ISO2H823V2.5 [INFINEON]

Galvanic Isolated 8 Channel High-Side Switch;
ISO2H823V2.5
型号: ISO2H823V2.5
厂家: Infineon    Infineon
描述:

Galvanic Isolated 8 Channel High-Side Switch

文件: 总82页 (文件大小:2257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISOFACE™  
ISO2H823V2.5  
Galvanic Isolated 8 Channel High-Side Switch  
Datasheet  
Revision 2.0, 2015-02-12  
Power Management & Multimarket  
Edition 2015-02-12  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2015 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
ISOFACE™  
ISO2H823V2.5  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Revision 2.0, 2015-02-12  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,  
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of  
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF  
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™  
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes  
Zetex Limited.  
Last Trademarks Update 2011-11-11  
Datasheet  
3
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1
2
2.1  
2.1.1  
2.1.2  
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pins of Power Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pins of Serial and Parallel Logic Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
4.1  
4.2  
4.2.1  
4.2.1.1  
4.2.2  
4.2.2.1  
4.2.2.2  
4.2.2.3  
4.2.3  
4.2.4  
4.2.5  
4.2.5.1  
4.2.5.2  
4.2.6  
4.2.7  
4.2.8  
4.2.9  
4.2.9.1  
4.2.9.2  
4.2.10  
4.3  
4.3.1  
4.3.2  
4.3.2.1  
4.3.2.2  
4.3.2.3  
4.3.3  
4.3.3.1  
4.3.3.2  
4.3.3.3  
4.3.3.4  
4.3.3.5  
4.3.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Parallel Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Parallel Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Serial Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Daisy Chain Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cyclic Redundancy Check CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Common Error Indication Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Update of the Diagnostic Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SYNC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SYNC-Signal for Drive-Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SYNC-Signal for Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ODIS Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LEDGOFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
OLOFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RESET (Hard and Soft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Resynchronization of CT-Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Output Stage Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Protection Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power Transistor Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power Transistor Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Current Sense and Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Diagnostics in Inactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Diagnostics in Active Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Diagnostic Scenarios in Dependence of Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Global Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
LED Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
LED Matrix on the Process Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
LED Matrix on the uController Side (only in Serial Communication Mode) . . . . . . . . . . . . . . . . . 44  
EMI-Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.3.4.1  
4.3.4.2  
4.4  
Datasheet  
4
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
4.4.1  
4.4.2  
4.5  
Burst Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
RFCM-Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.5.1  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating Conditions and Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Load Switching Capabilities and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Output Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Electrical Characteristics µController Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Isolation and Safety-Related Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6
µController Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.1  
User Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
7
Package : Outlines and Marking Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Datasheet  
5
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power PG-VQFN-70-2 (430 mil). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application with Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application with Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bus Configuration for Parallel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Timing by Parallel Read Access (e.g. GLERR Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Timing by Parallel Write Access (e.g. DRIVE Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Parallel Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10 Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11 Example SPI Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12 SPI Mode 0, MS0 = 0, MS1 = 0, Daisy Chain Supported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13 SPI Mode 1, MS0 = 1, MS1 = 0, Daisy Chain Supported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14 SPI Mode 2, MS0 = 0, MS1 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15 SPI Mode 3, MS0 = 1, MS1 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 16 Connecting Two Devices for Daisy Chain Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 17 Typical Timing Diagram of Daisy Chain Operation (Serial Mode 0) . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 18 SYNC Operation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19 Timing of Resynchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20 Examples of Application of Resynchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 21 Diagnostics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 22 Start Up Procedure of the Power Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 23 LED Matrix connected to the Power Chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 24 LED Pulse Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 25 LED Matrix connected to the uC-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 26 Burst-Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 27 RFCM-Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 28 Typ. On-State Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 29 Typ. On-State Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 30 Typical Initial Peak Short Circuit Current Limit vs Tj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 31 Maximum Allowable Load Inductance for a Single Switch Off of Each Channel, Calculated. . . . . 61  
Figure 32 Maximum Allowable Load Inductance for a Single Switch Off of Each Channel, Calculated. . . . . 62  
Figure 33 Maximum Allowable Inductive Switch Off Energy, Single Pulse for Each Channel . . . . . . . . . . . . 62  
Figure 34 Typ. Transient Thermal Impedance 1s0p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 35 Typ. Transient Thermal Impedance 2s2p no vias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 36 Typ. Transient Thermal Impedance 2s2p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 37 Sticky Bit Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 38 PG-VQFN-70-2 (Plastic (Green) Very Thin Profile Quad Flat Non Leaded Package) . . . . . . . . . . 80  
Figure 39 Marking Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Datasheet  
6
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration for LED-Application on the uC-Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bits composing the ERR signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Continuous Mode (GLCFG : FRZSC = 0), Disturbance (to Channel 0) Scenario . . . . . . . . . . . . . 30  
Isochronous Mode (GLCFG : FRZSC = 1 (RESYN = 0)), Channel 0 Disturbed, Scenarios . . . . . 31  
Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Filter Time in Inactive Mode for OLIx and SCVx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Filter Time in Active Mode for OLAx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Occurence of Diagnostics during the Disturbance : Short-Circuit-to-VBB . . . . . . . . . . . . . . . . . . . 39  
Occurence of Diagnostics during the Disturbance : Wirebreak . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Electrical Characteristics of the Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Load Switching Capabilities and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Output Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Setting at the Configuration Pin (CLKADJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Error Pins (ERR, CRCERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Logical Pins (RD, WR, ALE, MS0/1, CS, AD7: AD0, SCLK, SDO, SDI, SEL, SYNC, ODIS) . . . 54  
SYNC-Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
RESYNCH-Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Interface Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
ODIS, ALE/RST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Channel Specific Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Isolation and Safety-Related Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Register Access Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Diagnostics Registers for Channel 1-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Datasheet  
7
Revision 2.0, 2015-02-12  
Galvanic Isolated 8 Channel High-Side Switch  
ISO2H823V2.5  
1
Overview  
Infineon Technologies 2nd generation ISOFACE™ 8-channel high-side  
driver IC ISO2H823V2.5 offers integrated 2.5kV galvanic isolation, thus  
meets the IEC 61131-2 requirements for reinforced isolation.  
Concurrently, the ISO2H823V2.5 sets a new standard for system-level  
diagnostics. Each of the 8 channels is equipped with 5-fold diagnostic  
monitoring capabilities: Open Load (Active Mode - Driver On and Inactive  
Mode - Driver Off) , Short-to-Vbb, Overcurrent (= Short-to-GND),  
Overtemperature.  
With the ever increasing level of complexity and integration in industrial  
control systems comprehensive diagnostic monitoring is highly valuable  
in a vast range of industrial applications, both for preventive maintenance  
as well as to shorten costly un-scheduled down-times  
PG-VQFN-70-2  
Product Highlights  
2.5 kV Galvanic isolation integrated (UL508 & CSA22.2 certified)  
Meets IEC 61131-2 requirements for reinforced isolation  
8 - channel high-side switches of 0.6 A each  
5 different types of diagnostic feedback for each channel  
µController compatible 8-bit parallel/serial interface  
12 mm x 12 mm PG-VQFN-70-2 package  
Key Features  
Interface 3.3V CMOS operation compatible  
Parallel/Serial µC interface  
High common mode transient immunity  
Integrated Diagnostics:  
– 5 different types for diagnostic feedback per output channel  
– 5 types of diagnostic feedback on global level  
Common output disable pin  
Common error indication pin  
Resynchronization to achieve a low-jitter switching on and off of high-side switches  
Active output current limitation for short circuit protection  
Reverse Output Voltage protection  
Undervoltage shutdown with autorestart and hysteresis  
Integrated clamping to switch inductive loads up to 150 mJ energy per channel  
Thermal shutdown and diagnostics per channel with auto-restart  
V
BB range from 11 V to 35 V designed for 24 V systems  
Type  
Package  
ISO2H823V2.5  
PG-VQFN-70-2  
Datasheet  
8
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Overview  
ESD protection  
RoHS compliant  
Typical Application  
Isolated switch for industrial applications:  
PLC, distributed control systems, industial PCs, robotics, etc.  
All types of resistive, inductive and capacitive loads  
µController compatible power switch for 24 V DC applications  
Driver for solenoid, relays and resistive loads  
Description  
The ISO2H823V2.5 is a galvanically isolated 8-bit data interface in PG-VQFN-70-2 package that provides 8 fully  
protected high-side power switches that are able to handle currents up to 730 mA per channel.  
An 8-bit parallel µController compatible interface or a serial SPI-interface allows to connect the IC directly to a  
µController system. The input interface supports also a direct control mode for writing driver information and is  
designed to operate with 3.3 V CMOS compatible levels.  
The data transfer from input to output side is realized by the integrated Coreless Transformer Technology.  
This product is the second generation of isolated 8 channel digital output device (ISO2H823V2.5) and provides a  
robust integrated diagnosis for switches with low RDSon as well as an upgraded µController interface.  
uC_chip  
power chip  
VCC  
VBB  
only  
VBB  
in  
IADJ  
serial  
mode,  
shared  
pins  
Configuration  
Register  
OLADJ  
I
n
t
e
r
OUT0  
OUT1  
OUT2  
/ERR  
Drive  
Register  
OUT3  
OUT4  
/ODIS  
f
OUT5  
OUT6  
OUT7  
µC  
Control  
Protection  
Diagnostic Unit  
a
c
e
SYNC  
/CS  
e.g.  
XMCxxxx  
parallel  
or serial  
interface  
LEDx0  
LEDx1  
LEDx2  
LEDy0  
LEDy1  
LEDy2  
Diagnostic  
Registers  
Logic  
CLKADJ  
GND  
ISO2H823V2  
VDDIO  
VCORE  
GNDBB  
Figure 1  
Typical Application  
Infineon Ordering Code :  
SP001225470  
Datasheet  
9
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
2
Pin Configuration and Functionality  
35 34 33  
32 31 30 29 28 27 26 25 24 23  
36  
22  
21  
20  
19  
18  
17  
16  
15  
GNDBB  
VBB  
SEL  
VCC  
37  
38  
39  
40  
41  
42  
43  
VBB  
CLKADJ  
GND  
OUT1  
OUT1  
VBB  
/ODIS  
SYNC  
OUT2  
OUT2  
/WR  
ALE / RST  
OUT3  
OUT3  
VBB  
14  
13  
12  
11  
10  
9
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
/RD / MS0  
MS1  
GND  
VBB  
GND  
OUT4  
OUT4  
OUT5  
OUT5  
VBB  
/CS  
AD0 / SDI  
AD1  
8
7
AD2  
6
AD3  
exposed pad to GND  
OUT6  
5
AD4 / /CRCERR  
4
OUT6  
54  
55  
56  
57  
AD 5 / SCLK  
AD6  
creepage  
distance  
exposed pad to GNDBB  
3
VBB  
VBB  
AD7 / SDO  
/ERR  
2
1
n.c. = Not Connected  
GNDBB  
58 59 60  
61 62 63 64 65 66 67 68 69 70  
02/09/2015  
PG-VQFN-70-2 - pinout_IFX.vsd  
Figure 2  
Power PG-VQFN-70-2 (430 mil)  
Datasheet  
10  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
Table 1  
Pin Configuration  
Pin Parallel Interface Mode  
Serial Interface Mode  
Symbol  
Ctrl Type Function  
Symbol  
Ctrl Type Function  
1)  
2)  
top side pins  
1
2
GNDBB  
VBB  
A
A
Output Stage Ground  
GNDBB  
VBB  
Output Stage Positive  
Supply  
3
VBB  
A
Output Stage Positive  
Supply  
VBB  
4
5
6
OUT6  
OUT6  
VBB  
A
A
A
Switch Output 6  
Switch Output 6  
OUT6  
OUT6  
VBB  
Output Stage Positive  
Supply  
7
OUT5  
OUT5  
OUT4  
OUT4  
VBB  
A
A
A
A
A
Switch Output 5  
Switch Output 5  
Switch Output 4  
Switch Output 4  
OUT5  
OUT5  
OUT4  
OUT4  
VBB  
8
9
10  
11  
Output Stage Positive  
Supply  
12  
VBB  
A
Output Stage Positive  
Supply  
VBB  
13  
14  
15  
16  
17  
OUT3  
OUT3  
OUT2  
OUT2  
VBB  
A
A
A
A
A
Switch Output 3  
Switch Output 3  
Switch Output 2  
Switch Output 2  
OUT3  
OUT3  
OUT2  
OUT2  
VBB  
Output Stage Positive  
Supply  
18  
19  
20  
OUT1  
OUT1  
VBB  
A
A
A
Switch Output 1  
Switch Output 1  
OUT1  
OUT1  
VBB  
Output Stage Positive  
Supply  
21  
VBB  
A
A
Output Stage Positive  
Supply  
VBB  
22  
23  
24  
25  
26  
GNDBB  
n.c.  
Output Stage Ground  
GNDBB  
n.c.  
not connected  
not connected  
OUT0  
OUT0  
VBB  
A
A
A
Switch Output 0  
OUT0  
OUT0  
VBB  
Switch Output 0  
Output Stage Positive  
Supply, Supply of Reference  
Voltages  
27  
GNDBB  
A
Output Stage Ground  
GNDBB  
Datasheet  
11  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
Table 1  
Pin Configuration (cont’d)  
Pin Parallel Interface Mode  
Serial Interface Mode  
Symbol  
Ctrl Type Function  
Symbol  
Ctrl Type Function  
1)  
2)  
28  
29  
30  
31  
32  
OLADJ  
IADJ  
A
A
A
A
A
Open Load Adjust  
OLADJ  
IADJ  
Current Reference Adjust  
CT Blocking Capacitor  
Digital Core Supply  
VDDIO  
VCORE  
GNDBB  
VDDIO  
VCORE  
GNDBB  
Output Stage Ground  
gap used for creepage distance  
33  
34  
35  
36  
37  
38  
39  
40  
41  
GND  
GND  
GND  
SEL  
A
Logic Ground  
Logic Ground  
Logic Ground  
GND  
GND  
GND  
A
A
I
PD  
A
Serial / Parallel Mode Select SEL  
Positive 3.3 V logic supply VCC  
Clock Frequency Adjustment CLKADJ  
VCC  
CLKADJ  
GND  
ODIS  
SYNC  
A
A
Logic Ground  
GND  
I
I
PD  
PU  
Output Disable  
ODIS  
SYNC  
Synchronize and Freeze  
Diagnostics  
42  
43  
WR  
I
PU  
PD  
Data Write Input  
n.c.  
high impedance “Z”  
ALE/RST I  
Address Latch Enable /  
Reset  
RST  
I
PD  
Reset  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
RD  
I
PU  
Data Read Input  
not connected  
Logic Ground  
Logic Ground  
Chip Select  
MS0  
MS1  
GND  
GND  
CS  
I
I
PD  
PD  
SPI Mode Select bit 0  
SPI Mode Select bit 1  
n.c.  
GND  
GND  
CS  
A
A
I
PU  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
ERR  
GND  
GND  
GND  
IO PPZ Addr-Data in/output bit0  
IO PPZ Addr-Data in/output bit1  
IO PPZ Addr-Data in/output bit2  
IO PPZ Addr-Data in/output bit3  
IO PPZ Addr-Data in/output bit4  
IO PPZ Addr-Data in/output bit5  
IO PPZ Addr-Data in/output bit6  
IO PPZ Addr-Data in/output bit7  
SDI  
I
PD  
SPI Data input  
n.c.  
high impedance “Z”  
high impedance “Z”  
high impedance “Z”  
CRC Error output  
SPI Shift Clock input  
high impedance “Z”  
n.c.  
n.c.  
CRCERR  
SCLK  
n.c.  
OD PU  
I
PD  
SDO  
ERR  
GND  
GND  
GND  
O
PPZ SPI Data Output  
OD PU  
Fault indication  
Logic Ground  
Logic Ground  
Logic Ground  
A
A
A
gap used for creepage distance  
Datasheet  
12  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
Table 1  
Pin Configuration (cont’d)  
Pin Parallel Interface Mode  
Serial Interface Mode  
Symbol  
Ctrl Type Function  
Symbol  
Ctrl Type Function  
1)  
2)  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
GNDBB  
LEDX0  
LEDX1  
LEDX2  
LEDY0  
LEDY1  
LEDY2  
OUT7  
A
A
A
A
A
A
A
A
A
Output Stage Ground  
LED Output Row 0  
LED Output Row 1  
LED Output Row 2  
LED Output Column 0  
LED Output Column 1  
LED Output Column 2  
Switch Output 7  
GNDBB  
LEDX0  
LEDX1  
LEDX2  
LEDY0  
LEDY1  
LEDY2  
OUT7  
OUT7  
Switch Output 7  
OUT7  
n.c.  
not connected  
n.c.  
not connected  
1) Direction of the digital pins : I = input, O = output, IO = Input/Output  
2) Type of the pin: A = analog, OD = Open-Drain, PU = internal Pull-Up resistor, PD = internal Pull-Down resistor,  
PPZ = Push-Pull pin with High-Impedance functionality  
In case of serial mode six pins can be used to drive a LED-matrix on the uC-side (Table 2). For this purpose the  
bit LEDON in register GLCFG has to be set to “1”.  
Table 2  
Pin Configuration for LED-Application on the uC-Side  
Pin Serial Interface Mode  
Symbol  
Ctrl Type Function  
top side pins  
55  
52  
51  
42  
43  
50  
AD6  
OD  
OD  
OD  
OD  
OD  
OD  
LEDR0  
LEDR1  
LEDR2  
LEDC0  
LEDC1  
LEDC2  
AD3  
AD2  
WR  
ALE/RST  
AD1  
Datasheet  
13  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
2.1  
Pin Functionality  
This section describes the pins of the µController Interface as well as the Process Interface.  
2.1.1  
Pins of Power Interface  
VBB (Positive supply 11-35 V output stage)  
VBB supplies the output stage. An external circuitry for reverse polarity protection is required (see Electrical  
Characteristics).  
A ceramic capacitor of minimum 2.2 µF must be connected between VBB and GNDBB.  
GNDBB (Ground for VBB domain)  
This pin acts as the ground reference for the output stage that is supplied by VBB.  
OUT0... OUT7 (Output channel 0 ... 7)  
Due to EMI-requirements (Radio-Frequency-Common-Mode and burst-application)  
a
capacitor of  
min.10 nF (+10%, recommended value 12 nF + 10%) for each output pin has to be connected to GNDBB.  
LEDX0... LEDX2 (LED Row output channel 0 ... 2)  
Low side switches  
LEDY0... LEDY2 (LED Column output channel 0 ... 2)  
High side drivers  
IADJ (Current Adjust)  
Reference current input, must be connected to GNDBB through a reference resistor of typ. 6.81 K(E96 series).  
The DC-level VIADJ is 1.215 V.  
OLADJ (Open Load Adjust)  
The current for the Open load detection can be adjusted by connecting a resistor between this pin and GNDBB  
(from the E96 series : 25 k- 2.3 k).The DC-level VOLADJ is 1.215 V.  
VDDIO (3.3 V Supply Blocking Capacitor)  
A 1 µF ceramic capacitor must be connected between VDDIO and GNDBB.  
VCORE (Blocking Capacitor for 1.5 V Digital Core)  
A 470 nF ceramic capacitor must be connected between VCORE and GNDBB.  
2.1.2  
Pins of Serial and Parallel Logic Interface  
Some pins are common for both interface types, some others are specific for the parallel or serial access.  
VCC (Positive 3.3 V logic supply)  
VCC supplies the output interface that is electrically isolated from the output power stage. The interface can be  
supplied with 3.3 V. A ceramic capacitor of minimum 2.2 µF must be connected between VCC and GND.  
GND (Ground for VCC domain)  
This pin acts as the ground reference for the uC-interface that is supplied by VCC.  
CLKADJ (Clock Adjust)  
A high precision resistor of 10 Khas to be connected between CLKADJ and GND. The DC-level VCLKADJ is 0.5 V.  
ERR (Fault Indication)  
The low active ERR signal contains the OR-wired diagnostic information depending on choosen serial or parallel  
mode (VBB undervoltage or missing voltage detection, the internal data transmission failure detection unit and the  
fault(s) of the output switch).The output pin ERR provides an open drain functionality.This pin has an internal Pull-  
Up resistor. In normal operation the signal ERR is high.  
Datasheet  
14  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
ODIS (Output Disable)  
The low active ODIS signal immediately switches off the output channels OUT0-OUT7. This pin has an internal  
Pull-Down resistor. In normal operation the signal ODIS is high. Setting ODIS to Low clears the DRIVE register as  
well. The minimum width of the ODIS signal is 5 µs.  
SEL (Serial or Parallel Mode Select)  
When this pin is in a logic Low state, the IC operates in Parallel Mode. For Serial Mode operation the pin has to  
be pulled into logic High state. During Start Up the IC is operating in Parallel Mode. This pin has an internal Pull-  
Down resistor and a 200 ns blanking time1).  
SYNC  
In isochronous mode (clock-sync-mode) the transfer of the latched output data register into the output-stages is  
controlled by the SYNC signal. When the SYNC-signal is in low state, the output-stage won’t be updated any  
longer, the last value is frozen. With the rising edge of SYNC the information of the latched output data registers  
will be transferred to the output stages. It can be choosen by a configuration bit whether all the channel diagnostic  
bits will be latched into the DIAG channel register every data cycle or only when the SYNC-signal is in high state.  
In the last case when the SYNC-signal is in low state, the DIAG channel register wouldn’t be updated any longer,  
the last value would be frozen. SYNC is also used for resynchronization of the data transmission with the target  
to achieve a low jitter. This pin has an internal Pull-Up resistor and a 20 ns blanking time1).  
CS (Chip Select)  
When this pin is in a logic Low state, the IC interface is enabled and data can be transferred. This pin has an  
internal Pull-Up resistor and a 20 ns blanking time1).  
When the CS pin is held Low whereas the ALE pin is High for at least 100 µs, the device is reset.  
The following pins are provided in the parallel interface mode  
AD7:AD0 (AddressData input / output bit7 ... bit0)  
The pins AD0 .. AD7 are the bidirectional input / outputs for data write and read. Depending on the state of the  
ALE pin and the AD7 pin, register addresses or data can be transferred between the internal registers and e.g.  
the micro-controller. By connecting CS and WR and ALE/RST pins to GND and RD to VCC, the parallel direct  
mode is activated.  
WR (Write )  
By pulling this pin down, a write transaction is initiated on the AddressData bus and the data has to be valid on  
the rising edge of WR. The AD7-bit of the register address has to be set to ‘1’. This pin has an internal Pull-Up  
resistor and a 20 ns blanking time1).  
RD (Read )  
By pulling this pin down, a read transaction is initiated on the AddressData bus and the data becomes valid on the  
rising edge of RD. The AD7-bit of the register address has to be set to ‘0’. This pin has an internal Pull-Up resistor  
and a 20 ns blanking time1).  
ALE (Address Latch Enable)/RST  
The pin ALE is used to select between address (ALE is in a logic High state) or data (ALE is in a logic Low state).  
Furthermore, a read or write transaction can be selected with the RD and WR pin. When ALE is pulled high,  
address is transferred and latched over the bit AD0 to AD7. During the time interval where ALE = High RD or WR  
has to be pulled to High. During the Low State of ALE all transactions hit the same address. This pin has an internal  
Pull-Down resistor and a 20 ns blanking time1). For the reset-function see comment under the item: CS.  
1) the signal must be stable for the duration of the blanking time before it is accepted as valid  
Datasheet  
15  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Pin Configuration and Functionality  
The following pins are provided in the serial interface mode  
MS0, MS1 (Serial Mode Select)  
By driving these pins to Logic High or Low the Serial Interface Mode (number of bits - 8, 16, 24 - to be transferred,  
CRC) can be selected. These pins have both an internal Pull-Down resistor and a 200 ns blanking time1).  
SCLK (Serial Interface Shift Clock)  
Input data are sampled with rising edge and output data are updated with the falling edge of this input clock signal.  
This pin has an internal Pull-Down resistor and a 20 ns blanking time1).  
SDI (Serial Interface Input Data)  
SDI is put into a dedicated FIFO (clocked by SCLK) to program the DRIVE register and the internal address and  
the write data. This pin has an internal Pull-Down resistor and a 20 ns blanking time1).  
SDO (Serial Interface Data Output)  
SDO provides the serial output data bits  
CRCERR (CRC Error Output)  
This pin is in a logic Low state when CRC errors or Shift-Clock errors are detected internally. This pin has an open  
drain functionality and an internal Pull-Up resistor.  
Datasheet  
16  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Block Diagram  
3
Block Diagram  
The IC is divided into an uC_chip and into a power chip due to the galvanical isolation.The uC_chip contains the  
uC-interface and the power chip the power switches.  
uC_chip  
power chip  
SEL /ODIS  
/ERR  
VCC CLKADJ  
VDDIO VCORE IADJ  
VBB OLADJ VBB (x8)  
/CS  
AD0/SDI  
AD1  
DRV  
DIAG  
OSC  
VCORE  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
VDDIO  
3.3V  
BIAS  
VREF  
SPI  
UVLO  
BIAS  
DRV  
DIAG  
OSC  
BIAS  
P
A
D
S
AD2  
DRV  
DIAG  
RX TX CTRL  
Timers  
AD3  
DRV  
DIAG  
AD4/  
CRCERR  
&
RX TX  
CTRL  
Registers &  
Access Control  
DRV  
DIAG  
IO  
AD5/SCLK  
AD6  
C
R
T
L
DRV  
DIAG  
DIAG CTRL  
Registers  
AD7 / SDO  
PARALLEL  
LOGIC  
DRV  
DIAG  
/WR  
/RD  
LED  
Matrix  
LED  
Matrix  
DRV  
DIAG  
Control  
Unit  
ALE  
CHANNELS  
LOGIC  
AD1 /  
ALE/RST /  
/WR  
LEDY2:0  
MS1:0  
GND  
(x8)  
LEDX2:0  
GNDBB (x5)  
SYNC  
AD2 /  
AD3 /  
AD6  
*)  
*)  
Overall _Block _Diagram ._ISO2H823  
*) : shared in serial mode  
Figure 3  
Block Diagram  
Datasheet  
17  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Block Diagram  
uC_chip  
power chip  
VDDIO  
PMU  
OSC  
3.3 V  
1.5 V  
VCORE  
VBB  
RXTX  
CTRL  
GNDBB  
RXTX  
CTRL  
RST  
IADJ  
OLADJ  
VCC  
DRIVE Reg  
I
n
t
e
r
f
a
c
e
Drive Control &  
Diagnostics  
OUT0  
Con-  
.
.
.
.
.
.
.
.
.
/ERR  
figuration  
/ODIS  
Registers  
SYNC  
/CS  
….  
OUTx  
.
SEL  
µC  
.
.
Diagnostic_0  
….  
Drive Control &  
Diagnostics  
e.g.  
XMC4xxx  
OUT7  
AD0,…,AD7,  
/RD, /WR  
L
o
g
i
Diagnostic_7  
c
LEDx0  
LEDx1  
LEDx2  
LEDy0  
LEDy1  
LEDy2  
Error-  
Registers  
ALE/RST  
CLKADJ  
LED Matrix  
RESYNCH  
OSC  
GND  
ISO2H823V2  
Figure 4  
Application with Parallel Interface  
uC_chip  
power chip  
VDDIO  
AD6/LEDR0  
only  
PMU  
3.3 V  
1.5 V  
AD3/LEDR1  
in  
OSC  
VCORE  
VBB  
AD2/LEDR2  
serial  
/WR/LEDC0  
LED Matrix  
mode,  
shared  
pins  
ALE/RST/LEDC1  
AD1/LEDC2  
GNDBB  
use LED  
exor  
RST-  
RXTX  
CTRL  
RST  
RXTX  
CTRL  
IADJ  
function  
OLADJ  
VCC  
DRIVE Reg  
I
n
t
e
r
Drive Control &  
Diagnostics  
OUT0  
Con-  
.
.
.
.
.
.
.
.
.
/ERR  
figuration  
/ODIS  
SYNC  
/CS  
Registers  
f
a
c
e
….  
OUTx  
.
SEL  
µC  
.
.
Diagnostic_0  
….  
Drive Control &  
Diagnostics  
e.g.  
XMCxxxx  
OUT7  
SDI  
L
o
g
i
SDO  
SCLK  
Diagnostic_7  
c
LEDx0  
LEDx1  
LEDx2  
LEDy0  
LEDy1  
LEDy2  
/CRCERR  
MS0,MS1  
CLKADJ  
Error-  
Registers  
LED Matrix  
RESYNCH  
OSC  
GND  
ISO2H823V2  
Figure 5  
Application with Serial Interface  
Datasheet  
18  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4
Functional Description  
4.1  
Introduction  
The IC contains 2 galvanic isolated voltage domains that are independent from each other. The input interface  
(µC-chip) is supplied at VCC and the output stage (power chip) is supplied at VBB. The different voltage domains  
can be switched on at different time. The output stage is only enabled once the input stage enters a stable state.  
The power chip generates out of VBB two internal voltages VDDIO = 3.3 V (+ 10 %) and VCORE = 1.5 V (+ 10%)  
which have to be buffered externally.  
The ISOFACE ISO2H823V2.5 includes 8 high-side power switches that are controlled by means of the integrated  
parallel/serial interface. The interface is 8-bit µController compatible. Furthermore a direct control mode can be  
selected that allows the direct control of the outputs OUT0 … OUT7 (power chip) by means of the inputs AD0 …  
AD7 (µC-chip) without any additional logic signal. The IC can replace 8 optocouplers and the 8 high-side switches  
in conventional I/O-Applications as a galvanic isolation is implemented by means of the integrated coreless  
transformer technology. The µController compatible interface allows a direct connection to the ports of a  
microcontroller without the need for other components. Each of the 8 high-side power switches is protected against  
overload, overtemperature and against overvoltage by an active zener clamp.  
4.2  
Microcontroller Interface  
The microcontroller interface can be configured as a parallel or serial interface via the SEL pin.  
4.2.1  
Parallel Interface Mode  
The ISO2H823V2.5 device contains a parallel interface that can be selected by pulling the SEL Pin to logic Low  
state. The interface can be directly controlled by the µController output ports (see Figure 6). The output pins  
AD7:AD0 are in state “Z” as long as CS=1, RD=1 and WR=1.  
VCC  
VCC  
/CS  
ALE  
/WR  
/RD  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
SEL  
parallel _interface_iso2h823. vsd  
Figure 6  
Bus Configuration for Parallel Mode  
Datasheet  
19  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
The timing requirements for the parallel interface are shown in Figure 7 (Read), Figure 8 (Write) and Table 23.  
/CS  
tCSD  
tRD_su  
ALE  
tALE_high  
tRD_hd  
tRDlow  
tRDhigh  
tCS_ALE  
/RD  
tclrrdy  
tfloat  
tAD_su tAD_hd  
tADout  
GLERR address (04h)  
GLERR data  
GLERR data  
AD[7:0]  
GLERR  
00h  
rd_timing_ifx - uc _parallel  
Figure 7  
Timing by Parallel Read Access (e.g. GLERR Register)  
For a reading access to internal registers the MSB of the address register has to be set to “0”.  
/CS  
tCSD  
tWR_su  
ALE  
tALE_high  
tWRlow  
tWRhigh  
tWR_hd  
tCS_ALE  
/WR  
tlat  
tAD_su tAD_hd  
tAD_su tAD_hd  
AD[7:0]  
DRIVE address (80h)  
DRIVE data (0Fh)  
DRIVE data (0Ah)  
0Fh  
00h  
DRIVE  
00h  
0Fh  
OUT[7:0]  
wr_timing_ifx - uc _parallel  
Figure 8  
Timing by Parallel Write Access (e.g. DRIVE Register)  
For a writing access to internal registers the MSB of the address register has to be set to “1”.  
Datasheet  
20  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.1.1  
Parallel Direct Mode  
The parallel interface can be also used in a direct mode that allows direct changes of the output OUT0...OUT7 by  
means of the corresponding inputs D0-D7 without additional logic signals. To activate the parallel direct mode CS,  
WR and ALE pins have to be wired to ground and RD has to be wired to VCC as shown in the Figure 9. Although  
the diagnostics cannot be read in this operation mode, the faults as specified in Table 3 are still reported at the  
ERR pin (volatile).  
VCC  
VCC  
/CS  
ALE  
/WR  
/RD  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
SEL  
parallel _interface_direct_iso2h823.vsd  
Figure 9  
Parallel Direct Mode  
The direct mode is intended to be an additional parallel mode which is invoked directly after reset. In this case  
internal settings have already been realized (f.e. MSB of the address register is set to “1” ).  
Datasheet  
21  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.2  
Serial Interface Mode  
The ISO2H823V2.5 device contains a serial interface that can be activated by pulling the SEL pin to logic High  
state. The interface can be directly controlled by the µController output ports. The output pin SDO is in state “Z”  
as long as CS=1. Otherwise, the bits at the SDI input are sampled with the rising edge of SCLK and registered  
into the input FIFO buffer of length dependent on the selected SPI-mode (8, 16, 24 bits, Figure 12, Figure 13,  
Figure 14, Figure 15). With every falling edge of SCLK the bits to be read are provided serially to the pin SDO.  
The timing requirements for the serial interface are shown in Figure 10 and in Table 24.  
tSCLK_su  
inactive  
/CS  
active  
tCSD  
tSCLK  
receive  
SCLK  
edge  
transmit  
edge  
tSU tHD  
tCSH  
SDI  
MSB  
LSB  
tSCLK_valid  
LSB  
tCS_valid  
MSB  
tfloat  
SDO  
timing_def - uc _spi  
Figure 10 Serial Bus Timing  
Several SPI topologies are supported: pure bus topology, daisy chain and any combinations (Figure 11). Of  
course independent individual control with a dedicated SPI controller interfaces for each slave IC is possible, as  
well.  
SCLK  
SDO  
SCLK  
MISO  
SCLK  
SDO  
SDI  
SCLK  
MISO  
SCLK  
SDO  
SCLK  
MISO  
SCLK  
SCLK  
MOSI  
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SDI  
/CS  
SDI  
/CS  
SDI  
/CS  
MOSI  
/CS  
SCLK  
SDO  
SCLK  
SDO  
SDI  
SCLK  
SCLK  
SDO  
SDI  
/CS  
SDI  
/CS  
SDI  
/CS  
/CS  
MCU  
or  
ASIC  
MCU  
or  
ASIC  
MCU  
or  
ASIC  
MCU  
or  
ASIC  
SCLK  
SDO  
SCLK  
SDO  
SDI  
SCLK  
SCLK  
SDO  
SDI  
SDI  
/CS  
SDI  
/CS  
/CS  
/CS  
SCLK  
SDO  
SCLK  
SDO  
SDI  
SCLK  
SCLK  
SDO  
SDI  
/CS  
SDI  
/CS  
SDI  
/CS  
/CS  
spi_ topologies3.vsd  
Figure 11 Example SPI Topologies  
Datasheet  
22  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.2.1  
SPI Modes  
Four different SPI-modes can be distinguished (Figure 12 - Figure 15).  
/CS  
SCLK  
MSB  
LSB  
DR0  
DR7  
DR6 DR5  
DR4  
DR3  
DR2  
DR1  
SDI  
Channel-Value (Drive Information )  
MSB  
LSB  
CD7  
CD6  
CD5  
CD4  
CD3  
CD2 CD1  
CD0  
SDO  
Collective Diagnosis  
uc_spi _mode0.vsd  
Figure 12 SPI Mode 0, MS0 = 0, MS1 = 0, Daisy Chain Supported  
/CS  
SCLK  
Bit15  
MSB  
Bit8  
Bit7  
Bit0  
LSB  
LSB  
MSB  
DR7  
DR6 DR5  
DR4 DR3  
DR2 DR1  
DR0  
0
0
0
C4.  
C3  
C2  
C1  
C0  
SDI  
Channel-Values (Drive Information )  
Checksum  
SDO  
CD7 CD6  
CD5  
CD4  
CD3 CD2  
CD1 CD0  
UV  
MV  
CF  
C4.  
C3  
C2  
C1  
C0  
Collective Diagnosis  
Diagnosis / Checksum  
uc_spi_mode1.vsd  
Figure 13 SPI Mode 1, MS0 = 1, MS1 = 0, Daisy Chain Supported  
Datasheet  
23  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
/CS  
SCLK  
Bit15  
MSB  
Bit8  
Bit7  
Bit0  
LSB  
MSB  
LSB  
READ  
R
A6  
A5  
A4  
A3  
A2  
A1  
A0  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
D1  
d.c.  
SDI  
Read=0  
Register-Address (R/W)  
Value : dont care  
SDO  
CD7 CD6  
CD5  
CD4  
CD3  
CD2  
CD1 CD0  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
Collective Diagnosis  
Value (Read)  
WRITE  
Bit15  
MSB  
Bit8  
Bit7  
Bit0  
LSB  
MSB  
LSB  
W
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
Write=1  
Register-Address (R/W)  
Value (Write)  
SDO  
CD7 CD6  
CD5  
CD4  
CD3 CD2 CD1  
CD0  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
Collective Diagnosis  
uc_spi_mode2.vsd  
Figure 14 SPI Mode 2, MS0 = 0, MS1 = 1  
/CS  
SCLK  
Bit23  
MSB  
R
Bit16 Bit15  
Bit8  
Bit7  
Bit0  
READ  
LSB  
A0  
MSB  
0
LSB  
0
MSB  
0
LSB  
A6  
A5  
A4  
A3  
A2  
A1  
0
0
0
0
0
0
0
0
C4  
C3  
C2  
C2  
C1  
C1  
C0  
SDI  
Read=0  
Register -Address (R/W)  
Value „Zero“ for CRC  
Checksum  
SDO  
CD7 CD6  
CD5  
CD4  
CD3  
CD2 CD1 CD0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
UV  
MV  
CF  
C4  
C3  
C0  
Collective Diagnosis  
Value (Read )  
Checksum / Diagnosis  
WRITE  
Bit23  
MSB  
Bit16 Bit15  
Bit8  
Bit7  
Bit0  
LSB  
A0  
MSB  
D7  
LSB  
MSB  
LSB  
W
A6  
A5  
A4  
A3  
A2  
A1  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
C4  
C3  
C2  
C1  
C1  
C0  
SDI  
Write=1  
Register -Address (R/W)  
Value (Write)  
Checksum  
SDO  
CD7 CD6  
CD5  
CD4  
CD3  
CD2 CD1 CD0  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
UV  
MV  
CF  
C4  
C3  
C2  
C0  
Collective Diagnosis  
Checksum / Diagnosis  
uc_spi_mode3.vsd  
Figure 15 SPI Mode 3, MS0 = 1, MS1 = 1  
Datasheet  
24  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.2.2  
Daisy Chain Mode  
Up to 4 devices can be connected together as shown in the Figure 16 to operate in the daisy chain mode. Serial  
modes 0 and 1 can be operated in daisy chain mode. In this case, the SDO output of one device is directly  
connected to the SDI input of the next device. The SPI chain has to be connected to the µC or Bus ASIC (MOSI,  
MISO and common SCLK and CS signals). If the received SCLK pulses are not fulfilling the modulo(8)-condition  
the CRCERR pin will be activated.  
In the serial mode 1 the CRC-generation has to be reset after 16 SCLK-cycles. At the rising edge of CS each  
connected daisy-chain-device checks its related 16 bit-stream concerning CRC-consistency.  
MISO  
SDO  
Device A  
SDI  
SCLK  
/CS  
SDO  
Device B  
MOSI  
SCLK  
/CS  
SDI  
SCLK  
/CS  
daisy _connect - uc_spi  
Figure 16 Connecting Two Devices for Daisy Chain Mode  
The data shifted in the first device SDI input is shifted out at the SDO output after the first byte for the serial mode 0  
(after the second byte for the mode 1) while CS remains Low as shown in the Figure 17.  
/CS  
SCLK  
MOSI  
=SDIB  
DR7A  
DR6A  
DR5A  
CD5B  
CD5A  
DR4A  
DR3A  
CD3B  
DR2A  
CD2B  
CD2A  
DR1A  
CD1B  
CD1A  
DR0A  
DR7B  
DR7A  
CD7B  
DR6B  
DR5B  
DR4B  
DR3B  
DR2B  
DR1B  
DR0B  
DRIVE A  
DRIVE B  
SDOB  
=SDIA  
CD7B  
CD6B  
CD4B  
CD0B  
DR6A  
DR5A  
DR4A  
DR3A  
DR2A  
DR1A  
DR0A  
COLDIAG B  
DRIVE A  
MISO  
CD7A  
CD6A  
CD4A  
CD3A  
CD0A  
CD6B  
CD5B  
CD4B  
CD3B  
CD2B  
CD1B  
CD0B  
=SDOA  
COLDIAG A  
COLDIAG B  
daisy_mode0_timing - uc_spi  
SDOA  
SDIA  
SDOB  
SDIB  
MISO  
MOSI  
Device A  
Device B  
Figure 17 Typical Timing Diagram of Daisy Chain Operation (Serial Mode 0)  
Datasheet 25  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.2.3  
Cyclic Redundancy Check CRC  
To detect errors inside SPI data transmission two SPI-Modes are provided with integrated Cyclic Redundancy  
Check.  
The 5-Bit-CRC checksum will be calculated with the polynom X5+X4+X2+1. The bit length used for the calculation  
is 11 bits for SPI-mode 1 and 19 bits for SPI-mode 3. The internal CRC-working register is loaded with “11111”  
before start of the CRC-calculation.  
The SPI-mode 1 supports only the write procedure for the DRIVE register (SPI-mode 1, MS1, MS0 = 01). Eight  
bits of drive-information plus 3 dummy bits and the related CRC-information (5 bits based on the fed-in 11 bits)  
are delivered to the CRC-engine. At the same time the COLDIAG-information in combination with the UV,MV,CF-  
bits and the related CRC-information (based on these 11bits: COLDIAG, UV,MV,CF) are fed out of SDO. The bit  
stream format is shown in Figure 13.  
SPI-mode 3 provides register based access to the ISO2H823V2.5 with implemented CRC. The bit stream for a  
write access to a register consists of the register address (8 bits), register data (8 bits), 3 dummy bits and the CRC  
signature (5 bits) as shown in Figure 15. The total bitstream is fed into the CRC-input engines and processed  
according to the underlying CRC-algorithm serially. At the same time the COLDIAG-information in combination  
with the UV,MV,CF-bits and the related CRC-information (based on these 19 bits: COLDIAG, 8 dummy  
bits,UV,MV,CF) are fed out of SDO.  
The bit stream for a read access to a register consists of the register address (8 bits), 11 dummy bits and the CRC  
signature (5 bits) as shown in Figure 15.The total bitstream is fed into the CRC-input engines and processed  
according to the underlying CRC-algorithm serially. At the same time the COLDIAG-information, register data in  
combination with the UV,MV,CF-bits and the related CRC-information (based on these 19 bits: COLDIAG,8 bits  
register data, UV,MV,CF) are fed out of SDO.  
After processing the 24 in-bits (including the CRC-signature) the result of the CRC-algorithm processing has to be  
zero. In the case of another result different from zero the delivered signature is not consistent with the delivered  
bit stream. This will be indicated by driving the CRCERR Pin to Low.  
In both cases (SPI-mode 1 and SPI-mode 3) the status of the CRCERR pin is evaluated not at the end of the bit  
sequence but with rising edge of CS. The procedure is consistent with the daisy-chain application where each  
partner of the daisy chain checks its own contribution with the rising edge of CS when it is confirmed that the chain  
is completely filled.  
CRCERR reflects both the modulo-8-condition of the number of SCLK-signals and the correctness of the CRC-  
signature. Both kinds of information are evaluated only during CS is Low and reported with the rising edge of CS.  
Therefore it is assured that non-active ICs (CS = High) does not report a CRCERR = Low signal in case of toggling  
of SCLK.  
The signal CRCERR has an internal pull-up-resistor of 50 k. When releasing CRCERR the internal pull-up  
resistor determines the rise time, which is about 3 µs. It is possible to reduce the rise time to around 1 µs by adding  
an external pull-up resistor of 10kat the CRCERR pin.  
Datasheet  
26  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.3  
Common Error Indication Output  
The dedicated ERR pin signalizes a common fault. This low-active pin has an open drain functionality with a pull-  
up resistor.  
Depending on the µController-interface mode in use, several internal status signals are OR-wired to drive the ERR  
pin:  
In direct mode, the OTC flag (LEDGx-bit-field of CT-transmission, OR-wired, volatile) and the volatile W4P-  
information are routed to the ERR pin.  
The output stage undervoltage (UV) and missing voltage (MV) of the power-chip which are transmitted via the  
integrated coreless transformer are provided at the ERR pin.  
The internal data transmission error (TE) over the galvanic isolation is available as well at the ERR pin.  
The signal Wait-for-Power chip (W4P) is also provided. It detects that a continuous transmission error over a  
longer time has occurred e.g. when the process side is not supplied properly and that no diagnostic data are  
received on the µController-interface side.  
The common fault error signal (CF) is routed out to the ERR pin in parallel mode. This signal is the OR-  
combination of the COLDIAG register bits (sticky).  
CF is not routed out to the ERR pin in any serial mode. In serial modes 1 and 3 the CF-bit is contained in the  
serial telegram  
The Table 3 provides the overview of the signals provided at the ERR pin and the behaviour of the bits used. The  
prefix “S” specifies the bits as sticky.  
During UVLO, all status signals and register bits are reset. The flags UV, MV, TE and W4P have a reset value of  
1, so that by default these errors are active. As a consequence after power-up the ERR pin is by default driven  
Low. The ERR pin returns to High logic level once all the signals OR-wired at this pin are Low i.e. once all the fault  
conditions are not detected anymore and the bits have been cleared. This behaviour requires the external  
controller to read the GLERR and INTERR to “clear” the ERR pin (except in parallel direct mode where the error  
bit is simply OTC of type: volatile bit generated by oring the volatile gated-LEDGx-information of each channel and  
W4P ). In some operation modes the update and the clearing of the status bits are done automatically after every  
access (serial mode 0 and 1). For the other operation modes, the error bits need to be read with direct addressing  
to be updated and cleared (parallel mode and serial modes 2,3).  
The ERR signal differs between serial modes and parallel modes since in serial modes 1 and 3 the CF bit is  
already shifted out when CRC is used. The serial or parallel mode is selected with the SEL signal whereas the  
serial submodes are controlled with the SPI_MODE 2-bit signal.  
Table 3  
Bits composing the ERR signal  
Status Bits Serial Communication  
Parallel Communication  
Mode-0  
Mode-1  
Mode-2  
Mode-3  
Single  
Access  
Repeated  
Read  
Direct Mode  
SUV  
SMV  
CF  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
STE  
SW4P  
OTC  
X
X
X
X
X
X
X
X
X1)  
X
1) Bit is volatile in direct mode  
Datasheet  
27  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Upon reset most of the bits used in the ERR generation are reset to High, the ERR pin is pulled down on startup  
and will remain Low as long as the external controller does not clear the corresponding bits (and as long as the  
fault exists).  
4.2.4  
Update of the Diagnostic Registers  
The following list describes the handling of appearing and disappearing failures and therefore the diagnostics.  
Appearing diagnostic/failure: appearing diagnostics are stored internally within sticky registers and are OR-ed  
into the register COLDIAG (except LEDGx). Therefore the appearing diagnostic/failure bit can be seen  
immediately. After reading COLDIAG the diagnostic bits are transferred from the internal sticky registers to  
DIAG0,...,DIAG7 from which these can be read now in detail.  
Disappearing diagnostic/failure : the diagnostic bits are stored internally as sticky bits and therefore also (ored)  
in COLDIAG. In the case the source for the diagnostic bits has disappeared the diagnostic bits are still  
available internally and in COLDIAG until the user has read COLDIAG. Therefore the diagnostic bits never  
disappear with vanishing of the source for setting the bits alone. Both conditions have to be fulfilled: vanishing  
of the source of the occurence and reading of COLDIAG.  
In the case the isochronous mode for the channel diagnostic values is activated with the bit FRZSC in register  
GLCFG (see Chapter 4.2.5.2) the diagnostic bits are transferred from the internal sticky registers to  
DIAG0,...,DIAG7 with each edge of the SYNC-signal.  
Datasheet  
28  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.5  
SYNC Operation  
The Isochronous Mode enables the synchronization of several devices (e.g. to provide 32 channels 4 devices are  
grouped in parallel). In this way the update of all the output channels as well as their diagnostics can be  
synchronized and held such that the Bus ASIC or microcontroller can program a new control word of the output  
channels and read the diagnostics status. In continuous mode, each device with its own built-in oscillator is  
updated independently.  
The Isochronous Mode is controlled by the SYNC pin and independent of the selected serial or parallel interface  
(with the SEL pin). It concerns only the update of user registers in the system.  
4.2.5.1  
SYNC-Signal for Drive-Signals  
Figure 18 explains in detail the mechanism for SYNC = High, SYNC = Low and the rising and falling edges of  
SYNC for transferring the drive-information from the uC-Chip to the Power Chip.  
Programmed  
DRIVE[X]  
SYNC-  
signal  
to Power Chip  
transferred  
DRIVE[X]-  
information  
OUT[x]  
continuous mode  
isochronous mode  
(SYNC is in high state)  
(SYNC is in low state)  
Page -2 - uc _isochronous _mode  
Figure 18 SYNC Operation Timing  
SYNC = High, Normal Mode:  
The DRIVE-register can be written with new data and the contents of it is also transferred to the power chip.  
SYNC = Low, Isochronous-Mode:  
In isochronous mode the user can write the DRIVE-register but this value will not be transferred to the Power Chip.  
Therefore the driver configuration (activation of drivers in the Power Chip) is frozen. In Figure 18 it can be clearly  
seen that the toggling of the DRIVE[x]-information (SPI-data-cycle) at the right side had not been transferred to  
the process side (see oval area in Figure 18).  
4.2.5.2  
SYNC-Signal for Diagnostics  
Independent from the level of the SYNC-signal always the same reading-sequence of the diagnostics shall be  
obeyed : read COLDIAG, check which channel x (in the following examples of Table 4 and Table 5 : channel 0)  
shows the setting of diagnostic bits and read the related DIAG0,...,DIAG7 for checking in detail which diagnostic  
Datasheet  
29  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
has been reported. Reading of COLDIAG first assures that the DIAG0,...,DIAG7-registers are loaded from the  
internal sticky registers.  
SYNC = High, Continuous Mode:  
When the signal SYNC is High (default), the continuous mode is selected and the diagnostic registers  
DIAG0,....DIAG7 are always updated after read access to COLDIAG.  
Table 4 shows the typical scenario where an external disturbance (openload or short-circuit-to VBB) cause the  
setting of the diagnostic registers DIAG0,...,DIAG7 (here DIAG0) and the collective diagnostic register COLDIAG.  
After vanishing of the disturbance and reading of COLDIAG the internal diagnostic registers are reset. The SYNC-  
waveform is sketched in red (in Table 4 for the continuous mode any waveform is allowed), the disturbance in light  
shaded grey (in this example strictly time limited) and the possible read-access in dark grey.  
Table 4  
Continuous Mode (GLCFG : FRZSC = 0), Disturbance (to Channel 0) Scenario  
Waveform permanently “High”  
of SYNC  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”1”xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  
or any waveform of SYNC is allowed when GLCFG:FRZSC = 0  
........”0”.....  
scenario #  
1
disturbance  
1
read results  
COLDIAG  
DIAG0  
read=yes  
0x01  
0xvalue  
read=yes  
0x00  
0x00  
2
disturbance  
2
read results  
COLDIAG  
DIAG0  
read=yes  
0x01  
0xvalue  
read=yes  
0x01  
0xvalue  
read=yes  
0x00  
0x00  
SYNC = Low, Isochronous-Mode:  
The isochronous mode for the channel diagnostic values is activated with the bit FRZSC in register GLCFG. If  
FRZSC = 1 (RESYN = 0) the isochronous mode for diagnostics is enabled.  
When SYNC is Low, the DIAG0-7 and COLDIAG (including CF) are not updated anymore (frozen). At the falling  
edge of SYNC the information of the internal sticky registers is transferred to DIAG0,...,DIAG7. During SYNC =  
High the information of the internal sticky registers has been mirrored and ored to COLDIAG. When isochronous  
mode is activated the DIAG0,...,DIAG7-registers and COLDIAG freeze the diagnostic data. But the internal sticky  
registers collect the diagnostic information independently from SYNC. With rising edge of SYNC the  
DIAG0,...,DIAG7 registers and COLDIAG are updated on base of the contents of the internal sticky registers.  
Table 5 shows some scenarios where an external disturbance (openload or short-circuit-to VBB) cause the setting  
of the diagnostic registers DIAG0,...,DIAG7 (here DIAG0) and the collective diagnostic register COLDIAG. In all  
scenarios the same procedure is sketched where a disturbance occurs and the diagnostic registers are read in the  
following. The SYNC-waveform is sketched in red (in Table 5 for the isochronous mode with low and high periods),  
the disturbance in light shaded grey (in this example strictly time limited at different timestamps) and the possible  
read-access in dark grey. In Table 5 the occurence of the disturbance relative to the edges of the SYNC-signal is  
altered. Read procedures can occur during the phase of SYNC = 0 or SYNC = 1. Dependent on the occurence of  
the disturbance relative to the SYNC-edges and the read-process the diagnostic values have been already set in  
COLDIAG and DIAG0,...,DIAG7 or the old values have been frozen. In the second case the new values will be  
updated in COLDIAG and DIAG0,...,DIAG7 with the next rising edge of SYNC and can be read with the next read-  
Datasheet  
30  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
cycle. Due to the sticky registers no diagnostic value is lost. After vanishing of the disturbance and reading the  
diagnostic values are reset.  
Entries in COLDIAG can be reset during SYNC = Low after a reading procedure when the disturbance had been  
registered before the falling edge of SYNC and is therefore securely delivered. But DIAG0,...,DIAG7 remains  
unaffected from this reading procedure.  
Table 5  
Isochronous Mode (GLCFG : FRZSC = 1 (RESYN = 0)), Channel 0 Disturbed, Scenarios  
Waveform xxxx x  
x xxxxxxxxx”1”xxxxxxxx  
x High  
x
x
x
x
x
x xxx”1”xx  
x High  
x
of SYNC  
High x  
x
x xxxxxxx”0”xxxxxxx  
x xxx”0”xx x  
Low  
Low  
scenario #  
1
disturbance  
1
read results  
COLDIAG  
DIAG0  
read=yes  
0x01  
0xvalue  
read=yes  
0x00  
0x00  
2
disturbance  
2
read results  
COLDIAG  
DIAG0  
read=yes =yes  
read=yes  
0x00  
0x00  
0x01  
0x00  
0xvalue 0x  
val  
3
....disturbance..........  
3
read=yes  
0x00  
0x00  
read=yes read=yes  
read results  
COLDIAG  
DIAG0  
0x01  
0x00  
0xvalue 0x00  
4
.......disturbance............  
4
read results  
COLDIAG  
DIAG0  
read=yes  
0x00  
0x00  
read=yes read=yes  
0x01  
0x00  
0xvalue 0x00  
5
disturbance  
5
read results  
COLDIAG  
DIAG0  
read=yes  
0x01  
0xvalue  
read=yes  
0x00  
0x00  
6
....disturbance..........  
6
read results  
COLDIAG  
DIAG0  
read=yes  
0x00  
0x00  
read=yes  
0x01  
0xvalue  
read=yes  
0x00  
0x00  
Datasheet  
31  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Table 5  
Isochronous Mode (GLCFG : FRZSC = 1 (RESYN = 0)), Channel 0 Disturbed, Scenarios  
Waveform xxxx x  
x xxxxxxxxx”1”xxxxxxxx  
x High  
x
x
x
x
x
x xxx”1”xx  
x High  
x
of SYNC  
High x  
x
x xxxxxxx”0”xxxxxxx  
Low  
x xxx”0”xx x  
Low  
7
.......disturbance.........  
7
read results  
COLDIAG  
DIAG0  
read=yes  
0x00  
0x00  
read=yes  
0x01  
0xvalue  
read=yes  
0x00  
0x00  
4.2.6  
ODIS Output Disable  
The low active ODIS signal immediately switches off the output channels OUT0-OUT7. This pin has an internal  
Pull-Down resistor. In normal operation the signal ODIS is High. Setting ODIS to Low clears the registers as well.  
The minimum width of the ODIS signal is 5 µs.  
4.2.7  
LEDGOFF  
The gated-LED-signal LEDGx, x=0,...,7 is per default reported in the diagnostic registers DIAG0,...,DIAG7 (not  
ored in the COLDIAG-register). LEDGx is updated with a long time constant every 100ms. Therefore the bit  
LEDGOFF in GLCFG offers the possibility to suppress the reporting in the diagnostic registers DIAG0,...,DIAG7.  
4.2.8  
OLOFF  
The bit OLOFF in GLCFG offers the possibility to suppress the reporting of OLIx, OLAx in the diagnostic registers  
DIAG0,...,DIAG7.  
4.2.9  
RESET (Hard and Soft)  
4.2.9.1  
Hardware Reset  
The external hardware reset can be enabled or disabled by the bit RSTOFF in the register GLCFG, by default the  
external hardware reset function is enabled. The external hardware reset forces the logic asynchronous reset for  
the uC_chip (acts like a power-on-reset), all register are loaded with the default values. It is triggered when the  
signal ALE is set High whereas the CS signal is set Low for at least 100 µs. Once an internal timer reaches the  
end value of 100 µs then the hardware reset condition is fulfilled and “latched”. At the point where one of the  
signals ALE and CS returns to its default value, the reset is processed. With resetting the DRIVE-register and  
restarting the CT-transmission the output switches are shut down.  
4.2.9.2  
Soft Reset  
The soft reset for the uC_chip is triggered by the bit SWRST (self clearing after performing the soft reset) in the  
register GLCFG. If the soft reset is triggered the DRIVE, INTERR, GLERR, DIAG0,...,DIAG7, COLDIAG,  
DIAGCFG register are set to their reset values synchronously. In addition the internal flags are cleared. The CT-  
transmission is restarted. The actual transmission cycle is not disturbed. With resetting the DRIVE-register and  
restarting the CT-transmission the output switches are shut down.  
Datasheet  
32  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.2.10  
Resynchronization of CT-Transmission  
During the CT-transmission the drive-information DRIVE for 8 power switches is sent from the uc-Chip to the  
Power-Chip. Subsequently one of the diagnostic informations (status-information, OTx, OLIx, OLAx, OCLx,  
SCVx or LEDGx-information for the 8 power switches) is sent back. The duration of a CT-time slot with  
transmission of drive - information and back-transmission of one of the diagnostic information lasts about  
5 us + 20 %. (internal operating frequency : 10 MHz, resistor at pin CLKADJ : 10 k). When the user programs  
the drive register a timing uncertainty arises when the specific programed switch is activated or deactivated in the  
power chip. The data of the drive register can be transferred to the power chip only in the next free CT-time slot.  
The goal of resynchronization is to limit the timing uncertainty due to transmission and retransmission to a value  
below + 1.5 us but with a fixed latency of minimum 7.0 us . For triggering the transmission the signal SYNC is used  
when GLCFG:RESYN = 1. A timing difference between switching on and off of the power transistors exists which  
is already included in the timing uncertainty value above. Switching off a power transistor is delayed by up of 0.5 us  
max relative to the SYNC-rising edge compared to switching on a power transistor.  
Requirements on RESYNCHRONIZATION-Timing :  
GLCFG:RESYN = 1  
7.0 us min  
SYNC  
maximum time duration to finish current CT-slot 5 us  
(determined by internal transmission and retransmission)  
2.0 us  
safety margin  
…...  
uC_chip  
power -chip  
DRIVE  
Diagnostics  
uC_chip  
power -chip  
next CT-slot  
Figure 19 Timing of Resynchronization  
Transmission without Resynchronization:  
GLCFG:RESYN = 0 or 1  
signal SYNC = 1  
write the drive information into DRIVE  
the contents of DRIVE is transferred via the CT to the power-chip  
Datasheet  
33  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Transmission with Resynchronization:  
signal SYNC = 1  
GLCFG:RESYN = 1  
write the drive information into DRIVE_RESYNCH  
signal SYNC = 0  
the duration of the signal SYNC = 0 (minimum 7.0 us) determines the time for resynchronization and the time  
until the next CT-transfer  
In the meantime the pending transmission and retransmission has been finished and the contents of  
DRIVE_RESYNCH has been transferred to DRIVE  
set signal SYNC = 1, the CT-transfer is started from DRIVE with the rising edge of SYNC  
Without any negative pulses on SYNC the CT-transfer is operated permanentely from DRIVE; the negative pulses  
on SYNC are solely used for resynchronization, the isochronous mode for drive-information and for diagnostics is  
inactive when GLCFG:RESYN is set to “1”.  
Information for the DRIVE_RESYNCH-register can be written long before the resynchronzation trigger with falling  
and rising edge of SYNC.  
The user has to obey the timing requirements of the SYNC-signal. For a duration longer than 300 us + 20% the  
watchdog in the power chip disables the output drivers. For a shorter duration of the SYNC-signal than  
recommended the resynchronization is not guaranteed and the normal transmission fed by the register DRIVE can  
be performed.  
Figure 20 shows 2 different applications of resynchronization. The timing gap between two synchronizations can  
be as low as 1 us. In this way the customer can decide between single synchronization steps and permanent  
synchronized transmission with the drawback of reduced CTthrough put (time for waiting of new transmission).  
Resynchronization of CT-Transmission  
Scenario 1 : 2 resynchronization -steps after several transmissions  
several transmissions and retransmissions  
transmission  
gap  
trans.  
gap  
DRIVE  
DRIVE  
DRIVE  
DRIVE  
DRIVE  
…...  
restart  
Diagnostics  
SYNC  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
restart  
finish actual CT-slot and wait  
transmission  
after  
tresynch  
transmission  
after  
tresynch  
tresynch  
tresynch  
SYNC  
Scenario 2 : permanent resynchronization  
transmission  
gap  
DRIVE  
DRIVE  
DRIVE  
trans.  
gap  
restart  
Diagnostics  
Diagnostics  
Diagnostics  
restart  
finish actual CT-slot and wait  
transmission  
after  
tresynch  
transmission  
after  
tresynch  
tresynch  
(min. 7.0 us)  
SYNC  
tresynch  
SYNC  
tresynch_gap  
(min.1 us)  
Figure 20 Examples of Application of Resynchronization  
Datasheet  
34  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Application hint : It is not possible to select GLCFG:RESYN = 1 and isochronous mode of drive information or/and  
isochronous mode of diagnostics at the same time. That means resynchronization and isochronous mode of driver  
information and diagnostics at the same time is not possible. With GLCFG:RESYN = 1 edges on SYNC are used  
solely for resynchronization.  
4.3  
Output Stage  
Each channel contains a high-side power FET that is protected by embedded protection functions. The continuous  
current for each channel is 600 mA nominal, which depends on the cooling conditions and the total power  
dissipation.  
4.3.1  
Output Stage Control  
Each output is independently controlled by an output latch and a common reset line via the pin ODIS that disables  
all eight outputs and resets the latches.  
4.3.2  
Protection Functionality  
4.3.2.1  
Power Transistor Overvoltage Protection  
Each of the eight output stages has it’s own zener clamp that causes a voltage limitation at the power transistor  
when solenoid loads are switched off. VONCL is then clamped to 52 V (typ.).  
4.3.2.2  
Power Transistor Overload Protection  
The outputs are provided with a linear current limitation, which regulates the output current to the current limit value  
in case of overload. The electrical operation point does not lead to a shutdown.  
The excess power dissipation in the power transistor during current limitation will lead to a rapid increase of the  
junction temperature. When the junction temperature exceeds 150 °C (typ.) the output will switch off and will  
switch on again when the junction temperature has cooled down by a temperature hysteresis of 15 K (typ.).  
Therefore during overload a thermal on-off toggling may occur.  
The thermal hysteresis is reset during inactive mode. Therefore when switching to the active mode the power  
transistor is first switched on if the junction temperature is below 150 °C.  
4.3.2.3  
Current Sense and Limitation  
To achieve an excellent accuracy for the current limitation and current referred diagnostic (OCLx) an external  
reference resistor is used. The resistor must be connected between the pins IADJ (as close as possible) and  
GNDBB. The nominal resistor value is 6.81 k(E96; current drawn out of IADJ typ.178 µA) , the tolerance should  
be within 2% to meet an overall current limit tolerance from 0.73 A to 1.3 A.  
Operation with other resistor values than 6.8 k±5% is not allowed and may lead to insufficient short circuit  
protection.  
To offer open load diagnostics in active mode, a part of the power transistor is driven down when the drain-source-  
voltage drops below a certain limit (low load condition). The voltage drop across the remaining part is used to  
evaluate an open load diagnostic.  
Datasheet  
35  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.3.3  
Diagnostic Functions  
For each of the output stages 5 different types of diagnostics are available. Table 6 specifies the diagnostics.  
Some of the diagnostics are available only in active mode, others only in inactive mode. The diagnostics OLIx,  
OLAx, SCVx can be prolonged within the complementary mode. Overtemperature in inactive mode is not reported  
(set to zero).  
Table 6  
Item  
Diagnostic  
Diagnostic Type  
Overtemperature  
Inactive Mode  
Active Mode  
OTx  
no  
yes (OTx Active)  
OLIx  
Open Load/Wire Break, “inactive” yes  
no  
OLAx  
OCLx  
Open Load/Wire Break, “active”  
no  
no  
yes  
yes  
Current Sense,  
Overload Detection  
SCVx  
Short Circuit to VBB  
yes  
not distinguishable from OLAx  
VBB  
VBB Monitoring  
GLERR  
UV  
Under Voltage Detection  
Missing Voltage Detection  
Reset Voltage  
MV  
CF  
Output Driver Control Unit  
Driver  
Protection Unit  
COLDIAG  
OUTx  
IADJ  
Zener Clamping  
(Demag. of Induct. Loads)  
Temperature Sensor  
Current Limitation  
Diagnostic  
Unit  
DIAGx  
OCL  
Overload Detection  
OT  
Over Temperature Detection  
OLADJ  
OLA  
SCV  
OLI  
Open Load Active Detection  
Short to VBB Detection  
Open Load Inactive Detection  
DIAGCFG  
Diagnostics_Overview_ISO2H823V.vsd  
Figure 21 Diagnostics Overview  
Datasheet  
36  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
The diagnostics OLIx, SCVx are reported in inactive mode and OLAx is reported in active mode. When the  
duration of the disturbance was not sufficient to guarantee a 6 ms blanking/filtering time these diagnostics are at  
least reported when switching from one mode into the other mode. The diagnostics OLIx, OLAx and SCVx,OLAx  
appear in pairs one component for the inactive mode and one component for the active mode with a delay for the  
filtering. In order not to allow reporting gaps the diagnostics are prolonged until the complementay part is occurring  
or until a time out counter has expired (f.e. the diagnostic OLIx (SCVx) is prolonged also during the active time  
period until the filter delivers a reliable OLAx- (OLAx-) diagnostics and vice versa).  
4.3.3.1  
Diagnostics in Inactive Mode  
When the output is in inactive mode a diagnostic current is fed to the output. If the load is connected and the load  
resistance is less than 12 k, the output voltage will be 300 mV or less.  
If no load is connected a voltage drop of 7 V is present at the output. A voltage in the range of 5.5 V up to 9.2 V  
at the output OUTx is detected and reported as open load inactive (OLIx) after filtering.  
If the output is shorted to VBB the output voltage will be close to VBB level even in inactive mode, this depends upon  
the type of the short circuit. A voltage level above 9.2 V at the output is detected and reported as short circuit to  
VBB (SCVx) after filtering.  
The window comparator for OLIx (5.5 V - 9.2 V) is realized with the analog level comparators for 5.5 V and 9.2 V  
and the digital filters for OLIx and SCVx. After filtering SCVx has the priority against OLIx. By means of the digital  
filters EMI-contributions shall be filtered before deciding about OLIx or SCVx.  
If a capacitive load with a long RC time constant is connected to the ISO2H823V2.5 (like a 12 kresistor through  
a long cable with 100 nF capacitance) when switching off, the output voltage sequently passes through the  
windows of short to VBB detection and broken wire detection. During a blanking time of 6 ms (typ.) the diagnostic  
signals are ignored to avoid false triggering of diagnostic registers.  
If the corresponding channel is switched on again before the end of the blanking time (6 ms) , the state of the  
diagnostic signals present before switching on is transferred to the diagnostic registers, bypassing the blanking  
window of 6 ms and filtered instead with a filtering time of 100 us, 0.5 ms, 1 ms depending on the switching  
frequency.  
Table 7  
Filter Time in Inactive Mode for OLIx and SCVx  
Duration of inactive time tOFF before switching  
0 ms < tOFF < 1.5 ms  
Filter time  
100 us  
1.5 ms < tOFF < 3 ms  
0.5 ms  
3 ms < tOFF < 6 ms  
1 ms  
t
OFF > 6 ms  
6 ms (OLIx), 2 ms (SCVx)  
For the largest SCVx-filter a filter-length of 2.0 ms is choosen but a setting of SCVx is only possible after the  
blanking window of 6 ms. No single channel over temperature diagnostics is given during inactive mode to avoid  
false triggering when switching inductive loads.  
Datasheet  
37  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.3.3.2  
Diagnostics in Active Mode  
If during active mode operation the remaining voltage drop of a low load condition is compared to the voltage drop  
across a reference transistor biased with a reference current. The reference current can be set by the value of a  
resistor connected between OLADJ and GNDBB defining the threshold for open load diagnostics. The resulting  
open load threshold is inversely proportional to the connected resistor (25 k- 2.3 k, E96 series; current out of  
the OLADJ-pin 48.6 µA - 528 µA) and can be set within 0.5 mA to 5 mA.  
Like the diagnostics in inactive mode the open load diagnostics in active mode (OLAx) is ignored during a 6 ms  
blanking window after switching on. If the channel is switched off before the end of the blanking window the current  
state of the open load diagnostics is transferred to the diagnostic registers, bypassing the blanking window of 6  
ms and filtered instead with a filtering time of 100 µs, 0.5 ms or 1.0 ms (depending on the switching frequency).  
The over load diagnostic (OCLx) occurs generally if the output stage limits the load current. Therefore the  
diagnostic threshold is equal to the current limiting value. An overload may and a short to GNDBB will probably  
lead to a thermal shutdown. The shutdown is indicated separately by the diagnostics OTx. The standard filter time  
for overload (OCLx) and overtemperature (OTx) is 50 us (for a thermal shutdown).  
Table 8  
Filter Time in Active Mode for OLAx  
Duration of active time tON before switching  
0 ms < tON < 1.5 ms  
Filter time  
100 us  
0.5 ms  
1 ms  
1.5 ms < tON < 3 ms  
3 ms < tON < 6 ms  
t
ON > 6 ms  
6 ms  
Some loads like incandescent lamps or DC motors show an inrush current, which is normal and should not trigger  
an overload diagnostic. In some cases even a transient thermal shutdown can not be avoided but an OTx-  
message is avoided for the time duration of running up f.e. a cold lamp (max. 200 ms). In this case and only for  
this short time duration the current limiting threshold can be set to 1.5 A and the temperature threshold to 200°C  
by the internal finite state machine.  
The ISO2H823V2.5 adapts filtering of over load and thermal shutdown diagnostics as well as shutdown  
temperature and current limit level by evaluating the previous turn off time and the load resistance.  
Datasheet  
38  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.3.3.3  
Diagnostic Scenarios in Dependence of Switching Frequency  
The Table 9 explains the occurence of diagnostics dependent on the switching frequencies for the disturbance  
“Short-Circuit-to-VBB”.  
Table 9  
Occurence of Diagnostics during the Disturbance : Short-Circuit-to-VBB  
Stable Switching Frequency : f  
Reported  
Unwanted Diagnostics at  
Diagnostic  
Onset of ............................or at Resolving of  
SCVx-Disturbance  
permanently “low” : f <= 62,5 Hz  
SCVx, OLAx  
OLIx 1)  
permanently “intermediate”  
62,5 Hz < f < 2 kHz  
SCVx, OLAx OLIx 2)  
permanently “high”  
f >= 2 kHz  
SCVx, OLAx OLIx 2)  
Transitions in the Switching  
Frequency : f  
permanently “low”  
--> permanently “high”  
f <= 62,5 Hz --> f >= 2 kHz  
SCVx, OLAx OLIx 1) 2) : depends on the time of onset and resolving of  
SCVx-disturbance  
permanently “high”  
--> permanently “low”  
f >= 2 kHz --> f <= 62,5 Hz  
SCVx, OLAx OLIx 1) 2) : depends on the time of onset and resolving of  
SCVx-disturbance  
1) In Table 9 an additional OLIx-signal can be generated when 1. the SCVx-disturbance has been resolved in the inactive  
phase and 2. the inactive phase is longer than 8 ms (f < 62,5 Hz) and 3. the SCVx-disturbance has been existing for >= 6  
ms in the inactive phase. The occurence of the additional OLIx-signal depends on the relative duration of the inactive mode  
and the SCVx-disturbance. It disappears at last after 4 ms or with continued switching of the power transistor. As  
the user himself has caused the additional OLIx-signal by resolving the SCVx-disturbance the user can ignore this signal  
for the next 4 ms or can continue switching the power transistor.  
2) Depending on the onset of the SCVx-disturbance in scenarios with high or intermediate switching frequency one time an  
unwanted OLIx-reporting can occur which vanishes during further switching. As in the upper case 1) the user can  
ignore it as in the sequel the correct signaling occurs.  
The Table 10 explains the occurence of diagnostics dependent on the switching frequencies for the disturbance  
“Openload”.  
Prerequisite : an external capacitor of C = 10 nF (minimum value) for enhancing the EMI-robustness is attached  
to the output. VBB = 24 V.  
In Table 10 the additional SCVx-diagnostic reflects the transition from active to inactive mode when the external  
C (EMI-robustness) has to be decharged via a high ohmic internal resistor. During the decharging process the  
output voltage is in the region of reporting SCVx.  
Datasheet  
39  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Table 10  
Occurence of Diagnostics during the Disturbance : Wirebreak  
Stable Switching Frequency : f  
Reported  
Comment  
Diagnostic  
permanently “low” : f <= 50Hz  
OLIx, OLAx,  
SCVx  
additionally SCVx1)  
instead of OLIx : SCVx2)  
instead of OLIx : SCVx2)  
permanently “intermediate”  
50 Hz < f < 2 kHz  
SCVx, OLAx  
SCVx, OLAx  
permanently “high”  
f >= 2 kHz  
Transitions in the Switching  
Frequency : f  
permanently “low”  
--> permanently “high”  
f <= 50 Hz --> f >= 2 kHz  
OLIx, OLAx,  
SCVx  
--->  
additionally SCVx1)  
additionally SCVx1)  
SCVx, OLAx  
permanently “high”  
--> permanently “low”  
f >= 2 kHz --> f <= 50 Hz  
SCVx, OLAx  
---->  
OLIx, OLAx,  
SCVx  
1) additionally SCVx reported, diagnostic due to decharging of the external C (EMI-robustness)  
2) instead of OLIx is SCVx reported,diagnostic due to decharging of the external C (EMI-robustness)  
Datasheet  
40  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.3.3.4  
Global Diagnostics  
The global diagnostics include:  
UV: undervoltage supply condition when VBB is below 16 V with 0.5 V hysteresis,  
MV : missing voltage supply condition when VBB is below 13 V with 0.5 V hysteresis,  
OTP: global over temperature (chip temperature outside the switch area triggers above 125 °C), the global  
over temperature does not lead to thermal shutdown,  
ALLOFF: all drivers in the power chip are disabled (by DRIVE-programming, ODIS-setting or temperature  
shutdown of all channels),  
LAMP: the load of one of the drivers behaves like a cold lamp  
4.3.3.5  
Power Supply  
The startup procedure of the power chip is explained in Figure 22.  
VVBB  
Voltage  
VVBBuvoff  
VVBBuvon  
VUV  
VVBBuvhys  
VVBBmvoff  
VVBBmvon  
VMV  
VVBBmvhys  
VVBBon  
VVBBoff  
VRESET  
VVBBhys  
Time  
RST  
MV  
UV  
por_uv_mv_events .vsd  
Figure 22 Start Up Procedure of the Power Chip  
During UVLO, all registers of the power chip are reset to their reset values as specified in the register description  
(Chapter 6). As a result, the flags TE, UV as well as MV are High and the ERR pin is Low (error condition).  
Immediately after the reset is released, the chip is first configured by “reading“ the logic level of the SEL, MS1,  
MS0 - pins. The IC powers up as a parallel device i.e. the AD0-7 pins are high-impedance until the IC configuration  
is over.  
The supply voltage VBB is monitored during operation by two internal comparators (with typ. 2 ms blanking time)  
detecting:  
VBB Undervoltage: If the voltage drops below the UV threshold, the UV-bit in the GLERR register is set High.  
The IC operates normally.  
VBB Missing Voltage: If the voltage further drops below the MV threshold, lower than the previous threshold,  
the MV-bit in the GLERR register is set, the Power Side of the IC is turned off when reaching the VReset-  
threshold whereas the Micro-Controller Side remains active.  
Datasheet  
41  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Note: The driver stage is self protected in overload condition: the internal switches will be turned off as long as the  
overcurrent condition is detected and the IC will automatically restart once the overload condition  
disappears.  
Important: Since the UV and MV (as well as the TE) bits used for generating the ERR signal are preset to High  
during UVLO, the ERR pin is Low after power up. Therefore the ERR requires to be explicitly cleared after power  
up. At least one read access to the GLERR and INTERR registers or one default read access in certain access-  
modes (see Chapter 4.2.3) is needed to update those status bits and thus release the ERR pin.  
Datasheet  
42  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.3.4  
LED Matrix  
The driving signal for the LED-matrix is the drive-signal of the register DRIVE gated with the signal LEDGx of the  
registers DIAG0,...,DIAG7. This signal is generated in the power chip and transferred via the CT-interface to the  
uC-Chip. For suppressing a thermic toggling visible on the LED-matrix LEDGx disables the related LED for at least  
100ms when an overtemperature (OTx) or overcurrent condition (OCLx) has occurred.  
4.3.4.1  
LED Matrix on the Process Side  
Eight LEDs arranged in a 3x3 matrix can be driven through the outputs LEDx0 to LEDx2 and LEDy0 to LEDy2 of  
the Power Chip. Each output channel has a corresponding status LED in the matrix showing the actual status of  
the channel. When the LED lights up, the corresponding channel is in the active mode and has no thermal  
shutdown and no overcurrent condition.  
Series resistors must be inserted in each column line LEDy0...LEDy2 to set the LED current. The driving level on  
the column lines is the VBB voltage level. The row lines are driven alternately with 1/3 duty cycle at 1000 Hz. The  
resulting average current for each LED is 1/3*(VBB minus diode forward voltage)/series resistance.  
If the diode matrix is used at all, all 8 LEDs must be connected for correct function of the matrix.  
LEDy2  
LEDy1  
LEDy0  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
LEDx0  
LEDx1  
LEDx2  
Figure 23 LED Matrix connected to the Power Chip  
Datasheet  
43  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Figure 24 LED Pulse Diagram  
If no LEDs are used at all it is possible (by reasons of EMI) to connect all column signals LEDY0,..,2 together and  
all row-signals LEDx0,..,2 together but a connection among columns and rows is not allowed. In the case of  
paralleling of channels it is possible to substitute the unused LEDs by resistors which have the only function to  
dissipate the current which is delivered in case the not existing diode is accessed. If no limiting element is used  
(f.e. resistor) the voltage at the LEDs of the non-activated rows can rise up to VBB if the non-existing element is  
activated (the related row activated and the corresponding column activated).  
4.3.4.2  
LED Matrix on the uController Side (only in Serial Communication Mode)  
For the driving signals on the uController-side the following pins are used for the column signals : AD1 / LEDC2,  
ALE/RST / LEDC1, WR / LEDC0 and for the row-signals : AD2 / LEDR2, AD3 / LEDR1, AD6 / LEDR0. For enabling  
the LED-function on the uC-Chip side the bit LEDON in the GLCFG-register has to be set. LED-operation is only  
possible in the serial communication mode. If LEDON = 1 the hardware reset function is disabled.  
As in the case for the LED on the power chipside a 3x3 matrix can be driven. Each output channel has a  
corresponding status LED in the matrix showing the actual status of the channel. When the LED lights up, the  
corresponding channel is in the active mode and has no thermal shutdown and no overcurrent condition. The 9.th  
LED is connected with the ERR-signal.  
Series resistors must be inserted in each column line LEDC0...LEDC2 to set the LED current. The driving level on  
the column lines is the VCC voltage level. The row lines are driven alternately with 1/3 duty cycle at 1000 Hz. The  
resulting average current for each LED is 1/3*(VCC minus diode forward voltage)/series resistance.  
If the diode matrix is used (LEDON = 1) , all 9 LEDs must be connected for correct function of the matrix.  
Datasheet  
44  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
AD1 / LEDC2  
ALE/RST / LEDC1  
/WR / LEDC0  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
AD6 / LEDR0  
AD3 / LEDR1  
S7  
ERR  
AD2 / LEDR2  
Figure 25 LED Matrix connected to the uC-Chip  
In the case of paralleling of channels it is possible to substitute the unused LEDs by resistors which have the only  
function to dissipate the current which is delivered in case the not existing diode is accessed.  
The minimum value of the VCC-voltage is 2.75 V. But this low voltage will limit the choice of the used LEDs (in the  
worst case only LEDs with a lower forward voltage of around 2.2 V are possible).  
Datasheet  
45  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
4.4  
EMI-Robustness  
Care has been taken to increase the Burst- and RFCM-robustness according to the standardization requirements  
referenced in  
DIN EN 61131-2 (Programmable Controllers , Part 2 : Equipment Requirements and Tests)  
IEC 61000 -4-4 (Testing and measurement techniques - electrical fast transient/burst immunity test)  
IEC 61000 -4-6 (Testing and measurement techniques - immunity to conducted disturbances, induced by  
radio-frequency fields)  
respectively.  
As the standardization document DIN EN 61131-2 gives a system-requirement we can give only recomendations  
for the application with ISO2H823V2.5 for improvement the EMI-robustness. Exact values have to be evaluated  
with the total system including external components and PCB-layout and wiring.  
For Burst- and RFCM-robustness we consider only the driver-pins OUTx and VBB as these pins are exposed to  
external disturbances. Other pins of ISO2H823V2.5 are encapsulated within the housing of the control equipment  
(f.e. PLC).  
The influence of HF-signals is eliminated internally with assistance of the external capacitor of min.10 nF (+ 10%)  
at the output OUTx of each power transistor. To increase the safety margin if higher test voltages are applied it is  
possible to increase the capacitor up to 12 nF + 10 %.The purpose is to suppress frequency contributions of the  
external disturbance greater than 2 MHz.  
Investigations have been done with an external load of a high value of 12 k. Other critical loads consisting of a  
high inductive value combined by a high resistive value (f.e. 0.8 H, 1.4 k) have been also examined.  
4.4.1  
Burst Robustness  
Figure 26 shows the test circuitry for applying burst pulses. The fat drawn equipment symbolizes the burst-  
generator and the coupling of burst pulses to the OUTx-pins and/or to the VBB-pin (see the different coupling  
network for OUTx, VBB as specified in IEC 61000).  
Datasheet  
46  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
Burst-Application  
VBB  
VBB  
each OUT or VBB is  
loaded separately with  
burst pulses  
IADJ  
2.2 uF  
OLADJ  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
Control  
Protection  
Diagnostic Unit  
100 pF  
10 nF  
C
10 nF  
min.  
*)  
C
10 nF  
min.  
*)  
50 Ohm  
50 Ohm  
load  
12  
kOhm  
load  
12  
kOhm  
+
-
+
-
Csystem_earth  
22 nF  
=
ISO2H823V2  
Power Chip  
VDDIO  
VCORE  
GNDBB  
System_GND  
Earth  
*) : for enhancement of EMI-robustness,  
recommended value 12 nF  
Csystem_earth on application board for separation  
of System_GND and Earth  
Figure 26 Burst-Application  
For burst-disturbance the standard foresees 2 repetition frequencies : 5 kHz and 100 kHz. For the repetition  
frequency of 5 kHz the target is to achieve a burst-robustness of min .+ 2500 V within the system with external  
elements. For a repetition frequency of 100 kHz it is much harder a give an estimation without the knowledge of  
external elements. For this case no statement is given here.  
4.4.2  
RFCM-Robustness  
Figure 27 shows the test circuitry for applying RFCM frequencies. The fat drawn equipment symbolizes the HF-  
generator and the coupling of HF frequencies to the OUTx-pins and/or to the VBB-pin (the drawn coupling network  
shall symbolize an effective impedance of 150 regardless of the frequency as specified in IEC 61000). The HF-  
disturbance is an 80%-amplitude modulated signal with the carrier frequency of 10 kHz - 80 MHz and the  
modulation frequency of 1 kHz.  
Datasheet  
47  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Functional Description  
RFCM / HF-Bestromung  
VBB  
VBB  
each OUTx or VBB is  
loaded separately  
with HF signals  
IADJ  
2.2 uF  
OLADJ  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
*) : for enhancement of EMI-robustness,  
recommended value 12 nF  
Control  
Protection  
Diagnostic Unit  
|Z| =  
150 Ohm  
load =  
12  
kOhm  
C
10 nF  
min.  
*)  
C
10 nF  
min.  
*)  
Csystem_earth  
= 22 nF  
ISO2H823V2  
Power Chip  
VDDIO  
VCORE  
GNDBB  
System_GND  
Earth  
VHF_peak_peak  
0 V  
carrier frequency : 10 kHz – 80 MHz,  
modulation frequency : 1 kHz  
amplitude modulation with 80%  
1 ms  
Figure 27 RFCM-Application  
The 80 % amplitude modulated signal is shown in Figure 27 in the lower half. With external elements on the user-  
PCB-board it is targeted to achieve a RFCM-robustness against the defined HF-signals of VHF_peak_peak = + 25 V.  
4.5  
Application Hints  
4.5.1  
Layout Recommendations  
The reference resistor for CLKADJ must be placed close to the pin 38 CLKADJ and pin 39 GND. Decoupling  
capacitors should be close to VCC terminal pin 37 and directly connected to the GND plane on the PCB.  
GND and GNDBB must be totally isolated in the PCB layout. A separation distance of min. 3.2mm is  
recommended.  
The reference resistors for OLADJ, IADJ must be placed close to their terminals of the ISO2H823V2.5 and the  
connection to the referring ground plane should be as short as possible. The capacitors for VCORE and VDDIO must  
be placed close the pins and directly connected to the GNDBB plane.  
Datasheet  
48  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5
Electrical Characteristics  
Note:All voltages at pins 1 to 32 as well as 61 to 70 are measured with respect to GNDBB. All voltages at pins 33  
to 60 are measured with respect to GND. The voltage levels are valid if other ratings are not violated. The  
two voltage domains VCC and VBB are internally galvanic isolated.  
Note:All Typical Values are defined by Tj = 25°C, VBB = 24 V, VCC= 3.3V.  
Note:Electrical Values are defined in the range Tj = -40 ... 125°C, VBB = 11...35 V, VCC = 2.75...3.6 V, unless  
otherwise specified, Table 13 to Table 26.  
5.1  
Absolute Maximum Ratings  
(at Tj = -40 … 135 °C, unless otherwise specified)  
Note:Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of  
the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin  
37 (VCC) is discharged before assembling the application circuit. Operating at absolute maximum ratings can  
lead to a reduced lifetime.  
Absolute maximum ratings are not subject to production test.  
Table 11  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Unit Note / Test Condition  
Min.  
-0.5  
-11)  
Typ.  
Max.  
3.6  
Supply voltage input interface  
Supply voltage output interface  
VCC  
V
V
V
VBB  
VDx  
45  
Continuous voltage at data inputs  
(AD0 … AD7)  
-0.5  
3.6  
Continuous voltage at pin CS  
Continuous voltage at pin ALE  
Continuous voltage at pin RD  
Continuous voltage at pin WR  
Continuous voltage at pin SYNC  
Continuous voltage at pin ODIS  
Continuous voltage at pin ERR  
Continuous voltage at pin SEL  
Continuous voltage at pin MSx  
VCS  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
1.65  
3.6  
3.6  
3.6  
VBB  
VBB  
VBB  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VALE  
VRD  
VWR  
VSYNC  
VODIS  
VERR  
VSEL  
VMSx  
Continuous voltage at pin CLKADJ VCLKADJ  
Continuous voltage at pin VCORE VVCORE  
Continuous voltage at pin VDDIO  
Continuous voltage at pin IADJ  
Continuous voltage at pin OLADJ  
Continuous voltage at pin OUTx  
Continuous voltage at pin LEDXx  
Continuous voltage at pin LEDYx  
VVDDIO  
VIADJ  
VOLADJ  
VOUTx  
VLEDXx  
VLEDYx  
V
BB -55  
-0.5  
-0.5  
Datasheet  
49  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
Table 11  
Absolute Maximum Ratings (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Load current (short-circuit current) IL  
Self  
A
limited  
LED matrix driver current  
ILED  
-20  
-40  
20  
mA  
Peak current each LED  
Static operation  
Static operating temperature  
Tj stat  
Internal °C  
limited  
Peak junction temperature  
Peak junction temperature  
Periodic temperature cycling  
Tj per  
Tjs  
175  
200  
75  
°C  
°C  
K
Periodic duty cycle <1%  
Non periodic  
Tjper  
f = 2 Hz  
Transient thermal impedance all 8 Zth  
channels  
0.375  
3.5  
K/W 12 ms sawtooth pulse, all  
channels equally loaded  
Transient thermal impedance single Zth  
channel  
K/W 50 ms sawtooth pulse 1  
channel loaded  
Storage Temperature  
Power Dissipation2)  
Tstg  
Ptot  
EAS  
-50  
150  
1.5  
°C  
W
Inductive load switch-off energy  
dissipation for each channel, single  
pulse3), all channels are switching  
simultaneously, Tj=125°C, IL = 0.6 A  
150  
mJ  
Electrostatic discharge voltage  
(Human Body Model)  
according to JESD22-A114  
VESD  
2
kV  
kV  
Electrostatic discharge voltage  
(Charge Device Model)  
according to JESD22-C101  
1) Defined by Ptot.  
VESD  
0.5  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 mm Cu, 2 × 35 mm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Single pulse means that the thermal recovery time is sufficient so that an increase of the chip temperature is avoided or at  
least limited (depends on the thermal connection of chip with PCB-board, Figure 34- Figure 36 ) .  
Datasheet  
50  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5.2  
Operating Conditions and Power Supply  
For proper operation of the device, absolute maximum rating (Table 11) and the parameter ranges in Table 12  
must not be violated. Exceeding the limits of operating condition parameters may result in device malfunction or  
spec violations. The power supply pins VBB and VCC have the characteristics given in Table 14.  
Table 12  
Operating Range  
Parameter  
Symbol  
Values  
Unit  
Note /  
Test Condition  
Min.  
2.75  
11  
Typ.  
Max.  
3.6  
35  
Supply Voltage Logic VCC  
Supply Voltage Power VBB  
Ambient Temperature  
VVCC  
VVBB  
V
Related to GND  
Related to GNDBB  
V
TA  
-40  
-40  
-40  
-25  
30  
85  
°C  
Junction Temperature  
TJ  
150  
125  
25  
°C  
Package Temperature  
Tpack  
°C  
Exposed Pad  
1)  
Common Mode Transient  
Magnetic Field Immunity  
Bias Resistor for Current Limit  
Bias Resistor for Open Load  
Bias Resistor for CLKADJ  
dVISO//dt  
|HIM|  
RIADJ  
ROLADJ  
RCLKADJ  
kV/µs  
A/m  
kꢀ  
kꢀ  
kꢀ  
IEC61000-4-81)  
CIADJ < 25 pF  
6.46  
2.3  
9.9  
6.81  
7.14  
25  
COLADJ < 25 pF  
10  
10.1  
E96-resistor, CCLKADJ  
< 25 pF  
1) Not subject to production test, specified by design.  
Table 13  
Thermal Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Thermal resistance junction -  
case top1)  
RthJC_Top  
RthJC_Bot  
10.5  
K/W  
K/W  
Measured on top side  
Thermal resistance junction -  
case bottom1)  
0.5  
Thermal resistance junction - pin1) RthJP  
Thermal resistance 2)1)  
Rth(JA)  
26  
K/W  
K/W  
23  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 mm Cu, 2 × 35 mm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
Datasheet  
51  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
Table 14  
Electrical Characteristics of the Power Supply Pins  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
9.35  
V
V
V
V
BB UVLO startup threshold  
BB UVLO shutdown threshold  
BB UVLO Hysteresis  
VVBBon  
8.9  
7.9  
1
V
V
V
V
VVBBoff  
7.5  
VVBBhys  
VVBBmvoff  
BB missing voltage OFF (MV)  
13.3  
14.0  
threshold  
BB missing voltage ON (MV)  
threshold  
BB undervoltage OFF (UV)  
threshold  
BB undervoltage ON (UV)  
V
VVBBmvon  
VVBBuvoff  
VVBBuvon  
TVBBfil  
12.1  
12.8  
16.2  
15.7  
2
V
V
17.0  
V
V
14.9  
V
threshold  
Glitch filters for VBB missing  
ms  
voltage and undervoltage1)  
Undervoltage Current for VBB  
Quiescent Current VBB  
IVBBuv  
IVBBq  
1.7  
9
mA  
mA  
V
VBB < 7.0 V  
VBB = 24 V, all  
channels inactive,  
V
V
V
V
CC = 0 V  
Voltage Level of VDDIO  
Voltage Level of VCORE  
Startup Delay (time between  
VVDDIO  
VVCORE  
tVXXon  
3.3  
1.5  
0.3  
V
VBB = 24 V  
VBB = 24 V  
V
ms  
V
BBon/VCCon and first active  
mode)1)  
V
V
V
CC UVLO startup threshold  
CC UVLO shutdown threshold2) VVCCon  
VVCCoff  
2.75  
V
2.5  
0.01  
V
CC UVLO threshold hysteresis  
VVCChys  
IVCCq  
IVCC  
V
Quiescent Current VCC  
1.2  
5.8  
-
mA  
mA  
mA  
mA  
V
V
V
V
VCC = 2.4 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 2.75 V  
Current VCC without SPI-Activity  
Current VCC without SPI-Activity  
Current VCC without SPI-Activity  
8.5  
8
IVCC  
IVCC  
-
7
1) Not subject to production test, specified by design.  
2) Note that the specified operation of the IC requires VVCC as given in Table 12  
Datasheet  
52  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5.3  
Load Switching Capabilities and Characteristics  
Table 15  
Load Switching Capabilities and Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
On-state resistance  
RON  
210  
250  
mꢀ  
IL = 0.6 A  
Tj = 125 °C  
VBB = 24 V, Each channel  
Leakage output current (included in IL(off)  
IBB(off)  
35  
30  
30  
µA  
µs  
µs  
VADx = low, each channel,  
x = 0,...,7, VBB = 24 V  
)
1)  
Turn-on time to 90% VOUT  
ton  
RL= 48 , VADx = 0 to 3.3V,  
V
BB = 24 V  
RL= 48 , VADx = 3.3 to 0V,  
BB = 24 V  
1)  
Turn-off time to 10% VOUT  
toff  
V
Slew rate VOUT  
Slew rate VOUT  
dV/dton  
2
2
V/µs RL = 48 , VBB = 24 V  
-dV/dtoff  
V/µs RL = 48 , VBB = 24 V  
1) The turn-on and turn-off time includes the switching time of the high-side switch and the transmission time via the coreless  
transformer in normal operating mode. During a transmission error on the coreless transformer transmission turn-on or  
turn-off time can increase by up to 20 µs.  
5.4  
Output Protection Functions  
Table 16  
Output Protection Functions 1)  
Symbol  
Parameter  
Values  
Unit Note / Test Condition  
Min.  
0.73  
0.7  
Typ.  
1
Max.  
1.3  
Overload current limit  
Short circuit current  
IOCL  
ISCL  
A
A
V
V
V
BB - Vout = 1 V  
BB - Vout = 28.8 V2)  
1
1.4  
Output clamp (inductive load switch VON(CL)  
off)3) at VOUT = VBB - VON(CL)  
45  
52  
60  
ION(CL) = 50 mA  
Thermal overload trip temperature4) Tjt  
135  
150  
15  
°C  
K
Thermal hysteresis4)  
Tjt  
1) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet.  
Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous  
repetitive operation.  
2) Thermal effects when Tjswitch >>Tcase  
3) If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest VON(CL)  
.
4) Not subject to production test, specified by design.  
Datasheet  
53  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5.5  
Electrical Characteristics µController Interface  
For the Parallel Mode see Table 17, Table 19, Table 23 and Table 25  
For the Serial Mode see Table 17, Table 19, Table 24 and Table 25  
Timing characteristics refer to CL < 50 pF and RL > 10 kꢀ  
Table 17  
Setting at the Configuration Pin (CLKADJ)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
0.5  
Unit  
Note /  
Test Condition  
Max.  
CLKADJ Pin Regulated Voltage  
VCLKADJreg  
V
Table 18  
Error Pins (ERR, CRCERR)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Test Condition  
Min.  
Typ.  
Max.  
0.25 VCC  
Error Voltage (ERR, CRCERR=0) VERR_CRCERR  
V
IERR_CRCERR = 5 mA1)  
Error Pin Pull-Up Resistance  
(ERR, CRCERR = 1)  
RERR_CRCERR  
50  
kꢀ  
pu  
Maximum Switching Frequency  
(ERR, CRCERR)2)  
fSW  
200  
kHz  
10 kexternal Pull-  
Up Resistor  
1) Spikes on CRCERR due to f.e. cross coupling between SCLK and CRCERR are not expected to violate this figure  
VERR_CRCERR, because cross coupling pulses are very small (10 nsec), VERR_CRCERR is evaluated after the rising edge of CS  
(and not during any edges of SCLK) and with a lower IERR_CRCERR (f.e. 1 mA) VERR_CRCERR is also lowered (in the example  
by a factor of 5).  
2) Not subject to production test, specified by design; worst case is the reading in serial mode 2 with a frequency of 500 kHz  
CRCERR can toggle with 500 kHz  
Table 19  
Logical Pins (RD, WR, ALE, MS0/1, CS, AD7: AD0, SCLK, SDO, SDI, SEL, SYNC, ODIS)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Input Voltage High Level  
Input Voltage Low Level  
Input Voltage Hysteresis  
Output Voltage High Level  
Output Voltage Low Level  
Output Voltage High Level  
VIH  
0.7·VVCC  
-0.31)  
V
VCC+0.3  
V
VIL  
0.3·VVCC  
V
VIhys  
VOH  
VOL  
VOH  
100  
mV  
V
0.75·VVCC  
1·VVCC  
IOH = 5 mA2)  
0
-
0.25·VVCC  
V
IOL = 5 mA  
2.65  
-
V
VVCC = 2.75V, IOH =  
1mA3)  
Output Voltage Low Level  
VOL  
-
0.1  
-
V
VVCC = 2.75V - 3.6V,  
IOL = 1mA  
1) Not subject to production test, specified by design.  
2) Maximum source / sink current: IOHmax = IOLmin = 5 mA; external load CL < 50 pF, RL > 10 kꢀ  
3) Same argumentation as for Digital Input Isoface : typical values over temperature derived for IOH = 5 mA and IOL = 5 mA.  
Extrapolation to IOH = 1mA and IOL = 1mA to possible. Voltage drop scales with a factor of 1/5 with the change of 5 mA to  
1 mA. Not subject to production test.  
Datasheet  
54  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
Table 20  
SYNC-Timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
1)  
Minimum time interval for µC-  
Read-Access after falling edge of  
SYNC-signal  
tsyncmin  
400  
500  
ns  
1)  
1)  
1)  
Minimum width of SYNC-signal  
SYNC-period  
tsyncw  
200  
500  
400  
ns  
ns  
ns  
tsyncper  
Minimum time interval for Direct- th  
Write-Access after falling edge of  
SYNC-signal (to ensure that the  
new data are not CT-transmitted  
during SYNC = low)  
500  
1) not subject of production test, specified by design  
Table 21  
RESYNCH-Timing  
Parameter  
Symbol  
Values  
Unit  
Note /  
Test Condition  
Min.  
Typ.  
Max.  
1)  
Minimum width of SYNC-low-  
phase during resynchronization  
tresynch  
7.0  
--  
240  
us  
us  
1)  
Minimum time interval between  
two resynchronization processes  
(minimum width of SYNC-high-  
phase)  
tresync_gap 1.0  
1)  
Timing jitter of transmission of  
drive-data over CT  
tresynch_jitter -0.75  
--  
0.75  
us  
1) not subject of production test, specified by design  
Table 22  
Interface Timing Parameters  
Symbol  
Parameter  
Values  
Unit  
Note /  
Test Condition  
Min.  
Typ.  
Max.  
1)  
CS Disable time (CS high time  
between two read accesses on  
different registers)  
tCSD  
400  
ns  
1)  
Read-Period for two read  
accesses on the same register  
(especially for COLDIAG, GLERR,  
INTERR)  
tRD_PER  
2000  
400  
ns  
ns  
1)  
CS Disable time (CS high time  
between a write access and a read tCSD_WRRD  
access for reading back the written  
value)  
1) not subject of production test, specified by design  
Datasheet  
55  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
Table 23  
Parallel Interface  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Input Pull Up Resistance  
(RD, WR, CS)  
RPU  
50  
kꢀ  
Input Pull Down Resistance (ALE) RPD  
50  
kꢀ  
ns  
ns  
CS setup time related to ALE  
tCS_ALE  
14  
200  
ALE high duration (for  
addressing)  
tALE_high  
tWRlow  
tWRhigh  
fRD  
WR Low duration  
(for Write Data)  
100  
ns  
WR High duration  
(for Write Data)  
100  
ns  
Read Request Frequency  
0.0331)  
400  
2.5  
MHz  
ns  
repeated read access  
during CS = 0  
Read Request Period (1/fRD)  
tRD  
300002)  
repeated read access  
during CS = 0  
RD Low duration (by Read)  
AD7:AD0 Output disable time  
AD0-7 Output Valid (by Read)  
RD setup time  
tRDlow  
tfloat  
200  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
80  
tADout  
tRD_su  
tWR_su  
tRD_hd  
tWR_hd  
180  
50  
50  
20  
20  
WR setup time  
RD hold time  
WR hold time  
3)  
WR latency time  
tlat  
300  
300  
4)  
RD Pad to COLDIAG, GLERR  
and INTERR Registers Update  
(Bits Clearing)  
tclrrdy  
AD0-7 Data bus setup time  
AD0-7 Data bus hold time  
tAD_su  
tAD_hd  
20  
60  
ns  
ns  
us  
Time for CS = WR = ALE = 0, RD tdirect  
30  
= 1 until direct mode is entered  
1) Minimum value to guarantee that the direct control mode is not entered, see also tRD and tdirect  
2) After 30 us the interface may enter the direct control mode, see also tdirect  
3) not subject to production test, tlat determined by internal synchronization cycles (internal clock 10 MHz) and propagation  
over CT (5 us)  
4) not subject to production test, tclrrdy determined by internal synchronization cycles (internal clock 10 MHz)  
Datasheet  
56  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
Table 24  
Serial Interface  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Input Pull Up Resistance (CS)  
RPU  
RPD  
50  
50  
kꢀ  
kꢀ  
Input Pull Down Resistance  
(SCLK, SDI)  
Serial Clock Frequency  
Serial Clock Period (1/fSCLK)  
Serial Clock High Period  
Serial Clock Low Period  
fSCLK  
0.06  
166  
83  
6
MHz  
ns  
tSCLK  
tSCLKH  
tSCLKL  
ns  
83  
ns  
CS Hold time (rising edge of SCLK tCSH  
100  
ns  
to rising edge of CS)  
Data setup time (required time SDI tSU  
to rising edge of SCLK)  
20  
20  
ns  
ns  
ns  
ns  
ns  
Data hold time (rising edge of  
SCLK to SDI)  
tHD  
CS falling edge to SDO output  
valid time  
tCS_valid  
tSCLK_su  
150  
CS falling edge to first rising  
SCLK edge  
200  
SCLK falling edge to SDO output tSCLK_valid  
valid time  
80  
90  
Minimum SDO Output disable time tfloat  
ns  
ns  
New serial mode activation time tMS_rdy  
(MS0/MS1 change to earliest  
400  
noµControlleraccess  
allowed during the  
change1) (CS = 1)  
interface access)  
1) not subject to production test, specified by design  
Table 25  
ODIS, ALE/RST Timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Input Pull Up Resistance  
(ODIS)  
RPU  
50  
kꢀ  
Minimum width of ODIS-signal  
tODISW  
tRSTW  
5
µs  
µs  
Minimal Duration for triggering  
Reset  
100  
ALE/RST = VCC and  
CS = GND  
Datasheet  
57  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5.6  
Diagnostics  
Table 26  
Channel Specific Diagnostics  
Symbol  
Parameter  
Values  
Typ.  
1
Unit Note / Test Condition  
Min.  
0.73  
0.1  
Max.  
1.3  
Overload threshold  
ITHOCL  
ITHOLA1  
ITHOLA2  
ITHOLA3  
IOLI  
A
R
R
R
IADJ = 6.81 kꢀ  
OLADJ = 24,3 kꢀ  
OLADJ = 3.48 kꢀ  
Active open load threshold  
Active open load threshold  
Active open load threshold  
Inactive bypass current  
Inactive open load voltage  
0.35  
2.4  
0.55  
2.9  
mA  
mA  
mA  
µA  
V
1.8  
0.9  
1.4  
1.9  
I
OLADJ = 200 µA1)  
10.0  
5.75  
5
21  
32  
Including switch leakage  
VOLI  
6.7  
7.8  
Inactive open load detection, On-  
threshold  
VTHOLI  
5.4  
5.75  
V
Inactive short to VBB detection, On- VTHSCV  
threshold  
8.4  
9.2  
0.5  
10  
V
take care when VVBB  
=
V
VBBmin = 11 V for stability  
of VBB (good buffering)  
Overload filtering normal mode2)  
tFILT_OCL  
ms  
for the thermal shutdown  
other value 50 us  
Overload filtering cold lamp mode2) tFILT_COL  
200  
6
ms  
ms  
Active open load blanking2)  
Inactive open load blanking2)  
Inactive short to VBB blanking2)  
tblank_OLA  
tblank_OLI  
tblank_SCV  
blanking time = filter  
length, other values  
100us,0.5ms, 1.0ms3)  
6
6
ms  
ms  
blanking time = filter  
length, values  
100us,0.5ms, 1.0ms  
the blanking time for SCV  
is 6 ms but the internal  
filterlength is 2 ms , other  
values 100us, 0.5ms,  
1.0ms  
LEDy matrix driver on resistance  
LEDx matrix driver on resistance  
RON_LEDy  
RON_LEDx  
70  
30  
Load current 10 mA, VBB  
= 24V  
Load current 30  
mA,VBB=24V  
1) A current of 200 µA is forced out of the OLADJ Pin, this is equivalent to an nominal ROLADJ of 6 k.  
ROLADJ = VOLADJ / IOLADJ = 1.2 V / 200 µA  
2) all timing values defined and checked by design; test in production: structural test by SCAN-pattern plus test of internal  
oscillator frequency (24 MHz + 17,5 %)  
3) other values 100us, 0.5ms, 1.0ms are dynamically adapted to the switching frequency of the user  
Datasheet  
58  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5.7  
Isolation and Safety-Related Specification  
Measured from input terminals to output terminals, unless otherwise specified  
Table 27  
Isolation and Safety-Related Specification  
Parameter  
Symbol  
Min.  
Values  
Typ.  
---  
Unit Note / Test Condition  
Max.  
Rated dielectric isolation voltage1) VISO  
2500  
4250  
VAC 1 - minute duration2)  
Vpk 1s  
Short term temporary overvoltage  
VIOTM  
---  
Minimum external air gap  
(clearance)  
3.5  
mm Shortest distance through  
air  
Minimum external tracking  
(creepage)  
3.5  
mm Shortest distance path  
along body  
Minimum Internal Gap  
0.01  
mm Isolation distance through  
insulation  
1) The dielectric withstand voltage class (Nennisolationsklasse) is : 500 V.  
2) The parameter is not subject to production test, verified by characterization.  
Approvals  
UL508, CSA C22.2 NO. 14  
Certificate Number: 20090514-E329661  
5.8  
Reliability  
For Qualification Report please contact your local Infineon Technologies office!  
Datasheet  
59  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
5.9  
Typical Performance Characteristics  
Figure 28 Typ. On-State Resistance  
ON = f(Tj), IL = 0.6A, VBB = 24V, Vin = high  
R
Figure 29 Typ. On-State Resistance  
ON = f(VBB), IL = 0.6 A, IL = 0.1 A, Vin = high  
R
Datasheet  
60  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
Figure 30 Typical Initial Peak Short Circuit Current Limit vs Tj  
I
L(SCp) = f(Tj), VBB = 24 V, output switched on with a short circuit present at the output  
12  
10  
8
L[H]  
6
4
2
0
0,100  
0,200  
0,300  
0,400  
0,500  
0,600  
0,700  
IL[A]  
Figure 31 Maximum Allowable Load Inductance for a Single Switch Off of Each Channel, Calculated  
L = f(IL), Tjstart = 125 °C, VBB = 24 V, RL = 48 , all channels are switching simultaneously  
Datasheet  
61  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
9
8
7
6
5
4
3
2
1
0
L[H]  
0,100  
0,200  
0,300  
0,400  
0,500  
0,600  
0,700  
IL[A]  
Figure 32 Maximum Allowable Load Inductance for a Single Switch Off of Each Channel, Calculated  
L = f(IL), Tjstart = 125 °C, VBB = 24 V, RL = 0 , all channels are switching simultaneously  
0,45  
0,4  
0,35  
0,3  
0,25  
EAS[J]  
0,2  
0,15  
0,1  
0,05  
0
0,100  
0,200  
0,300  
0,400  
0,500  
0,600  
0,700  
IL[A]  
Figure 33 Maximum Allowable Inductive Switch Off Energy, Single Pulse for Each Channel  
AS = f(IL), Tjstart = 125 °C, VBB = 24 V, all channels are switching simultaneously  
E
Single pulse means that the thermal recovery time is sufficient so that an increase of the chip temperature is  
avoided or at least limited (depends on the thermal connection of chip with PCB-board, Figure 34 -Figure 36) .  
Datasheet  
62  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
D = 0.5  
D = 0.2  
D = 0.1  
D = 0.05  
D = 0.02  
D = 0.01  
D = 0  
Figure 34 Typ. Transient Thermal Impedance 1s0p  
thJA = f(tp) , Parameter: D = tp/T  
Z
Product simulated on a 76.2 x 114.3 x 1.5 mm 1s0p board according JEDEC JESD 51-3.  
D = 0.5  
D = 0.2  
D = 0.1  
D = 0.05  
D = 0.02  
D = 0.01  
D = 0  
Figure 35 Typ. Transient Thermal Impedance 2s2p no vias  
ZthJA = f(tp) , Parameter: D = tp/T  
Product simulated on a 76.2 x 114.3 x 1.5 mm 2s2p board without thermal vias used in the exposed pad area  
according JEDEC JESD 51-5,7.  
Datasheet  
63  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Electrical Characteristics  
D = 0.5  
D = 0.2  
D = 0.1  
D = 0.05  
D = 0.02  
D = 0.01  
D = 0  
Figure 36 Typ. Transient Thermal Impedance 2s2p  
thJA = f(tp), Parameter: D = tp/T  
Z
Product simulated on a 76.2 x 114.3 x 1.5 mm 2s2p board with thermal vias connected to the first inner copper  
layer in the exposed pad area according JEDEC JESD 51-5,7.  
Datasheet  
64  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
6
µController Interface Registers  
This section presents the user registers.  
Access Conventions  
Table 28  
Register Access Definition  
Symbol  
Type  
Description  
Read  
r
The bit can be read  
Read only, updated by hardware  
Write  
h
w
The bit is updated by the device itself (for instance: sticky bit)  
The bit can be written  
Presentation  
The User Registers are 8-bit wide and can be accessed over either the serial or the parallel interface. The  
Table 29 lists the registers of the chip. The address is 8-bit whereby the MSB is used to indicate whether it is a  
write access (MSB=1) or Read access (MSB=0). The address is even i.e. the LSB is ignored (for addressing). The  
default selected register is the DRIVE register for write access.  
Table 29  
Register Short Name  
µController Interface Registers, User Registers  
Register Overview  
Register Long Name  
Offset Address Page Number  
DRIVE  
Output Driver Register (rw)  
00H  
66  
66  
69  
71  
72  
74  
75  
75  
75  
75  
75  
75  
75  
76  
78  
DRIVE_RESYNCH  
COLDIAG  
GLERR  
DIAGCFG  
DIAG0  
Output Driver Register for Resynchronization (rw) 1CH  
Collective Diagnostics Register (rh)  
Global Error Register (rh)  
02H  
04H  
Channel Diagnostics Configuration Register (rw) 06H  
Diagnostics Register for Channel-0 (rh)  
Diagnostics Register for Channel-1 (rh)  
Diagnostics Register for Channel-2 (rh)  
Diagnostics Register for Channel-3 (rh)  
Diagnostics Register for Channel-4 (rh)  
Diagnostics Register for Channel-5 (rh)  
Diagnostics Register for Channel-6 (rh)  
Diagnostics Register for Channel-7 (rh)  
Internal Error Register (rh)  
08H  
0AH  
0CH  
0EH  
10H  
12H  
14H  
16H  
18H  
1AH  
DIAG1  
DIAG2  
DIAG3  
DIAG4  
DIAG5  
DIAG6  
DIAG7  
INTERR  
GLCFG  
Global Configuration Register (rwh)  
The registers are addressed wordwise.  
Datasheet  
65  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
6.1  
User Registers  
These registers can be accessed via the serial or parallel interface. The default selected register is the DRIVE  
register for write access.  
Update of the Diagnostics Registers  
The different faults monitored at each output channel are filtered with blanking time units. They are then stored in  
registers and sent over the Coreless Transformer to the µController-Interface chip with an update rate of 35 µs.  
On the µController-Interface side, the diagnostics are stored in an intermediate register bank to be processed as  
sticky bits: once a fault is detected (and received) the corresponding bit is set and remains set even if the fault  
disappears. The bit can only be cleared once the fault is not detected anymore and a clear was requested by a  
serial or parallel access (see Figure 37).  
Original  
diagnostic  
Clear  
strobe  
Sticky bit  
Registers - sticky_bit_def  
Figure 37 Sticky Bit Operation  
Output Driver Register  
This register contains the command for the 8 output channels. When the pin ODIS is High, the output channels  
are controlled as set by this register. When the ODIS is Low, the output channels are immediately turned off and  
the contents of the DRIVE register is cleared.  
DRIVE  
Offset  
00H  
Reset Value  
00H  
Output Driver Register (rw)  
7
6
5
4
3
2
1
0
SW7  
rw  
SW6  
rw  
SW5  
rw  
SW4  
rw  
SW3  
rw  
SW2  
rw  
SW1  
rw  
SW0  
rw  
Field  
Bits  
Type Description  
SW7  
SW6  
7
rw  
rw  
Output Driver Control for Channel 7  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
6
Output Driver Control for Channel 6  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Datasheet  
66  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Field  
Bits  
Type Description  
Output Driver Control for Channel 5  
This bit field controls the state of the output driver.  
SW5  
5
rw  
rw  
rw  
rw  
rw  
rw  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
SW4  
SW3  
SW2  
SW1  
SW0  
4
3
2
1
0
Output Driver Control for Channel 4  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Control for Channel 3  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Control for Channel 2  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Control for Channel 1  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Control for Channel 0  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Register for Resynchronization  
This register contains the command for the 8 output channels for resynchronization. It has to be written in case a  
resynchronization of the CT-transmission is desired. Then the contents of DRIVE_RESYNCH is used for the CT-  
transmission instead of the contents of DRIVE.  
DRIVE_RESYNCH  
Offset  
1CH  
Reset Value  
00H  
Output Driver Register (rw)  
7
6
5
4
3
2
1
0
RW7  
rw  
RW6  
rw  
RW5  
rw  
RW4  
rw  
RW3  
rw  
RW2  
rw  
RW1  
rw  
RW0  
rw  
Field  
Bits  
Type Description  
RW7  
7
rw  
Output Driver Resynchronization Control for Channel 7  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Datasheet  
67  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Field  
Bits  
Type Description  
Output Driver Resynchronization Control for Channel 6  
This bit field controls the state of the output driver.  
RW6  
6
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
RW5  
RW4  
RW3  
RW2  
RW1  
RW0  
5
4
3
2
1
0
Output Driver Resynchronization Control for Channel 5  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Resynchronization Control for Channel 4  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Resynchronization Control for Channel 3  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Resynchronization Control for Channel 2  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Resynchronization Control for Channel 1  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Output Driver Resynchronization Control for Channel 0  
This bit field controls the state of the output driver.  
0B  
1B  
The channel output is inactive.  
The channel output is driven.  
Datasheet  
68  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Collective Diagnostics Register  
This register contains the overall diagnostics for each of the 8 output channels. Each channel-bit corresponds to  
the OR-combination of the SCVx, OCLx, OLIx, OLAx and OTx-bits of the enabled diagnostic function. This  
register contains the state of the channel diagnostics. On read access the internal diagnostics data is cleared and  
the DIAG0,...,DIAG7 registers are updated (see Update of the Diagnostics Registers). In serial modes 0 and 1  
the update of the DIAG0,...,DIAG7 is generated automatically after every access whereas in serial modes 2 and  
3 as well as in parallel mode the DIAG0,...,DIAG7 registers are updated after each direct access to the COLDIAG  
register.  
COLDIAG  
Offset  
02H  
Reset Value  
00H  
Collective Diagnostics Register (rh)  
7
CH7  
rh  
6
CH6  
rh  
5
CH5  
rh  
4
CH4  
rh  
3
CH3  
rh  
2
CH2  
rh  
1
CH1  
rh  
0
CH0  
rh  
Field  
Bits  
Type Description  
Overall Diagnostics for Channel 7  
This bit field indicates the overall diagnostics.  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
7
rh  
rh  
rh  
rh  
rh  
rh  
rh  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
6
5
4
3
2
1
Overall Diagnostics for Channel 6  
This bit field indicates the overall diagnostics.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Overall Diagnostics for Channel 5  
This bit field indicates the overall diagnostics.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Overall Diagnostics for Channel 4  
This bit field indicates the overall diagnostics.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Overall Diagnostics for Channel 3  
This bit field indicates the overall diagnostics.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Overall Diagnostics for Channel 2  
This bit field indicates the overall diagnostics.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Overall Diagnostics for Channel 1  
This bit field indicates the overall diagnostics.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Datasheet  
69  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Field  
Bits  
Type Description  
rh Overall Diagnostics for Channel 0  
This bit field indicates the overall diagnostics.  
CH0  
0
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Datasheet  
70  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Global Error Register  
This register contains the overall status of the IC parameters monitored during system operation. The bits are  
routed to the ERR pin as well (see Table 3). The UV and MV bits are reset to High during UVLO. In some operation  
modes, the register needs to be read to clear these bits and release the ERR pin (see “Update of GLERR,  
INTERR-Reg”). The CF-bit is the OR-combination of COLDIAG bits.  
GLERR  
Offset  
04H  
Reset Value  
16H  
Global Error Register (rh)  
7
6
5
4
3
RES  
r
2
1
0
Vers_3  
Vers_2  
Vers_1  
Vers_0  
UV  
rh  
MV  
rh  
CF  
rh  
r
r
r
r
Field  
Bits  
7
Type Description  
Vers_3  
Vers_2  
Vers_1  
Vers_0  
RES  
r
r
r
r
r
Actual :”0”  
Actual :”1”  
Actual :”0”  
Actual :”0”  
Reserved  
6
5
4
3
Returns 0 when read.  
UV  
MV  
CF  
2
1
0
rh  
rh  
rh  
VBB Undervoltage  
This bit field indicates if an undervoltage condition has been detected at VBB.  
0B  
1B  
No undervoltage detected.  
Undervoltage detected.  
VBB Missingvoltage  
This bit field indicates if a missingvoltage condition has been detected at VBB.  
0B  
1B  
No missingvoltage detected.  
Missingvoltage detected.  
Common Diagnostics Fault  
This bit field is the OR-combination of all bits of the COLDIAG register.  
0B  
1B  
No fault is detected.  
At least one failure is detected.  
Datasheet  
71  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Channel Diagnostics Configuration Register  
This register enables the diagnostics for each channel and selects whether the channel collective diagnostic bit is  
updated in the COLDIAG register (and as a consequence in the CF-bit field of the GLERR register and at the ERR  
pin).  
DIAGCFG  
Offset  
06H  
Reset Value  
FFH  
Channel Diagnostics Configuration Register  
(rw)  
7
DIAGEN7  
rw  
6
DIAGEN6  
rw  
5
DIAGEN5  
rw  
4
3
DIAGEN3  
rw  
2
DIAGEN2  
rw  
1
DIAGEN1  
rw  
0
DIAGEN0  
rw  
DIAGEN4  
rw  
Field  
Bits  
Type Description  
Enables Diagnostics for Channel 7  
This bit field enables all the channel diagnostics.  
DIAGEN7  
DIAGEN6  
DIAGEN5  
DIAGEN4  
DIAGEN3  
DIAGEN2  
DIAGEN1  
7
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
6
5
4
3
2
1
Enables Diagnostics for Channel 6  
This bit field enables all the channel diagnostics.  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Enables Diagnostics for Channel 5  
This bit field enables all the channel diagnostics.  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Enables Diagnostics for Channel 4  
This bit field enables all the channel diagnostics.  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Enables Diagnostics for Channel 3  
This bit field enables all the channel diagnostics.  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Enables Diagnostics for Channel 2  
This bit field enables all the channel diagnostics.  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Enables Diagnostics for Channel 1  
This bit field enables all the channel diagnostics.  
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Datasheet  
72  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Field  
Bits  
Type Description  
rw Enables Diagnostics for Channel 0  
This bit field enables all the channel diagnostics.  
DIAGEN0  
0
0B  
1B  
All the channel diagnostics are disabled.  
The channel diagnostics are enabled and updated in the COLDIAG register.  
Datasheet  
73  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Diagnostics Registers for Channel-x  
These registers contain the individual diagnostics bits. The bit field LEDGx is not used in the COLDIAG register  
(and as a consequence in the CF-bit and at the ERR pin). All bits are sticky (see Update of the Diagnostics  
Registers). The diagnostics are enabled with the DIAGCFG register.  
DIAG0  
Offset  
08H  
Reset Value  
00H  
Diagnostics Register for Channel-0 (rh)  
7
RES  
r
6
RES  
r
5
LEDGx  
rh  
4
SCVx  
rh  
3
OCLx  
rh  
2
OLAx  
rh  
1
OLIx  
rh  
0
OTx  
rh  
Field  
Bits  
Type Description  
RES  
7
r
Reserved  
returns 0 if read.  
RES  
6
5
r
Reserved  
returns 0 if read.  
LEDGx  
rh  
Gated LED Drive Information of Channel x (Active Mode only)  
This bit field indicates that the led of this channel is gated due to overcurrent or  
over-temperature conditions.  
0 : led not gated  
1 : led gated  
SCVx  
OCLx  
4
3
rh  
rh  
Short Circuit to VBB at Channel x (Inactive Mode only)  
This bit field indicates that a short circuit to VBB has been detected.  
0B  
1B  
No short circuit to VBB detected.  
A short circuit to VBB has been detected.  
Overcurrent at Channel x (Active Mode only)  
This bit field indicates that an overload condition has been detected and that the  
current is being limited.  
0B  
1B  
No overcurrent detected.  
An overcurrent has been detected and limited.  
OLAx  
OLIx  
OTx  
2
1
rh  
rh  
rh  
Open Load / Wire Break at Channel x (Active Mode)  
This bit field indicates that an open load condition has been detected.  
0B  
1B  
No open load detected.  
An open load condition has been detected.  
Open Load / Wire Break at Channel x (Inactive Mode)  
This bit field indicates that an open load condition has been detected.  
0B  
1B  
No open load detected.  
An open load condition has been detected.  
0
Over-temperature at Channel x (Active Mode Only)  
This bit field indicates that an over-temperature condition has been detected.  
0B  
1B  
No over-temperature detected.  
An over-temperature has been detected.  
Datasheet  
74  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Other Channel Diagnostics Registers  
The other channel diagnostics registers in the table below have the same layout as DIAG0.  
Their names and offset addresses are listed below:  
Table 30  
Diagnostics Registers for Channel 1-7  
Register Short Name  
DIAG1  
Register Long Name  
Offset Address Reset Value  
Diagnostics Register for Channel-1 (rh)  
Diagnostics Register for Channel-2 (rh)  
Diagnostics Register for Channel-3 (rh)  
Diagnostics Register for Channel-4 (rh)  
Diagnostics Register for Channel-5 (rh)  
Diagnostics Register for Channel-6 (rh)  
Diagnostics Register for Channel-7 (rh)  
0AH  
0CH  
0EH  
10H  
12H  
14H  
16H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
DIAG2  
DIAG3  
DIAG4  
DIAG5  
DIAG6  
DIAG7  
Datasheet  
75  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Internal Error Register  
This register contains the status of internal errors monitored for safe IC operation. The TE, W4P, ALLOFF bits are  
sticky and routed out to the ERR pin (according to the Table 3). The bits OTP and LAMP are volatile i.e. are  
updated every 35 µs. Sticky bits are cleared every time the INTERR register is accessed or by every serial access  
in mode 0 and 1.  
INTERR  
Offset  
18H  
Reset Value  
07H  
Internal Error Register (rh)  
7
RES  
r
6
OTC  
rh  
5
RES  
r
4
OTP  
rh  
3
LAMP  
rh  
2
ALLOFF  
rh  
1
W4P  
rh  
0
TE  
rh  
Field  
Bits  
Type Description  
RES  
7
r
Reserved  
returns 0 if read.  
OTC  
6
rh  
Overtemperature Common (Volatile)  
This bit field indicates that an overtemperature or overcurrent condition of at least  
one of the channels has been detected. Ored LEDGx-values.  
0B  
1B  
No overtemperature or overcurrent has been detected.  
An overtemperature or overcurrent condition has been detected.  
RES  
OTP  
5
4
r
Reserved  
returns 0 if read.  
rh  
Overtemperature Package (Volatile)  
This bit field indicates that an overtemperature of the package has been detected.  
0B  
1B  
No package overtemperature detected.  
An overtemperature in the package has been detected.  
LAMP  
3
2
rh  
rh  
Cold Lamp Detected (Volatile)  
This bit field indicates that at least a cold lamp behaviour has been detected at one  
output channel.  
0B  
1B  
No cold lamp behaviour detected.  
At least one load at the output channels behaves as a cold lamp.  
ALLOFF  
All Outputs Channels are Switched Off (Sticky)  
This bit field indicates that all the output channels have been switched off due to  
an internal error, an over-temperature, the ODIS pin or the data of the DRIVE  
(feedback from Power Chip).  
0B  
1B  
The ouput channels are enabled and controlled by the DRIVE register.  
The ouptut channels are switched off.  
W4P  
1
rh  
Wait for Power Chip (Sticky)  
This bit field indicates that the Power Chip is correctly supplied and ready for  
operation.  
0B  
1B  
Power Chip is ready.  
Power Chip is not ready because of insufficient voltage or long transmission  
error.  
Datasheet  
76  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Field  
Bits  
Type Description  
rh Transmission Error (Sticky)  
TE  
0
This bit field indicates a transmission error over the galvanic isolation detected  
either from the Process Side or from the µController-Interface  
0B  
1B  
No transmission error is detected.  
Transmission error has occured.  
Datasheet  
77  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Global Configuration Register  
This register configures some extended functionalities of the chip.  
GLCFG  
Offset  
1AH  
Reset Value  
00H  
Global Configuration Register (rwh)  
7
FRZSC  
rw  
6
RESYN  
rw  
5
RSTOFF  
rw  
4
LEDON  
rw  
3
2
LEDGOFF  
rw  
1
OLOFF  
rw  
0
RES  
rw  
SWRST  
rwh  
Field  
Bits  
Type Description  
FRZSC  
7
rw  
Selection of Isochronous Mode for Diagnostics  
This bit field enables the isochronous mode for diagnostics. The entry is totally  
ignored when RESYN = 1.  
0B  
1B  
Diagnostics are treated independently of SYNC-level  
Diagnostics are frozen with falling edge of SYNC and released with rising  
edge. During SYNC = 0 DIAG0,..,DIAG7 and COLDIAG are not updated. But  
read bits in COLDIAG can be reset.  
RESYN  
6
rw  
Resynchronization of CT-Transmission  
This bit field enables the resychronization of CT-transmission.  
0B  
1B  
functionality of SYNC is as defined by bit FRZSC.  
SYNC-pin is used for resynchronization of CT-transmission  
Note: It is not possible to select RESYN = 1 and to use isochronous mode  
for drive signals or/and diagnostics at the same time. That means  
resynchronization and isochronous mode of driver information and  
diagnostics at the same time is not possible. Edges on SYNC are used  
solely for resynchronization. In the following the driver information can  
be only transferred when SYNC = 1 when RESYN is set to “1”. A  
negative pulse on SYNC initializes the resynchronization.  
RSTOFF  
LEDON  
5
4
rw  
rw  
HW Reset of ALE Pin Disabled  
This bit field disables the external reset.  
0B  
1B  
The HW reset at the ALE pin is enabled (default).  
The HW reset is disabled.  
LED Matrix Enabled  
This bit field enables the LED Matrix in serial mode. In this case the HW reset  
cannot be used (activation of HW Reset is ignored).  
0B  
1B  
The LED matrix is disabled (default).  
The LED matrix is enabled in serial mode.  
RES  
3
2
rw  
rw  
Reserved  
Must be set to “0”  
LEDGOFF  
LEDG Report Disabled  
This bit field disables the report of the LEDGx-information.  
0B  
1B  
The LEDGx diagnostic is enabled (default).  
The LEDGx diagnostic is disabled and not reported in the DIAG0,..,DIAG7  
registers.  
Datasheet  
78  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
µController Interface Registers  
Field  
Bits  
Type Description  
OLOFF  
1
rw  
Open-Load Diagnostic Disabled  
This bit field disables the monitoring of the Open-Load diagnostic OLAx and OLIx.  
0B  
1B  
The Open-Load diagnostic is enabled and updated in the DIAG0,..,DIAG7  
registers (default).  
The Open-Load diagnostic is disabled and do not appear in the  
DIAG0,..,DIAG7 registers.  
SWRST  
0
rwh  
Soft Reset  
This bit field triggers the clear of the user registers and restarts the CT  
transmission. After setting the soft reset, this bit field will clear itself.  
0B  
1B  
No reset is generated.  
A clear of the user registers is generated.  
Datasheet  
79  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Package : Outlines and Marking Pattern  
7
Package : Outlines and Marking Pattern  
Figure 38 PG-VQFN-70-2 (Plastic (Green) Very Thin Profile Quad Flat Non Leaded Package)  
Datasheet  
80  
Revision 2.0, 2015-02-12  
ISOFACE™  
ISO2H823V2.5  
Package : Outlines and Marking Pattern  
Information of Marking Pattern:  
Infineon  
ISOFACE TM  
ISO2H823V2.5  
Lotnumber  
Datecode  
Figure 39 Marking Pattern  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
81  
Revision 2.0, 2015-02-12  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ISO2H823V25

Galvanic Isolated 8 Channel High-Side Switch
INFINEON

ISO3

ASIC
ETC

ISO3080

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080DW

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080DWG4

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080DWR

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080DWRG4

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080_09

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080_10

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080_11

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI

ISO3080_15

Isolated 5-V Full- and Half-Duplex RS-485 Transceivers
TI

ISO3082

ISOLATED 5-V FULL AND HALF-DUPLEX RS-485 TRANSCEIVERS
TI