
VDS(OFF)  
tr + tf  
T
PSW =  
×
× ILOAD  
---(7)  
2
Where:  
1
FLC(MASTER) =  
---(8)  
VDS(OFF) = Drain to Source Voltage at off time  
2π Lo×Co  
tr = Rise Time  
tf = Fall Time  
T = Switching Period  
ILOAD = Load Current  
Figure 5 shows gain and phase of the LC filter. Since we  
already have 1808 phase shift just from the output filter,  
the system risks being unstable.  
DS  
V
Gain  
0dB  
Phase  
90%  
08  
-40dB/decade  
10%  
-180  
8
FLC Frequency  
FLC Frequency  
VGS  
t
d
(ON)  
td(OFF)  
tr  
tf  
Figure 5 - Gain and phase of LC filter.  
Figure 4 - Switching time waveforms.  
Rev. 1.9  
09/27/02  
www.irf.com  
8
IRU3046  
The master error amplifier is a differential-input transcon- First select the desired zero-crossover frequency (Fo):  
ductance amplifier. The output is available for DC gain  
control or AC phase compensation.  
FO1 > FESR and FO1 (1/5 ~ 1/10)× fS  
Use the following equation to calculate R4:  
The E/A can be compensated with or without the use of  
1
VOSC  
FO1×FESR R5 + R6  
local feedback. When operated without local feedback  
the transconductance properties of the E/A become evi-  
dent and can be used to cancel one of the output filter  
poles. This will be accomplished with a series RC circuit  
from Comp1 pin to ground as shown in Figure 6.  
R4 =  
×
×
×
---(13)  
2
VIN(MASTER)  
FLC  
R5  
gm  
Where:  
VIN(MASTER) = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
FO1 = Crossover Frequency for the master E/A  
FESR = Zero Frequency of the Output Capacitor  
FLC(MASTER) = Resonant Frequency of Output Filter  
gm = Error Amplifier Transconductor  
R5 and R6 = Resistor Dividers for Output Voltage  
Programming  
The ESR zero of the LC filter expressed as follows:  
1
FESR =  
---(9)  
2π×ESR×Co  
VOUT  
For:  
VIN(MASTER) = 5V  
VOSC = 1.25V  
FO1 = 30KHz  
FESR = 25.26KHz  
FLC(MASTER) = 3.57KHz  
R5 = 1K  
R
6
Fb1  
Comp1  
E/A1  
Ve  
R5  
C9  
VREF  
R4  
R6 = 200Ω  
gm = 600µmho  
Gain(dB)  
H(s) dB  
This results to: R4=29.7K. Choose: R4=29.4KΩ  
To cancel one of the LC filter poles, place the zero be-  
fore the LC filter resonant frequency pole:  
Frequency  
FZ  
FZ @ 75%FLC(MASTER)  
Figure 6 - Compensation network without local  
feedback and its asymptotic gain plot.  
1
FZ @ 0.75 ×  
---(14)  
2π LO × CO  
The transfer function (Ve / VOUT) is given by:  
For:  
Lo = 2.2µH  
Co = 900µF  
Fz = 2.67KHz  
R4 = 24.9KΩ  
R5  
R6 + R5  
1 + sR4C9  
sC9  
H(s) = gm×  
×
---(10)  
( )  
The (s) indicates that the transfer function varies as a  
function of frequency. This configuration introduces a gain Using equations (12) and (14) to calculate C9, we get:  
and zero, expressed by:  
C9 = 2003pF  
Choose: C9 = 2200pF  
R5  
R6 × R5  
|H(s)| = gm ×  
× R4  
---(11)  
One more capacitor is sometimes added in parallel with  
C9 and R4. This introduces one more pole which is mainly  
used to suppress the switching noise. The additional  
pole is given by:  
1
FZ =  
---(12)  
2π × R4 × C9  
The gain is determined by the voltage divider and E/A's  
transconductance gain.  
1
FP =  
C9 × CPOLE  
2π × R4 ×  
C9 + CPOLE  
Rev. 1.9  
09/27/02  
www.irf.com  
9
IRU3046  
The pole sets to one half of switching frequency which  
results in the capacitor CPOLE:  
As known, transconductance amplifier has high imped-  
ance (current source) output, therefore, consider should  
be taken when loading the E/A output. It may exceed its  
source/sink output current capability, so that the ampli-  
fier will not be able to swing its output voltage over the  
necessary range.  
1
1
CPOLE =  
@
π × R4 × fS  
1
C9  
π × R4 × fS -  
fS  
For FP <<  
2
The compensation network has three poles and two ze-  
ros and they are expressed as follows:  
For a general solution for unconditionally stability for any  
type of output capacitors, in a wide range of ESR values  
we should implement local feedback with a compensa-  
tion network. The typically used compensation network  
for voltage-mode controller is shown in Figure 7.  
FP1 = 0  
1
FP2 =  
2π×R8×C10  
1
V
OUT  
1
ZIN  
FP3 =  
@
C
12  
2π×R7×C12  
C12×C11  
2π×R7×  
(C12+C11 )  
C
10  
R7  
C
11  
1
R8  
R
6
Z
f
FZ1 =  
FZ2 =  
2π×R7×C11  
1
1
Fb1  
@
E/A1  
Ve  
2π×C10×(R6 + R8)  
2π×C10×R6  
R
5
Comp1  
Cross Over Frequency:  
VREF  
Gain(dB)  
VIN  
1
FO1 = R7×C10×  
×
---(16)  
VOSC  
2π×Lo×Co  
H(s) dB  
Where:  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
Lo = Output Inductor  
Frequency  
F
Z
1
F
Z
2
F
P
2
FP3  
Co = Total Output Capacitors  
Figure 7 - Compensation network with local  
feedback and its asymptotic gain plot.  
The stability requirement will be satisfied by placing the  
poles and zeros of the compensation network according  
to following design rules. The consideration has been  
taken to satisfy condition (15) regarding transconduc-  
tance error amplifier.  
In such configuration, the transfer function is given by:  
1 - gmZf  
1 + gmZIN  
Ve  
VOUT  
=
1) Select the crossover frequency:  
The error amplifier gain is independent of the transcon-  
ductance under the following condition:  
Fo < FESR and Fo (1/10 ~ 1/6)× fS  
gmZf >> 1  
and  
gmZIN >>1  
---(15)  
2
2) Select R7, so that R7 >>  
gm  
By replacing ZIN and Zf according to figure 7, the trans-  
former function can be expressed as:  
3) Place first zero before LC’s resonant frequency pole.  
1
(1+sR7C11)×[1+sC10(R6+R8)]  
×
H(s)=  
FZ1 @ 75% FLC  
C12C11  
sR6(C12+C11)  
1+sR7  
×(1+sR8C10)  
[ (C12+C11)]  
1
C11 =  
2π × FZ1 × R7  
Rev. 1.9  
09/27/02  
www.irf.com  
10  
IRU3046  
4) Place third pole at the half of the switching frequency. The transfer function of power stage is expressed by:  
IL2(s)  
Ve(s)  
VIN - VOUT  
sL2 × VOSC  
fS  
2
G(s) =  
=
---(17)  
FP3 =  
C12 =  
1
Where:  
2π × R7 × FP3  
VIN = Input Voltage  
VOUT = Output Voltage  
L2 = Output Inductor  
VOSC = Oscillator Peak Voltage  
C12 > 50pF  
If not, change R7 selection.  
5) Place R7 in (16) and calculate C10:  
As shown the transfer function is a function of inductor  
current.  
2π × Lo × FO × Co  
VOSC  
VIN  
C10 ≤  
×
R7  
The transfer function for the compensation network is  
given by equation (18), when using a series RC circuit  
as shown in Figure 8:  
6) Place second pole at ESR zero.  
FP2 = FESR  
1
RS1  
Ve(s)  
RS2 × IL2(s)  
1 + sC2R2  
R8 =  
---(18)  
g
=
m×  
×
D(s) =  
( ) ( )  
2π × C10 × FP2  
RS2  
sC2  
1
Check if R8 >  
gm  
IL2  
L2  
If R8 is too small, increase R7 and start from step 2.  
Fb2  
7) Place second zero around the resonant frequency.  
Comp2  
RS2  
FZ2 = FLC  
E/A2  
Ve  
Vp2  
1
R
2
R6 =  
- R8  
R
S1  
2π × C10 × FZ2  
C
2
L
1
8) Use equation (1) to calculate R5:  
IL1  
VREF  
VOUT - VREF  
R5 =  
× R6  
Figure 8 - The PI compensation network  
for slave channel.  
These design rules will give a crossover frequency ap-  
proximately one-tenth of the switching frequency. The  
higher the band width, the potentially faster the load tran-  
sient speed. The gain margin will be large enough to  
provide high DC-regulation accuracy (typically -5dB to -  
12dB). The phase margin should be greater than 458 for  
overall stability.  
The loop gain function is:  
H(s)=[G(s)× D(s)× RS2]  
RS1  
1+sR2C2  
VIN-VOUT  
sL2×VOSC  
×
H(s)=RS2× gm×  
×
( ) ( ) ( )  
RS2  
sC2  
Select a zero crossover frequency (FO2) one-tenth of the  
switching frequency:  
The slave error amplifier is a differential-input transcon-  
ductance amplifier as well, the main goal for the slave  
feed back loop is to control the inductor current to match  
the masters inductor current as well provides highest  
bandwidth and adequate phase margin for overall stabil-  
ity.  
fS  
FO2 =  
10  
FO2 = 20KHz  
Rev. 1.9  
09/27/02  
www.irf.com  
11  
IRU3046  
VIN - VOUT  
2π×Fo×L2×VOSC  
LDO Power MOSFET Selection  
H(Fo) = gm×RS1×R2×  
=1  
---(19)  
---(20)  
The first step in selecting the power MOSFET for the  
linear regulator is to select the maximum RDS(ON) based  
on the input to the dropout voltage and the maximum  
load current.  
From (18), R2 can be express as:  
1
2π × FO2 × L2 × VOSC  
R2 =  
×
VIN3 - VOUT2  
RDS(ON) =  
VIN(SLAVE) - VOUT  
g
m × RS1  
IOUT2  
For:  
Set the zero of compensator to be half of FLC(SLAVE), the  
compensator capacitor, C2, can be calculated as:  
VIN3 = 3.3V  
VOUT2 = 2.5V  
IOUT2 = 2A  
1
FLC(SLAVE) =  
Results to: RDS(ON)(MAX) = 0.4Ω  
2π  
L2×COUT  
FLC(SLAVE)  
Note that since the MOSFET RDS(ON) increases with tem-  
perature, this number must be divided by ~1.5 in order  
to find the RDS(ON)(MAX) at room temperature. The IRLR2703  
has a maximum of 0.065RDS(ON) at room temperature,  
which meets our requirements.  
Fz =  
C2 =  
2
1
---(21)  
2π × R2 × Fz  
Using equations (20) and (21) we get the following val-  
ues for R2 and C2.  
Layout Consideration  
The layout is very important when designing high fre-  
quency switching converters. Layout will affect noise  
pickup and can cause a good design to perform with  
less than expected results.  
R2=16.45K; Choose: R2=16.5K  
C2=6606pF; Choose: C2=6800pF  
LDO Section  
Start to place the power components, make all the con-  
nection in the top layer with wide, copper filled areas.  
Output Voltage Programming  
Output voltage for LDO is programmed by reference volt- The inductor, output capacitor and the MOSFET should  
age and external voltage divider. The Fb3 pin is the in- be close to each other as possible. This helps to reduce  
verting input of the error amplifier, which is internally ref- the EMI radiated by the power traces due to the high  
erenced to 1.25V. The divider is ratioed to provide 1.25V switching currents through them. Place input capacitor  
at the Fb3 pin when the output is at its desired value. directly to the drain of the high-side MOSFET, to reduce  
The output voltage is defined by using the following equa- the ESR replace the single input capacitor with two par-  
tion:  
allel units. The feedback part of the system should be  
kept away from the inductor and other noise sources,  
and be placed close to the IC. In multilayer PCB use  
one layer as power ground plane and have a control cir-  
cuit ground (analog ground), to which all signals are ref-  
erenced. The goal is to localize the high current path to  
a separate loop that does not interfere with the more  
sensitive analog control function. These two grounds  
must be connected together on the PC board layout at a  
single point.  
R7  
R10  
VOUT2 = VREF× 1+  
( )  
For:  
VOUT2 = 2.5V  
VREF = 1.25V  
R10 = 1KΩ  
Results to R7=1KΩ  
VOUT3  
IRU3046  
R7  
Fb3  
R10  
Figure 9 - Programming the output voltage for LDO.  
Rev. 1.9  
09/27/02  
www.irf.com  
12  
IRU3046  
TYPICAL APPLICATION  
12V  
D1  
D2  
C2  
33uF  
L2  
1uH  
C11  
0.1uF  
L1  
5V  
1uH  
C1  
33uF  
C13  
1uF  
C14  
2x 47uF  
C3  
1uF  
C4  
1uF  
V
CL  
VcH1 VcH2  
HDrv1  
Q2  
IRF7460  
L3  
Vcc  
VccLDO  
C5  
1uF  
1.8V  
@ 8A  
C16  
4.7uH  
LDrv1  
PGnd  
Q3  
IRF7457  
3.3V  
C6  
47uF  
V
SEN33  
2x 150uF  
Q1  
VOUT3  
IRLR2703  
R1  
R7  
442  
U1  
IRU3046  
2.5V  
@ 2A  
Fb3  
Rt  
Fb1  
1K  
C7  
47uF  
R2  
1K  
VREF  
C17  
2x 150uF  
R8  
1K  
Sync  
Vp2  
HDrv2  
Q4  
IRF7457  
L4  
R3  
2.5V  
@ 8A  
Comp1  
Comp2  
C8  
2200pF  
22K  
3.9uH  
Q5  
IRF7457  
LDrv2  
Fb2  
C12  
2x 150uF  
R4  
C9  
1500pF  
25K  
R5  
1K  
PGood  
PGood  
SS  
Gnd  
C10  
0.1uF  
R9  
1K  
Figure 10 - Typical application for IRU3046 configured as two independent controllers.  
Switching Frequency vs. Rt  
400  
370  
340  
310  
280  
250  
220  
190  
0
100  
200  
300  
400  
500  
600  
Rt  
Figure 11 - Switching frequency per phase vs. Rt  
Rev. 1.9  
09/27/02  
www.irf.com  
13  
IRU3046  
TYPICAL APPLICATION  
12V  
L1  
5V  
1uH  
C14  
150uF  
C1  
33uF  
C13  
1uF  
C4  
1uF  
C3  
1uF  
V
CL  
VcH1 VcH2  
HDrv1  
1/2 of Q2  
IRF7313  
L2  
C5  
1uF  
Vcc  
VccLDO  
1/2 of D1  
BAT54A  
VDDQ  
5.6uH  
2.5V @ 4A  
C16  
330uF  
LDrv1  
1/2 of Q2  
IRF7313  
3.3V  
C6  
47uF  
V
SEN33  
Q1  
VOUT3  
R7  
1K  
IRLR2703  
R1  
PGnd  
Fb1  
U1  
IRU3046  
1.8V  
@ 2A  
Fb3  
Rt  
R8  
1K  
442  
C17  
2x 150uF  
R2  
1K  
C7  
47uF  
VREF  
Sync  
1/2 of Q3  
IRF7313  
HDrv2  
L3  
R3  
1/2 of D1  
BAT54A  
V
TT  
Comp1  
Comp2  
C8  
3900pF  
1.25V @ 4A  
C12  
330uF  
4.7uH  
16.2K  
1/2 of Q3  
IRF7313  
LDrv2  
R4  
C9  
5600pF  
10K  
Fb2  
Vp2  
PGood  
PGood  
SS  
R5  
1K  
VDDQ  
Gnd  
C10  
0.1uF  
R9  
1K  
Figure 12 - Typical application for IRU3046 configured for DDR memory application.  
Rev. 1.9  
09/27/02  
www.irf.com  
14  
IRU3046  
DEMO-BOARD APPLICATION  
Dual Input: 5V and 12V to 1.5V @ 16A  
5V  
C1  
33uF  
12V  
L1  
1uH  
C2  
33uF  
L2  
1uH  
D1  
BAT54S  
C3  
0.1uF  
C4  
47uF  
C5  
330uF  
C7  
1uF  
C32  
47uF  
C31  
330uF  
C9  
1uF  
C6  
1uF  
V
CL  
VcH1 VcH2  
HDrv1  
Q1  
IRF7460  
Vcc  
C8  
1uF  
C10,C11,C12  
3x 150uF  
D2  
BAT54A  
L3 2.2uH  
VccLDO  
R3  
5m  
1.5V  
@ 16A  
C14  
470pF  
3.3V  
V
SEN33  
C15  
1uF  
R6 10  
Q2  
IRF7457  
C13  
47uF  
Q3 IRLR2703  
LDrv1  
V
OUT3  
R5  
4.7  
U1  
IRU3046  
PGnd  
2.5V  
@ 2A  
R8  
200  
Fb3  
R7 1K  
VREF  
R10  
1K  
C30  
1uF  
C18  
47uF  
Vp2  
Fb1  
Fb2  
Rt  
Sync  
R16  
29.4K  
R21  
C24  
C19,C20,C21  
3x 150uF  
R13  
15K  
Comp1  
Comp2  
2200pF  
R12  
1K  
C23  
1uF  
C34  
Q4  
IRF7460  
HDrv2  
LDrv2  
6.8nF  
16.5K  
D4  
BAT54A  
L4 3.3uH  
R17  
5m  
C26  
470pF  
PGood  
PGood  
SS  
Q5  
IRF7457  
R19  
4.7Ω  
Gnd  
C29  
0.1uF  
Figure 13 - Demo-board application of IRU3046.  
Rev. 1.9  
09/27/02  
www.irf.com  
15  
IRU3046  
DEMO-BOARD APPLICATION  
Application Parts List  
Ref Desig Description  
Value  
Qty  
2
Part#  
IRF7460  
Manuf  
Web site (www.)  
irf.com  
Q1,Q4  
Q2,Q5  
Q3  
MOSFET  
MOSFET  
MOSFET  
Controller  
Diode  
20V, 10m, 12A  
20V, 7m, 15A  
30V, 0.045, 23A  
Synchronous PWM  
Fast Switching  
Fast Switching  
IR  
IR  
IR  
IR  
IR  
IR  
2
1
1
IRF7457  
IRLR2703  
IRU3046  
U1  
D1  
1
2
BAT54S  
BAT54A  
D2,D4  
Diode  
or 1N4148  
Any  
L1,L2  
L3  
L4  
Inductor  
Inductor  
Inductor  
1µH, 6.8A  
2.2µH, 12A  
3.3µH, 10A  
2
1
1
2
2
2
6
D03316P-102  
D05022P-222HC  
D05022P-332HC  
ECS-T1CD336R  
16TPB47M  
6TPB330M  
6TPC150M  
Coilcraft  
Coilcraft  
Coilcraft  
coilcraft.com  
C1,C2  
C4,C32  
C5,C31  
Cap, Tantalum 33µF, 16V  
Cap, Poscap  
Cap, Poscap  
Panasonic maco.panasonic.co.jp  
47µF, 16V  
330µF, 6.3V  
Sanyo  
Sanyo  
Sanyo  
sanyo.com/industrial  
C10,11,12, Cap, Poscap  
19,20,21  
150µF, 6.3V, 40mΩ  
C3,C29  
C9  
C24  
Cap, Ceramic 0.1µF, Y5V, 25V  
Cap, Ceramic 1µF, X7R, 25V  
Cap, Ceramic 2200pF, X7R, 50V  
Cap, Ceramic 6800pF, X7R, 50V  
Cap, Ceramic 470pF, X7R, 50V  
Cap, Ceramic 1µF, Y5V, 16V  
2
1
1
1
2
6
ECJ-2VF1E104Z  
ECJ-3YB1E105K  
ECJ-2VB1H222K  
ECJ-2VB1H682K  
ECJ-2VC1H471J  
ECJ-2VF1C105Z  
Panasonic maco.panasonic.co.jp  
Panasonic  
Panasonic  
C34  
Panasonic  
C14,C26  
C6,7,8,  
15,23,30  
C13,C18  
R2,4,15,18 Resistor  
R16  
Panasonic  
Panasonic  
Cap, Tantalum 47µF, 10V  
2
4
1
1
2
1
3
2
1
1
ECS-T1AD476R  
Panasonic  
2.15Ω  
29.4K  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
R21  
R5,R19  
R8  
16.5K  
4.7Ω  
200, 1%  
1K, 1%  
5m, 1W, 1%  
15K  
R7,10,12  
R3,R17  
R13  
ERJ-M1WSF5MOU Panasonic  
R6  
10Ω  
Rev. 1.9  
09/27/02  
www.irf.com  
16  
IRU3046  
WAVEFORMS  
Figure 14 - Gate signals vs. inductor currents.  
Ch1: Gate signal for control FET(master) (10V/div).  
Ch2: Gate signal for control FET(slave) (20V/div).  
Ch3: Inductor current for master channel (5A/div).  
Ch4: Inductor current for slave channel (5A/div).  
VMASTER=5V, VSLAVE=12V, IOUT=10A  
Figure 15 - Inductors current matching.  
Ch1: Gate signal for sync FET(master) (10V/div).  
Ch2: Gate signal for sync FET(slave) (10V/div).  
Ch3: Inductor current for master channel (5A/div).  
Ch4: Inductor current for slave channel (5A/div).  
VMASTER=5V, VSLAVE=12V, IOUT=10A  
Figure 16 - Gate signals.  
Ch1: Gate signal for control FET(master) (10V/div).  
Ch2: Gate signal for sync FET(master) (10V/div).  
Ch3: Gate signal for control FET(slave) (20V/div).  
Ch4: Gate signal for sync FET(slave) (10V/div).  
Rev. 1.9  
09/27/02  
www.irf.com  
17  
IRU3046  
WAVEFORMS  
VIN=5V  
Vss  
10A  
VOUT  
0A  
Figure 17 - Start-up @ IOUT = 10A.  
Figure 18 - Transient response @ IOUT = 0 to 10A.  
2A  
0A  
Figure 19 - Transient response for  
LDO @ IOUT = 0 to 2A.  
IR WORLD HEADQUARTERS:233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 1.9  
09/27/02  
www.irf.com  
18  
IRU3046  
(F) TSSOP Package  
24-Pin  
A
L
Q
R1  
B
C
1.0 DIA  
R
E
N
M
P
O
PIN NUMBER 1  
F
D
DETAIL A  
DETAIL A  
G
J
H
K
24-PIN  
NOM  
0.65 BSC  
4.40  
SYMBOL  
MIN  
4.30  
0.19  
MAX  
4.50  
0.30  
DESIG  
A
B
C
6.40 BSC  
---  
D
1.00  
E
1.00  
F
7.70  
---  
7.80  
7.90  
1.10  
0.95  
0.15  
G
H
---  
0.85  
0.05  
0.90  
J
---  
K
L
128 REF  
128 REF  
---  
M
N
08  
88  
1.00 REF  
0.60  
O
P
0.50  
0.75  
0.20  
Q
R
0.09  
0.09  
---  
---  
---  
---  
R1  
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 1.9  
09/27/02  
www.irf.com  
19  
IRU3046  
PACKAGE SHIPMENT METHOD  
PKG  
PACKAGE  
PIN  
PARTS  
PARTS  
T & R  
DESIG  
DESCRIPTION  
COUNT  
PER TUBE  
PER REEL  
Orientation  
F
TSSOP Plastic  
24  
74  
2500  
Fig A  
1
1
1
Feed Direction  
Figure A  
IR WORLD HEADQUARTERS:233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 1.9  
09/27/02  
www.irf.com  
20  

相关型号:

IRU3047

DUAL SYNCHRONOUS PWM CONTROLLER WITH CURRENT SHARING CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3047CW

DUAL SYNCHRONOUS PWM CONTROLLER WITH CURRENT SHARING CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3047CWPBF

暂无描述
INFINEON

IRU3047CWTR

Dual Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20
INFINEON

IRU3048

DUAL SYNCHRONOUS PWM CONTROLLER CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3048CF

DUAL SYNCHRONOUS PWM CONTROLLER CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3048CFPBF

Dual Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO16, PLASTIC, TSSOP-16
INFINEON

IRU3048CFTR

暂无描述
INFINEON

IRU3048CS

DUAL SYNCHRONOUS PWM CONTROLLER CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3048CSPBF

Dual Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO16, PLASTIC, SOIC-16
INFINEON

IRU3048CSTR

暂无描述
INFINEON

IRU3055

5-BIT PROGRAMMABLE 3-PHASE SYNCHRONOUS BUCK CONTROLLER IC
INFINEON