L7833S [INFINEON]

HEXFETPower MOSFET; HEXFETPower MOSFET
L7833S
型号: L7833S
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
HEXFETPower MOSFET

文件: 总12页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94668B  
IRL7833  
IRL7833S  
IRL7833L  
HEXFET® Power MOSFET  
Applications  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
l High Frequency Isolated DC-DC  
Converters with Synchronous Rectification  
for Telecom and Consumer Use  
VDSS RDS(on) max  
Qg  
32nC  
3.8m  
30V  
Benefits  
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
D2Pak  
IRL7833S  
TO-262  
IRL7833L  
TO-220AB  
IRL7833  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-to-Source Voltage  
30  
V
V
Gate-to-Source Voltage  
± 20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
150  
110  
600  
I
I
I
@ TC = 25°C  
@ TC = 100°C  
D
D
A
DM  
Maximum Power Dissipation  
Maximum Power Dissipation  
P
P
@TC = 25°C  
@TC = 100°C  
140  
72  
W
D
D
Linear Derating Factor  
Operating Junction and  
0.96  
W/°C  
°C  
T
-55 to + 175  
J
T
Storage Temperature Range  
STG  
Mounting Torque, 6-32 or M3 screw  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
1.04  
–––  
62  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Case  
–––  
0.50  
–––  
–––  
JC  
CS  
JA  
JA  
Case-to-Sink, Flat, Greased Surface  
°C/W  
Junction-to-Ambient  
Junction-to-Ambient (PCB Mount)  
40  
Notes  through † are on page 12  
www.irf.com  
1
4/22/04  
IRL7833/S/L  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
30  
–––  
–––  
V
VGS = 0V, ID = 250µA  
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient –––  
18  
––– mV/°C Reference to 25°C, ID = 1mA  
m
Static Drain-to-Source On-Resistance  
–––  
–––  
1.4  
3.1  
3.7  
–––  
-11  
–––  
–––  
–––  
–––  
–––  
32  
3.8  
4.5  
2.3  
V
GS = 10V, ID = 38A  
GS = 4.5V, ID = 30A  
V
VGS(th)  
Gate Threshold Voltage  
V
VDS = VGS, ID = 250µA  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
––– mV/°C  
1.0  
150  
100  
-100  
–––  
47  
µA  
nA  
S
V
DS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
V
VGS = -20V  
gfs  
VDS = 15V, ID = 30A  
Qg  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
8.7  
5.1  
13  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
DS = 16V  
GS = 4.5V  
nC  
V
ID = 30A  
Gate Charge Overdrive  
5.3  
18  
See Fig. 16  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
22  
nC VDS = 16V, VGS = 0V  
VDD = 15V, VGS = 4.5V  
ns ID = 26A  
Turn-On Delay Time  
Rise Time  
18  
50  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
21  
Clamped Inductive Load  
6.9  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 4170 –––  
VGS = 0V  
pF VDS = 15V  
ƒ = 1.0MHz  
–––  
–––  
950  
470  
–––  
–––  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Typ.  
–––  
–––  
–––  
Max.  
560  
30  
Units  
mJ  
A
EAS  
IAR  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
14  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
–––  
–––  
150  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
600  
integral reverse  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
42  
1.2  
63  
51  
V
T = 25°C, I = 30A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 30A, VDD = 15V  
J F  
Qrr  
di/dt = 100A/µs  
34  
nC  
2
www.irf.com  
IRL7833/S/L  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
7.0V  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
BOTTOM  
BOTTOM  
2.7V  
2.7V  
20µs PULSE WIDTH  
Tj = 175°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.0  
1000  
100  
10  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
1.5  
1.0  
0.5  
T
= 25°C  
4.0  
J
V
= 15V  
DS  
20µs PULSE WIDTH  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
2.0  
3.0  
V
5.0  
6.0  
7.0  
8.0  
, Junction Temperature (°C)  
, Gate-to-Source Voltage (V)  
J
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRL7833/S/L  
100000  
12.0  
10.0  
8.0  
V
= 0V,  
f = 1 MHZ  
GS  
I
= 30A  
C
= C + C , C SHORTED  
D
iss  
gs gd ds  
C
= C  
rss  
gd  
V
V
= 24V  
= 15V  
C
= C + C  
ds gd  
oss  
DS  
DS  
10000  
1000  
100  
C
C
iss  
6.0  
oss  
4.0  
C
rss  
2.0  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
5
10 15 20 25 30 35 40  
Total Gate Charge (nC)  
V
Q
DS  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.00  
100.00  
10.00  
1.00  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
1
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.10  
0.1  
0.0  
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.0  
1
10  
, Drain-to-Source Voltage (V)  
DS  
100  
, Source-to-Drain Voltage (V)  
V
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRL7833/S/L  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
160  
120  
80  
40  
0
LIMITED BY PACKAGE  
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
TC, Case Temperature (°C)  
T
J
Fig 9. Maximum Drain Current Vs.  
Fig 10. Threshold Voltage Vs. Temperature  
Case Temperature  
10  
1
D = 0.50  
0.20  
P
DM  
0.10  
0.05  
0.1  
t
1
t
0.02  
0.01  
SINGLE PULSE  
(THERMAL RESPONSE)  
2
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRL7833/S/L  
15V  
2000  
1600  
1200  
800  
400  
0
I
D
TOP  
12A  
21A  
30A  
DRIVER  
+
L
V
BOTTOM  
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
VGS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
LD  
I
AS  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
Current Regulator  
VGS  
Same Type as D.U.T.  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
.3µF  
Fig 14a. Switching Time Test Circuit  
VDS  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRL7833/S/L  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRL7833/S/L  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
drive output  
loss  
conduction  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
in rr in  
(
)
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
Qoss  
)
g
g
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFETdata sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRL7833/S/L  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE : THIS IS AN IRF1010  
WITH ASSEMBLY  
A
INTERNATIONAL  
RECTIFIER  
PART NUMBER  
LOT CODE 9B1M  
IRF1010  
9246  
LOGO  
9B 1M  
DATE CODE  
(YYWW)  
ASSEMBLY  
LOT CODE  
YY = YEAR  
WW = WEEK  
www.irf.com  
9
IRL7833/S/L  
D2Pak Package Outline  
D2Pak Part Marking Information  
10  
www.irf.com  
IRL7833/S/L  
TO-262 Package Outline  
TO-262 Part Marking Information  
www.irf.com  
11  
IRL7833/S/L  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
26.40 (1.039)  
24.40 (.961)  
4
3
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.3mH, RG = 25, IAS = 30A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.  
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  
application note #AN-994.  
† This is only applied to TO-220AB package.  
TO-220AB package isnot recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.04/04  
12  
www.irf.com  

相关型号:

L7850

Peak emission wavelength: 1.45 レm
HAMAMATSU

L7850-01

Peak emission wavelength: 1.45 レm
HAMAMATSU

L7852

POSITIVE VOLTAGE REGULATORS
ETC

L7852C

POSITIVE VOLTAGE REGULATORS
STMICROELECTR

L7852CD2T

POSITIVE VOLTAGE REGULATORS
STMICROELECTR

L7852CD2T-TR

POSITIVE VOLTAGE REGULATORS
STMICROELECTR

L7852CD2T-TR1

Positive voltage regulators
STMICROELECTR

L7852CF

POSITIVE VOLTAGE REGULATORS
STMICROELECTR

L7852CP

POSITIVE VOLTAGE REGULATORS
STMICROELECTR

L7852CP1

Positive voltage regulators
STMICROELECTR

L7852CT

POSITIVE VOLTAGE REGULATORS
STMICROELECTR

L7852CT1

Positive voltage regulators
STMICROELECTR