ITS4090Q-EP-D [INFINEON]

The ITS4090Q-EP-D is a 90mΩ Quad Channel Smart Hi;
ITS4090Q-EP-D
型号: ITS4090Q-EP-D
厂家: Infineon    Infineon
描述:

The ITS4090Q-EP-D is a 90mΩ Quad Channel Smart Hi

文件: 总42页 (文件大小:1362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Industrial PROFET™  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
1
Overview  
Features  
Quad channel Smart High-Side Power Switch with integrated protection  
and diagnosis  
Maximum RDS(ON) 90 mper channel at Tj = 25°C  
Nominal output current capability up to 750 mA  
Low and accurate current limitation: 1.5 A (± 20 %)  
Extended supply voltage range up to 45 V  
All control inputs 24 V capable and support direct interface to optocouplers  
All control inputs 3.3 V and 5 V logic level compatible  
4 kV electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Very small, thermally enhanced TSDSO-14 package  
Device robustness validated by extended qualification according to JEDEC standard “JESD47J”  
Green product (RoHS compliant)  
Potential applications  
Digital output modules (PLC applications, factory automation)  
Industrial peripheral switches and power distribution  
Switching resistive, inductive and capacitive loads in harsh industrial environments  
Replacement for electromechanical relays, fuses and discrete circuits  
Most suitable for loads that require a precise current limit  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC JESD47J.  
Data Sheet  
1
Rev. 1.0  
2018-06-14  
www.infineon.com/industrial-profet  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Overview  
Description  
The ITS4090Q-EP-D is a 90 mQuad Channel Smart High-Side Power Switch providing integrated protection  
functions and a diagnosis feedback. With four channels capable of currents of more than 500 mA each, very  
low typical RDS(ON) values of 140 mat Tj = 125°C and the small PG-TSDSO-14 exposed pad package it  
combines high flexibility with minimum space requirements. The exposed pad of the thermally enhanced PG-  
TSDSO-14 package allows a very efficient heat transfer from the device to inner layers of the PCB by means of  
thermal vias. The power transistors are built by N-channel vertical power MOSFETs (DMOS) with charge pump.  
The ITS4090Q-EP-D is specifically designed to switch resistive, inductive or capacitive loads in harsh industrial  
environments. The ITS4090Q-EP-D is equipped with essential protection features that make it extremely  
robust. Diagnostic information can be read out via the STATUS output (ST). The four channel device can be  
controlled with four separate input pins. Due to their high voltage capability the input pins can be directly  
interfaced to optocouplers without additional external components.  
Diagnostic Functions  
Short circuit to ground (overload) indication  
Overtemperature switch off indication  
Stable diagnostic signal during short circuit and overtemperature shutdown  
Intelligent channel fault detection system  
Protection Functions  
Stable behavior during undervoltage  
Overtemperature protection with restart after cooling down phase  
Overload- and short circuit protection  
Reverse polarity / inverse current protection with external components  
Overvoltage protection with external components  
Loss of ground protection  
The qualification of this product is based on JEDEC JESD47J and may reference existing qualification results  
of similar products. Such referring is justified by the structural similarity of the products. The product is not  
qualified and manufactured according to the requirements of Infineon Technologies with regard to  
automotive and/or transportation applications. Infineon Technologies administrates a comprehensive  
quality management system according to the latest version of the ISO9001 and IATF 16949.  
The most updated certificates of the ISO9001 and IATF 16949 are available at  
www.infineon.com/cms/en/product/technology/quality/  
Type  
Package  
Marking  
ITS4090Q-EP-D  
PG-TSDSO-14  
ITS4090Q  
Data Sheet  
2
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment PG-TSDSO-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions PG-TSDSO-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage and Current Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.2  
3.3  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Characteristics Operating Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics: Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical Performance Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
5.6  
6
6.1  
6.2  
6.2.1  
6.3  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics: Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Typical Performance Characteristics Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.4  
6.4.1  
6.4.2  
6.5  
6.6  
7
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical Characteristics: Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Channel Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical Performance Characteristics Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1  
7.2  
7.3  
8
8.1  
8.2  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Data Sheet  
3
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
8.3  
8.4  
Electrical Characteristics: Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical Performance Characteristics Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9
9.1  
9.2  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10  
11  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Data Sheet  
4
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Block Diagram  
2
Block Diagram  
ITS4090Q-EP-D  
VS  
Voltage Sensor  
Bias  
Over  
Temperature  
Gate control  
Driver  
Logic  
&
Charge Pump  
3
IN1  
ESD  
Protection  
Over Current  
Switch Limit  
Clamp for  
Inductive Loads  
14  
OUT1  
Channel 1  
VS  
4
IN2  
Control and Protection Circuitry  
Equivalent to Channel 1  
5
6
12  
10  
8
ST  
OUT2  
OUT3  
OUT4  
Channel 2  
VS  
IN3  
Control and Protection Circuitry  
Equivalent to Channel 1  
Channel 3  
VS  
7
IN4  
Control and Protection Circuitry  
Equivalent to Channel 1  
Channel 4  
PG-TSDSO-14  
2
GND  
Figure 1  
Block Diagram: ITS4090Q-EP-D  
Data Sheet  
5
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment PG-TSDSO-14  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
TM  
GND  
IN1  
OUT1  
N.C.  
OUT2  
N.C.  
IN2  
ST  
OUT3  
N.C.  
IN3  
IN4  
8
OUT4  
Figure 2  
Pin Configuration PG-TSDSO-14  
3.2  
Pin Definitions and Functions PG-TSDSO-14  
Pin  
1
Symbol Function  
TM  
Test Mode Entry; must be connected to device GND (pin 2) via resistor 1)  
2
GND  
IN1  
IN2  
ST  
Ground pin  
3
INput channel 1; Input signal for channel 1 activation, Active “High”  
INput channel 2; Input signal for channel 2 activation, Active “High”  
4
5
STatus Feedback; Active “Low”, connect with external pull-up resistor to  
“High”  
6
IN3  
INput channel 3; Input signal for channel 3 activation, Active “High”  
INput channel 4; Input signal for channel 4 activation, Active “High”  
OUTput 4; Protected high side power output channel 4  
OUTput 3; Protected high side power output channel 3  
OUTput 2; Protected high side power output channel 2  
OUTput 1; Protected high side power output channel 1  
Not Connected  
7
IN4  
8
OUT4  
OUT3  
OUT2  
OUT1  
N.C.  
VS  
10  
12  
14  
9,11,13  
Exposed Pad  
Voltage Supply  
1) To ensure proper functionality of the device the TM pin must be connected to device ground. In order to protect the  
pin furthermore in case of reverse polarity conditions or ground shifts the TM pin needs to be connected with a serial  
resistor to device ground. The recommended value for this resistor is 2.2 k.  
Data Sheet  
6
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Pin Configuration  
3.3  
Voltage and Current Definitions  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IS  
VS  
IOUT1  
IIN1  
IN1  
IN2  
ST  
OUT1  
OUT2  
IOUT2  
IIN2  
IST  
ITS4090Q-EP-D  
IOUT3  
IIN3  
IN3  
IN4  
OUT 3  
OUT 4  
IOUT4  
IIN4  
GND  
IGND  
Figure 3  
Voltage and Current Definitions  
Data Sheet  
7
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings 1)  
Tj = -40°C to 150°C, positive current flowing into pin; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3 –  
45  
28  
V
V
P_4.1.1  
P_4.1.3  
Reverse polarity voltage  
-VS(REV)  
0
2) t < 2 min  
TA = 25°C  
RL 25 Ω  
ZGND = 150 Power Resistor  
Supply voltage for short  
circuit protection  
VS(SC)  
0
36  
V
P_4.1.4  
Input Pins  
Voltage at INPUT pins  
Current through INPUT pins  
STATUS Pin  
VIN  
IIN  
-0.3 –  
-2  
45  
2
V
VS > VIN  
P_4.1.5  
P_4.1.6  
mA  
Voltage at ST pin  
VST  
IST  
-0.3 –  
45  
2
V
VS > VST  
P_4.1.7  
P_4.1.8  
Current through ST pin  
Power Stage  
-2  
mA  
Power dissipation (DC)  
PTOT  
1.8  
W
3) TA = 85°C  
Tj < 150°C  
P_4.1.10  
P_4.1.11  
Maximum energy dissipation EAS  
Single pulse (one channel)  
410 mJ IL = 0.5 A  
Tj = 150°C  
VS = 28 V  
Voltage at power transistor  
Currents  
VDS  
65  
V
P_4.1.12  
Current through ground pin  
I GND  
I GND  
-20  
20  
mA  
P_4.1.13  
P_4.1.21  
Temporary reverse current  
through ground pin to VS  
-200 –  
mA t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
ESD susceptibility (all pins)  
Tj  
-40  
-55  
150 °C  
150 °C  
P_4.1.14  
P_4.1.15  
TSTG  
VESD_HBM -2  
2
4
kV HBM4)  
kV HBM4)  
P_4.1.16  
P_4.1.17  
ESD susceptibility OUT Pin vs. VESD_HBM -4  
GND and VS connected  
Data Sheet  
8
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
General Product Characteristics  
Table 1  
Tj = -40°C to 150°C, positive current flowing into pin; (unless otherwise specified)  
Absolute Maximum Ratings 1) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
ESD susceptibility  
VESD_CDM -500 –  
VESD_CDM -750 –  
500  
750  
V
V
CDM5)  
CDM5)  
P_4.1.18  
P_4.1.19  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test; specified by design.  
2) Reverse polarity protection can only be achieved in combination with external components: to limit the current  
through the GND-path a 150 power resistor needs to be placed between GND-pin and ground. An alternative  
solution is to use a reverse current diode in the GND-path to realize reverse polarity protection. In this case placing a  
resistor in the range of 27 in series to the diode is recommended to improve at the same time the overvoltage  
capability in case of overvoltage pulses on VS.  
3) This parameter serves as reference for the thermal budget: it illustrates the power dissipation that can be handled  
by the device in an application under the given boundary conditions before exceeding the maximum rating of Tj  
when assuming a RthJA value for a thermally well dimensioned PCB connection like given in the JEDEC case P_4.3.3  
in Chapter 4.4. As RthJA depends strongly on the applied PCB and layout of any individual application the actual  
achievable values of PTOT can either be lower or higher depending on the given application.  
4) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001(1.5 k, 100 pF).  
5) ESD susceptibility, Charged Device Model “CDM” JEDEC JESD22-C101.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
Data Sheet  
9
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Tj = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal operating voltage  
Extended operating voltage  
VS(NOM)  
VS(EOP)  
8
5
24  
36  
45  
V
V
VS > VIN  
1) VS > VIN  
P_4.2.1  
P_4.2.2  
IOUT = 500 mA  
VDS < 0.5 V  
Minimum functional supply voltage  
during power-up  
VS(OP)_MIN  
3
4.3  
5
V
V
VS > VIN  
P_4.2.3  
P_4.2.4  
IOUT = 0 A to  
VDS < 0.5 V  
(VS rising;  
powering up)  
Undervoltage shutdown  
VS(UV)  
3.5 4.1  
VS > VIN  
from VDS < 0.5 V  
to IOUT = 0 A  
(VS dropping  
from functional  
range)  
1)  
Undervoltage shutdown hysteresis  
VS(UV)_HYS  
IGND_1  
850  
2
mV  
P_4.2.5  
P_4.2.6  
Operating current  
One channel active  
2.8 mA VS = VIN = 24 V  
Device in RDS(ON)  
Operating current  
All channels active (Tj 25°C)  
IGND_4  
IGND_4_150  
Tj  
5.2 6.8 mA VS = VIN = 24 V  
Device in RDS(ON)  
P_4.2.9  
P_4.2.7  
P_4.2.8  
Tj 25°C  
Operating current  
All channels active (Tj = 150°C)  
4.8 6.0 mA VS = VIN = 24 V  
Device in RDS(ON)  
Tj = 150°C  
Junction Temperature  
-40  
150 °C  
1) Not subject to production test; specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Data Sheet  
10  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
General Product Characteristics  
4.3  
Typical Performance Characteristics Operating Current  
Typical Performance Characteristics  
Operating Current IGND versus  
Junction Temperature Tj  
Operating Current IGND versus  
Supply VoltageVS  
7
7
1 channel active  
VS = 24 V  
Tj = 25 °C  
2 channels active  
3 channels active  
4 channels active  
6
5
4
3
2
1
6
5
4
3
2
1 channel active  
1
0
2 channels active  
3 channels active  
4 channels active  
0
−50  
0
50  
100  
150  
0
10  
20  
30  
40  
Tj [°C]  
VS [V]  
Data Sheet  
11  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
General Product Characteristics  
4.4  
Thermal Resistance  
Table 3  
Thermal Resistance 1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Junction to exposed pad soldering point RthJC  
K/W –  
P_4.3.1  
P_4.3.3  
P_4.3.4  
P_4.3.5  
P_4.3.6  
1
2)  
Junction to ambient  
All channels active  
RthJA_2s2pvia  
K/W  
36  
119  
54  
44  
3)  
Junction to ambient  
All channels active  
RthJA_1s0p  
K/W  
4)  
Junction to ambient  
All channels active  
RthJA_1s0p_300mm  
RthJA_1s0p_600mm  
K/W  
5)  
Junction to ambient  
All channels active  
K/W  
1) Not subject to production test; specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the product (chip  
+ package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD51-3 at natural convection on FR4 1s0p board, footprint;  
The product (chip + package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 1 × 70 µm Cu.  
4) Specified RthJA value is according to JEDEC JESD51-3 at natural convection on FR4 1s0p board, 300 mm;  
The product (chip + package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 1 × 70 µm Cu.  
5) Specified RthJA value is according to JEDEC JESD51-3 at natural convection on FR4 1s0p board, 600 mm;  
The product (chip + package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 1 × 70 µm Cu.  
1000  
Thermal Impedance (one channel active; PDISSIPATION = 0.065W)  
100  
10  
1
0,1  
Rth-JA (footprint only)  
0,01  
Rth-JA (1s0p_300mm)  
0,001  
Rth-JA (1s0p_600mm)  
0,0001  
Rth-JA (2s2p-via)  
0,00001  
1,00E-09  
1,00E-07  
1,00E-05  
time [s]  
1,00E-03  
1,00E-01  
Figure 4  
Thermal Impedance (short time scale; one channel active)  
Data Sheet  
12  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
General Product Characteristics  
140  
Thermal Impedance (one channel active; PDISSIPATION = 0.065W)  
120  
100  
80  
60  
40  
20  
0
Rth-JA (footprint only)  
Rth-JA (1s0p_300mm)  
Rth-JA (1s0p_600mm)  
Rth-JA (2s2p-via)  
1,00E-05  
1,00E-03  
1,00E-01  
time [s]  
1,00E+01  
1,00E+03  
Figure 5  
Thermal Impedance (long time scale; one channel active)  
Data Sheet  
13  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-state Resistance  
The ON-state resistance RDS(ON) of the power stage depends on supply voltage as well as on junction  
temperature Tj. Figure 6 shows the influence of temperature on the typical ON-state resistance. The behavior  
of the power stage in reverse polarity condition is described in Chapter 6.3.  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
−50  
0
50  
100  
150  
T [°C]  
j
Figure 6  
Typical ON-state Resistance  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
A “High” signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
Figure 7 shows the typical timing when switching a resistive load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
70% VS  
tOFF_delay  
30% VS  
10% VS  
tON_delay  
tOFF  
t
Switching times.vsd  
Figure 7  
Switching a Resistive Load Timing  
Data Sheet  
14  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltage drop over the power stage a voltage clamp mechanism ZDS(AZ) is implemented  
that limits negative output voltage to a certain level (VS - VDS(AZ)). The clamping mechanism allows in addition  
a fast demagnetization of inductive loads because during the phase of active clamping the power is dissipated  
to a great extent rapidly inside the switch. On the other hand the power dissipated inside the switch while  
switching off inductive loads can cause considerable stress to the device. Therefore the maximum allowed  
energy at a given current (and by this also the inductance) is limited. In Figure 8 and Figure 9 the basic  
principle of active clamping as well as simplified waveforms when switching off inductive loads are illustrated.  
ITS4090Q-EP-D  
VS  
VS  
VDS  
Bias  
ZDS(AZ)  
Driver  
Logic  
INx  
OUTx  
IL  
L, RL  
VÎN  
GND  
VOUT  
ZGND  
Figure 8  
Output Clamp  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 9  
Switching an Inductive Load Timing  
Data Sheet  
15  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, the following energy must be dissipated by the ITS4090Q-EP-D.  
This energy can be calculated by help of the following equation:  
VS VDS(AZ)  
--------------------------------  
RL  
RL × IL  
L
RL  
------  
E = VDS(AZ)  
×
×
× ln 1 –  
+ IL  
(5.1)  
--------------------------------  
VS VDS(AZ)  
Following equation gets simplified under the assumption of RL = 0 :  
VS  
1
2
2
--  
E = × L × I × 1 –  
(5.2)  
--------------------------------  
VS VDS(AZ)  
The energy, which may be converted into heat, is limited by the thermal design of the component. See  
Figure 10 for the maximum allowed energy dissipation as a function of the load current for a singular pulse  
event on one channel.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
ILoad [A]  
Figure 10 Maximum Energy Dissipation Single Pulse for a Single Channel (Tj = 150°C, VS = 28 V)  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current  
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 11).  
Channels that are active (ON-state) by the time when the inverse current condition appears will remain active  
and their output stage will follow the state of the corresponding IN pin, which means that the channel can be  
switched off during inverse current condition. Channels that are inactive (OFF-state) by the time when the  
inverse current condition appears will remain inactive regardless of the state of the corresponding IN pin. If  
during an inverse current condition the IN-pin of a channel is set from “Low” to “High” in order to activate the  
channel, the output stage of the channel is kept OFF until the inverse current disappears. For all cases the  
current IINV should not be higher than IL(INV). Please note that during inverse current condition the protection  
functions of concerned channels are not available.  
Data Sheet  
16  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
VS  
ITS4090Q-EP-D  
Bias  
Gate  
INx  
Driver  
VINV  
Inv.  
Comp  
Device  
Logic  
OUTx  
IL(INV)  
GND  
ZGND  
Figure 11 Inverse Current Circuitry  
IL(INV)  
Inverse Current Event  
t
VIN  
t
Channel  
State  
„ON“  
OFF“  
„ON“  
„OFF“  
t
Figure 12 Inverse Current event: channel in OFF-state (channel remains off for duration of inverse  
current event)  
Data Sheet  
17  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
IL(INV)  
Inverse Current Event  
t
t
VIN  
Channel  
State  
„ON“  
„OFF“  
ON“  
OFF“  
„OFF“  
t
Figure 13 Inverse Current event: channel in ON-state (output not influenced but can be switched off)  
5.5  
Electrical Characteristics: Power Stage  
Table 4  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
ON-state resistance per  
channel (Tj = 25°C)  
RDS(ON)  
90  
mΩ  
mΩ  
mΩ  
ILx = 0.5 A  
P_5.5.18  
VIN = 4.5 V  
Tj = 25°C  
2)  
ON-state resistance per  
channel (Tj = 125°C)  
RDS(ON)_125  
140  
I
= 0.5 A  
P_5.5.19  
P_5.5.1  
Lx  
VIN = 4.5 V  
Tj = 125°C  
ON-state resistance per  
channel (Tj = 150°C)  
RDS(ON)_150  
180  
ILx= 0.5 A  
VIN = 4.5 V  
Tj = 150°C  
Nominal load current  
per channel  
IL(NOM)1  
VDS(AZ)  
750  
75  
mA  
V
1) 2) Tj < 150°C  
P_5.5.2  
P_5.5.5  
Drain to source clamping  
voltage  
65  
70  
IDS = 5 mA  
VDS(AZ) = [VS - VOUT]  
2)  
Output leakage current per  
channel  
IL(OFF)  
0.1  
1
0.5  
5
µA  
µA  
A
V floating  
P_5.5.6  
P_5.5.4  
P_5.5.7  
IN  
VOUT = 0 V  
Tj 85°C  
Output leakage current per  
channel  
IL(OFF)_150  
VIN floating  
VOUT = 0 V  
Tj = 150°C  
2) 3) VS < VOUTX  
t < 2 min  
Inverse current capability  
IL(INV)  
2.2  
Data Sheet  
18  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
Table 4  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Slew rate (switch on)  
30% to 70% of VS  
ΔV/ΔtON  
1.75  
V/µs RL = 47 Ω  
P_5.5.8  
VS = 24 V  
Slew rate (switch off)  
70% to 30% of VS  
-ΔV/ΔtOFF  
1.75  
25  
25  
0
V/µs RL = 47 Ω  
P_5.5.9  
VS = 24 V  
Turn-ON time to VOUT = 90% VS tON  
75  
75  
40  
45  
45  
µs  
µs  
µs  
µs  
µs  
RL = 47 Ω  
VS = 24 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
P_5.5.14  
P_5.5.15  
Turn-OFF time to VOUT = 10% tOFF  
VS  
RL = 47 Ω  
VS = 24 V  
Turn-ON / OFF matching  
tOFF - tON  
ΔtSW  
-40  
RL = 47 Ω  
VS = 24 V  
Turn-ON time to VOUT = 10% tON_delay  
VS  
13  
13  
RL = 47 Ω  
VS = 24 V  
Turn-OFF time to VOUT = 90% tOFF_delay  
VS  
RL = 47 Ω  
VS = 24 V  
1) This parameter describes the nominal load capability per channel from an electrical point of view respecting a  
maximum Tj 150°C. Please note that depending on the individual thermal design of a real application (and a  
potentially insufficient thermal budget resulting hereof) additional restrictions for IL(NOM) may occur for pure thermal  
reasons in order not to exceed the maximum allowed junction temperature Tj = 150°C. The latter needs to be  
considered especially for cases where all four channels are operating simultaneously under high load conditions and  
at high ambient temperature TAMB. For further details about potential derating of the nominal load current due to  
thermal restrictions please refer to “Thermal Considerations” on Page 38.  
2) Not subject to production test; specified by design.  
3) Please note that during inverse current condition the protection features are not operational.  
Data Sheet  
19  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
5.6  
Typical Performance Characteristics Power Stage  
Typical Performance Characteristics  
ON-State Resistance RDSON versus  
Junction Temperature Tj  
Leakage Current per channel IL(OFF) versus  
Junction Temperature Tj  
180  
2
VS = 24 V  
1.8  
VS = 24 V; ILoad = 0.5A  
160  
1.6  
1.4  
1.2  
1
140  
120  
100  
80  
0.8  
0.6  
0.4  
0.2  
0
60  
40  
20  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Output Clamp Voltage VDS(AZ) versus  
Junction Temperature Tj  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
CH 1  
CH 2  
CH 3  
CH 4  
−50  
0
50  
100  
150  
Tj [°C]  
Data Sheet  
20  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
Turn-ON time tON to VOUT = 90% versus  
Junction Temperature Tj  
Turn-OFF time tOFF to VOUT = 90% versus  
Junction Temperature Tj  
70  
70  
ILoad = 10mA  
ILoad = 10mA  
ILoad = 0.5A  
ILoad = 0.8A  
VS = 24V  
VS = 24V  
ILoad = 0.5A  
ILoad = 0.8A  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Turn-ON delay time tON_delay to VOUT = 10% versus  
Junction Temperature Tj  
Turn-OFF time delay tOFF_delay to VOUT = 10% versus  
Junction Temperature Tj  
50  
50  
VS = 24V  
VS = 24V  
ILoad = 10mA  
ILoad = 0.5A  
ILoad = 0.8A  
ILoad = 10mA  
ILoad = 0.5A  
ILoad = 0.8A  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
21  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Power Stage  
Turn-ON time tON to VOUT = 90% versus  
Load Current I Load  
Turn-OFF time tOFF to VOUT = 90% versus  
Load Current I Load  
70  
70  
60  
50  
40  
30  
20  
Tj = −40 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = 25 °C  
60  
50  
40  
30  
20  
10  
0
Tj = 150 °C  
10  
VS = 24 V  
0.2  
VS = 24 V  
0.2  
0
0
0.4  
0.6  
0.8  
0
0.4  
0.6  
0.8  
ILoad [A]  
ILoad [A]  
Turn-ON delay time tON_delay to VOUT = 10% versus  
Load Current I Load  
Turn-OFF delay time tOFF_delay to VOUT = 10% versus  
Load Current I Load  
50  
50  
Tj = −40 °C  
Tj = −40 °C  
45  
45  
Tj = 25 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = 150 °C  
40  
40  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
5
5
VS = 24 V  
VS = 24 V  
0
0
0
0.2  
0.4  
0.6  
0.8  
0
0.2  
0.4  
0.6  
0.8  
ILoad [A]  
ILoad [A]  
Data Sheet  
22  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Protection functions are designed to prevent the destruction of  
the ITS4090Q-EP-D due to fault conditions described in the data sheet. Please note that fault conditions are  
not considered as normal operation conditions and the protection functions are neither designed for  
continuous operation nor for repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of module ground when the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied at the  
input pins.  
In an application where the inputs are directly controlled by logic levels < VS (e.g. by a microcontroller without  
galvanic isolation), it is recommended to use input resistors 1) between the external control circuit  
(microcontroller) and the ITS4090Q-EP-D to protect also the external control circuit in case of loss of device  
ground.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches  
the situation.  
ZGND is recommended to be a resistor in series to a diode.  
ITS4090Q-EP-D  
VS  
+
-
ZDS(AZ)  
ZD(AZ)  
ST  
RST  
Logic  
INx  
RIN  
IOUT(GND)  
OUTx  
GND  
ZGND  
Figure 14 Loss of Ground Protection with External Components  
1) Recommended value is 10 k  
Data Sheet  
23  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
6.2  
Undervoltage Protection  
If the supply voltage falls below VS(UV) the undervoltage protection of the device is triggered. VS(UV) represents  
hence the minimum voltage for which the switch still can hold ON. Once the device is off VS(OP)_MIN represents  
the lowest voltage where the device is turning on again (and thus the channels can be switched again). If the  
supply voltage is below the undervoltage threshold VS(UV), the channels of the device are OFF (or turning OFF).  
As soon as the supply voltage is recovering and exceeding the threshold of the functional supply voltage  
VS(OP)_MIN, the device is re-powering and its channels can be switched again. In addition the protection  
functions as well as diagnosis become operational once VSOP_MIN is reached. Figure 15 sketches the  
undervoltage mechanism.  
VOUT  
VS  
VS(UV)  
VS(OP)_MIN  
Figure 15 Undervoltage Behavior  
6.2.1  
Overvoltage Protection  
There is an integrated clamping mechanism for overvoltage protection (ZD(AZ)). To ensure this mechanism  
operates properly in the application, the current in the Zener diode ZD(AZ) must be limited by a ground resistor.  
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the voltage across supply to ground path is clamped. As a result, the internal ground potential rises to  
VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx rises almost to that potential, depending on  
the impedance of the connected circuitry 1). In the case the device was ON, prior to overvoltage, the ITS4090Q-  
EP-D remains ON. In case the ITS4090Q-EP-D was OFF, prior to overvoltage, the power transistor can be  
activated. In case the supply voltage is above VS(SC) and below VDS(AZ), the output transistor is still operational  
and follows the input. If at least one channel is in ON-state, parameters are no longer within specified range  
and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short  
circuit robustness, as well as the maximum energy EAS capability. ZGND is recommended to be either a resistor  
(27 ) in series to a diode or alternatively a 150 power resistor.  
1) Hence, the usage of external input resistors needs to be considered  
Data Sheet  
24  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
ISOV  
VS  
+
-
ZDS(AZ)  
ZD(AZ)  
ST  
RST  
Logic  
INx  
RIN  
IOUT  
OUTx  
ITS4090Q-EP-D  
GND  
ZGND  
Figure 16 Overvoltage Protection with External Components  
Data Sheet  
25  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
6.3  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the affected power DMOS channels will dissipate power.  
The current flowing through the intrinsic body diode is limited externally by the load itself. But in addition the  
current into the ground path and the logic pins must be limited by an external resistor to the maximum  
allowed current described in Chapter 4.1. Figure 17 shows a typical application. ZGND resistor is used to limit  
the current through the Zener protection of the device. ZGND is recommended to be either a resistor (~ 27 ) in  
series to a diode or alternatively a power resistor (~ 150 ).  
During reverse polarity no protection functions are available.  
VS  
Microcontroller  
ITS4090Q-EP-D  
VDS(REV)  
Protection  
diodes  
-
+
-VS(REV)  
ZDS(AZ)  
ZD(AZ)  
ST  
INx  
RST  
Logic  
RIN  
OUTx  
GND  
ZGND  
Figure 17 Reverse Polarity Protection with External Components  
Data Sheet  
26  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
6.4  
Overload Protection  
In case of overload, such as high inrush current of a cold lamp filament, or short circuit to ground, the  
ITS4090Q-EP-D offers a set of protection mechanisms which is illustrated in Figure 18.  
6.4.1  
Current Limitation  
As a first step, the instantaneous power in the switch is contained within a safe range by limiting the current  
to the maximum current allowed in the switch IL(LIM). During this time, where the current is limited to IL(LM), the  
DMOS temperature is increasing caused by the voltage drop VDS over the DMOS.  
Overtemperature concept:  
Overtemperature behavior:  
VIN  
H
L
tON  
Tj(SC)  
t
tOFF  
VOUT  
ON  
heating  
up  
0
t
Tj  
OFF  
cooling  
down  
Tj  
Tj(SC)  
Tj(SC)  
Device  
Status  
Tj(SC)  
Normal  
Toggling  
Overtemperature  
t
t
VST  
H
L
OFF  
ON  
OFF  
ON  
OFF  
Waveforms turn on into a short circuit:  
Waveforms short circuit during on state:  
VIN  
H
VIN  
H
L
L
tON  
tON  
t
t
tOFF  
tOFF  
VOUT  
VOUT  
0
0
t
t
IL(LIM)  
IL(LIM)  
0
0
t
t
tST(FAULT)  
tST(FAULT)_SC1  
VST  
H
VST  
H
L
L
t
t
Normal  
operation  
OFF  
OFF  
OUT shorted to GND  
Overloaded  
OFF  
OFF  
Shut down by overtemperature and restart after  
cooling down (thermal toggling) once the device  
exceeds thermal threshold after being heated up  
during current limitation state  
Shut down by overtemperature and restart after  
cooling down (thermal toggling) once the device  
exceeds thermal threshold after being heated up  
during current limitation state  
Figure 18 Protection behavior of the ITS4090Q-EP-D  
Data Sheet  
27  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
6.4.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates one temperature sensor. Activation of this temperature sensor will cause an  
overheated channel to switch OFF to prevent destruction. Any protective overtemperature shutdown event  
triggered within a channel is switching OFF the output of the corresponding channel until the temperature  
reaches an acceptable value again.  
A restart functionality is implemented that is switching the channel ON again after the DMOS temperature has  
sufficiently cooled down.  
6.5  
Electrical Characteristics: Protection Functions  
Table 5  
Electrical Characteristics: Protection Functions 1)  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loss of Ground  
2) 3)  
Output leakage current  
while GND disconnected  
IOUT(GND)  
0.1  
650  
70  
mA  
mV  
V
VS = 24 V  
P_6.5.1  
P_6.5.2  
P_6.5.3  
Reverse Polarity  
Drain source diode voltage VDS(REV)  
during reverse polarity  
700  
75  
IL = -2 A  
Tj = 150°C  
Overvoltage  
4)  
Overvoltage protection  
Overload Condition  
Load current limitation  
VS(AZ)  
65  
ISOV = 5 mA  
IL(LIM)  
Tj(SC)  
1.2  
1.5  
1.8  
A
P_6.5.4  
P_6.5.6  
3)  
Thermal shutdown  
temperature  
150  
175  
200  
°C  
3)  
Thermal shutdown  
hysteresis  
ΔTj(SC)  
30  
K
P_6.5.7  
1) Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC from destruction under fault conditions described in the data sheet.  
Fault conditions are considered as “outside” normal operating range. Protection functions are designed neither for  
continuous nor repetitive operation.  
2) All pins are disconnected except VS and OUT.  
3) Not subject to production test; specified by design.  
4) For practical cases it is recommended to place a resistor in the range of 27 into the GND path to limit the GND  
current associated with overvoltage events.  
Data Sheet  
28  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Protection Functions  
6.6  
Typical Performance Characteristics Protection Functions  
Typical Performance Characteristics  
Current Limit IL(LIM) versus  
Junction Temperature Tj  
Clamping Voltage VS(AZ) versus  
Voltage Tj  
2
1.8  
1.6  
1.4  
1.2  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
0.8  
0.6  
0.4  
0.2  
VDS = 12V  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
29  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purpose, the ITS4090Q-EP-D provides a digital signal at pin ST. This signal is called STATUS. The  
STATUS pin is realized as open drain output and must be connected to an external pull-up resistor. During  
normal operation the STATUS signal is logic “High” (H). During short circuit to ground or overtemperature  
condition the STATUS signal is logic “Low” (L). Table 6 shows the corresponding truth table.  
Table 6  
Device Operation INX all INi except INX  
Diagnostic Truth Table 1) 2)  
OUTX all OUTi except OUTX ST  
Comment  
3) External pull  
up at ST pin  
Normal Operation  
L
H
H
L
L
OFF  
ON  
OFF  
ON  
X
H
H
H
H
L
H
don’t care  
don’t care  
don’t care  
don’t care  
ON  
OFF  
X
3) 4)  
3)  
Short Circuit to GND H  
Overtemperature  
ON  
X
H
OFF 5)  
X
L
1) Please refer to Table 7 for more details.  
2) Not subject to production test; specified by design.  
3) “X” denotes status of OUTi according to the status of the corresponding input signals INi.  
4) Device not in specified RDS(ON)  
5) Channel remains off during cooling-down phase of power stage; then channel tries to re-start.  
.
7.1  
Electrical Characteristics: Diagnostic Functions  
Table 7  
Electrical Characteristics: Diagnostic Functions  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Diagnostic Timing in Overload Condition  
1)  
STATUS settling time for overload tST(FAULT)  
detection  
30  
20  
µs  
VS = 24 V;  
P_7.1.1  
load jump of RL:  
47-> 12 ;  
Please refer to  
Figure 18 for  
more details  
STATUS settling time for channel tST(FAULT)_SC1  
start-up into existing overload 2)  
90  
µs VDS 8 V;  
Please refer to  
P_7.1.9  
Figure 18 for  
more details  
“Low” level STATUS voltage  
“High” level STATUS voltage  
VST(L)  
VST(H)  
IST  
2
0.5  
V
V
IST = 1.6 mA 3)  
P_7.1.3  
P_7.1.4  
P_7.1.5  
4)  
3)  
VS > VST  
Current through STATUS pin  
(Operating Range)  
1.6  
mA VST < 0.5 V  
Data Sheet  
30  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Diagnostic Functions  
Table 7  
Electrical Characteristics: Diagnostic Functions (cont’d)  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Channel fault detection  
interrogation time  
(Sequential Pulse Width)  
Tx  
3
6
µs  
µs  
µs  
µs  
VST < 0.5 V 5)  
P_7.1.2  
5)  
STATUS signal “High” valid  
window after Tx on fault affected  
channel  
Tm  
40  
200  
80  
150  
P_7.1.6  
P_7.1.8  
P_7.1.7  
1)  
Minimum delay between  
subsequent Tx interrogation  
windows.  
TX-2-X  
1)  
Maximum delay time between Tx TD  
(“High” to “Low”) on fault  
affected channel and STATUS  
“High” signal Tm  
8
1) Not subject to production test; specified by design.  
2) This parameter describes the status settling time when a channel is switched on into an already existing overload  
condition. This parameter is referenced to the edge of the input pin IN that switches the channel into overload.  
3) Levels referenced to device ground.  
4) Depends on pull-up circuit that is used within application; maximum ratings of STATUS pin need to be respected.  
5) Please refer to “Channel Fault Detection” on Page 31 for more details.  
7.2  
Channel Fault Detection  
The ITS4090Q-EP-D is equipped with an intelligent channel fault detection system, which allows with the aid  
of a microcontroller to identify and communicate the channel on which the fault occurs.  
During normal operation the STATUS pin is kept “High” by the external pull-up resistor as shown in Table 6.  
If - in case of a fault - the application requires the information on which of the channels the fault occurs when  
a “Low” STATUS is flagged, then the microcontroller can be programmed according to the sequence depicted  
as an example in Figure 19. The figure shows a case where three channels are active (these are channels 1, 2  
and 4). Channel 3 in this example is not switched ON. During normal operation of channels 1, 2 and 4 the  
STATUS signal is “High”. If a fault occurs, e.g. at channel 4, the STATUS signal goes “Low” to flag an error to the  
microcontroller. The microcontroller, in order to identify on which channel the fault occurs, must send a  
“Low” pulse sequentially to the input of each active channel, that is channels 1, 2 and 4 in this case. These  
pulses are shown in Figure 19 and their width is denominated Tx. The pulse width Tx should be between 3 µs  
up to 6 µs in order to make sure that the output does not react to this short inversion input level. The STATUS  
signal will go to “High” for a short period of time Tmonly after the channel on which the fault occurs gets a  
“Low” pulse from the microcontroller, which in this case is after channel 4 receives a “Low” pulse for a time Tx.  
In this way, by reading back whether an inversion of the STATUS flag within Tm occurs, the microcontroller is  
able to detect on which channel the fault occurs. Once the microcontroller receives this information it can  
start to switch OFF the channel on which the fault occurs (channel 4 in this case) via the corresponding input  
pin. For the delay time TD between Tx going “Low” and Tm going “High” a value of 8 µs needs to be taken into  
account.  
Data Sheet  
31  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Diagnostic Functions  
Normal Operation  
Fault at channel 4  
Normal Operation  
Tm  
Tm  
Tm  
Fault  
?
?
Channel  
STATUS  
IN1  
TD  
TD  
TD  
TX  
TX  
IN2  
TX-2-X  
TX-2-X  
IN3  
TX  
IN4  
t
An inverted ST-pin signal following a TX interrogation pulse within a time window Tm on a given channel confirms a fault channel.  
A non-inverted ST-pin signal after a TX pulse (dashed lines) indicate that corresponding channel is not in fault condition.  
Figure 19 Channel Fault Detection Timing Diagram  
Data Sheet  
32  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Diagnostic Functions  
7.3  
Typical Performance Characteristics Diagnostic Functions  
Typical Performance Characteristics  
Status Settling Time tST(FAULT) versus  
Status Settling Time tST(Fault)_SC1 versus  
Junction Temperature Tj (overload during ON)  
Junction Temperature Tj (switch on into overload)  
80  
80  
tST(Fault)_SC1  
typ. tST(Fault) for RL: 47 Ω −> 12 Ω  
typ. tST(Fault) for RL: 47 Ω −> 0 Ω  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
VS = 24V  
10  
VS = 24V  
VDS = 8V  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Maximum Delay Time TD (TX ‘H->L’ to ST ‘L->H’) vs. ST “High” Valid window (after TX) TM versus  
Junction Temperature Tj  
Junction Temperature Tj  
10  
100  
TM  
90  
TD  
9
VS = 24V  
8
7
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
30  
20  
10  
VS = 24V  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
33  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 V and 5 V microcontrollers as well as input levels up to VS 1). The  
concept of the input pin is to react to voltage thresholds which are referenced to device ground. An  
implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or  
decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. Figure 20 shows the  
electrical equivalent input circuitry. In case a channel is permanently not needed, the corresponding input pin  
shall not be left floating but tied with a serial resistor to device ground (not module ground). The  
recommended value for the serial resistor is 2.2 k.  
VS  
ITS4090Q-EP-D  
Bias  
Gate  
Driver  
INx  
VIH  
Inv.  
Comp  
Device  
Logic  
OUTx  
GND  
ZGND  
Figure 20 Input Pin Circuitry  
8.2  
Input Pin Voltage  
The input pin IN uses a comparator with hysteresis. Switching “ON / OFF” of the channels takes place in a  
defined region, set by the thresholds VIN(L),max and VIN(H),min. The exact values where the “ON” and “OFF” take  
1) VIN must not exceed VS. The relation VIN VS must always be fulfilled.  
Data Sheet  
34  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Input Pins  
place depend on the process, as well as on the temperature. To avoid cross talk and parasitic turn-ON or turn-  
OFF, a hysteresis is implemented. This ensures an improved immunity to noise.  
8.3  
Electrical Characteristics: Input Pins  
Table 8  
Electrical Characteristics: Input Pins  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input Pins Characteristics  
1)  
“Low” level input voltage  
range  
VIN(L)  
VIN(H)  
-0.3  
2
0.8  
36  
V
V
P_8.3.1  
P_8.3.2  
1)  
“High” level input voltage  
range  
VS > VIN  
2)  
Input voltage hysteresis  
“Low” level input current  
“High” level input current  
VIN(HYS)  
IIN(L)  
250  
38  
mV  
µA  
µA  
P_8.3.3  
P_8.3.4  
P_8.3.5  
70  
70  
VIN = 0.8 V  
VIN = 24 V  
IIN(H)  
46  
1) Levels referenced to device ground.  
2) Not subject to production test; specified by design.  
Data Sheet  
35  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Input Pins  
8.4  
Typical Performance Characteristics Input Pins  
Typical Performance Characteristics  
Input Voltage thresholds VIN(L) VIN(H) versus  
Junction Temperature Tj  
Input Voltage hysteresis VIN(HYS) versus  
Junction Temperature Tj  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
VIN(HYS)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.8  
0.6  
0.4  
VIN(H)  
VIN(L)  
0.2  
0
VS = 24V  
VS = 24V  
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Input Pin Current IIN(H) versus  
Supply Voltage V S  
Input Pin Current IIN(H) versus  
Junction Temperature Tj  
70  
70  
VIN = 24V  
Tj −40°C  
Tj 25°C  
60  
60  
50  
40  
30  
20  
10  
0
Tj 150°C  
50  
40  
30  
20  
10  
VS = 28.8V  
0
0
5
10  
15  
20  
25  
0
50  
100  
150  
VIN [V]  
Tj [°C]  
Data Sheet  
36  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Application Information  
9
Application Information  
9.1  
Application Diagram  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Linear  
VOUT  
External  
VIN  
Voltage Regulator  
e.g. IFX1763  
components for  
Surge Immunity  
COUT  
VS  
VDD  
VS  
Microcontroller  
e.g. XMC4xxx  
I/O  
OUT1  
OUT2  
IN1  
IN2  
I/O  
VDD  
30 kΩ  
ST  
I/O  
I/O  
ITS4090Q-EP-D  
OUT3  
OUT4  
IN3  
IN4  
I/O  
TM  
GND  
2.2 kΩ  
GND  
ZGND  
External components for reverse polarity protection and overvoltage  
pulses. Recommended setup for ZGND is a diode for reverse polarity in  
series with a resistor of ~27Ω to limit GND current during overvoltage  
spikes.  
Figure 21 Application Diagram with ITS4090Q-EP-D  
In Figure 21 above a simplified application diagram is shown where the inputs are galvanically isolated from  
VS with optocouplers. Thanks to the fact that the input pins are 24 V capable they can be directly connected to  
the optocouplers. Reverse polarity protection can be achieved with external components. In this context it  
should be noted that input pins of channels which are permanently unused have to be tied with 2.2 kΩ  
resistance to device ground. In addition the TM-pin must be always be tied with a serial resistor to device  
ground in order to protect the pin in case of reverse polarity. The recommended value for this serial resistor is  
also 2.2 k. For applications where no galvanic isolation is present between the external control circuitry (e.g  
microcontroller) and the input pins of the ITS4090Q-EP-D serial input resistors need to be placed in order to  
Data Sheet  
37  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Application Information  
protect the external control circuitry and the input structures of the ITS4090Q-EP-D under fault conditions  
(like e.g. reverse polarity, loss of ground or overvoltage). For further details please also refer to the  
corresponding sections in Chapter 6. The recommended value for such serial input resistors is 10 khowever  
application specific optimized values may also depend on the individual application conditions as well as the  
applied external control circuitry / microcontroller.  
9.2  
Thermal Considerations  
If the cooling possibilities within the application are not sufficient to sink the heat of the dissipated power the  
junction temperature Tj of the device may exceed its maximum specified rating of 150°C and eventually trigger  
a thermal shutdown of the overheated channels to protect the device from destruction. Such thermal  
shutdown events may occur e.g. if one or more channels are operated in overload conditions that are causing  
the current limitation functionality to become active. If the current limitation of a channel becomes active the  
power dissipation will rise rapidly and in many cases lead to thermal shutdown events of the corresponding  
channels within short periods of time.  
But also under nominal load conditions the power dissipation can become too high inside an application if it  
is applied at high environmental temperature TAMB and if at the same time the cooling capability of the PCB is  
not sufficient (thanks to the very good RDSON performance of the ITS4090Q-EP-D this restriction is limited to  
cases with poor thermal connection to the PCB being applied at very high ambient temperatures TAMB as will  
be shown below). In general the cooling capability of an IC on a PCB within an application can be described for  
static cases by its thermal resistance from junction-to-ambient RthJA. The thermal resistance RthJA can be  
improved by adding cooling area on top- or bottom layer of the PCB or by adding inner layers that are  
connected to the VS layer with thermal vias. Thermal vias show the best efficiency for heat distribution if  
directly placed underneath the exposed pad of the ITS4090Q-EP-D. The achievable values for RthJA will differ  
from application to application. As reference simulation values of RthJA for a set of standardized JEDEC cases  
are provided in Chapter 4.4 “Thermal Resistance” on Page 12. Actual values in real applications naturally  
can be lower or higher.  
For cases where the achievable thermal resistance RthJA and the hereof resulting thermal budget within an  
application is not sufficient for a given ambient temperature TAMB there is no other choice than to lower the  
load current to smaller numbers than the allowed maximum nominal current of 750 mA. Figure 22 illustrates  
how the derating of the nominal current due to excessive power dissipation can look like as a function of  
achievable RthJA and given TAMB. The graphs show how the thermal budget with its limiting condition Tj = 150°C  
can be shared between the influencing parameters TAMB, RthJA, ILoad depending on the number of active  
channels nCH. Due to the excellent ratio of RDSON versus nominal load current this impact shown in the  
mentioned figures below are relevant only for worst case scenarios like RthJA of “footprint only” where no  
additional cooling is present at all but solely footprint and PCB traces to the pins of the device. Even under  
such harsh conditions the only noteworthy limitations occur for TAMB > 75°C if all four channels are operated  
at full load. An arbitrary RthJA value of 100 K/W is depicted in addition and may serve as an RthJA - reference  
value for which derating may become relevant when being exposed to high ambient temperatures of  
TAMB = 85°C and above.  
The calculation of the thermal budget displayed in the graphs follows simple rules as given in the equations  
below. It should be noted that the calculation is restricted to static cases where the resulting TAMB and Tj have  
reached a stable equilibrium.  
(9.1)  
Tj = TAMB + RthJA × PDISS  
(9.2)  
PDISS = I2Load × RDS(ON) × nCH + VS × IGND  
Data Sheet  
38  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Application Information  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
3 channels active  
4 channels active  
R
= 100 K/W  
= 119 K/W  
R
= 100 K/W  
= 119 K/W  
thJA  
thJA  
(V = 28V)  
(V = 28V)  
S
S
R
R
thJA  
thJA  
20  
30  
40  
50  
60  
[°C]  
70  
80  
90  
100  
20  
30  
40  
50  
60  
T [°C]  
AMB  
70  
80  
90  
100  
T
AMB  
Figure 22 Possible thermal derating of nominal current due to insufficient cooling capability of PCB  
Data Sheet  
39  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Package Outlines  
10  
Package Outlines  
ꢀꢁ  
ꢀꢁ  
ꢆꢃꢊsꢂꢃꢀ  
ꢌꢃꢊsꢂꢃꢀ  
'
ꢂꢃꢀ  
ꢂꢃꢀ  
ꢅ[  
ꢅ[  
&
ꢂꢃꢂꢈ &  
ꢂꢃꢉꢇsꢂꢃꢅꢄ  
ꢀꢆ[  
6($7,1* &23/$1$5,7<  
3/$1(  
sꢂꢃꢅ  
ꢂꢃꢅ '  
ꢀꢆ[  
ꢅꢁ  
ꢂꢃꢅꢄsꢂꢃꢂꢄ  
ꢂꢃꢅꢄ  
$ꢋ% &  
ꢀꢆ[  
%27720 9,(:  
$
ꢀꢆ  
ꢀꢆ  
ꢂꢃꢀꢄ  
ꢂꢃꢀꢄ  
'
,1'(;  
0$5.,1*  
%
ꢂꢃꢉꢄ  
sꢂꢃꢀ  
$ꢋ%  
ꢀꢁ '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2) ꢂꢃꢀꢄ 0$;ꢃ 3(5 6,'(  
ꢅꢁ '$0%$5 352786,21 6+$// %( 0$;,080 ꢂꢃꢀ00 727$/ ,1 (;&(66 2) /($' :,'7+  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢅꢈ ꢎ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 23 PG-TSDSO-14 (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
40  
Rev. 1.0  
2018-06-14  
ITS4090Q-EP-D  
90 mQuad Channel Smart High-Side Power Switch  
Revision History  
11  
Revision History  
Revision Date  
Changes  
1.0  
2018-06-14 Data Sheet (Initial Release)  
Data Sheet  
41  
Rev. 1.0  
2018-06-14  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-06-14  
Published by  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Infineon Technologies AG  
81726 Munich, Germany  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents of  
the Automotive Electronics Council.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

ITS40C06P

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 55A I(C) | TO-247AC
ETC

ITS40F06P

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 50A I(C) | TO-247AC
ETC

ITS40F2

Dummy Plug Stowage Receptacle
GLENAIR

ITS40F6

Dummy Plug Stowage Receptacle
GLENAIR

ITS40F7

Dummy Plug Stowage Receptacle
GLENAIR

ITS40F8

Dummy Plug Stowage Receptacle
GLENAIR

ITS40FR2ST

Vertical and right angle
CK-COMPONENTS

ITS40G3

Dummy Plug Stowage Receptacle
GLENAIR

ITS4100AFK

Front Panel Mount Square Flange Receptacle Assembly
GLENAIR

ITS4100AMB

Front Panel Mount Square Flange Receptacle Assembly
GLENAIR

ITS4100FFK

Front Panel Mount Square Flange Receptacle Assembly
GLENAIR

ITS4100FMB

Front Panel Mount Square Flange Receptacle Assembly
GLENAIR