IRU3146CFTR [INFINEON]

Switching Controller, Current-mode, 345kHz Switching Freq-Max, PDSO28, TSSOP-28;
IRU3146CFTR
型号: IRU3146CFTR
厂家: Infineon    Infineon
描述:

Switching Controller, Current-mode, 345kHz Switching Freq-Max, PDSO28, TSSOP-28

控制器
文件: 总30页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No.PD 94702  
IRU3146  
DUAL SYNCHRONOUS PWM CONTROLLER WITH  
CURRENT SHARING CIRCUITRYANDAUTO-RESTART  
DESCRIPTION  
FEATURES  
The IRU3146 IC combines a Dual synchronous Buck  
Dual Synchronous Controller with 180out-of-phase  
Configurable to 2-Independent Outputs or 2-Phase  
Single Output  
controller, providing a cost-effective, high performance  
and flexible solution. The IRU3146 can configured as 2-  
independent or as 2-phase controller. The 2-phase con-  
figuration is ideal for high current applications. The  
IRU3146 features 180out of phase operation which re-  
duces the required input/output capacitance and results  
to few number of capacitor quantity. Other key features  
offered by this device include two independent program-  
mable soft starts, programmable switching frequency up  
to 500KHz per phase, under voltage lockout function.  
The current limit is provided by sensing the lower  
MOSFET's on-resistance for optimum cost and perfor-  
mance.  
Current Sharing Using Inductor's DCR  
Current Limit using MOSFET's RDS(ON)  
Hiccup/Latched Current Limit  
Latched Over-Voltage Protection  
Vcc from 4.5V to 16V Input  
Programmable Switching Frequency up to 500KHz  
Two Independent Soft-Starts/ Shutdowns  
0.8V Precision Reference VoltageAvailable  
Power Good Output  
External Frequency Synchronization  
APPLICATIONS  
Embedded Computer Systems  
Telecom Systems  
2-Phase Power Supply  
Graphic Card  
DDR Memory Applications  
Point of Load Power Architectures  
D1  
C12  
12V  
C11  
C13  
C3  
C4  
C5  
C14  
V
CL VcH1  
VcH2  
VOUT3  
HDrv1  
Q2  
Q3  
Vcc  
L3  
R1  
OCSet1  
LDrv1  
Hiccup  
Sync  
R5  
1.8V @ 30A  
C16  
PGnd1  
VP2  
C15  
R10  
R11  
VREF  
D2  
BAT54A  
R2  
U1  
IRU3146  
Rt  
V
SEN1  
R7  
R8  
R3  
C8  
VSEN2  
Comp1  
Fb1  
Fb2  
R9  
L4  
C17  
R4  
C9  
Comp2  
C18  
HDrv2  
Q4  
R6  
OCSet2  
PGood  
PGood  
LDrv2  
Q5  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
Figure 1 - Typical application of IRU3146 in 2-phase configuration with inductor current sensing  
PACKAGE ORDER INFORMATION  
DEVICE  
PACKAGE  
IRU3146CF  
28-Pin TSSOP (F)  
Rev. 1.1  
6/25/04  
www.irf.com  
1
IRU3146  
ABSOLUTE MAXIMUM RATINGS  
Vcc, VCL Supply Voltage .............................................. -0.5V To 16V  
VcH1 and VcH2 Supply Voltage ................................ -0.5V To 25V  
PGOOD................. ................................................... -0.5V To 16V  
Storage Temperature Range ...................................... -40°C To 125°C  
Operating Junction Temperature Range ..................... -40°C To 125°C  
Caution: Stresses above those listed in Absolute Maximum Ratings" may cause permanent damage to the device.  
PACKAGE INFORMATION  
28-PIN TSSOP (F)  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PGood  
Gnd  
VCC  
VREF  
3
VP2  
VOUT3  
4
Rt  
Hiccup  
Sync  
5
VSEN2  
Fb2  
6
VSEN1  
7
Fb1  
Comp2  
SS2 / SD  
OCSet2  
VcH2  
8
Comp1  
SS1 / SD  
OCSet1  
VcH1  
9
10  
11  
12  
13  
14  
HDrv2  
PGnd2  
LDrv2  
HDrv1  
PGnd1  
LDrv1  
VCL  
θJA = 84°C/W  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc=12V, VcH1=VcH2=VCL=12V and TA=0 to 70°C.  
Typical values refer to TA=25°C. Low duty cycle pulse testing is used which keeps junction and case temperatures  
equal to the ambient temperature.  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP MAX UNITS  
Reference Voltage Section  
Reference Voltage  
Voltage Line Regulation  
UVLO Section  
VREF  
LREG  
0.789 0.805 0.821  
V
%/V  
5<Vcc<12  
0.02  
0.04  
4.5  
3.8  
3.8  
UVLO Threshold - Vcc  
UVLO Hysteresis - Vcc  
UVLO Threshold - VcH1  
UVLO Hysteresis - VcH1  
UVLO Threshold - VcH2  
UVLO Hysteresis - VcH2  
Supply Current Section  
Vcc Dynamic Supply Current  
VcH1 & VcH2 Dynamic Current  
VCL Dynamic Supply Current  
Vcc Static Supply Current  
VcH1/VcH2 Static Current  
VCL Static Supply Current  
UVLOVCC Supply Ramping Up  
Ramp Up and Ramp Down  
UVLOVCH1 Supply Ramping Up  
Ramp Up and Ramp Down  
UVLOVCH2 Supply Ramping Up  
Ramp Up and Ramp Down  
3.9  
3.2  
3.2  
4.2  
0.25  
3.5  
0.1  
3.5  
0.1  
V
V
V
V
V
V
Dyn ICC  
Dyn ICH  
Dyn ICL  
ICCQ  
Freq=300KHz, CL=1500pF  
Freq=300KHz, CL=1500pF  
Freq=300KHz, CL=1500pF  
SS=0V  
SS=0V  
SS=0V  
10  
15  
15  
10  
6
15  
25  
25  
15  
10  
10  
mA  
mA  
mA  
mA  
mA  
mA  
ICHQ  
ICLQ  
6
Rev. 1.1  
6/25/04  
www.irf.com  
2
IRU3146  
PARAMETER  
SYM  
TEST CONDITION  
SS=0V  
MIN  
TYP MAX UNITS  
Soft-Start Section  
Charge Current  
SSIB  
20  
25  
32  
µA  
Power Good Section  
VSENS1 Lower Trip Point  
VSENS2 Lower Trip Point  
PGood Output Low Voltage  
Error Amp Section  
PGFB1L  
PGFB2H  
VSENS1 Ramping Down  
VSENS2 Ramping Down  
ISINK=2mA  
0.8VREF 0.9VREF 0.95VREF  
0.8VREF 0.9VREF 0.95VREF  
V
V
V
0.1  
0.5  
Fb Voltage Input Bias Current  
Transconductance 1  
Transconductance 2  
Error Amp Source/Sink Current  
Input Offset Voltage for PWM1/2  
VP2 Voltage Range  
IFB1  
gm1  
gm2  
SS=3V  
-0.1  
-0.5  
2300 µmho  
2300 µmho  
140  
+5  
1.5  
µA  
1400  
1400  
60  
-5  
0.8  
100  
0
µA  
mV  
V
VOS(ERR)2  
VP2  
Fb to VREF  
Note1  
Oscillator Section  
Frequency  
Ramp Amplitude  
Synch Frequency Range  
Synch Pulse Duration  
Synch High Level Threshold  
Synch Low Level Threshold  
VOUT3 Internal Regulator  
Output Voltage  
KHz  
Freq  
VRAMP  
Rt(SET) to 30K  
Note1  
20% above free running freq  
Note1  
Note1  
255  
345  
800  
1.25  
300  
V
KHz  
ns  
V
200  
2
0.8  
6.7  
V
5.9  
50  
6.2  
V
mA  
Output Current  
Protection Section  
OVP Trip Threshold  
OVP Fault Prop Delay  
Current Limit Threshold  
Current Source  
Hiccup Duty Cycle  
Hiccup High Level Threshold  
Hiccup Low Level Threshold  
Output Drivers Section  
Rise Time  
OVP  
1.1VREF 1.15VREF 1.2VREF  
V
µs  
µA  
Output forced to 1.125VREF,Note1  
Hiccup pin pulled high, Note1  
Note1  
5
OCSet  
16  
2
20  
5
24  
%
V
V
0.8  
Tr  
Tf  
TDB  
DMAX  
DMIN  
CL=1500pF, Figure 2  
CL=1500pF, Figure 2  
Figure 2  
Fb=0.6V, FSW=300KHz  
Fb=1V  
18  
25  
50  
85  
0
50  
50  
100  
ns  
ns  
ns  
%
Fall Time  
Dead Band Time  
Max Duty Cycle  
Min Duty Cycle  
%
Min Pulse Width  
Thermal Shutdown Trip Point  
Thermal Shutdown Hysteresis  
Puls(min) FSW=300KHz, Note1  
Note 1  
ns  
C  
C  
150  
140  
20  
Note 1: Guaranteed by design but not tested for production.  
Rev. 1.1  
6/25/04  
www.irf.com  
3
IRU3146  
DEADBAND TIME  
Tf  
Tr  
90%  
High Side  
Driver HD  
2V  
10%  
Tf  
Tr  
90%  
Low Side  
Driver LD  
2V  
10%  
Deadband  
H_to_L  
Deadband  
L_to_H  
Figure 2 - Deadband time definition.  
TDB(TYP)=(Deadband H_toL+Deadband L_to -H)/2  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
1
2
PGood  
Vcc  
Power Good pin. Low when any of the outputs fall 10% below the set voltages.  
Supply voltage for the internal blocks of the IC.  
3
VOUT3  
Output of the internal LDO.  
4
5,23  
6,22  
Rt  
Switching frequency setting resistor. (see Figure 10 for selecting resistor values).  
Sense pins for OVP and PGood. For 2-Phase operation tie these pins together.  
Inverting inputs to the error amplifiers. In current sharing mode, Fb1 is connected to a  
resistor divider to set the output voltage and Fb2 is connected to programming resistor to  
achieve current sharing. In independent 2-channel mode, these pins work as feedback  
inputs for each channel.  
VSEN2, VSEN1  
Fb2,Fb1  
7,21 Comp2, Comp1 Compensation pins for the error amplifiers.  
These pins provide soft-start for the switching regulator.An internal current source charges  
8
20  
SS2 / SD  
SS1 / SD  
external capacitors that are connected from these pins to ground which ramp up the  
output of the switching regulators, preventing them from overshooting as well as limiting  
the input current. The converter can be shutdown by pulling these pins below 0.3V.  
9,19 OCSet2,OCSet1 Current limit resistor (RLIM) connection pins for output 1 and 2. The other ends of RLIMs are  
connected to the corresponding switching nodes.  
10,18 VcH2, VcH1 Supply voltage for the high side output drivers. These are connected to voltages that must  
be typically 6V higher than their bus voltages. A 1µF high frequency capacitor must be  
connected from these pins to GND to provide peak drive current capability.  
11,17 HDrv2, HDrv1 Output drivers for the high side power MOSFETs. 1)  
12,16 PGnd2, PGnd1 These pins serve as the separate grounds for MOSFET drivers and should be connected  
to the system’s ground plane.  
13,15 LDrv2, LDrv1 Output drivers for the synchronous power MOSFETs.  
14  
24  
25  
VCL  
Sync  
Hiccup  
Supply voltage for the low side output drivers. This pin should be high for normal operation  
The internal oscillator may be synchronized to an external clock via this pin.  
When pulled High, it puts the device current limit into a hiccup mode. When pulled Low,  
the output latches off, after an overcurrent event.  
Rev. 1.1  
6/25/04  
www.irf.com  
4
IRU3146  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
26  
VP2  
Non-inverting input to the second error amplifier. In the current sharing mode, it is con-  
nected to the programming resistor. In independent 2-channel mode it is connected to  
VREF pin when Fb2 is connected to the resistor divider to set the output voltage.  
Reference Voltage. The drive capability of this pin is about 2uA.  
Analog ground for internal reference and control circuitry. Connect to PGnd plane with a  
short trace.  
27  
28  
VREF  
Gnd  
1) These pins should not go negative (-0.5V), this may cause instability for the gate drive circuits. To prevent this,  
a low forward voltage drop diode is required between these pins and ground as shown in Figure 1.  
BLOCK DIAGRAM  
2
Vcc  
25uA 25uA  
Mode  
V
P2  
3V  
POR  
Bias  
Generator  
Mode  
Control  
64uA  
Max  
18 VcH1  
0.8V  
0.8V  
Mode  
8
SS2 / SD  
SS1 / SD  
64uA  
4.2V / 4.0V  
POR  
UVLO  
17 HDrv1  
3.5V / 3.3V  
3.5V / 3.3V  
20  
VcH1  
VcH2  
0.3V  
POR  
Thermal  
14  
VCL  
Shutdown  
PWM Comp1  
SS1  
15  
Error Amp1  
LDrv1  
R
SS1  
0.8V  
16 PGnd1  
3uA  
Q
22  
21  
4
Fb1  
Comp1  
Rt  
19  
OCSet1  
Set1  
Ramp1  
Ramp2  
S
20uA  
Reset Dom  
Two Phase  
Oscillator  
Set2  
Reset Dom  
10  
11  
VcH2  
24  
27  
Sync  
S
HDrv2  
SS1  
SS2  
PWM Comp2  
Hiccup  
Control  
0.8V  
VREF  
Q
R
25  
Hiccup  
Error Amp2  
Mode  
26  
P2  
V
0.3V  
SS2  
13  
LDrv2  
6
7
Fb2  
12 PGnd2  
SS2  
Comp2  
9
OCSet2  
OVP  
23  
5
V
SEN1  
3uA  
20uA  
PGood / OVP  
Regulator  
HDrv OFF / LDrv ON  
VSEN2  
1
PGood  
28  
Gnd  
VOUT3  
3
Figure 3 - Block diagram of IRU3146.  
Rev. 1.1  
6/25/04  
www.irf.com  
5
IRU3146  
FUNCTIONAL DESCRIPTION  
Introduction  
The IRU3146 is versatile device for high performance Buck  
information for current sharing. The voltage drops across  
converters. It is included of two synchronous Buck con- the current sense resistors (or DCR of inductors) are  
trollers which can be operated both in two independent measured and their difference is amplified by the slave  
mode or in 2-phase mode.  
error amplifier and compared with the ramp signal to  
The timing of the IC is provided through an internal oscil- generate the PWM pulses to match the output current.  
lator circuit. These are two out-of-phase oscillators that In this mode the SS2 pin should be floating.  
can be programmed up to 400KHz per phase.  
IRU3146  
Supply Voltage  
Comp  
0.8V  
PWM Comp1  
PWM Comp2  
Master E/A  
Vcc is the supply voltage for internal controller. The op-  
erating range is from 4.5V to 16V. It also is fed to the  
internal LDO. When Vcc is below under-voltage thresh-  
old, all MOSFET drivers will be turned off.  
L1  
VOUT  
RL1  
Fb1  
R1  
C1  
VP2  
Internal Regulator  
The regulator powers directly from VCC and generates a  
regulated voltage (Typ. 6.2V@50mA). The output is pro-  
tected for short circuit. This voltage can be used for charge  
pump circuitry as describe in Figure12.  
FB2  
L2  
R
L2  
Slave E/A  
R2  
C2  
Input Supplies UnderVoltage LockOut  
Figure 4 - Loss-less inductive current sensing  
and current sharing.  
The IRU3146 UVLO block monitors three input voltages  
(VCC, VCH1 and VCH2) to ensure reliable start up. The  
MOSFET driver output turn off when any of the supply  
voltages drops below set thresholds. Normal operation  
resumes once the supply voltages rise above the set  
values.  
In the diagram, L1 and L2 are the output inductors. RL1  
and RL2 are inherent inductor resistances. The resistor  
R1 and capacitor C1 are used to sense the average in-  
ductor current. The voltage across the capacitors C1  
and C2 represent the average current flowing into resis-  
tance RL1 and RL2. The time constant of the RC network  
should be equal or at most three times larger than the  
Independent Mode  
In this mode the IRU3146 provides control to two inde-  
pendent output power supplies with either common or  
different input voltages. The output voltage of each indi-  
vidual channel is set and controlled by the output of the  
error amplifier, which is the amplified error signal from  
the sensed output voltage and the reference voltage. The  
error amplifier output voltage is compared to the ramp  
signal thus generating fixed frequency pulses of variable  
duty-cycle, which are applied to the FET drivers, Fig-  
ure18 shows a typical schematic for such application.  
time constant L /R .  
L1  
1
L1  
RL1  
R1×C1=(1~3)×  
---(1)  
2-Phase Mode  
This feature allows to connect both outputs together to  
increase current handling capability of the converter to  
support a common load. The current sharing can be done  
either using external resistors or sensing the DCR of  
inductors (see Figure 4). In this mode, one control loop  
acts as a master and sets the output voltage as a regu-  
lar Voltage Mode Buck controller and the other control  
loop acts as a slave and monitors the current  
Figure 5 - 30A Current Sharing using Inductor sensing  
(5A/Div)  
Rev. 1.1  
6/25/04  
www.irf.com  
6
IRU3146  
25uA 25uA  
Dual Soft-Start  
64uA  
Max  
The IRU3146 has programmable soft-start to control the  
output voltage rise and limit the inrush current during  
start-up. It provides a separate Soft-Start function for each  
outputs. This will enable to sequence the outputs by  
controlling the rise time of each output through selection  
of different value soft-start capacitors. The soft-start pins  
will be connected together for applications where, both  
outputs are required to ramp-up at the same time.  
8
SS2 / SD  
SS1 / SD  
64uA  
20  
POR  
Error Amp1  
0.8V  
To ensure correct start-up, the soft-start sequence ini-  
tiates when the VCC, VCH1 and VCH2 rise above their  
threshold (4.2V and 3.5V respectively) and generate the  
Power On Reset (POR) signal. Soft-start function oper-  
ates by sourcing an internal current to charge an exter-  
nal capacitor to about 3V. Initially, the soft-start function  
clamps the E/A’s output of the PWM converter. During  
power up, the converter output starts at zero and thus  
the voltage at Fb is about 0V. A current (64µA) injects  
into the Fb pin and generates a voltage about 1.6V  
(64µA×25K) across the negative input of E/A and (see  
Figure6).  
22  
21  
Fb1  
Comp1  
Error Amp2  
26  
P2  
V
6
7
Fb2  
Comp2  
The magnitude of this current is inversely proportional to  
the voltage at soft-start pin. The 25µA current source  
starts to charge up the external capacitor. In the mean  
time, the soft-start voltage ramps up, the current flowing  
into Fb pin starts to decrease linearly and so does the  
voltage at negative input of E/A.  
Figure 6 -Soft-start circuit for IRU3146  
Output of POR  
3V  
2V  
When the soft-start capacitor is around 1V, the current  
flowing into the Fb pin is approximately 32µA. The volt-  
age at the positive input of the E/A is approximately:  
1V  
Soft-Start  
Voltage  
0V  
64uA  
Current flowing  
into Fb pin  
32µA×25K = 0.8V  
0uA  
The E/A will start to operate and the output voltage starts  
to increase. As the soft-start capacitor voltage contin-  
ues to go up, the current flowing into the Fb pin will keep  
decreasing. Because the voltage at pin of E/A is regu-  
lated to reference voltage 0.8V, the voltage at the Fb is:  
1.6V  
Voltage at negative input  
of Error Amp  
0.8V  
0.8V  
VFB = 0.8-(25K×Injected Current)  
0V  
Voltage at Fb pin  
The feedback voltage increases linearly as the injecting  
current goes down. The injecting current drops to zero  
when soft-start voltage is around 2V and the output volt-  
age goes into steady state. Figure 7 shows the theoreti-  
cal operational waveforms during soft-start.  
Figure 7 - Theoretical operational waveforms  
during soft-start.  
The output start-up time is the time period when soft-  
start capacitor voltage increases from 1V to 2V. The  
start-up time will be dependent on the size of the exter-  
nal soft-start capacitor. The start-up time can be esti-  
mated by:  
25µA×TSTART/CSS = 2V-1V  
Rev. 1.1  
6/25/04  
www.irf.com  
7
IRU3146  
For a given start up time, the soft-start capacitor can be The internal current source develops a voltage across  
calculated by:  
RSET. When the low side switch is turned on, the induc-  
tor current flows through the Q2 and results a voltage  
which is given by:  
CSS 25µA×TSTART/1V  
The soft-start is part of Over Current Protection scheme,  
during the overload or short circuit condition the external  
soft start capacitors will be charged and discharged in  
certain slope rate to achieve the hiccup mode function.  
VOCSET = IOCSET×RSET-RDS(ON)×iL  
---(2)  
25uA  
IOCSET  
Hiccup  
IRU3146  
Q1  
Q2  
VOUT  
RSET  
L1  
OCSet  
20  
SS1 / SD  
Hiccup  
Control  
3uA  
Figure 9 - Diagram of the over current sensing.  
Figure 8 - 3uA current source for discharging soft  
start-capacitor during Hiccup mode  
The critical inductor current can be calculated by set-  
ting:  
Out-of-Phase Operation  
VOCSET = IOCSET×RSET - RDS(ON)×IL = 0  
The IRU3146 drives its two output stages 180out-of-  
phase. In 2-phase configuration, the two inductor ripple  
currents cancel each other and result in a reduction of  
the output current ripple and yield a smaller output ca-  
pacitor for the same ripple voltage requirement.  
RSET×IOCSET  
ISET = IL(CRITICAL)  
=
---(3)  
RDS(ON)  
In single input voltage applications, the input ripple cur-  
rent reduces. This result in much smaller input capacitor's  
RMS current and reduces the input capacitor quantity.  
The value of RSET should be checked in an actual  
circuit to ensure that the Over Current Protection  
circuit activates as expected. The IRU3146 current  
limit is designed primarily as disaster preventing, "no  
blow up" circuit, and is not useful as a precision  
current regulator.  
Over-Current Protection  
The IRU3146 can provide two different schemes for Over-  
Current Protection (OCP). When the pin Hiccup is pulled  
high, the OCP will operate in hiccup mode. In this mode,  
during overload or short circuit, the outputs enter hiccup  
mode and stay in that mode until the overload or short  
circuit is removed. The converter will automatically re-  
cover.  
When the Hiccup pin is pulled low, the OCP scheme  
will be changed to the latch up type, in this mode the  
converter will be turned off during Overcurrent or short  
circuit. The power needs to be recycled for normal  
operation.  
Each phase has its own independent OCP circuitry.  
The OCP is performed by sensing current through the  
RDS(ON) of low side MOSFET. As shown in Figure 9, an  
external resistor (RSET) is connected between OCSet pin  
and the drain of low side MOSFET (Q2) which sets the  
current limit set point.  
In two independent mode, the output of each channel  
is protected independently which means if one output  
is under overload or short circuit condition, the other  
output will remain functional. The OCP set limit can be  
programmed to different levels by using the external  
resistors. This is valid for both hiccup mode and latch  
up mode.  
In 2-phase configuration, the OCP's output depends on  
any one channel, which means as soon as one  
channel goes to overload or short circuit condition the  
output will enter either hiccup or latch-up, dependes on  
status of Hiccup pin.  
If using one soft start capacitor in dual configuration for a  
precise power up the OCP needs to be set to latch mode.  
Rev. 1.1  
6/25/04  
www.irf.com  
8
IRU3146  
Operation Frequency Selection  
Frequency Synchronization  
The optimum operating frequency range for IRU3146 is  
300KHz per phase, theoretically the IRU3146 can be  
operated at higher switching frequency (e.g. 500KHz).  
However the power dissipation for IC, which is function  
of applied voltage, gate drivers load and switching fre-  
quency, will result in higher junction temperature of de-  
vice. It may exceed absolute maximum rating of junc-  
tion temperature, figure 18 (page 16) shows case tem-  
perature versus switching frequency with different ca-  
pacitive loads.  
The IRU3146 is capable of accepting an external digital  
synchronization signal. Synchronization will be enabled  
by the rising edge at an external clock. Per-channel switch-  
ing frequency is set by external resistor (Rt). The free  
running oscillator frequency is twice the per-channel fre-  
quency. During synchronization, Rt is selected such that  
the free running frequency is 20% below the sync fre-  
quency. Synchronization capability is provided for both 2-  
output and 2-phase configurations. When unused, the  
Sync pin will remain floating and is noise immune.  
This should be considered when using IRU3146 for such  
application. The below equation shows the relationship  
between IC's maximum power dissipation and Junction  
temperature:  
Thermal Shutdown  
Temperature sensing is provided inside IRU3146. The trip  
threshold is typically set to 140C. When trip threshold is  
exceeded, thermal shutdown turns off both FETs. Ther-  
mal shutdown is not latched and automatic restart is ini-  
tiated when the sensed temperature drops to normal  
range. There is a 20C hysteresis in the shutdown thresh-  
old.  
ΤJ-ΤA  
Pd =  
θJA  
Where:  
Tj: Maximum Operating Junction Temperature (125°C)  
TA:Ambient Temperature (70°C)  
θJA = Thermal Impedance of package (84°C/W)  
For Tj=125°C TA=70°C and θJA=84°C/W  
This will result to power dissipation of 650mW, this in-  
cludes biasing current for all four external MOSFETs  
and IC's biasing current.  
The switching frequency is determined by an external  
resistor (Rt). The switching frequency is approximately  
inversely proportioned to resistance (see Fig 10).  
Power Good  
The IRU3146 provides a power good signal. The power  
good signal should be available after both outputs have  
reached regulation. This pin needs to be externally pulled  
high. High state indicates that outputs are in regulation.  
Power good will be low if either one of the output voltages  
is 10% below the set value. There is only one power good  
for both outputs.  
Per channel Switching Frequency vs. RT  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
Over-Voltage Protection OVP  
Over-voltage is sensed through separate VOUT sense pins  
Vsen1 and Vsen2. A separate OVP circuit is provided for  
each output. Upon over-voltage condition of either one of  
the outputs, the OVP forces a latched shutdown on both  
outputs. In this mode, the upper FET drivers turn-off and  
the lower FET drivers turn-on, thus crowbaring the out-  
puts. Reset is performed by recycling either Vcc.  
Error Amplifier  
The IRU3146 is a voltage mode controller. The error am-  
plifiers are of transconductance type. In independent mode,  
each amplifier closes the loop around its own output volt-  
age. In current sharing mode, amplifier 1 becomes the  
master which regulates the common output voltage. Am-  
plifier 2 performs the current sharing function. Both am-  
plifiers are capable of operating with Type III compensa-  
tion control scheme.  
10  
20  
30  
40  
50  
RT(Kohm)  
Figure 10- Switching Frequency versus External Resistor.  
Shutdown  
The outputs can be shutdown independently by pulling  
the respective soft-start pins below 0.3V. This can be  
easily done by using an external small signal transis-  
tor. During shutdown both MOSFETs will be turned off.  
During this mode the LDO will stay on. Cycling soft-  
start pins will clear all fault latches and normal opera-  
tion will resume.  
Low Temperature Start-Up  
The controller is capable of starting at -40C ambient  
temperature.  
Rev. 1.1  
6/25/04  
www.irf.com  
9
IRU3146  
APPLICATION INFORMATION  
Soft-Start Programming  
The soft-start timing can be programmed by selecting  
the soft-start capacitance value. The start-up time of  
the converter can be calculated by using:  
Design Example:  
The following example is a typical application for IRU3146,  
the schematic is Figure18 on page17.  
VIN = 12V  
VOUT(2.5V) = 2.5V @ 10A  
VOUT(1.8V) = 1.8V @ 10A  
VOUT = Output voltage ripple 3% of VOUT  
FS = 300KHz  
Css 25×tSTART (µF)  
---(5)  
Where tSTART is the desired start-up time (ms)  
For a start-up time of 4ms for both output, the soft-start  
capacitor will be 0.1µF. Connect ceramic capacitors at  
0.1µF from SS1 pin and SS2 pin to GND.  
Output Voltage Programming  
Output voltage is programmed by reference voltage and  
external voltage divider. The Fb1 pin is the inverting input  
of the error amplifier, which is referenced to the voltage  
on non-inverting pin of error amplifier. For this applica-  
tion, this pin (VP) is connected to reference voltage (VREF).  
The output voltage is defined by using the following equa-  
tion:  
Supply VCH1 and VCH2  
To drive the high side switch, it is necessary to supply  
a gate voltage at least 4V grater than the bus voltage.  
This is achieved by using a charge pump configuration  
as shown in Figure 12. This method is simple and inex-  
pensive. The operation of the circuit is as follows: when  
the lower MOSFET is turned on, the capacitor (C1)  
charges up to VOUT3, through the diode (D1). The bus  
voltage will be added to this voltage when upper  
MOSFET turns on in next cycle, and providing supply  
voltage (VCH1) through diode (D2). Vc is approximately:  
R6  
R5  
VOUT = VP × 1 +  
---(4)  
( )  
VP2 = VREF = 0.8V  
When an external resistor divider is connected to the  
output as shown in Figure 11.  
VCH1 VOUT3 + VBUS - (VD1 + VD2)  
VOUT  
Capacitors in the range of 0.1µF and 1µF are generally  
adequate for most applications. The diode must be a  
fast recovery device to minimize the amount of charge  
fed back from the charge pump capacitor into VOUT3.  
The diodes need to be able to block the full power rail  
voltage, which is seen when the high side MOSFET is  
switched on. For low voltage application, schottky di-  
odes can be used to minimize forward drop across the  
diodes at start up.  
IRU3146  
R
6
V
REF  
Fb  
R5  
V
P
Figure 11 - Typical application of the IRU3146 for  
programming the output voltage.  
D1  
D2  
Equation (4) can be rewritten as:  
C3  
VOUT  
R6 = R5 ×  
- 1  
V
OUT3  
( VP )  
V
BUS  
VCH1  
Will result to:  
VOUT(2.5V) = 2.5V  
VREF = 0.8V  
Regulator  
C2  
C1  
Q1  
VOUT(1.8V) = 1.8V  
VREF = 0.8  
R7= 1.24K, R8 = 1K  
L2  
R9= 2.14K, R5= 1K  
HDrv  
Q2  
IRU3146  
If the high value feedback resistors are used, the input  
bias current of the Fb pin could cause a slight increase  
in output voltage. The output voltage can be set more  
accurately by using low value, precision resistors.  
Figure 12 - Charge pump circuit.  
Rev. 1.1  
6/25/04  
www.irf.com  
10  
IRU3146  
For i(1.8V) = 30%(IO(1.8V) ), then the output inductor will  
be:  
Input Capacitor Selection  
The 1800 out of phase will reduce the RMS value of the  
ripple current seen by input capacitors. This reduces  
numbers of input capacitors. The input capacitors must  
be selected that can handle both the maximum ripple  
RMS at highest ambient temperature as well as the  
maximum input voltage. The RMS value of current ripple  
for duty cycles under 50% is expressed by:  
L3 = 1.7µH  
Panasonic provides a range of inductors in different val-  
ues and low profile for large currents.  
Choose ETQP6F1R8BFA (1.71µH, 14A, 3.3m) both  
for L3 and L4.  
For 2-phase application, equation (7) can be used for  
calculating the inductors value. In such case the induc-  
tor ripple current is usually chosen to be between 10-  
40% of maximum phase current.  
IRMS= (I12D1(1-D1)+I22D2(1-D2)-2I1I2D1D2) --- (6)  
Where:  
IRMS is the RMS value of the input capacitor current  
D1 and D2 are the duty cycle for each output  
I1 and I2 are the current for each output  
For this application the IRMS =4.8A  
Output Capacitor Selection  
The criteria to select the output capacitor is normally  
based on the value of the Effective Series Resistance  
(ESR). In general, the output capacitor must have low  
enough ESR to meet output ripple and load transient  
requirements, yet have high enough ESR to satisfy sta-  
bility requirements. The ESR of the output capacitor is  
calculated by the following relationship:  
(ESL, Equivalent Series Inductance is neglected)  
For higher efficiency, low ESR capacitors is recom-  
mended.  
Choose two Poscap from Sanyo 16TPB47M (16V, 47µF,  
70m) with a maximum allowable ripple current of 1.4A  
for inputs of each channel.  
VO  
IO  
Inductor Selection  
ESR ≤  
---(8)  
The inductor is selected based on operating frequency,  
transient performance and allowable output voltage ripple.  
Low inductor value results to faster response to step  
load (high i/t) and smaller size but will cause larger  
output ripple due to increase of inductor ripple current.  
As a rule of thumb, select an inductor that produces a  
ripple current of 10-40% of full load DC.  
Where:  
VO = Output Voltage Ripple  
i = Inductor Ripple Current  
VO = 3% of VO will result to ESR(2.5V) =19.7mand  
ESR(1.8V) =16mΩ  
The Sanyo TPC series, Poscap capacitor is a good choice.  
The 6TPC330M, 330µF, 6.3V has an ESR 40m. Se-  
lecting two of these capacitors in parallel for 2.5V out-  
put, results to an ESR of 20mwhich achieves our  
low ESR goal. And selecting four of these capacitors in  
parallel for 1.8V output, results to an ESR of 10mΩ  
which achieves our low ESR goal.  
For the buck converter, the inductor value for desired  
operating ripple current can be determined using the fol-  
lowing relation:  
i  
t  
1
fS  
VOUT  
VIN  
VIN - VOUT = L×  
; t = D×  
; D =  
The capacitors value must be high enough to absorb the  
inductor's ripple current.  
VOUT  
L = (VIN - VOUT)×  
---(7)  
VIN×∆i×fS  
Power MOSFET Selection  
Where:  
The IRU3146 uses four N-Channel MOSFETs. The se-  
lections criteria to meet power transfer requirements is  
based on maximum drain-source voltage (VDSS), gate-  
source drive voltage (VGS), maximum output current, On-  
resistance RDS(ON) and thermal management.  
VIN = Maximum Input Voltage  
VOUT = Output Voltage  
i = Inductor Ripple Current  
fS = Switching Frequency  
t = Turn On Time  
D = Duty Cycle  
The both control and synchronous MOSFETs must have  
a maximum operating voltage (VDSS) that exceeds the  
maximum input voltage (VIN).  
For i(2.5V) = 38%(IO(2.5V) ), then the output inductor will  
be:  
L4 = 1.71µH  
Rev. 1.1  
6/25/04  
www.irf.com  
11  
IRU3146  
The gate drive requirement is almost the same for both  
MOSFETs. Logic-level transistor can be used and cau-  
tion should be taken with devices at very low VGS to pre-  
vent undesired turn-on of the complementary MOSFET,  
which results a in shoot-through.  
VDS(OFF)  
tr + tf  
T
PSW =  
Where:  
×
× ILOAD  
---(9)  
2
VDS(OFF) = Drain to Source Voltage at off time  
tr = Rise Time  
tf = Fall Time  
T = Switching Period  
ILOAD = Load Current  
The total power dissipation for MOSFETs includes con-  
duction and switching losses. For the Buck converter,  
the average inductor current is equal to the DC  
load current. The conduction loss is defined as:  
VDS  
90%  
2
PCOND(Upper Switch) = ILOAD×RDS(ON)×D×ϑ  
2
PCOND(Lower Switch) = ILOAD×RDS(ON)×(1 - D)×ϑ  
ϑ = RDS(ON) Temperature Dependency  
10%  
V
GS  
The RDS(ON) temperature dependency should be consid-  
ered for the worst case operation. This is typically given  
in the MOSFET data sheet. Ensure that the conduction  
losses and switching losses do not exceed the package  
ratings or violate the overall thermal budget.  
td(OFF)  
td(ON)  
tr  
tf  
Figure 13 - Switching time waveforms.  
From IRF7457 data sheet we obtain:  
IRF7457  
Choose IRF7457 both for control and synchronous  
MOSFET. This device provide low on-resistance in a com-  
pact SOIC 8-Pin package.  
tr = 16ns  
tf = 7ns  
These values are taken under a certain condition test.  
For more details please refer to the IRF7457 data sheet.  
The MOSFET have the following data:  
IRF7457  
VDSS = 20V  
ID = 15A  
RDS(ON) = 7mΩ  
By using equation (9), we can calculate the total switch-  
ing losses.  
PSW(TOTAL,2.5V) = 0.414W  
PSW(TOTAL,1.8V) = 0.414W  
The total conduction losses for each output will be:  
PCON(TOTAL, 2.5V) = PCON(UPPER) + PCON(LOWER)  
PCON(TOTAL, 2.5V) = 1.0W  
Programming the Over-Current Limit  
The over-current threshold can be set by connecting a  
resistor (RSET) from drain of low side MOSFET to the  
OCSet pin. The resistor can be calculated by using equa-  
tion (3).  
PCON(TOTAL, 1.8V) = PCON(UPPER) + PCON(LOWER)  
PCON(TOTAL, 1.8V) = 1.0W  
The RDS(ON) has a positive temperature coefficient and it  
should be considered for the worse case operation.  
The switching loss is more difficult to calculate, even  
though the switching transition is well understood. The  
reason is the effect of the parasitic components and  
switching times during the switching procedures such RDS(ON) = 7mΩ×1.5 = 10.5mΩ  
as turn-on / turnoff delays and rise and fall times. The  
ISET IO(LIM) = 10A×1.5 = 15A  
control MOSFET contributes to the majority of the switch- (50% over nominal output current)  
ing losses in a synchronous Buck converter. The syn-  
chronous MOSFET turns on under zero voltage condi-  
tions, therefore, the switching losses for synchronous  
MOSFET can be neglected. With a linear approxima-  
tion, the total switching loss can be expressed as:  
This results to:  
RSET = R1=R6=7.8KΩ  
Rev. 1.1  
6/25/04  
www.irf.com  
12  
IRU3146  
Feedback Compensation  
The ESR zero of the output capacitor is expressed as  
follows:  
The IRU3146 is a voltage mode controller; the control  
loop is a single voltage feedback path including error  
amplifier and error comparator. To achieve fast transient  
response and accurate output regulation, a compensa-  
tion circuit is necessary. The goal of the compensation  
network is to provide a closed loop transfer function with  
the highest 0dB crossing frequency and adequate phase  
margin (greater than 45).  
1
FESR =  
---(10A)  
2π×ESR×Co  
VOUT  
R6  
Fb  
Comp  
The output LC filter introduces a double pole, –40dB/  
decade gain slope above its corner resonant frequency,  
and a total phase lag of 180(see Figure 14). The Reso-  
nant frequency of the LC filter is expressed as follows:  
Ve  
E/A  
R
5
C9  
Vp=VREF  
R4  
1
Gain(dB)  
FLC =  
---(10)  
2π× LO×CO  
H(s) dB  
Where: Lo is the output inductor  
For 2-phase application, the effective output  
inductance should be used  
Frequency  
FZ  
Co is the total output capacitor  
Figure 15 - Compensation network without local  
feedback and its asymptotic gain plot.  
Figure 14 shows gain and phase of the LC filter. Since  
we already have 180phase shift just from the output  
The transfer function (Ve / VOUT) is given by:  
Gain  
0dB  
Phase  
0ꢀ  
R5  
1 + sR4C9  
sC9  
H(s) = gm×  
×
---(11)  
-40dB/decade  
( )  
R6 + R5  
The (s) indicates that the transfer function varies as a  
function of frequency. This configuration introduces a gain  
and zero, expressed by:  
-180  
Frequency  
FLC  
F
LC Frequency  
Figure14 - gain and phase of LC filter  
R5  
R6+R5  
|H(s=j×2π×FO)| = gm×  
×R4  
---(12)  
The IRU3146’s error amplifier is a differential-input  
transconductance amplifier. The output is available for  
DC gain control or AC phase compensation.  
The E/A can be compensated with or without the use of  
local feedback. When operated without local feedback,  
the transconductance properties of the E/A become evi-  
dent and can be used to cancel one of the output filter  
poles. This will be accomplished with a series RC circuit  
from Comp pin to ground as shown in Figure 15.  
1
FZ =  
---(13)  
2π×R4×C9  
|H(s)| is the gain at zero cross frequency.  
First select the desired zero-crossover frequency (FO1):  
FO1 > FESR and FO1 (1/5 ~ 1/10)×fS  
Note that this method requires the output capacitor to  
have enough ESR to satisfy stability requirements. In  
general, the output capacitor’s ESR generates a zero  
typically at 5KHz to 50KHz which is essential for an  
acceptable phase margin.  
Rev. 1.1  
6/25/04  
www.irf.com  
13  
IRU3146  
For a general solution for unconditional stability for ce-  
ramic output capacitor with very low ESR or any type of  
output capacitors, in a wide range of ESR values we  
should implement local feedback with a compensation  
network. The typically used compensation network for a  
voltage-mode controller is shown in Figure 16.  
1
gm  
VOSC  
VIN  
FO1×FESR  
R5 + R6  
R5  
R4 =  
×
×
×
---(14)  
2
FLC  
Where:  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
FO1 = Crossover Frequency  
VOUT  
ZIN  
C12  
FESR = Zero Frequency of the Output Capacitor  
FLC = Resonant Frequency of the Output Filter  
R5 and R6 = Resistor Dividers for Output Voltage  
Programming  
C10  
R7  
C11  
R8  
R6  
Zf  
gm = Error Amplifier Transconductance  
For V2.5V:  
VIN = 12V  
VOSC = 1.25V  
FO1 = 30KHz  
FESR = 12KHz  
Fb  
Ve  
E/A  
FLC = 4.75KHz  
R5 = 1K  
R6 = 2.14K  
Comp  
R5  
Vp=VREF  
Gain(dB)  
gm = 2000µmho  
H(s) dB  
This results to R4=2.61K  
Choose R4=2.61K  
Frequency  
F
Z
1
F
Z
2
F
P
2
FP3  
To cancel one of the LC filter poles, place the zero be-  
fore the LC filter resonant frequency pole:  
FZ 75%FLC  
Figure 16- Compensation network with local  
feedback and its asymptotic gain plot.  
1
FZ 0.75×  
---(15)  
2π LO × CO  
In such configuration, the transfer function is given by:  
For:  
Ve  
VOUT  
1 - gmZf  
1 + gmZIN  
Lo = 1.71µH  
Co = 660µF  
FZ = 3.56KHz  
R4 = 2.61K  
=
The error amplifier gain is independent of the transcon-  
ductance under the following condition:  
Using equations (13) and (15) to calculate C9, we get:  
gmZf >> 1 and gmZIN >>1  
---(16)  
C9 17.18nF; Choose C9 =18nF  
By replacing ZIN and Zf according to Figure 16, the trans-  
former function can be expressed as:  
Same calcuation For V1.8V will result to: R3 = 2.8K and  
C8 = 22nF  
(1+sR7C11)×[1+sC10(R6+R8)]  
1
×
H(s) =  
One more capacitor is sometimes added in parallel with  
C9 and R4. This introduces one more pole which is mainly  
used to suppress the switching noise. The additional  
sR6(C12+C11)  
C12C11  
1+sR7  
×(1+sR8C10)  
[ (C12+C11)]  
pole is given by:  
1
As known, transconductance amplifier has high imped-  
ance (current source) output, therefore, consider should  
be taken when loading the E/A output. It may exceed its  
source/sink output current capability, so that the ampli-  
fier will not be able to swing its output voltage over the  
necessary range.  
FP =  
C9×CPOLE  
2π×R4×  
C9 + CPOLE  
The pole sets to one half of switching frequency which  
results in the capacitor CPOLE:  
1
1
CPOLE =  
π×R4×fS  
1
C9  
π×R4×fS -  
The compensation network has three poles and two ze-  
ros and they are expressed as follows:  
fS  
2
for FP <<  
Rev. 1.1  
6/25/04  
www.irf.com  
14  
IRU3146  
FP1 = 0  
FP2 =  
Compensation for Slave Error Amplfier for 2-Phase  
Configuration  
1
The slave error amplifier is a differential-input transcon-  
ductance amplifier, in 2-phase configuration the main goal  
for the slave feed back loop is to control the inductor  
current to match the masters inductor current as well  
provides highest bandwidth and adequate phase margin  
for overall stability. The following analysis is valid for both  
using external current sense resistor and using DCR of  
inductors.  
2π×R8×C10  
1
1
FP3 =  
2π×R7×C12  
C12×C11  
(C12+C11 )  
2π×R7×  
1
FZ1 =  
2π×R7×C11  
1
1
FZ2 =  
2π×C10×(R6 + R8)  
The transfer function of power stage is expressed by:  
2π×C10×R6  
IL2(s)  
Ve(s)  
VIN - VOUT  
sL2 × VOSC  
Cross Over Frequency:  
G(s) =  
=
---(18)  
VIN  
FO = R7×C10×  
VOSC  
1
---(17)  
×
2π×Lo×Co  
Where:  
VIN = Input Voltage  
VOUT = Output Voltage  
L2 = Output Inductor  
VOSC = Oscillator Peak Voltage  
Where:  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
Lo = Output Inductor  
Co = Total Output Capacitors  
As shown the transfer function is a function of inductor  
current.  
The stability requirement will be satisfied by placing the  
poles and zeros of the compensation network according  
to following design rules. The consideration has been  
taken to satisfy condition (16) regarding transconduc-  
tance error amplifier.  
The transfer function for the compensation network is  
given by equation (19), when using a series RC circuit  
as shown in Figure 17:  
RS1  
Ve(s)  
RS2 × IL2(s)  
1 + sC2R2  
---(19)  
g
=
m×  
×
D(s) =  
These design rules will give a crossover frequency ap-  
proximately one-tenth of the switching frequency. The  
higher the band width, the potentially faster the load tran-  
sient response. The DC gain will be large enough to pro-  
vide high DC-regulation accuracy (typically -5dB to -12dB).  
The phase margin should be greater than 45for overall  
stability.  
( )  
( )  
RS2  
sC2  
IL2  
L
2
Fb2  
Comp2  
Ve  
R
S2  
Based on the frequency of the zero generated by ESR  
versus crossover frequency, the compensation type can  
be different. The table below shows the compensation  
type and location of crossover frequency.  
E/A2  
Vp2  
R2  
RS1  
C2  
L
1
Compensator  
Type  
Location of Zero  
Crossover Frequency  
(FO)  
Typical  
Output  
I
L1  
Capacitor  
Electrolytic,  
Tantalum  
Tantalum,  
Ceramic  
Figure 17 - The PI compensation network  
for slave channel.  
Type II (PI)  
FPO < FZO < FO < fS/2  
Type III (PID)  
Method A  
FPO < FO < FZO < fS/2  
FPO < FO < fS/2 < FZO  
The loop gain function is:  
Type III (PID)  
Method B  
Ceramic  
H(s)=[G(s) × D(s) × RS2]  
Table - The compensation type and location of zero  
crossover frequency.  
Details are dicussed in application Note AN-1043 which  
can be downloaded from the IR Web-Site.  
RS1  
RS2  
1+sR2C2  
VIN-VOUT  
sL2×VOSC  
×
×
H(s)=RS2× gm×  
( ) ( ) ( )  
sC2  
Rev. 1.1  
6/25/04  
www.irf.com  
15  
IRU3146  
Layout Consideration  
Select a zero crossover frequency for control loop (FO2)  
1.25 times larger than zero crossover frequency for volt-  
age loop (FO1):  
The layout is very important when designing high fre-  
quency switching converters. Layout will affect noise  
pickup and can cause a good design to perform with  
less than expected results.  
Fo2 1.25%xF01  
VIN - VOUT  
2π×Fo×L2×VOSC  
Start by placing the power components. Make all the  
connections in the top layer with wide, copper filled ar-  
eas. The inductor, output capacitor and the MOSFET  
should be as close to each other as possible. This helps  
to reduce the EMI radiated by the power traces due to  
the high switching. Place input capacitor near to the  
drain of the high-side MOSFET.  
H(Fo) = gm×RS1×R2×  
=1 ---(20)  
From (20), R2 can be express as:  
1
2π × FO2 × L2 × VOSC  
---(21)  
R2 =  
×
VIN - VOUT  
gm × RS1  
The layout of driver section should be designed for a low  
resistance (a wide, short trace) and low inductance (a  
wide trace with ground return path directly beneath it),  
this directly affects the driver's performance.  
Set the zero of compensator to be half of FLC(SLAVE), the  
compensator capacitor, C2, can be calculated as:  
1
FLC(SLAVE) =  
To reduce the ESR, replace the one input capacitor with  
two parallel ones. The feedback part of the system should  
be kept away from the inductor and other noise sources  
and must be placed close to the IC. In multilayer PCB's,  
use one layer as power ground plane and have a sepa-  
rate control circuit ground (analog ground), to which all  
signals are referenced. The goal is to localize the high  
current paths to a separate loops that does not interfere  
with the more sensitive analog control function. These  
two grounds must be connected together on the PC board  
layout at a single point.  
2π L2×COUT  
FLC(SLAVE)  
Fz =  
2
1
C2 =  
---(22)  
2π × R2 × Fz  
When using the DCR of inductors as current sense ele-  
ment, replace RS1 in equation (21) with DCR value of in-  
ductor.  
Switching Frequency vs. Case Temp  
90  
80  
70  
60  
50  
40  
30  
100pF  
1000pF  
1800pF  
3300pF  
200  
300  
400  
500  
600  
700  
Freq (KHz)  
Figure18- Case Temperature versus Switching Frequency at Room Temperature  
Test Condition: Vin=Vcl=Vch1=Vch2=12V, Capacitors used as loads for output  
drivers.  
Rev. 1.1  
6/25/04  
www.irf.com  
16  
IRU3146  
D1  
BAT54S  
C12  
1uF  
L1  
12V  
1uH  
C11  
0.1uF  
C1  
47uF  
C2  
47uF  
C14  
2x 47uF  
16TPB47M  
C13  
1uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRF7457  
R1  
7.8K  
C5  
1uF  
OCSet1  
LDrv1  
1.8V @ 10A  
C16  
4x 330uF, 40m  
1.7uH  
Q3  
Hiccup  
IRF7457  
PGnd1  
Sync  
6TPB330M  
V
P2  
R20  
1.24K  
VSEN1  
VREF  
D2  
BAT54A  
R21  
1K  
R2  
33K  
R7  
1.24K  
U1  
IRU3146  
Rt  
V
SEN1  
V
SEN1  
R3  
VSEN2  
C8  
20nF  
VSEN2  
R8  
1K  
Comp1  
Fb1  
Fb2  
2.8K  
R5  
1K  
R9  
C17  
2x 47uF  
16TPB47M  
R4  
C9  
18nF  
Comp2  
Q4  
2.61K  
HDrv2  
L4  
2.14K  
IRF7457  
R6  
7.8K  
OCSet2  
2.5V @ 10A  
1.7uH  
Q5  
IRF7457  
PGood  
PGood  
C18  
2x 330uF, 40m  
6TPB330M  
LDrv2  
SS1 / SD  
SS2 / SD  
R22  
2.24K  
PGnd2  
Gnd  
C10  
0.1uF  
VSEN2  
C15  
0.1uF  
R23  
1K  
Figure 19 - Typical application of IRU3146.  
12V input and two independent outputs.  
Rev. 1.1  
6/25/04  
www.irf.com  
17  
IRU3146  
TYPICAL OPERATING CHARACTERISTICS  
Test Conditions:  
VIN=12V, VOUT1=2.5V, IOUT1=0-10A, VOUT2=1.8V, IOUT2=0-10A, Fs=300KHz  
Figure 21 - Input Supply Ramps up/down.  
Ch1: 1.8V, Ch2: 2.5V, Ch3: Input Supply  
Figure 20 - Input Supply Ramps up.  
Ch1: 1.8V, Ch2: 2.5V, Ch3: Input Supply  
Figure 22 - Normal condition at No Load.  
Ch1: HDrv2, Ch2: HDrv1, Ch3 and Ch4: Inductor  
Currents  
Figure 23 - Normal condition at 10A Load.  
Ch1: HDrv2, Ch2: HDrv1, Ch3 and Ch4: Inductor  
Currents  
Ch3:ch4: 5A/div  
Ch3:ch4: 5A/div  
Rev. 1.1  
6/25/04  
www.irf.com  
18  
IRU3146  
TYPICAL OPERATING CHARACTERISTICS  
Test Conditions:  
VIN=12V, VOUT1=2.5V, IOUT1=0-10A, VOUT2=1.8V, IOUT2=0-10A, Fs=300KHz  
Figure 25 - Soft_Start.  
Ch1: Vin, Ch2: Vout3(LDO), Ch3: SS2, Ch4: SS2  
Figure 24 - Soft_Start.  
Ch1: SS2, Ch2: 1.8V, Ch3: SS1, Ch4: 2.5V  
Figure 27 - Deadband Time (2.5V Output).  
Ch1: LDrv1, Ch2: HDrv1, Ch3: Switching Node  
Figure 26 - Deadband Time (1.8V Output).  
Ch1: LDrv2, Ch2: HDrv2, Ch3: Switching Node  
Rev. 1.1  
6/25/04  
www.irf.com  
19  
IRU3146  
TYPICAL OPERATING CHARACTERISTICS  
Test Conditions:  
VIN=12V, VOUT1=2.5V, IOUT1=0-10A, VOUT2=1.8V, IOUT2=0-10A, Fs=300KHz  
Figure 29 - Shut Down (pulling down the SS2 pin).  
Figure 28 - Shut Down (Pulling down the SS1 pin).  
Ch1: HDrv1, Ch2: LDrv1, Ch3: SS1  
Ch1: HDrv2, Ch2: LDrv2, Ch3: SS2  
Figure 31 - High side and Low side Drivers peak  
Current for 2.5V Output  
Ch1: HDrv1, Ch2: LDrv1, Ch3: High Side Peak  
Current, Ch4: Low Side Peak Current  
Figure 30 - High side and Low side Drivers peak  
Current for 1.8V Output  
Ch1: HDrv2, Ch2: LDrv2, Ch3: High Side Peak  
Current, Ch4: Low Side Peak Current  
Ch3:ch4: 1A/div  
Ch3:ch4: 1A/div  
Rev. 1.1  
6/25/04  
www.irf.com  
20  
IRU3146  
TYPICAL OPERATING CHARACTERISTICS  
Test Conditions:  
VIN=12V, VOUT1=2.5V, IOUT1=0-10A, VOUT2=1.8V, IOUT2=0-10A, Fs=300KHz  
Figure 32 - Load Transient Response.  
Ch2: 2.5V, Ch4: Step Load (0-10A)  
Figure 33 - Load Transient Response.  
Ch1: 1.8V, Ch3: Step Load (0-10A)  
Ch3:ch4: 5A/div  
Ch3:ch4: 5A/div  
Figure 35 - Short Circuit Condition (Hiccup Mode).  
Ch1: SS1 pin, Ch2: SS2 pin, Ch3 and Ch4 : Inductor  
Currents  
Figure 34 - Power Good Signal  
Ch1: Input Supply, Ch2: 2.5V Output, Ch3: 1.8V  
Output, Ch4 : Power Good Signal  
Ch3:ch4: 10A/div  
Rev. 1.1  
6/25/04  
www.irf.com  
21  
IRU3146  
TYPICALAPPLICATION  
D1  
BAT54S  
C12  
L1  
1uF  
12V  
1uH  
C11  
0.1uF  
C1  
C2  
47uF  
47uF  
C14  
3x 47uF  
C13  
1uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRFR3706  
R1  
12K  
C5  
1uF  
OCSet1  
LDrv1  
1uH, 2mDCR  
Q3  
Hiccup  
Sync  
R5  
IRFR3711  
1.8V @ 30A  
C16  
8x 330uF, 40m  
6TPB330M  
PGnd1  
1K  
C15  
1uF  
VP2  
VREF  
D2  
V
SEN  
BAT54A  
R2  
33K  
U1  
IRU3146  
R20  
1.24K  
Rt  
R21  
1K  
V
SEN1  
R7  
1.24K  
VSEN  
R3  
C8  
22nF  
VSEN2  
Comp1  
Fb1  
Fb2  
2.2K  
R8  
1K  
R9  
1K  
L4  
C6 120pF  
C17  
R4  
3x 47uF  
C9  
Comp2  
C18  
1uF  
12nF  
8K  
Q4  
HDrv2  
IRFR3706  
R6  
OCSet2  
C7  
82pF  
1uH, 2mDCR  
12K  
Q5  
PGood  
PGood  
LDrv2  
IRFR3711  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
0.1uF  
Figure 36 - 2-phase operation with inductor current sensing.  
12V to 1.8V @ 30A output  
Rev. 1.1  
6/25/04  
www.irf.com  
22  
IRU3146  
TYPICALAPPLICATION  
D1  
BAT54S  
C12  
L1  
1uF  
12V  
1uH  
C11  
0.1uF  
C1  
C2  
47uF  
47uF  
C14  
3x 47uF  
C13  
1uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRFR3706  
R1  
12K  
R5  
2m  
C5  
1uF  
OCSet1  
LDrv1  
1.8V @ 30A  
C16  
8x 330uF, 40m  
1uH  
Q3  
Hiccup  
Sync  
IRFR3711  
PGnd1  
VP2  
6TPB330M  
R20  
1.24K  
VREF  
D2  
VSEN  
BAT54A  
R2  
33K  
U1  
IRU3146  
R21  
1K  
Rt  
V
SEN1  
R7  
1.24K  
R3  
V
SEN  
C8  
22nF  
VSEN2  
Comp1  
Fb1  
Fb2  
2.2K  
R8  
1K  
C6 120pF  
C17  
3x 47uF  
R4  
C9  
12nF  
8K  
Comp2  
Q4  
IRFR3706  
HDrv2  
L4  
R9  
2m  
R6  
OCSet2  
C7  
82pF  
1uH  
12K  
Q5  
IRFR3711  
PGood  
PGood  
LDrv2  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
0.1uF  
Figure 37 - 2-phase operation with resistor current sensing.  
12V to 1.8V @ 30A output  
Rev. 1.1  
6/25/04  
www.irf.com  
23  
IRU3146  
TYPICALAPPLICATION  
L2  
5V  
1uH  
C17  
C18  
3x 150uF  
150uF  
C19  
0.1uF  
D3  
D1  
BAT54S  
BAT54S  
C12  
1uF  
C20  
1uF  
C13  
1uF  
L1  
12V  
C11  
0.1uF  
1uH  
C2  
47uF  
C1  
C14  
3x 47uF  
C3  
1uF  
C4  
1uF  
47uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRFR3706  
R1  
C5  
1uF  
OCSet1  
LDrv1  
1.8V @ 30A  
C16  
8x 330uF, 40m  
6TPB330M  
1uH,  
2mΩ  
12K  
Q3  
DCR  
R5  
1K  
Hiccup  
Sync  
IRFR3711  
PGnd1  
C21  
1uF  
VP2  
R20  
VREF  
D2  
1.24K  
BAT54A  
R2  
33K  
U1  
IRU3146  
Rt  
R21  
1K  
V
SEN1  
R7  
1.24K  
R3  
C8  
22nF  
VSEN2  
Comp1  
Fb1  
Fb2  
2.2K  
C22  
1uF  
R8  
1K  
C6 120pF  
R9  
1K  
R4  
C9  
Q4  
IRFR3706  
R6  
12K  
IRFR3711  
Comp2  
HDrv2  
4.7nF  
C7  
23K  
L4  
1uH,  
OCSet2  
LDrv2  
27pF  
Q5  
PGood  
PGood  
2mDCR  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
0.1uF  
Figure 38 - Typical application of IRU3146 using 5V and 12V supplies to generate single output voltage.  
1.8V @ 30A using inductor sensing.  
Rev. 1.1  
6/25/04  
www.irf.com  
24  
IRU3146  
TYPICALAPPLICATION  
L2  
1uH  
5V  
C17  
3x 150uF  
C18  
150uF  
C19  
0.1uF  
D3  
D1  
BAT54S  
BAT54S  
C20  
1uF  
C13  
1uF  
C12  
1uF  
L1  
12V  
1uH  
C11  
0.1uF  
C1  
47uF  
C2  
47uF  
C14  
3x 47uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRFR3706  
R1  
R5  
2m  
C5  
1uF  
OCSet1  
LDrv1  
1.8V @ 30A  
C16  
1uH  
15K  
Q3  
Hiccup  
Sync  
IRFR3711  
8x 330uF, 40m  
PGnd1  
VP2  
6TPB330M  
R20  
1.24K  
VREF  
D2  
BAT54A  
R2  
33K  
U1  
IRU3146  
R21  
1K  
Rt  
VSEN1  
R7  
R3  
C8  
22nF  
1.24K  
V
SEN2  
Comp1  
Fb1  
Fb2  
2.2K  
R8  
1K  
C6 120pF  
R4  
C9  
Comp2  
Q4  
IRFR3706  
4.7nF  
C7  
23K  
HDrv2  
L4  
R9  
3m  
R6  
OCSet2  
27pF  
1uH  
10K  
Q5  
IRFR3711  
PGood  
PGood  
LDrv2  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
0.1uF  
Figure 39 - Typical application of IRU3146.  
1.8V @ 30A output with 5V and 12V input and different input current setting.  
(5V @ 5A and 12V @ 3A)  
Rev. 1.1  
6/25/04  
www.irf.com  
25  
IRU3146  
TYPICALAPPLICATION  
D1  
BAT54S  
C12  
L1  
1uF  
5V  
1uH  
C11  
0.1uF  
C1  
47uF  
C2  
47uF  
C14  
3x 330uF  
6TPB330M  
C13  
1uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRF7457  
R1  
C5  
1uF  
OCSet1  
LDrv1  
1.8V @ 10A  
C16  
4x 330uF, 40m  
6TPB330M  
1uH  
10K  
Q3  
Hiccup  
IRF7460  
R20  
1.24K  
PGnd1  
Sync  
VP2  
VSEN1  
VREF  
D2  
BAT54A  
R21  
1K  
R2  
33K  
R7  
1.24K  
U1  
IRU3146  
Rt  
V
SEN1  
R3  
6K  
C8  
8.2nF  
VSEN2  
R8  
1K  
Comp1  
Fb1  
Fb2  
R5  
1K  
R9  
C17  
3x 330uF  
6TPB330M  
C6 47pF  
R4  
C9  
4.7nF  
15K  
Comp2  
Q4  
HDrv2  
L4  
1/2 IRF7910  
2.14K  
R6  
OCSet2  
2.5V @ 5A  
C7  
27pF  
3.3uH  
8.5K  
Q5  
PGood  
PGood  
C18  
2x 330uF, 40m  
6TPB330M  
LDrv2  
1/2 IRF7910  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
0.1uF  
C15  
0.1uF  
R22  
2.14K  
VSEN2  
R23  
1K  
Figure 40 - Single 5V input and two independent outputs.  
Rev. 1.1  
6/25/04  
www.irf.com  
26  
IRU3146  
TYPICALAPPLICATION  
12V  
L1  
5V  
1uH  
C14  
C1  
47uF  
C2  
47uF  
3x 330uF  
6TPB330M  
C13  
1uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
IRF7457  
R1  
C5  
1uF  
OCSet1  
LDrv1  
1.8V @ 10A  
C16  
4x 330uF, 40m  
1uH  
10K  
Q3  
Hiccup  
IRF7460  
R20  
1.24K  
PGnd1  
Sync  
6TPB330M  
VP2  
VSEN1  
V
REF  
D2  
BAT54A  
R21  
1K  
R2  
33K  
R7  
1.24K  
U1  
IRU3146  
Rt  
V
SEN1  
R3  
6K  
C8  
8.2nF  
VSEN2  
R8  
1K  
Comp1  
Fb1  
Fb2  
R5  
1K  
C17  
C6 47pF  
3x 330uF  
6TPB330M  
R4  
C9  
Comp2  
4.7nF  
15K  
R9  
2.14K  
Q4  
HDrv2  
L4  
IRF7457  
R6  
OCSet2  
2.5V @ 5A  
C7  
27pF  
3.3uH  
5.1K  
Q5  
PGood  
PGood  
C18  
2x 330uF, 40m  
6TPB330M  
LDrv2  
IRF7460  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
R22  
2.14K  
C10  
0.1uF  
C15  
0.1uF  
VSEN2  
R23  
1K  
Figure 41 - Typical application of IRU3146.  
5V input, 12V drive and two independent outputs.  
Rev. 1.1  
6/25/04  
www.irf.com  
27  
IRU3146  
TYPICALAPPLICATION  
3.3V  
D1  
BAT54S  
C12  
1uF  
L1  
5V  
1uH  
C11  
0.1uF  
C1  
47uF  
C2  
47uF  
C14  
2x 330uF  
6TPB330M  
C13  
1uF  
C3  
1uF  
C4  
1uF  
V
CL VcH1  
VcH2  
VOUT3  
Q2  
HDrv1  
Vcc  
L3  
1/2 IRF7910  
R1  
C5  
1uF  
OCSet1  
LDrv1  
2.5V @ 5A  
C16  
2x 330uF, 40m  
6TPB330M  
3.3uH  
8.5K  
Q3  
Hiccup  
1/2 IRF7910  
R20  
2.14K  
PGnd1  
Sync  
VP2  
VSEN1  
VREF  
D2  
BAT54A  
R21  
1K  
R2  
33K  
R7  
2.14K  
R8  
U1  
IRU3146  
V
V
SEN1  
Rt  
SEN2  
R3  
C8  
4.7nF  
Fb1  
Fb2  
Comp1  
15K  
1K  
C6 27pF  
C17  
2x 330uF  
6TPB330M  
R5  
1K  
R4  
C9  
Comp2  
R9  
1.24K  
5.6nF  
8.2K  
Q4  
HDrv2  
L4  
1/2 IRF7910  
R6  
OCSet2  
1.8V @ 5A  
C7  
27pF  
2.2uH  
8.5K  
Q5  
PGood  
PGood  
C18  
2x 330uF, 40m  
6TPB330M  
LDrv2  
1/2 IRF7910  
SS1 / SD  
SS2 / SD  
PGnd2  
Gnd  
C10  
0.1uF  
C15  
0.1uF  
R22  
1.24K  
VSEN2  
R23  
1K  
Figure 42 - Typical application of IRU3146.  
5V to 2.5V and 3.3V to 1.8V inputs and two independent outputs.  
Rev. 1.1  
6/25/04  
www.irf.com  
28  
IRU3146  
(F) TSSOP Package  
28-Pin  
A
L
Q
R1  
C
B
1.0 DIA  
R
E
N
M
P
O
PIN NUMBER 1  
F
D
DETAIL A  
DETAIL A  
G
J
H
K
28-PIN  
NOM  
0.65 BSC  
SYMBOL  
MIN  
4.30  
0.19  
MAX  
DESIG  
A
4.40  
6.40 BSC  
---  
4.50  
0.30  
B
C
D
1.00  
1.00  
9.70  
---  
E
F
9.60  
---  
9.80  
1.10  
0.95  
0.15  
G
H
0.85  
0.05  
0.90  
---  
J
K
12REF  
12REF  
---  
L
M
N
0ꢀ  
8ꢀ  
1.00 REF  
0.60  
0.20  
---  
O
P
0.50  
0.75  
Q
R
0.09  
0.09  
---  
---  
---  
R1  
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 1.1  
6/25/04  
www.irf.com  
29  
IRU3146  
PACKAGE SHIPMENT METHOD  
PKG  
PACKAGE  
PIN  
COUNT  
28  
PARTS  
PER TUBE  
50  
PARTS  
PER REEL  
2500  
T & R  
Orientation  
Fig A  
DESIG  
DESCRIPTION  
F
TSSOP  
1
1
1
Feed Direction  
Figure A  
This product has been designed and qualified for the Industrial market.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 1.1  
6/25/04  
www.irf.com  
30  

相关型号:

IRU3146CFTRPBF

Switching Controller, Current-mode, 345kHz Switching Freq-Max, PDSO28, TSSOP-28
INFINEON

IRU431AL

LOW -VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
INFINEON

IRU431ALCL3

LOW -VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
INFINEON

IRU431ALCL3PBF

Two Terminal Voltage Reference, 1 Output, 1.24V, Trim/Adjustable, PDSO3, SOT-23, 3 PIN
INFINEON

IRU431ALCL5

LOW -VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
INFINEON

IRU431ALCL5PBF

暂无描述
INFINEON

IRU431ALCS

Two Terminal Voltage Reference, 1 Output, 1.24V, Trim/Adjustable, BIPolar, PDSO8, PLASTIC, SOIC-8
INFINEON

IRU431ALCSPBF

Two Terminal Voltage Reference, 1 Output, 1.24V, Trim/Adjustable, PDSO8, PLASTIC, SOIC-8
INFINEON

IRU431L

LOW -VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
INFINEON

IRU431LCL3

LOW -VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
INFINEON

IRU431LCL3TR

暂无描述
INFINEON

IRU431LCL5

LOW -VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
INFINEON