MA12070P [INFINEON]

2x80W 超高功效全集成式音频功放 IC,带 I2S 数字输入;
MA12070P
型号: MA12070P
厂家: Infineon    Infineon
描述:

2x80W 超高功效全集成式音频功放 IC,带 I2S 数字输入

功效
文件: 总88页 (文件大小:2172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MA12070P  
Filterless and High-Efficiency +4V to +26V  
Audio Amplifier with I2S Digital Input  
Description  
Features  
The MA12070P is a super-efficient audio power  
amplifier based on proprietary multi-level switching  
technology. It supports a 4-26V supply voltage range,  
allowing it to be used in many different applications.  
Proprietary Multi-level Switching Technology  
3-level and 5-level modulation  
Low EMI emission  
Filterless amplification  
Multi-level switching enables very low power loss  
during operation. In addition, it allows the amplifier to  
be used in filterless configurations at full rated power  
in a wide range of audio products.  
Digital Power Management Algorithm  
High Power Efficiency (PMP4)  
400mW Idle power dissipation (26V PVDD, all  
channels switching)  
>80% Efficiency at 2W power (1kHz sine, 8Ω)  
>92% Efficiency at Full Power (1kHz sine, 8Ω)  
The MA12070P features an embedded digital power  
management scheme. The power management  
algorithm dynamically adjusts switching frequency and  
modulation to optimize power loss and EMI across the  
output power range.  
Audio Performance (PMP2)  
>101dB DNR (A-w, rel. to 1% THD+N power  
level)  
140µV output integrated noise (A-w)  
0.007% THD+N at high output levels  
An integrated digital-to-analog converter enables  
digital I2S audio stream input. It supports sample rates  
from 44.1 kHz to 192 kHz.  
4th Order Feedback Error Control  
Highly flexible output stage configurations are offered,  
ranging from four single-ended outputs to a single  
parallel-BTL output.  
High suppression of supply disturbance  
HD audio quality  
Supply Voltages: +4V to +26V (PVDD) and +5V  
(A/DVDD)  
Volume Control and Limiter  
The MA12070P features protection against DC, short-  
circuits,  
over-temperature  
and  
under-voltage  
situations.  
2x30W continuous output power (RL = 8Ω at 22V,  
Flexible “Power Mode Profiles” allow the user to utilize  
the multi-level switching technique for very low power  
loss or very high audio performance.  
PMP4, 10% THD+N level, without heatsink)  
2×80W peak output power (26V PVDD, RL = 4Ω,  
10% THD+N level)  
2.0, 2.1, 4.0, 1.0 Output Stage Configurations  
Protection  
Device communication and programming is controlled  
through an I2C interface as well as dedicated control  
pins.  
Under-voltage-lockout  
Over-temperature warning/error  
Short-circuit/overload protection  
Power stage pin-to-pin short-circuit  
Error-reporting through serial interface (I2C)  
DC protection  
Applications  
Battery Operated Speakers  
Wireless and Docking Speakers  
Soundbars  
Multiroom Systems  
Home Theater Systems  
I2C control (four selectable addresses)  
Heatsink free operation with EPAD-down package  
Package  
64-pin QFN Package with exposed thermal pad  
(EPAD) and Lead-free Soldering  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 88  
V 1.1  
2022-02-09  
 
 
 
 
1 Ordering Information  
Table 1-1  
Moisture  
Sensitivity Level  
Part Number  
MA12070P  
Package  
Description  
Quad Flat No-leads package, EPAD-down (exposed thermal pad on  
bottom side)  
QFN-64  
Level 3  
2 Known Issues and Limitations  
Please refer to the errata sheet document for descriptions of issues and limitations relating to device operation and performance.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 2 of 88  
V 1.1  
2022-02-09  
 
 
3 Typical Application Block Diagram  
100nF  
CFGD  
1µF  
CGD0  
1µF  
CGD1  
1µF  
CFDC  
VDD  
VDD  
CGDC  
1µF  
1µF  
AVDD  
DVDD  
1µF  
1µF  
AVSS  
CREF  
CMSE  
DVSS  
CDC  
Analog  
power  
and  
reference  
voltages  
CDC  
PVDD  
1µF  
Charge pump power supplies  
1µF  
PVDD  
1µF 1µF  
470µF  
PVSS  
Audio source  
PVDD  
Power  
SD0  
SD1  
Data pair 0  
(0L,0R)  
DAC  
OUT0A  
CF0AP  
CF0AN  
amp  
2x10µF  
DAC  
DAC  
DAC  
CF0A  
PVSS  
0L  
PVDD  
Power  
amp  
OUT0B  
CF0BP  
CF0BN  
2x10µF  
CF0B  
PVSS  
SCK  
WS  
CLK  
CLKM/S  
PVDD  
Power  
management  
Clock and  
timing  
Clock  
management  
Power  
amp  
OUT1A  
CF1AP  
CF1AN  
2x10µF  
CF1A  
Temp sensor  
PVSS  
0R  
PVDD  
Control and protection  
Power  
amp  
OUT1B  
CF1BP  
CF1BN  
2x10µF  
CF1B  
EMC filter  
depending on  
application  
PVSS  
EPAD  
5V  
Host system  
Figure 3-1 Typical application block diagram  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 3 of 88  
V 1.1  
2022-02-09  
 
4 Pin Description  
4.1 Pinout MA12070P  
Top view  
Pin 1  
Indicator  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PVSS  
48 PVSS  
PVSS  
CF0AN  
OUT0A  
OUT0A  
CF0AP  
PVDD  
47 PVSS  
46 CF1AN  
45 OUT1A  
44 OUT1A  
43 CF1AP  
42 PVDD  
41 PVDD  
40 CF1BP  
39 OUT1B  
38 OUT1B  
37 CF1BN  
exposed thermal  
pad on bottom side  
PVDD  
CF0BP  
OUT0B  
OUT0B  
CF0BN  
PVSS  
36  
PVSS  
PVSS  
35 PVSS  
34 /MUTE  
33 /ENABLE  
/CLIP  
/ERROR  
Figure 4-1 Pinout MA12070P  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 4 of 88  
V 1.1  
2022-02-09  
 
 
4.2 Pin Function  
Table 4-1  
Pin No.  
Name  
Type1  
Description  
1
2
PVSS  
PVSS  
P
P
Power ground for internal power amplifiers  
Power ground for internal power amplifiers  
3
CF0AN  
OUT0A  
OUT0A  
CF0AP  
PVDD  
PVDD  
CF0BP  
OUT0B  
OUT0B  
CF0BN  
PVSS  
P
Connect to external flying capacitor negative terminal for amplifier channel 0A  
Audio power output 0A  
4
O
O
P
5
Audio power output 0A  
6
Connect to external flying capacitor positive terminal for amplifier channel 0A  
Power supply for internal power amplifiers  
7
P
8
P
Power supply for internal power amplifiers  
9
P
Connect to external flying capacitor positive terminal for amplifier channel 0B  
Audio power output 0B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
O
O
P
Audio power output 0B  
Connect to external flying capacitor negative terminal for amplifier channel 0B  
Power ground for internal power amplifiers  
P
PVSS  
P
Power ground for internal power amplifiers  
/CLIP  
O
O
P
Audio clipping indicator (open drain output), pulled low when clipping occurs  
Error indicator (open drain output), pulled low when an error occurs  
Power supply for internal analog circuitry  
/ERROR  
AVDD  
CMSE  
O
Decoupling pin for internally generated common-mode voltage in SE configuration.  
Should be externally decoupled to AVSS. Can be left floating for 2 x BTL and PBTL  
configurations.  
19  
20  
AVSS  
CREF  
P
Ground for internal analog circuitry  
O
Decoupling pin for internally generated analog reference voltage. Should be externally  
decoupled to AVSS.  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
SCK  
WS  
I
I
I2S, digital audio serial clock. Must be synchronized to CLK  
I2S, digital audio word select. Must be synchronized to CLK  
I2S, digital audio serial data pair 0  
SD0  
I
SD1  
I
I2S, digital audio serial data pair 1  
AVSS  
DVSS  
SCL  
P
P
IO  
I
Ground for internal analog circuitry  
Ground for internal digital circuitry  
I2C bus serial clock  
AD0  
I2C device address select 0 (see “MCU/Serial control interface” section)  
I2C device address select 1 (see “MCU/Serial control interface” section)  
I2C bus serial data  
AD1  
I
SDA  
IO  
I
CLKM/S  
CLK  
Reserved - must be pulled low  
I
Clock input. Must be present before enabling the amplifier.  
/ENABLE  
I
When pulled high, the device is reset and kept in an inactive state with minimum power  
consumption.  
34  
35  
36  
37  
38  
39  
40  
/MUTE  
PVSS  
I
Mute audio output when pulled low  
P
P
P
O
O
P
Power ground for internal power amplifiers  
Power ground for internal power amplifiers  
Connect to external flying capacitor negative terminal for amplifier channel 1B  
Audio power output 1B  
PVSS  
CF1BN  
OUT1B  
OUT1B  
CF1BP  
Audio power output 1B  
Connect to external flying capacitor positive terminal for amplifier channel 1B  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 5 of 88  
V 1.1  
2022-02-09  
 
Pin No.  
41  
Name  
PVDD  
PVDD  
CF1AP  
OUT1A  
OUT1A  
CF1AN  
PVSS  
Type1  
Description  
P
P
P
O
O
P
P
P
P
I
Power supply for power amplifiers  
42  
Power supply for power amplifiers  
43  
Connect to external flying capacitor positive terminal for amplifier channel 1A  
Audio power output 1A  
44  
45  
Audio power output 1A  
46  
Connect to external flying capacitor negative terminal for amplifier channel 1A  
Power ground for internal power amplifiers  
Power ground for internal power amplifiers  
Internally connected to DVDD should be not connected  
SE/BTL/PBTL configuration select 1  
47  
48  
PVSS  
49  
NC  
50  
MSEL1  
MSEL0  
CGD1N  
51  
I
SE/BTL/PBTL configuration select 0  
52  
P
Connect to external decoupling capacitor negative terminal for internal gate driver  
power supply 1  
53  
54  
CGD1P  
VGDC  
P
P
Connect to external decoupling capacitor positive terminal for internal gate driver  
power supply 1  
Internally generated virtual ground voltage for digital core. Should be decoupled to  
DVDD.  
55  
56  
57  
DVDD  
CDC  
P
P
P
Power supply for internal digital circuitry and charge pumps  
Connect to external decoupling capacitor for digital core internal power supply  
CFDCP  
Connect to external flying capacitor positive terminal for internal digital core power  
supply  
58  
CFDCN  
P
Connect to external flying capacitor negative terminal for internal digital core power  
supply  
59  
60  
DVSS  
P
P
Power ground for internal digital circuitry  
CGD0P  
Connect to external decoupling capacitor positive terminal for internal gate driver  
power supply 0  
61  
62  
63  
64  
CGD0N  
CFGDP  
CFGDN  
NC  
P
P
P
P
Connect to external decoupling capacitor negative terminal for internal gate driver  
power supply 0  
Connect to external flying capacitor positive terminal for internal gate driver power  
supplies  
Connect to external flying capacitor negative terminal for internal gate driver power  
supplies  
Internally connected to DVDD - should be not connected  
Type1: P = Power; I = Input; O = Output; IO = Input or Output  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 6 of 88  
V 1.1  
2022-02-09  
5 Absolute Maximum Ratings  
Table 5-1  
Parameter  
Value  
Unit  
Power Supplies  
Power stage supply voltage, PVDD  
System supply voltage, DVDD, AVDD  
Input / Output  
-0.5 to +27.5  
-0.5 to +6.0  
V
V
Logic: /ENABLE, /MUTE, /ERROR, /CLIP, MSEL0, MSEL1,  
CLKM/S, CLKIO, SCL, SDA, AD0, AD1  
Output current, Logic and Interface  
-0.5 to +6.0  
25  
V
mA  
Thermal Conditions  
-40 to +85  
-40 to +150  
-65 to +150  
23  
°C  
°C  
Ambient temperature range, TA  
Junction temperature range, TJ  
Storage temperature range  
°C  
Thermal resistance, Junction-to-Ambient  
Thermal resistance, Junction-to-EPAD  
Lead soldering temperature, 10s  
°C/W  
°C/W  
°C  
2.3  
+300  
Electrostatic Discharge (ESD)  
Human body model (HBM)  
Charged device model (CDM)  
± 2000  
± 1000  
V
V
PLEASE NOTE:  
Device usage beyond the above stated ratings may cause permanent damage to the device. Permanent usage at the above stated ratings may limit  
device lifetime and result in reduced reliability. This is a stress rating only; functional operation of the device at these or any other conditions above  
those indicated in the operational section of this specification is not implied.  
See “Recommended Operation Conditions” for continuous functional ratings.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 7 of 88  
V 1.1  
2022-02-09  
 
6 Recommended Operating Conditions  
Table 6-1  
Symbol  
PVDD  
Parameter  
Power Stage Power Supply  
Min  
5
Typ  
Max  
26  
Unit  
V
V
V
DVDD  
AVDD  
VIH_3V3  
Digital Power Supply  
4.75  
4.75  
5
5
5.25  
5.25  
Analog Power Supply  
High Level for:  
/ENABLE, /MUTE, /ERROR, /CLIP, CLKIO, SCL, SDA, AD0, AD1  
Low Level for:  
2
V
VIL_3V3  
/ENABLE, /MUTE, /ERROR, /CLIP, CLKIO, SCL, SDA, AD0, AD1  
High Level for MSEL0, MSEL1, CLKM/S  
Low Level for MSEL0, MSEL1, CLKM/S  
DC Offset Level for Analog Inputs  
Audio Signal Level for Analog Inputs  
Minimum Load in Bridge-Tied Load Mode  
Minimum Load in Parallel Bridge-Tied Load Mode  
Minimum Load in Single Ended Mode  
0.8  
V
V
VIH_5V0  
VIL_5V0  
3.5  
1.2  
0.8  
3.8  
V
VIN_dc  
2.5  
1.8  
4
V
VIN_ac  
Vpp  
RL (BTL)  
RL (PBTL)  
RL (SE)  
3.2  
1.6  
2.4  
2
3
Minimum required equivalent load inductance per output pin  
for short circuit protection  
LLeq  
0.5  
0
µH  
°C  
TA  
Ambient temperature range  
+25  
+85  
Note: Minimum Load resistance was measured in Filterless output condition.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 8 of 88  
V 1.1  
2022-02-09  
 
 
7 Electrical and Audio Characteristics  
Table 7-1  
Power Mode Profile = 0; VDD (Analog & Digital) = +5V; PVDD = +26V; TA = 0°C to +85°C. Typical values are at TA = +25°C  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Output Power per channel (peak),  
Without Heatsink, see Note 1  
THD+N = 10%, RL = 8Ω, f = 1kHz  
45  
W
POUT (BTL)  
THD+N = 10%, RL = 4Ω, f = 1kHz  
THD+N = 1%, RL = 8Ω, f = 1kHz  
THD+N = 1%, RL = 4Ω, f = 1kHz  
80  
35  
60  
W
W
W
Output Power per channel  
(continuous) Without Heatsink,  
see Note 2  
RL = 8Ω, f = 1kHz, PVDD = +22V  
30  
W
Output Power (peak), see Note 1  
THD+N = 10%, RL = 2Ω, f = 1kHz  
THD+N = 1%, RL = 2Ω, f= 1kHz  
THD+N = 10%, RL = 4Ω, f = 1kHz  
THD+N = 10%, RL = 3Ω, f = 1kHz  
THD+N = 1%, RL = 4Ω, f = 1kHz  
THD+N = 1%, RL = 3Ω, f = 1kHz  
NENABLE = 1 0  
160  
120  
20  
W
W
POUT (PBTL)  
POUT (SE)  
Output Power per channel (peak),  
see Note 1  
W
25  
W
15  
W
20  
W
TENABLE  
TMUTE  
Shutdown/Full Operation Timing  
Mute/Unmute Timing  
1
ms  
ms  
mV  
mV  
dB  
NMUTE = 1 0 and 0 1  
0.3  
Output Offset Voltage, see Note 4  
Output Offset Voltage, see Note 4,5  
Power Supply Rejection Ratio  
Resistance, switch on  
±35  
VOS,BTL/PBTL  
VOS,SE  
PSRR  
50  
70  
± 100mVpp ripple voltage  
0.10  
618  
316  
158  
0.15  
672  
336  
168  
0.20  
726  
Ron  
Power Mode A  
Power Mode B & C  
Power Mode D  
kHz  
kHz  
kHz  
MHz  
A
Power MOSFET Switching  
Frequency, see Note 3  
356  
fSW  
178  
Clock Output Frequency  
Maximum Output Current  
Crosstalk  
2.7151 2.8224  
2.9296  
fCLK_IO  
8
IOUT/OCPTHR  
XTalk  
BTL, POUT = 1W, f=1kHz, Ch1 & 2  
-108  
dB  
Note 1: The thermal design of the target application will significantly impact the ability to achieve the peak output power levels for extended time.  
See “Thermal Characteristics and Test Signals” section for thermal optimization recommendations.  
Note 2: Continuous power measurements were performed on the MA12070 proprietary Amplifier EVK without heatsinking at 25C ambient  
temperature in Power Mode Profile 4.  
Note 3: Power MOSFET switching frequency depends on which properties are assigned to the individual power modes of the device. Detailed  
information on this can be found in “Power Mode Management” section.  
Note 4: Offset is specified as the voltage difference between the “mute” and “unmute” state.  
Note 5: The offset number is only guaranteed for the SE channels in 2.1 configuration.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 9 of 88  
V 1.1  
2022-02-09  
 
 
Table 7-2  
VDD (Analog & Digital) = +5V; PVDD = +26V; Typical values are at TA = +25°C; Output Configuration: BTL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
91  
Max  
Unit  
%
η
Efficiency  
POUT = 2×40W, 8Ω , PMP = 0  
POUT = 2×40W, 8Ω , PMP = 1  
POUT = 2×40W, 8Ω , PMP = 2  
91  
%
89  
%
POUT = 2×40W, 8Ω , PMP = 4  
POUT = 2×80W, 4Ω , PMP = 0  
POUT = 2×80W, 4Ω , PMP = 1  
POUT = 2×80W, 4Ω , PMP = 2  
POUT = 2×80W, 4Ω , PMP = 4  
92  
87  
87  
86  
88  
%
%
%
%
%
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 10 of 88  
V 1.1  
2022-02-09  
Table 7-3  
Power Mode Profile = 0; VDD (Analog & Digital) = +5V; PVDD = +26V; TA = 0°C to +85°C. Typical values are at TA = +25°C.  
Symbol  
Ishutdown  
Iidle,mute  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Current Consumption, PVDD  
Shutdown  
10  
35  
180  
12  
µA  
mA  
mA  
mA  
%
Current Consumption, PVDD  
Current Consumption, PVDD  
Current Consumption, AVDD+DVDD  
Idle, mute  
4
4
6
9
Idle, unmute, inputs grounded  
Idle, unmute, inputs grounded  
1kHz, POUT = 1W, RL = 4Ω  
1kHz, POUT = 20W, RL = 4Ω  
20-20kHz, A-weighted  
20-20kHz, A-weighted  
18  
Iidle,unmute  
IDVDD+AVDD  
30  
35  
42  
0.013  
0.014  
100  
150  
THD+N  
Total Harmonic Distortion + Noise  
%
DNR  
Dynamic Range1  
dB  
Vnoise  
Output integrated noise level  
105  
190  
µVrms  
Table 7-4  
Power Mode Profile = 2; VDD (Analog & Digital) = +5V; PVDD = +26V; TA = 0°C to +85°C. Typical values are at TA = +25°C.  
Symbol  
Ishutdown  
Iidle,mute  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Current Consumption, PVDD  
Shutdown  
10  
35  
180  
12  
µA  
mA  
mA  
mA  
%
Current Consumption, PVDD  
Current Consumption, PVDD  
Current Consumption, AVDD+DVDD  
Idle, mute  
4
4
6
Idle, unmute, inputs grounded  
Idle, unmute, inputs grounded  
1kHz, POUT = 1W, RL = 4Ω  
1kHz, POUT = 20W, RL = 4Ω  
20-20kHz, A-weighted  
20-20kHz, A-weighted  
11  
22  
Iidle,unmute  
IDVDD+AVDD  
33  
38  
45  
0.012  
0.016  
101  
140  
THD+N  
Total Harmonic Distortion + Noise  
%
DNR  
Dynamic Range1  
dB  
Vnoise  
Output integrated noise level  
110  
170  
µVrms  
1 Output power at THD+N < 1% reference to noise floor at -60dBFS signal.  
NOTE: MA12070P gives users the freedom to choose Power Mode Profiles (PMP) independently. As noted in the specifications table, the choice in  
power mode profiles gives a trade-off between power efficiency and audio performance as an individual set of performance characteristics. See  
“Power Mode Profiles” section for more details.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 11 of 88  
V 1.1  
2022-02-09  
8 Functional description  
Multi-level modulation  
The power stage of the MA12070P is a true multi-level switching topology. Each half-bridge is capable of delivering a  
PWM output with three voltage levels, rather than the conventional two. The three-level half-bridges are each driven  
with a two-phase PWM signal, so that the switching frequency seen at the PWM output is twice that of the individual  
power MOSFET switching frequency.  
For very low EMI in BTL configuration, the two half-bridges are operated in a complementary fashion (i.e. with 240⁰  
phase shift), which removes common-mode PWM output content. This configuration is ideal for driving long speaker  
cables without an output filter. Differentially, this modulation method drives the filter/load assembly with three PWM  
levels.  
For reduced power loss in the BTL configuration, the half-bridges can also be driven in a quadrature phase shifted  
fashion (i.e. with 90⁰ phase shift). This provides a total of five PWM levels at the load, along with a quadrupling of  
MOSFET switching frequency with respect to the differential PWM switching frequency. With this modulation scheme,  
the MOSFET switching frequency can therefore be lowered, in order to decrease switching losses. The five-level  
modulation scheme produces a common-mode voltage on the load wires, but with less high-frequency content  
compared to conventional two-level BD modulation.  
The multi-level switching topology of the MA12070P makes filterless operation viable, since the modulation schemes  
ensure little or no idle losses in the speaker magnetic system.  
For applications with stringent EMC requirements or long speaker cables, the MA12070P can operate with a very small  
and inexpensive EMI/EMC output filter. This is enabled by the multiple PWM output levels and the frequency  
multiplication seen on the PWM switching nodes. Notably, with the multi-level modulation of the MA12070P, there is  
no tradeoff between idle power loss and inductor cost/size, which is due to the absence of inductor ripple current under  
idle conditions in all configurations. Due to the high filter cutoff frequency, non-linearities of LC components have less  
impact on audio performance than with a conventional amplifier. Therefore, the MA12070P can operate with  
inexpensive iron-powder cored inductors and ceramic (X7R) filter capacitors with no significant audio performance  
penalty.  
Very low power consumption  
The MA12070P achieves very low power loss under idle and near-idle operating conditions. This is due to the zero idle  
ripple property of the multi-level PWM scheme, in combination with the programmable automatic reduction of  
switching frequency at low modulation index levels; resulting in a state-of-the-art power efficiency at low and medium  
output power levels.  
For high output power levels, power efficiency is determined primarily by the on-resistance (Rdson) of the output power  
MOSFETs. With music and music-like (e.g. pink noise) output signals with high crest factor, the reduced near-idle losses  
of the MA12070P contribute to reducing power losses compared to a conventional amplifier with the same Rdson. In  
most applications, this allows the MA12070P to run at high power levels without a heatsink.  
Power Mode Management  
The MA12070P is equipped with an intelligent power management algorithm which applies automatic power mode  
selection during audio playback. In this state, the amplifier will seamlessly transition between three different power  
modes depending on the audio level in order to achieve optimal performance in terms of power loss, audio performance  
and EMI. Figure 8-1 shows an illustration of the basic power mode management. Alternatively, it is possible to manually  
select the desired power mode for the MA12070P via the serial interface.  
In both manual and automatic power mode selection, the power mode can be configured and set on-the-fly during  
audio playback, with no audible artifacts. This makes it possible to optimize the target application to achieve the best  
possible operating performance at all audio power levels.  
During automatic power mode selection, the MA12070P can transition between power modes at programmable audio  
level thresholds. The thresholds can be set via the serial control interface, by addressing the associated registers.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 12 of 88  
V 1.1  
2022-02-09  
 
 
 
 
Power mode  
change  
Power mode  
change  
1
2
3
Power mode  
Audio level  
Low to  
moderate  
Medium  
High  
Max  
Figure 8-1 Illustration of automatic power mode selection ranges.  
To allow easy use of the power mode management, “Power Mode Profiles” have been defined. The “Power Mode  
Profiles” address the appropriate power modes for a variety of applications.  
Power Modes Profiles  
The MA12070P provides 5 different power mode profiles for operating the internal power amplifiers. The power mode  
profiles give the user freedom to choose optimal settings of the amplifier for the intended application.  
The available power modes profiles are referred to as 0, 1, 2, 3 and 4 and can be set by programming the according  
register (see). The power mode profile selection affects various parameters such as switching frequency, modulation  
scheme and loop-gain, thus providing flexibility in design tradeoffs such as audio performance, power loss and EMI.  
Table 8-1 shows the characteristics of the power mode profiles.  
Table 8-1 Power Mode Profile characteristics  
Property  
PM switch seq.  
Idle loss  
Profile 0  
D↔D↔C  
Very low  
Profile 1  
B↔B↔B  
Low  
Profile 2  
B↔B↔A  
Low  
Profile 3  
D↔B↔A  
Very low  
Profile 4  
D↔D↔D  
Very low  
Full scale  
efficiency  
Good  
Good  
Good  
Best  
Good  
Best  
Normal  
Good/Best  
Only DC  
Best  
Good  
THD+N  
Common-mode  
content, idle  
Only DC  
Only DC  
Only DC  
Only DC  
DC + Sidebands  
around 600kHz,  
1.8MHz, 3.0MHz,  
etc.  
DC + sidebands  
around 300kHz,  
900kHz, 1.5MHz,  
etc.  
Common-mode  
content, full-scale  
audio  
Only DC  
Only DC  
Only DC  
Differential  
content low-to-  
mid-power  
Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 600kHz  
around multiples  
of 600kHz  
Differential  
content mid-to-  
high power  
Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands Audio + sidebands  
around multiples  
of 600kHz  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 1.2MHz  
around multiples  
of 600kHz  
Filterfree:  
optimized audio  
performance,  
active speaker  
applications  
Filterfree:  
optimized audio  
performance,  
default  
LC filter: high  
efficiency, high  
audio perform-  
ance, good EMI,  
low ripple loss  
Filterfree:  
optimized  
efficiency, active  
speaker  
Filterfree:  
optimized  
efficiency, default  
applications  
Application  
applications  
applications  
Note: There is a programmable “Profile 5” which allows the user to set up a custom profile.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 13 of 88  
V 1.1  
2022-02-09  
 
 
The first row of Table 8-1 shows that each Power Mode Profile follows a certain Power Mode transition sequence. This  
means that each Power Mode within every Power Mode Profile will have its specific set of properties (A, B, C or D).  
The exact details of each assigned set of properties is reflected in Table 8-2.  
Table 8-2 Set of properties assigned to Power Modes in the selectable Power Mode Profiles  
Property  
A
B
C
D
FET switching  
frequency, fFET  
600kHz  
300kHz  
300kHz  
150kHz  
Modulation scheme  
3-level  
5-level  
3-level  
5-level  
Switching frequency  
seen at load, fSW  
1.2MHz (2 x fFET  
)
1.2MHz (4 x fFET  
)
600kHz (2 x fFET  
)
600kHz (4 x fFET)  
Idle loss  
Reduced  
Low  
Low  
Very low  
Full scale efficiency  
Open-loop gain  
THD+N  
Normal  
High  
Good  
High  
Good  
Low  
Best  
Low  
Best  
Best  
Good  
Good  
Only DC  
Common-mode  
content, idle  
Only DC  
Only DC  
Only DC  
Common-mode  
content, full-scale  
audio  
DC + sidebands around  
600kHz, 1.8MHz,  
3.0MHz, etc.  
DC + sidebands around  
300kHz, 900kHz,  
1.5MHz, etc.  
Only DC  
Only DC  
Audio + sidebands  
around multiples of  
1.2MHz  
Audio + sidebands  
around multiples of  
1.2MHz  
Audio + sidebands  
around multiples of  
600kHz  
Audio + sidebands  
around multiples of  
600kHz  
Differential content  
Next to the pre-defined Power Mode Profiles it is also possible to define a custom profile which will be available under  
Power Mode Profile 5. This profile can be configured using the “custom power mode profile” register (address 30). See  
“Register Map” section for more details.  
The MA12070P employs feedback of the output PWM signals in order to compensate for noise and other non-idealities  
in the power processing path. A fourth-order analog feedback loop is used, which typically provides a loop gain of 60dB  
to suppress errors in the audio band. For the typical high efficiency application this results in low THD (Total Harmonic  
Distortion) at all audio frequencies, as well as excellent immunity (in excess of 75dB) to power supply borne  
interferences.  
Maximum achievable loop-gain is typically set by the PWM frequency stability criteria. Inherent frequency multiplication  
of the multilevel topology therefore allows for a much more aggressive loop-filter (and therefore better THD and noise  
properties) because of a higher effective PWM switching frequency seen at the output. See “Profile 0 and Profile 2” in  
Table 8-1 for high-fidelity Power Mode Profiles.  
For the lowest switching frequencies, the proprietary loop filter architecture seamlessly reduces feedback bandwidth  
to ensure loop stability. In most applications (e.g. filterless applications), no further special attention is required to  
ensure loop stability. In applications with very stringent EMI requirements, an LC filter can be used. In these cases  
attention to loop stability is required since an un-damped LC filter effectively represents a short-circuit to ground at the  
resonance frequency. In extreme cases, this can cause instability of the analog feedback loops. In order to avoid this, an  
LC filter should use an inductor with more than 10mDC resistance, and a series R-C circuit should be used to limit the  
Q of the LC circuit to around 5.  
Power supplies  
The MA12070P generates internal supply voltages and uses external capacitors for this purpose and for decoupling.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 14 of 88  
V 1.1  
2022-02-09  
 
 
Gate driver supplies  
The MA12070P utilizes a floating supply voltage for the gate driver circuitry generated internally by a charge pump. The  
gate driver power supply voltage is approximately 6V to 9V higher than PVDD. For PVDD voltages of 24V and higher it is  
recommended to add decoupling capacitors (1uF & 100nF) from CGD0N & CGD1N to GND for improved power supply  
robustness. Table 8-3 shows the required external charge pump and decoupling capacitors.  
Table 8-3 Gate driver supply capacitors  
Name  
CGD0  
Purpose  
Connection  
CGD0P, CGD0N  
CGD1P, CGD1N  
CFGDP, CFGDN  
CGD0N, GND  
CGD1N, GND  
Type  
Value  
1uF  
Decoupling of gate driver supply voltage 0  
Decoupling of gate driver supply voltage 1  
Charge pump flying capacitor  
16V, high capacity, low precision  
16V, high capacity, low precision  
50V, high capacity, low precision  
50V, high capacity, low precision  
50V, high capacity, low precision  
CGD1  
1uF  
CFGD  
100nF  
CGD0N  
CGD1N  
Decoupling of gate driver supply voltage 0  
Decoupling of gate driver supply voltage 1  
1uF, 100nF  
1uF, 100nF  
Digital core supply  
The digital control unit in the MA12070P uses a supply voltage generated internally by a charge pump and a voltage  
regulator for highest efficiency. Table 8-4 lists the external capacitors required and describes their function and  
connection.  
Table 8-4 Digital supply capacitors  
Name  
CDC  
Purpose  
Connection  
CDC, GND  
Type  
Value  
1uF  
Charge pump output voltage decoupling to GND  
>=6.3V, high capacity, low precision  
CFDC  
Charge pump flying capacitor  
CFDCP, CFDCN >=6.3V, high capacity, low precision  
VGDC, DVDD >=6.3V, high capacity, low precision  
1uF  
CGDC  
Decoupling of digital core virtual ground voltage  
on the VGDC pin. The voltage on the VGDC pin is  
approximately 1.8V below DVDD, i.e. about 3.2V  
1uF  
Flying capacitors  
The MA12070P power stage uses flying capacitors to generate a ½PVDD supply voltage to enable multi-level operation.  
Each output switch node OUTXX has a corresponding flying capacitor, with a positive and a negative terminal, CFXXP  
and CFXXN.  
The two flying capacitor terminals are to be considered high power switching nodes carrying voltages and currents  
similar to that on the OUTXX nodes. Care must be taken in the PCB design to reduce both the inductance and the  
resistance of these nodes. Table 8-5 lists the flying capacitors, incl. connection, type and value.  
Table 8-5 Flying capacitors  
Name  
CF0A  
Purpose  
Connection  
CF0AP, CF0AN  
CF0BP, CF0BN  
CF1AP, CF1AN  
CF1BP, CF1BN  
Type  
Value  
10uF  
10uF  
10uF  
10uF  
Half-bridge 0A flying capacitor  
Half-bridge 0B flying capacitor  
Half-bridge 1A flying capacitor  
Half-bridge 1B flying capacitor  
>=25V, high capacity, low precision  
>=25V, high capacity, low precision  
>=25V, high capacity, low precision  
>=25V, high capacity, low precision  
CF0B  
CF1A  
CF1B  
Care must be taken when choosing flying capacitors in applications where maximum output power is needed. The  
effective capacitance of poor ceramic capacitors can be greatly reduced when a DC bias voltage is applied. A  
recommended part is the GRM21BZ71E106KE15L capacitor from Murata. Other parts may also be used as long as the  
effective capacitance is minimum 4.0 µF at 0.5*PVDD voltage.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 15 of 88  
V 1.1  
2022-02-09  
 
 
 
 
Protection  
The MA12070P integrates a range of protection features to protect the device and attached speakers from damage.  
Protection features include:  
Current protection on OUTXX nodes during operation.  
On-chip temperature sensor for protection against device over-heating.  
Undervoltage supply monitors on AVDD, DVDD, VGDC and PVDD.  
DC protection, preventing DC to be present on the amplifier outputs.  
Over-current protection on OUTXX nodes  
During switching operation the output stage monitors the forward current flow in all output switches that are turned  
on. This is done to limit the maximum power dissipated in the switches and prevent damage to the device and the  
speaker load. The current in the output stage can exceed unwanted levels if:  
The speaker load impedance drops to a low value while the device is powered from a high PVDD supply.  
A failure occurs on the speaker terminals causing a low impedance short.  
The speaker is damaged and thereby exhibiting a low impedance.  
Over-current protection and short-circuit protection use a latching mechanism. If an over current or a short-circuit  
condition occurs, it will shut down the power stage and report the error on the /ERROR pin. By default the power stage  
will restart and remove the latch after 1-2 sec. If the over current is still present it will cycle through the described  
process again until the over current is removed. Current limiting will not occur for currents below the OCPTHR level, see  
Table 7-1.  
Current protection against speaker terminal shorts requires an equivalent load inductance LLeq on each of the output  
OUTXX pins (see Table 6-1). Load inductance from loudspeaker cables and, if used, ferrite beads (EMC filter) will typically  
be sufficient.  
Temperature protection  
An on-chip temperature sensor effectively safeguards the device against a thermally induced failure due to overloading  
and/or insufficient cooling.  
A high junction temperature initially causes a temperature warning, TW. This can be detected by reading the error  
register (address 124, bit 4) via I2C. If the temperature continues to rise the device will reach the temperature error (TE)  
level and set the TE bit in the error register (address 124, bit 5). This will cause the device to stop all switching activity.  
The device will restart after sufficient cooling down of the system. Both TW and TE will report the error on the /ERROR  
pin.  
Table 8-6 High-Temperature Warning and Error Signaling Levels  
Symbol  
TETHR,SET  
TETHR,CLR  
TWTHR,SET  
TWTHR,CLR  
Parameter  
Test Conditions  
Temperature rising  
Temperature falling  
Temperature rising  
Temperature falling  
Typical Value  
Unit  
°C  
High-Temperature Error (TE) Set Threshold  
High-Temperature Error (TE) Clear Threshold  
High-Temperature Warning (TW) Set Threshold  
High-Temperature Warning (TW) Clear Threshold  
150  
135  
125  
105  
°C  
°C  
°C  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 16 of 88  
V 1.1  
2022-02-09  
 
 
 
Power supply monitors  
The MA12070P features integrated PVDD, DVDD and AVDD under-voltage lockout.  
Table 8-7 shows typical limits for the supply monitors.  
Table 8-7 Under-voltage lockout levels  
Parameter  
DVDD under-voltage error threshold  
Test Conditions  
DVDD Rising  
Typical Value  
Unit  
V
UVPDVDD  
UVPAVDD  
UVPPVDD  
4.2  
DVDD Falling  
4.0  
V
AVDD under-voltage error threshold  
PVDD under-voltage error threshold  
AVDD Rising  
AVDD Falling  
PVDD Rising  
PVDD Falling  
4.2  
4.0  
4.3  
4.1  
V
V
V
V
DC protection  
The MA12070P incorporates a circuit, detecting whether a DC is present on the amplifier output terminals driving the  
loudspeaker. In case of an unexpected DC being present on any of the amplifier outputs, the power stage will be shut  
down to protect the loudspeaker from harmful DC content. Furthermore, a failure is reported on the /ERROR pin and in  
the error register readable by the device serial interface. The power stage can be restarted by resetting the device by  
cycling the /ENABLE pin or toggle the eh_clear bit (bit 2, address 45) to clear the error register. DC protection is default  
on. It can be disabled by clearing bit 2 of Eh_dcShdn (address 0x26).  
For the DC protection circuit to trigger, the DC value of an output pin must be staying above 0.63*PVDD or below  
0.37*PVDD for more than 700ms.  
Digital serial audio input  
The MA12070P provides a digital serial audio interface for providing up to four input PCM audio signals to the amplifier.  
The digital serial audio input port on the MA12070P consist of the pins SCK (serial clock), WS (word select), SD0 (serial  
data 0 input channels 0L and 0R), and SD1 (serial data 1 input channels 1L and 1R). All pins are inputs, i.e. the serial  
input port is slave. The format of the digital serial audio inputs can be configured using the serial control interface. The  
timing diagram for left justified mode (default) are illustrated in Figure 8-2 and I2S mode in Figure 8-3. In the following  
the various settings for the digital serial audio input interface are described.  
Table 8-8 Parameters for the digital serial audio input interface  
Address(bits)  
Register name  
Description  
0x35(2-0)  
i2s_format  
PCM word format:  
000: i2s  
001: left justified (default)  
100: right justified 16bits  
101: right justified 18bits  
110: right justified 20bits  
111: right justified 24bits  
Clocking edge of the serial clock signal (SCK):  
0x36(0)  
i2s_sck_pol  
0: Serial data (SDX) and word select (WS) are changing at rising edge of the serial  
clock signal (SCK). The MA12070P will capture data at the falling edge of the  
serial clock signal SCK.  
1: Serial data (SDX) and word select (WS) are changing at falling edge of the  
serial clock signal (SCK). The MA12070P will capture data at the rising edge of  
the serial clock signal SCK. (default)  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 17 of 88  
V 1.1  
2022-02-09  
 
 
 
 
0x36(4-3)  
i2s_framesize  
Number of data bits per frame:  
00: 64 serial clock (SCK) cycles are present in each period of the word select  
signal (WS). (default)  
01: 48 serial clock (SCK) cycles are present in each period of the word select  
signal (WS).  
10: 32 serial clock (SCK) cycles are present in each period of the word select  
signal (WS).  
11: reserved  
0x36(1)  
i2s_ws_pol  
Temporal pairing of the two PCM data words in the serial data signals:  
0: First word of a simultaneously sampled PCM data pair is transmitted while  
word select (WS) is low. (default)  
1: First word of a simultaneously sampled PCM data pair is transmitted while  
word select (WS) is high.  
0x36(2)  
0x36(5)  
i2s_order  
Bit order for PCM data words:  
0: Most significant bit of the PCM data word is transmitted first. (default)  
1: Least significant bit of the PCM data word is transmitted first.  
Left/right order of the two temporally paired PCM words:  
i2s_rightfirst  
0: Left PCM data word (of a simultaneously sampled PCM data pair) is send first.  
(default)  
1: Right PCM data word (of a simultaneously sampled PCM data pair) is send  
first.  
1/FS  
WS  
SCK  
Left Channel 32 bits  
Right Channel 32 bits  
N
N-1  
1
0
N
N-1  
1
0
N
SD0/SD1  
MSB  
LSB  
MSB  
LSB  
Figure 8-2 Timing diagram of left justified mode (default).  
1/FS  
WS  
SCK  
1Bit  
Left Channel 32 bits  
Right Channel 32 bits  
N
N-1  
1
0
N
N-1  
1
0
SD0/SD1  
MSB  
LSB  
MSB  
LSB  
Figure 8-3 Timing diagram of I2S mode with 2x32 bit.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 18 of 88  
V 1.1  
2022-02-09  
Volume and limiter processor (VLP)  
The MA12070P incorporates a volume and limiter processor (VLP). The VLP is a dedicated digital signal processor  
capable of processing up to four audio channels. Customized signal processing is used to ensure preservation of the  
audio quality in all stages of the VLP.  
Figure 8-4 shows a functional block diagram of the VLP. The VLP is capable of applying a high precision volume control  
on the incoming audio signals. After volume scaling, the signals can be passed through high precision limiters to protect  
the loudspeakers from overload or to avoid undesired clipping occurring due to bad signal or gain scaling (volume  
overdrive). The VLP can also be programmed to reduce the signal level in case of a temperature warning event to  
prevent a system shutdown caused by overheating.  
Figure 8-4. Functional block diagram of the volume and limiter processor (VLP)  
Volume control  
The volume controls in the VLP are organized as a master volume, which applies gain on all channels and four channel  
volumes, applying gain on each of the individual channels. The resulting gain for a channel will consequently be a  
product of the master volume and the channel gain. To avoid undesired audible artifacts when changing the volume  
settings, smoothing is performed on the resulting gain before applying it to the audio signal.  
The master volume and the channel volume settings can be controlled via the serial control interface. Each volume  
setting is represented by 10 bits. The 10 bits are organized as an 8-bit number giving the integer part of the gain in dB  
(the digits before the decimal point) - and a 2-bit number giving the fractional part of the gain in dB (the digits after the  
decimal point). The granularity of volume settings is 0.25dB. The mapping from the serial control interface register to  
the gain is shown in Table 8-9.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 19 of 88  
V 1.1  
2022-02-09  
 
 
 
Table 8-9 VLP Mapping from register values to gain and level  
Integer dB  
register setting  
Fractional dB  
register setting  
VLP Gain/Level dB  
dec Hex  
dec hex  
0
0
(0x00)  
(0x00)  
0
1
3
0
1
2
3
0
1
2
3
0
3
0
2
3
(0x0)  
(0x1)  
24.00  
23.75  
22 (0x16)  
23 (0x17)  
23 (0x17)  
23 (0x17)  
23 (0x17)  
24 (0x18)  
24 (0x18)  
24 (0x18)  
24 (0x18)  
25 (0x19)  
(0x3)  
(0x0)  
(0x1)  
(0x2)  
(0x3)  
(0x0)  
(0x1)  
(0x2)  
(0x3)  
(0x0)  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
167 (0xA7)  
168 (0xA8)  
(0x3)  
(0x0)  
-143.75  
-144.00  
255 (0xFF)  
255 (0xFF)  
(0x2)  
(0x3)  
-144.00  
-144.00  
Limiter  
The limiter block in the VLP is capable of ensuring that the audio output level from the MA12070P is kept below a  
programmable threshold level, regardless of the volume gain settings and signal level. This way, the limiter can protect  
the loudspeakers against harmful signal levels and prevent severe degradation of audio quality, due to clipping caused  
by volume over-drive of the audio system.  
The input to output level characteristic for the limiter is illustrated on Figure 8-5. At input audio levels below the  
threshold, the gain through the limiter is unity and consequently the limiter passes the signal unaffected. This is seen as  
a 1:1 slope on the input to output level characteristic plot. If the input signal level increases above the threshold level,  
the limiter reduces the gain correspondingly in order to reduce the output signal level to the threshold level. This way  
the output signal level will generally not exceed the threshold.  
The slew-rate of the limiter is finite and the output signal can therefore occasionally exceed the set threshold. When  
the limiter reduces the gain (caused by the input signal level exceeding the threshold) the speed of gain reduction is  
limited by an attack-time constant. Similarly, when the limiter restores the gain to unity after being active the speed of  
gain increase is limited by a release-time constant. The attack-time constant and the release-time constant can be  
controlled in three steps (“slow”, ”normal” and “fast”) via the serial control interface. An example of the attack and  
release behavior for the limiter is shown in Figure 8-6.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 20 of 88  
V 1.1  
2022-02-09  
 
 
Limiter bypassed  
Threshold  
Limiter active  
Inputlevel (dBFS)  
Figure 8-5 Input to Output level characteristic for the Limiter  
Threshold  
Input level  
Output level  
Time  
Unity gain  
Limiter gain  
Time  
Attack Phase  
Release Phase  
Figure 8-6 Example of limiter attack - and release behavior  
VLP parameter interface  
The parameters for the volume controls and limiters are accessible via the serial control interface. In Table 8-10 is shown  
a list of parameters in the VLP.  
Table 8-10 Parameters and status signals for the VLP accessible via the serial control interface.  
Address  
Register name  
Description  
(bits)  
0x35 (5-4)  
0x35 (7-6)  
0x35 (3)  
audio_proc_release  
audio_proc_attack  
audio_proc_enable  
Controls the limiter release time. 00: slow, 01: normal, 10: fast  
Controls the limiter attack time. 00: slow, 01: normal, 10: fast  
Controls the processing bypass mux  
When high use the VLP  
When low: bypass the VLP  
0x36 (6)  
0x36 (7)  
0x40  
audio_proc_ limiterEnable Controls the Limiter bypass mux  
When high: use the limiter  
When low: bypass the limiter  
audio_proc_mute  
vol_db_master  
Controls the mute mux  
When high: mute the audio  
When low: play as normal  
Controls the integer dB gain for the master volume1  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 21 of 88  
V 1.1  
2022-02-09  
 
 
0x41 (1-0)  
0x42  
vol_lsb_master  
vol_db_ch0  
Controls the fractional dB gain for the master volume (quarter dB’s) 1  
Controls the integer dB gain for channel 0L1  
0x43  
vol_db_ch1  
Controls the integer dB gain for channel 0R1  
0x44  
vol_db_ch2  
Controls the integer dB gain for channel 1L1  
0x45  
vol_db_ch3  
Controls the integer dB gain for channel 1R1  
0x46 (1-0)  
0x46 (3-2)  
0x46 (5-4)  
0x46 (7-6)  
0x47  
vol_lsb_ch0  
vol_lsb_ch1  
vol_lsb_ch2  
vol_lsb_ch3  
thr_db_ch0  
Controls the fractional dB gain for channel 0R (quarter dBs) 1  
Controls the fractional dB gain for channel 0L (quarter dBs) 1  
Controls the fractional dB gain for channel 1R (quarter dBs) 1  
Controls the fractional dB gain for channel 1L (quarter dBs) 1  
Controls the integer dBFS limiter threshold level for channel 0L1  
Controls the integer dBFS limiter threshold level for channel 0R1  
Controls the integer dBFS limiter threshold level for channel 1L1  
Controls the integer dBFS limiter threshold level for channel 1R1  
Controls the fractional dBFS limiter threshold level for channel 0L(quarter dBFS)1  
Controls the fractional dBFS limiter threshold level for channel 0R(quarter dBFS)1  
Controls the fractional dBFS limiter threshold level for channel 1L(quarter dBFS)1  
Controls the fractional dBFS limiter threshold level for channel 1R(quarter dBFS)1  
Indicates if limiters are active  
0x48  
thr_db_ch1  
0x49  
thr_db_ch2  
0x4A  
thr_db_ch3  
0x4B (1-0)  
0x4B (3-2)  
0x4B (5-4)  
0x4B (7-6)  
0x7E (7-4)  
thr_lsb_ch0  
thr_lsb_ch1  
thr_lsb_ch2  
thr_lsb_ch3  
audio_proc_limiter_mon  
Bit 4 high: limiter is active on channel 0L  
Bit 5 high: limiter is active on channel 0R  
Bit 6 high: limiter is active on channel 1L  
Bit 7 high: limiter is active on channel 1R  
0x7E (3-0)  
audio_proc_clip_mon  
Indicates if clipping occurs on the VLP output signals  
Bit 0 high: clipping present on channel 0L  
Bit 1 high: clipping present on channel 0R  
Bit 2 high: clipping present on channel 1L  
Bit 3 high: clipping present on channel 1R  
1 See Table 8-9 for mapping.  
Clock system  
The MA12070P incorporates a clock system consisting of an input clock divider, a PLL, a low-jitter low-TC oscillator  
(2.8224 MHz), and control logic. At the CLK input pin the MA12070P requires a clock signal that is in phase-lock with the  
incoming digital serial audio samples. This CLK input signal provides the reference for the internal PLL through the input  
clock divider circuit. The CLK frequency is auto-detected by the MA12070P, and when a valid frequency is detected, the  
corresponding input divider ratio is selected to internally generate the correct reference clock to the PLL. The PLL divider  
ratio is also selected as a function of the CLK base frequency (2.8224 or 3.072 MHz).  
The clock for the internal DAC’s is sourced from the PLL, or at some CLK rates, a divided version of the CLK input. Valid  
combinations of audio sample rate (fs) and CLK frequency are listed in Table 8-11 together with maximum number of  
supported VLP channels.  
Table 8-11 Valid combinations of audio sample rate and CLK frequency  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 22 of 88  
V 1.1  
2022-02-09  
 
Also maximum number of supported VLP channels are shown  
Audio sample rate (fs) CLK frequency  
No. VLP channels  
44.1kHz  
64 x fs = 2822.4kHz  
128 x fs = 5644.8kHz  
256 x fs = 11289.6kHz  
512 x fs = 22579.2kHz  
64 x fs = 3072kHz  
4
4
4
4
48kHz  
4
128 x fs = 6144kHz  
256 x fs = 12288kHz  
512 x fs = 24576kHz  
32 x fs = 2822.4kHz  
64 x fs = 5644.8kHz  
128 x fs = 11289.6kHz  
256 x fs = 22579.2kHz  
32 x fs = 3072kHz  
4
4
4
88.2kHz  
96kHz  
2
2
2
2
2
64 x fs = 6144kHz  
2
128 x fs = 12288kHz  
256 x fs = 24576kHz  
16 x fs = 2822.4kHz  
32 x fs = 5644.8kHz  
64 x fs = 11289.6kHz  
128 x fs = 22579.2kHz  
16 x fs = 3072kHz  
2
2
176.4kHz  
192kHz  
None  
None  
None  
None  
None  
None  
None  
None  
32 x fs = 6144kHz  
64 x fs = 12288kHz  
128 x fs = 24576kHz  
MCU/Serial control interface  
The I2C serial control interface of the MA12070P allows an I2C master to read and/or modify a wide range of device  
parameters.  
The I2C interface consists of four physical pins, SDA, SCL, AD0 and AD1. I2C decoder logic handles transaction protocol  
and read/write access to the device register bank. SDA and SCL are standard bidirectional I2C slave pins for data and  
clock, respectively. Both SDA and SCL must be pulled-up to a digital I/O (3.3V - 5V) with a 5k resistor on each pin and  
operated in standard I2C mode up to 100 kbps transmission rate. Pins AD0 and AD1 are used to configure the 7-bit I2C  
address of the device. The I2C address is decoded according to Table 8-12.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 23 of 88  
V 1.1  
2022-02-09  
 
Table 8-12 I2C address decoding  
I2C device address  
AD1 pin  
AD0 pin  
7-bit I2C address  
0b0100000  
0x20  
0x21  
0x22  
0x23  
0
0
1
1
0
1
0
1
0b0100001  
0b0100010  
0b0100011  
The I2C interface enables read/write operations to the device register bank. The register bank is organized as a 128  
entry, byte wide memory, holding device configuration and status registers. The address space from 0 to 80 holds  
read/write registers and the address space from 96 to 127 are read only. The complete address map and description of  
each register is presented in “Register Map” section.. Figure 8-7 shows the block schematic of the I2C interface between:  
I2C bus and MA12070P (serial interface controller and the register bank).  
Digital I/O  
DVDD  
I2C bus  
Read/Write  
Read only  
SDA  
SCL  
AD0  
AD1  
Serial interface  
controller  
Register bank  
Figure 8-7. I2C bus interface and register bank  
I2C write operation  
Each I2C transaction is initiated from a master by sending an I2C start condition followed by the 7-bit I2C device address  
and cleared read/write bit. The device address and read/write bit is signaled on the SDA bus by pulling the bus to ground  
indicating a ‘0’ or releasing the bus to indicate a ‘1’. The I2C SDA input is sampled by the device on the rising edge of the  
SCL bus.  
If the transmitted I2C address matches the configured address of the device, the device will acknowledge the request  
by pulling the SDA bus to ground. The master samples the acknowledged bit from the device on the next rising edge of  
SCL. The I2C initialization as described is shown in the waveform in Figure 8-8.  
Figure 8-8. I2C init addressing sequence.  
To complete the device register write operation, the master must continue transmitting the address and at least one  
data byte. The device continues to acknowledge each byte received on the 9th SCL rising edge. Each additional data  
written to the device is written to the next address in the register bank.  
The write transaction is terminated when the master sends a stop signal to the device. The stop signal consists of a rising  
edge on SDA during SCL kept high. Figure 8-9 shows a single write operation.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 24 of 88  
V 1.1  
2022-02-09  
 
 
 
Figure 8-9 I2C write operation.  
I2C read operation  
To read data from the device register bank, the read transaction is started by sending a write command to the I2C  
address with the R/W bit cleared, followed by the device address to read from. See Figure 8-10.  
Figure 8-10 I2C read transaction, register bank to be read from is written to the device.  
The device will acknowledge the two bytes. Then data can be fetched from the device by sending a repeated start,  
followed by an I2C read command consisting of a byte with the device I2C address and the R/W bit set.  
The device will acknowledge the read request and start to drive the SDA bus with the bits from the requested register  
bank address. See Figure 8-11.  
Figure 8-11 I2C read transaction last part.  
The read transaction continues until the master does not acknowledge the 9th bit of the data read byte transaction and  
sends a stop signal. The stop condition is defined as a rising edge of SDA while SCL is high. Timing requirements are  
reflected in Table 8-13.  
Table 8-13 I2C timing requirements  
Parameter  
Min  
Typ  
Max Unit  
Clock frequency1  
SDA and SCL rise time  
SDA and SCL fall time  
SCL clock high  
0
100  
400  
kHz  
1
µs  
1
µs  
1
1
µs  
SCL clock low  
µs  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 25 of 88  
V 1.1  
2022-02-09  
 
 
 
Data, setup  
300  
10  
1
ns  
ns  
µs  
Data, hold  
Min stop to start condition  
NOTE1: Pull up resistance is equal to 2.2kΩ for 400kHz.  
/CLIP pin and soft-clipping  
The /CLIP pin changes from a HIGH state to LOW state when audio output is close to clipping. A system microcontroller  
can at this instance decrease volume level or, if possible, increase power stage voltage in order to avoid clipping. The  
associated modulation index for both channel 0 and channel 1 can be read out by reading address 98 and address 102  
respectively. Note that /CLIP pin is an open-drain output which means that it should be pulled-up through a pull-up  
resistor to the digital I/O DVDD of the system.  
To minimize possible audible artifacts from sticky clipping or ringing around the clipping region, it is possible to enable  
a soft-clipping scheme. This clipping scheme prevents the amplifier to sticky clip and minimizes ringing which  
subsequently minimizes possible audible artifacts apart from normal clipping audibility. The soft-clipping scheme can  
be enabled by setting bit 7 of address 10.  
/ERROR pin and error handling  
The /ERROR pin changes from a HIGH state to a LOW state when one of the associated error sources is triggered. A  
system microcontroller can at this instance read out the error registers (address 45 and 109). According to the type of  
error or warning the right measures can be taken. The errors will be shown in the error register (address 124) which  
shows the live status of the error sources. Another register error_acc (address 109) will contain all the errors  
accumulated over time. The error_acc register can be cleared by toggling the eh_clear bit (bit 2, address 45).  
Table 8-14 shows the content of the error vector which is mapped to both the error register and the accumulated error  
register. A more detailed explanation can be found in “Register Map” section.  
Table 8-14 Error vector  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
dc_prot  
pps  
ote  
otw  
uvp  
pll  
ocp  
fcov  
Note that the /ERROR pin has an open-drain output and should be pulled up to the interface I/O rail.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 26 of 88  
V 1.1  
2022-02-09  
 
 
 
9 Application Information  
Input/Output Configurations  
The MA12070P is highly flexible regarding configuration of the four power amplifier channels. MA12070P can be set to  
four different output configurations. By setting the configuration pins MSEL0 and MSEL1 according to Table 9-1, the  
device is configured to one of the four different configurations. Each configuration is individually described in the  
following sections.  
Table 9-1 Signal configuration  
MSEL0 pin  
MSEL1 pin  
Configuration  
0
0
1
1
0
1
0
1
1 channel parallel bridge tied load (PBTL)  
2 channels single ended load (SE) and 1 channel bridge tied load (BTL)  
2 channels bridge tied load (BTL)  
4 channels single ended load (SE)  
Bridge Tied Load (BTL) Configuration  
In BTL configuration, two input- and output terminals are used per channel as shown in Figure 9-1. This way two  
power stage half-bridges are used to form one differential output configuration. This configuration will enable the full  
potential of multi-level technology where the speaker load will experience up to 5 levels. This enables low near-idle  
power consumption and beneficial noise properties.  
Audio source  
OUT0A  
OUT0B  
OUT1A  
OUT1B  
Data pair 0  
(0L,0R)  
SD0  
SD1  
Serial clock  
(master)  
Word select  
SCK  
(slave)  
WS  
Master clock  
CLK  
EMC filter  
depending on  
application  
5V  
Figure 9-1 Bridge tied load (BTL) configuration, with symmetrical audio sources.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 27 of 88  
V 1.1  
2022-02-09  
 
 
 
 
 
Single Ended (SE) Configuration  
In single ended (SE) configuration, the MA12070P is able to drive one loudspeaker per output power stage, i.e. up to  
four loudspeakers. The output is biased to half the power supply voltage, ½ PVDD. One of the solutions to drive a speaker  
in this configuration is to use AC-coupling capacitors (Cout) in series with the load, as shown in Figure 9-2. The value of  
the capacitors depends on the load resistance and the desired audio bandwidth.  
Table 9-2 shows examples of AC-coupling capacitor values. The DC voltage across the capacitors at the output is  
approximately ½PVDD. However, significant AC-voltage swing might occur at low frequencies, which must be accounted  
for in the voltage rating of the capacitors.  
Audio source  
Cout  
+
OUT0A  
OUT0B  
OUT1A  
Data pair 0  
(0L,0R)  
SD0  
SD1  
Data pair 1  
(1L,1R)  
Cout  
Cout  
Cout  
+
+
+
Serial clock  
(master)  
Word select  
SCK  
(slave)  
WS  
Master clock  
CLK  
OUT1B  
5V  
EMC filter  
depending on  
application  
5V  
Figure 9-2 Four channel, single ended (SE) configuration.  
Table 9-2 Typical values for the output AC-coupling capacitor, Cout  
Load Resistance  
Output AC-coupling  
capacitor, Cout  
220µF  
-3dB frequency  
8Ω  
8Ω  
4Ω  
90Hz  
20Hz  
24Hz  
1000µF  
2200µF  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 28 of 88  
V 1.1  
2022-02-09  
 
 
 
Combined SE and BTL Configuration  
A combination of SE and BTL configuration can be used as shown in Figure 9-3. In this configuration two half-bridges are  
combined to run in BTL configuration and the two remaining half-bridges are configured to run in SE configuration.  
Audio source  
OUT0A  
OUT0B  
OUT1A  
Data pair 0  
(0L,dummy)  
SD0  
SD1  
Data pair 1  
(1L,1R)  
Serial clock  
(master)  
Word select  
SCK  
(slave)  
WS  
Cout  
+
+
Master clock  
CLK  
Cout  
OUT1B  
5V  
EMC filter  
depending on  
application  
Figure 9-3 Combined Bridge tied load (BTL) and single ended (SE) configuration, with SE audio sources  
Parallel Bridge Tied Load (PBTL)  
For providing additional power the MA12070P can be configured for mono operation using a parallel BTL mode (PBTL),  
as shown in Figure 9-4. In this fashion the two BTL output stages are combined to be able to deliver twice the current.  
This makes high output power sub-woofer application possible.  
Audio source  
OUT0A  
OUT0B  
OUT1A  
OUT1B  
Data pair 0  
(0L,dummy)  
SD0  
SD1  
0L  
Serial clock  
(master)  
Word select  
SCK  
(slave)  
WS  
EMC filter  
depending on  
application  
Master clock  
CLK  
Figure 9-4 Parallel Bridge Tied Load (PBTL) configuration  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 29 of 88  
V 1.1  
2022-02-09  
 
 
 
 
EMC output filter Considerations  
The proprietary 5-level modulation significantly reduces EMC emissions, and the amplifiers can pass the Radiated  
Emission test with speaker cables lengths up to 80 cm with just a small ferrite filter. For cables longer than 80 cm it is  
recommended to use a LC-filter.  
For more information regarding filter type, components and measurements, see the document “Applications note –  
EMC Output Filter Recommendations” at the Infineon homepage.  
Audio Performance Measurements  
In a typical audio application the outputs of the MA12070P will be connected directly to the speaker loads. However,  
for audio performance evaluation it can be beneficial to configure the circuit board with an LC filter. This is due to the  
fact that many audio analyzers do not handle PWM signals at their inputs well.  
When using an audio analyzer configured with an external and/or internal measurement filter the use of an LC filter is  
not necessary. However, be sure to verify the audio analyzer’s input limits before connecting it to a filterless amplifier  
output.  
When using an LC filter, the design depends on the specific load. L and C values should therefore be optimized for this.  
Thermal Characteristics and Test Signals  
Performing audio measurements by use of an audio analyzer is typically very helpful during the evaluation of an  
amplifier. However, using an audio analyzer can be misleading when evaluating thermal performance.  
Audio analyzers typically generate full tone, continuous sine wave signals as the input signal for the amplifier. While this  
is required to perform many audio measurements, it is also the worst-case thermal scenario for the device. Using full-  
scale continuous sine waves for thermal evaluation or testing will lead to an overly conservative and more costly thermal  
design which will be unnecessary in almost all real audio applications.  
Actual audio content, such as music, has much lower RMS values compared to its maximum peak output power than a  
full-scale continuous sine wave. This results in significantly less heat dissipation from the device when amplifying actual  
audio. For thermal evaluation it is therefore recommended to use actual music signals during tests. Alternatively, a pink  
noise signal can be used to emulate a music signal.  
It is not uncommon for an amplifier solution to have limited thermal performance, potentially resulting in thermal  
protection shutdown, when amplifying full-scale continuous sine wave signals.  
Start-up procedure  
It is recommended to follow the start-up procedure as described below:  
1) Make sure the all hardware pins are configured correctly: e.g. BTL, Slave Clock mode.  
2) Keep the device in disable and mute: /ENABLE = 1; /MUTE = 0.  
3) Bring up 5V VDD supply and PVDD supply (it does not matter if VDD or PVDD comes up first, provided that  
the device is held in disable).  
4) Wait for VDD and PVDD to be stable.  
5) CLK must be present before enabling the amplifier.  
6) Enable device: /ENABLE = 0.  
7) Program applicable initialization to registers.  
8) Unmute device: /MUTE = 1.  
9) The device is now in normal operation state.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 30 of 88  
V 1.1  
2022-02-09  
 
 
 
 
Shut-down / power-down procedure  
It is recommended to follow the start-up procedure as described below:  
1) The device is in normal operation state.  
2) Mute device: /MUTE = 0.  
3) Disable device: /ENABLE = 1.  
4) The device is now power-down state.  
5) Bring down 5V VDD supply and PVDD supply.  
6) The device is now in shut-down state.  
Recommended PCB Design for MA12070P (EPAD-down package)  
The QFN package with exposed thermal pad at the bottom side is thermally sufficient for most applications. However,  
in order to remove heat from the package care should be taken in designing the PCB.  
The PCB footprint for the device should include a thermal relief pad underneath the device with a size of 6 x 6 mm. This  
thermal relief pad must be centered so the device can be soldered easily. It is recommended to use a PCB design with  
two or more layers of copper for good thermal performance. Using multiple layers enables a design with a large area of  
copper connected to the EPAD.  
To achieve best thermal performance it is also important to design the surrounding connections in such a way that  
avoids cutting up the copper area into many sections.  
Figure 9-5 shows a PCB design using 26 via connections directly underneath the chip between the top and bottom layers.  
These should be placed on a grid each with a 0.65 mm plated through hole. These connections ensure good thermal  
transfer from the top side EPAD to a large section of ground connected copper area on the bottom side of the PCB.  
Figure 9-5 Example of 2-layer PCB layout, top and bottom layers  
It is recommended to use a PCB made from glass/epoxy laminate (e.g. FR-4) material. This type of material works well  
with PCB designs that require thermal relief as it can endure high temperatures for a long duration of time.  
PCB copper thickness is recommended to be a minimum of 35μ (1 oz) and the PCB must be made to the IPC 6012C, Class  
2 standard.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 31 of 88  
V 1.1  
2022-02-09  
 
 
 
10 Typical Characteristics (PVDD = +26V, Load = 4Ω + 22µH)  
BTL configuration; Load = 4+ 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
1
1
0,1  
0,1  
0,01  
0,01  
0,001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-1 THD+N vs Output Power for PMP0  
Figure 10-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 10-4 THD+N vs Output Power for PMP4  
1
10  
100  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 10-3 THD+N vs Output Power for PMP2  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 32 of 88  
V 1.1  
2022-02-09  
 
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-5 THD+N vs Frequency for PMP0  
Figure 10-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 10-7 THD+N vs Frequency for PMP2  
2000  
20000  
Frequency (Hz)  
Figure 10-8 THD+N vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 33 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
Output Power (W)  
Output Power (W)  
Figure 10-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
Figure 10-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
Output Power (W)  
Output Power (W)  
Figure 10-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Figure 10-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 34 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-13 Input Power vs Output Power for PMP0  
Figure 10-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 10-15 Input Power vs Output Power for PMP2  
Figure 10-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 35 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
PMP0  
PMP1  
PMP2  
PMP4  
0,0001 0,001 0,01  
Output Power (W)  
Figure 10-17 PVDD Current vs Output Power for PMP0 & PMP1 Figure 10-18 PVDD Current vs Output Power for PMP2 & PMP4  
0,1  
1
10  
100 1000  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
Output Power (W)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Load = 4+ 22µH  
Load = 4+ 22µH  
PMP2  
PMP4  
PMP0  
PMP1  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 10-19 PVDD Idle Current vs PVDD for PMP0 & PMP1  
Figure 10-20 PVDD Idle Current vs PVDD for PMP2 & PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 36 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Load = 4+ 22µH  
Load = 4+ 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 10-21 Output Power vs PVDD for PMP0  
Figure 10-22 Output Power vs PVDD for PMP1  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Load = 4+ 22µH  
Load = 4+ 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 10-23 Output Power vs PVDD for PMP2  
Figure 10-24 Output Power vs PVDD for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 37 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-25 Gain vs Frequency for PMP0  
Figure 10-26 Gain vs Frequency for PMP1  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-27 Gain vs Frequency for PMP2  
Figure 10-28 Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 38 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 10-29 Crosstalk vs Frequency for PMP0  
Figure 10-30 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
PVDD = +26V  
Load = 4+ 22µH  
PVDD = +26V  
Load = 4+ 22µH  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Figure 10-31 Crosstalk vs Frequency for PMP2  
Frequency (Hz)  
Figure 10-32 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 39 of 88  
V 1.1  
2022-02-09  
11 Typical Characteristics (PVDD = +26V, Load = 8Ω + 22µH)  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-1 THD+N vs Output Power for PMP0  
Figure 11-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 11-4 THD+N vs Output Power for PMP4  
1
10  
100  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 11-3 THD+N vs Output Power for PMP2  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 40 of 88  
V 1.1  
2022-02-09  
 
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-5 THD+N vs Frequency for PMP0  
Figure 11-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
Frequency (Hz)  
Figure 11-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Figure 11-8 THD+N vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 41 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Output Power (W)  
Output Power (W)  
Figure 11-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
Figure 11-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Output Power (W)  
Output Power (W)  
Figure 11-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Figure 11-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 42 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-13 Input Power vs Output Power for PMP0  
Figure 11-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 11-15 Input Power vs Output Power for PMP2  
Figure 11-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 43 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
0,1  
0,1  
0,01  
0,001  
0,01  
PMP0  
PMP1  
PMP2  
PMP4  
0,001  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 11-17 PVDD Current vs Output Power for PMP0 & PMP1  
Figure 11-18 PVDD Current vs Output Power for PMP2 & PMP4  
10  
10  
Load = 8+ 22µH  
Load = 8+ 22µH  
9
9
8
7
6
5
4
3
2
8
7
6
5
4
3
2
1
0
PMP0  
PMP1  
PMP2  
PMP4  
1
0
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 11-19 PVDD Idle Current vs PVDD for PMP0 & PMP1  
Figure 11-20 PVDD Idle Current vs PVDD for PMP2 & PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 44 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Load = 8+ 22µH  
Load = 8+ 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
0
0
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 11-21 Output Power vs PVDD for PMP0  
Figure 11-22 Output Power vs PVDD for PMP1  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Load = 8+ 22µH  
Load = 8+ 22µH  
1% THD+N  
1% THD+N  
10% THD+N  
10% THD+N  
0
0
4
6
8
10 12 14 16 18 20 22 24 26  
4
6
8
10 12 14 16 18 20 22 24 26  
PVDD (V)  
PVDD (V)  
Figure 11-23 Output Power vs PVDD for PMP2  
Figure 11-24 Output Power vs PVDD for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 45 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 11-26 Gain vs Frequency for PMP1  
2000  
20000  
Frequency (Hz)  
Figure 11-25 Gain vs Frequency for PMP0  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-27 Gain vs Frequency for PMP2  
Figure 11-28 Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 46 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 11-29 Crosstalk vs Frequency for PMP0  
Figure 11-30 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
PVDD = +26V  
Load = 8+ 22µH  
PVDD = +26V  
Load = 8+ 22µH  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Figure 11-31 Crosstalk vs Frequency for PMP2  
Frequency (Hz)  
Figure 11-32 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 47 of 88  
V 1.1  
2022-02-09  
12 Typical Characteristics (PVDD = +24V, Load = 4Ω + 22µH)  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
1
1
0,1  
0,1  
0,01  
0,01  
0,001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-1 THD+N vs Output Power for PMP0  
Figure 12-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 12-3 THD+N vs Output Power for PMP2  
1
10  
100  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 12-4 THD+N vs Output Power for PMP4  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 48 of 88  
V 1.1  
2022-02-09  
 
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-5 THD+N vs Frequency for PMP0  
Figure 12-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
Frequency (Hz)  
Figure 12-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 12-8 THD+N vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 49 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Load = 4+ 22µH  
Output Power  
Per Channel  
PVDD = +24V  
Load = 4+ 22µH  
Output Power  
Per Channel  
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
Output Power (W)  
Output Power (W)  
Figure 12-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
Figure 12-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Load = 4+ 22µH  
Output Power  
Per Channel  
PVDD = +24V  
Load = 4+ 22µH  
Output Power  
Per Channel  
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
Output Power (W)  
Output Power (W)  
Figure 12-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Figure 12-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 50 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-13 Input Power vs Output Power for PMP0  
Figure 12-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 12-15 Input Power vs Output Power for PMP2  
Figure 12-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 51 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
0,1  
0,1  
0,01  
0,01  
0,001  
PMP0  
PMP1  
0,001  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 12-17 PVDD Current vs Output Power for PMP0  
Figure 12-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
0,1  
0,1  
0,01  
0,01  
PMP2  
PMP4  
0,001  
0,001  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 12-19 PVDD Current vs Output Power for PMP2  
Figure 12-20 PVDD Current vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 52 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-21 Gain vs Frequency for PMP0  
Figure 12-22 Gain vs Frequency for PMP1  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-23 Gain vs Frequency for PMP2  
Figure 12-24 Gain vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 53 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 12-25 Crosstalk vs Frequency for PMP0  
Figure 12-26 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +24V  
Load = 4+ 22µH  
PVDD = +24V  
Load = 4+ 22µH  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Figure 12-27 Crosstalk vs Frequency for PMP2  
Frequency (Hz)  
Figure 12-28 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 54 of 88  
V 1.1  
2022-02-09  
13 Typical Characteristics (PVDD = +24V, Load = 8Ω + 22µH)  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-1 THD+N vs Output Power for PMP0  
Figure 13-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
1
1
0,1  
0,1  
0,01  
0,01  
0,001  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 13-3 THD+N vs Output Power for PMP2  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Figure 13-4 THD+N vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 55 of 88  
V 1.1  
2022-02-09  
 
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-5 THD+N vs Frequency for PMP0  
Figure 13-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
Frequency (Hz)  
Figure 13-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 13-8 THD+N vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 56 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Load = 8+ 22µH  
Output Power  
Per Channel  
PVDD = +24V  
Load = 8+ 22µH  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
0
10  
20  
Output Power (W)  
Figure 13-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
30  
40  
50  
Output Power (W)  
Figure 13-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
0
10  
20  
Output Power (W)  
Figure 13-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
30  
40  
50  
Output Power (W)  
Figure 13-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 57 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-13 Input Power vs Output Power for PMP0  
Figure 13-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 13-15 Input Power vs Output Power for PMP2  
Figure 13-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 58 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
0,1  
0,1  
0,01  
0,01  
0,001  
PMP1  
10  
PMP0  
10  
0,001  
0,0001 0,001  
0,01  
0,1  
1
100  
0,0001 0,001  
0,01  
0,1  
1
100  
Output Power (W)  
Output Power (W)  
Figure 13-17 PVDD Current vs Output Power for PMP0  
Figure 13-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
0,1  
0,1  
0,01  
0,01  
0,001  
PMP4  
PMP2  
0,001  
0,0001 0,001  
0,01  
Output Power (W)  
Figure 13-20 PVDD Current vs Output Power for PMP4  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
Output Power (W)  
Figure 13-19 PVDD Current vs Output Power for PMP2  
0,1  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 59 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-21 Gain vs Frequency for PMP0  
Figure 13-22 Gain vs Frequency for PMP1  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
Frequency (Hz)  
Figure 13-23 Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 13-24 Gain vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 60 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 13-25 Crosstalk vs Frequency for PMP0  
Figure 13-26 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +24V  
Load = 8+ 22µH  
PVDD = +24V  
Load = 8+ 22µH  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Figure 13-27 Crosstalk vs Frequency for PMP2  
Frequency (Hz)  
Figure 13-28 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 61 of 88  
V 1.1  
2022-02-09  
14 Typical Characteristics (PVDD = +21V, Load = 4Ω + 22µH)  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
1
1
0,1  
0,1  
0,01  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,001  
0,01  
0,1  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 14-1 THD+N vs Output Power for PMP0  
Figure 14-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 14-4 THD+N vs Output Power for PMP4  
1
10  
100  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 14-3 THD+N vs Output Power for PMP2  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 62 of 88  
V 1.1  
2022-02-09  
 
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-5 THD+N vs Frequency for PMP0  
Figure 14-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
Frequency (Hz)  
Figure 14-7 THD+N vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 14-8 THD+N vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 63 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Load = 4+ 22µH  
Output Power  
Per Channel  
PVDD = +21V  
Load = 4+ 22µH  
Output Power  
Per Channel  
0
10  
20  
Output Power (W)  
Figure 14-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
30  
40  
50  
60  
70  
0
10  
20  
Output Power (W)  
Figure 14-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
30  
40  
50  
60  
70  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
Output Power (W)  
Figure 14-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
30  
40  
50  
60  
70  
Output Power (W)  
Figure 14-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 64 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 14-13 Input Power vs Output Power for PMP0  
Figure 14-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
Output Power (W)  
Figure 14-15 Input Power vs Output Power for PMP2  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Figure 14-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 65 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
PMP0  
PMP1  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 14-17 PVDD Current vs Output Power for PMP0  
Figure 14-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
0,1  
0,1  
0,01  
0,001  
0,01  
PMP2  
PMP4  
0,001  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
0,0001 0,001 0,01  
0,1  
1
10  
100 1000  
Output Power (W)  
Output Power (W)  
Figure 14-19 PVDD Current vs Output Power for PMP2  
Figure 14-20 PVDD Current vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 66 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
Frequency (Hz)  
Figure 14-21 Gain vs Frequency for PMP0  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Figure 14-22 Gain vs Frequency for PMP1  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
Frequency (Hz)  
Figure 14-23 Gain vs Frequency for PMP2  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 14-24 Gain vs Frequency for PMP4  
2000  
20000  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 67 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 4Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-25 Crosstalk vs Frequency for PMP0  
Figure 14-26 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
PVDD = +21V  
Load = 4+ 22µH  
PVDD = +21V  
Load = 4+ 22µH  
Ch1 to Ch0  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 14-28 Crosstalk vs Frequency for PMP4  
Figure 14-27 Crosstalk vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 68 of 88  
V 1.1  
2022-02-09  
15 Typical Characteristics (PVDD = +21V, Load = 8Ω + 22µH)  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,01  
0,1  
1
10  
100  
0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-1 THD+N vs Output Power for PMP0  
Figure 15-2 THD+N vs Output Power for PMP1  
100  
10  
100  
10  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
1
1
0,1  
0,1  
0,01  
0,01  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0,001  
0,001  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 15-3 THD+N vs Output Power for PMP2  
1
10  
100  
0,001  
0,01  
0,1  
Output Power (W)  
Figure 15-4 THD+N vs Output Power for PMP4  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 69 of 88  
V 1.1  
2022-02-09  
 
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-5 THD+N vs Frequency for PMP0  
Figure 15-6 THD+N vs Frequency for PMP1  
100  
10  
100  
10  
1W  
1W  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
1
1
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
20  
200  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 15-8 THD+N vs Frequency for PMP4  
2000  
20000  
Frequency (Hz)  
Figure 15-7 THD+N vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 70 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
5
10  
15  
Output Power (W)  
Figure 15-9 PMP0 Efficiency (VDD+PVDD) vs Output Power  
20  
25  
30  
35  
40  
0
5
10  
15  
Output Power (W)  
Figure 15-10 PMP1 Efficiency (VDD+PVDD) vs Output Power  
20  
25  
30  
35  
40  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0
5
10  
15  
Output Power (W)  
Figure 15-12 PMP4 Efficiency (VDD+PVDD) vs Output Power  
20  
25  
30  
35  
40  
0
5
10  
15  
Output Power (W)  
Figure 15-11 PMP2 Efficiency (VDD+PVDD) vs Output Power  
20  
25  
30  
35  
40  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 71 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
100  
10  
1
100  
10  
1
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Output Power (W)  
Figure 15-13 Input Power vs Output Power for PMP0  
Figure 15-14 Input Power vs Output Power for PMP1  
100  
10  
1
100  
10  
1
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
Output Power  
Per Channel  
Output Power  
Per Channel  
0,1  
0,1  
0,0001 0,001  
0,01  
Output Power (W)  
Figure 15-15 Input Power vs Output Power for PMP2  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
0,1  
1
10  
100  
Output Power (W)  
Figure 15-16 Input Power vs Output Power for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 72 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
10  
1
10  
1
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
0,1  
0,1  
0,01  
0,001  
0,01  
0,001  
PMP0  
10  
PMP1  
10  
0,0001 0,001  
0,01  
0,1  
1
100  
0,0001 0,001  
0,01  
0,1  
1
100  
Output Power (W)  
Output Power (W)  
Figure 15-17 PVDD Current vs Output Power for PMP0  
Figure 15-18 PVDD Current vs Output Power for PMP1  
10  
1
10  
1
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
0,1  
0,1  
0,01  
0,01  
PMP2  
PMP4  
0,001  
0,001  
0,0001 0,001  
0,01  
Output Power (W)  
Figure 15-19 PVDD Current vs Output Power for PMP2  
0,1  
1
10  
100  
0,0001 0,001  
0,01  
Output Power (W)  
Figure 15-20 PVDD Current vs Output Power for PMP4  
0,1  
1
10  
100  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 73 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
Frequency (Hz)  
Figure 15-21 Gain vs Frequency for PMP0  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 15-22 Gain vs Frequency for PMP1  
2000  
20000  
27  
26,8  
26,6  
26,4  
26,2  
26  
27  
26,8  
26,6  
26,4  
26,2  
26  
1W  
1W  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
5W  
5W  
10W  
10W  
25,8  
25,6  
25,4  
25,2  
25  
25,8  
25,6  
25,4  
25,2  
25  
20  
200  
2000  
20000  
20  
200  
Frequency (Hz)  
Figure 15-24 Gain vs Frequency for PMP4  
2000  
20000  
Frequency (Hz)  
Figure 15-23 Gain vs Frequency for PMP2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 74 of 88  
V 1.1  
2022-02-09  
BTL configuration; Load = 8Ω + 22µH; Measurements carried out with APx 515 + AUX-0025 input filter; APx uses  
AES17 brick-wall filter (20kHz).  
0
-10  
0
-10  
Ch0 to Ch1  
Ch1 to Ch0  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-25 Crosstalk vs Frequency for PMP0  
Figure 15-26 Crosstalk vs Frequency for PMP1  
0
-10  
0
-10  
Ch0 to Ch1  
Ch0 to Ch1  
Ch1 to Ch0  
PVDD = +21V  
Load = 8+ 22µH  
PVDD = +21V  
Load = 8+ 22µH  
Ch1 to Ch0  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
200  
2.000  
20.000  
20  
200  
2.000  
20.000  
Frequency (Hz)  
Frequency (Hz)  
Figure 15-27 Crosstalk vs Frequency for PMP2  
Figure 15-28 Crosstalk vs Frequency for PMP4  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 75 of 88  
V 1.1  
2022-02-09  
16 Register map  
For all register map:  
f “ : Don’t Care condition  
“ : Reserved bits configured during factory settings.  
Read / Write Access (Power Mode Settings):  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Select manual Power Mode control. Default  
the device will operate in automatic Power  
Mode control. This bit can be set to 1 if manual  
Power Mode control is required.  
manualPM  
6
- 0 1 1 - - - -  
Manual selected power mode. These two bits  
can be used selecting the Power Mode of the  
device when it is in manual Power Mode  
control.  
Power Mode  
Control  
- 0 1 1 - - - -  
0x00  
0x3D  
PM_man  
5:4  
- - 0 0 - - - -  
- - 0 1 - - - -  
- - 1 0 - - - -  
- - 1 1 - - - -  
Reserved  
Power Mode 1  
Power Mode 2  
Power Mode 3  
Threshold value for PM1=>PM2 change. This  
value will set the threshold for when automatic  
0 0 1 1 1 1 0 0 Power Mode changes from PM1 to PM2. It can  
be programmed from 0 - 255; this maps to 0  
output power max output power.  
Threshold for  
Power Mode  
change  
0x01  
0x02  
0x03  
0x3C  
0x32  
0x5A  
Mthr_1to2  
Mthr_2to1  
Mthr_2to3  
7:0  
7:0  
7:0  
PM1=>PM2  
Threshold value for PM2=>PM1 change. This  
value will set the threshold for when automatic  
0 0 1 1 0 0 1 0 Power Mode changes from PM2 to PM1. It can  
be programmed from 0 - 255; this maps to 0  
Threshold for  
Power Mode  
change  
PM2=>PM1  
output power max output power.  
Threshold value for PM2=>PM3 change. This  
value will set the threshold for when automatic  
0 1 0 1 1 0 1 0 Power Mode changes from PM2 to PM3. It can  
be programmed from 0 - 255; this maps to 0  
Threshold for  
Power Mode  
change  
PM2=>PM3  
output power max output power.  
Threshold value for PM3=>PM2 change. This  
value will set the threshold for when automatic  
0 1 0 1 0 0 0 0 Power Mode changes from PM3 to PM2. It can  
be programmed from 0 - 255; this maps to 0  
Threshold for  
Power Mode  
change  
0x04  
0x50  
Mthr_3to2  
7:0  
PM3=>PM2  
output power max output power.  
0x07  
0x07  
0x00  
0x00  
Disable DCU1 dcu1_disable  
Disable DCU0 dcu0_disable  
7
6
1 - - - - - - -  
- 1 - - - - -  
Disables CH0 of the amplifier  
Disables CH1 of the amplifier  
Enables soft-clipping. High to enable. Low to  
disable.  
Soft-clipping  
and over-  
current  
protection  
latching  
lf_clamp_en  
ocp_latch_en  
7
1
0 - - - - - 0 -  
0 - - - - - 0 -  
0x0A  
0xC  
High to use permanently latching OCP.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 76 of 88  
V 1.1  
2022-02-09  
 
 
Read / Write Access (Power Mode Profile Settings):  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Power Mode Profile select. With this register  
the user can selects the appropriate Power  
Mode Profile.  
f f f f f 0 0 0  
- - - - - 0 0 0  
- - - - - 0 0 1  
- - - - - 0 1 0  
- - - - - 0 1 1  
- - - - - 1 0 0  
- - - - - 1 0 1  
f f 1 0 - - - -  
- - 0 0 - - - -  
- - 0 1 - - - -  
- - 1 0 - - - -  
- - 1 1 - - - -  
f f - - 1 1 - -  
- - - - 0 0 - -  
- - - - 0 1 - -  
- - - - 1 0 - -  
- - - - 1 1 - -  
f f - - - - 1 1  
- - - - - - 0 0  
- - - - - - 0 1  
- - - - - - 1 0  
- - - - - - 1 1  
Power Mode Profile 0  
Power Mode Profile 1  
Power Mode Profile 2  
Power Mode Profile 3  
Select Power  
Mode Profile  
setting  
0x1D  
0x00  
PMprofile  
2:0  
Power Mode Profile 4  
Power Mode Profile 5 (custom profile)  
Custom profile PM3 content  
Assign scheme A to PM3  
Assign scheme B to PM3  
Assign scheme C to PM3  
Assign scheme D to PM3  
Custom profile PM2 content  
Assign scheme A to PM2  
Assign scheme B to PM2  
Assign scheme C to PM2  
Assign scheme D to PM2  
Custom profile PM1 content  
Assign scheme A to PM1  
Assign scheme B to PM1  
Assign scheme C to PM1  
Assign scheme D to PM1  
PM3_man  
PM2_man  
PM1_man  
5:4  
3:2  
Power Mode  
Profile  
configuration  
0x1E  
0x2F  
1:0  
7
Over-current  
protection  
latch clear  
Clears over current protection latch. A low to  
high toggle clears the current OCP latched  
condition.  
ocp_latch_cle  
ar  
0x20  
0x1F  
0 - - - - - - -  
Enables or disables DC protection. High to  
enable. Low to disable.  
0x26  
0x2D  
0x05  
0x10  
DC protection  
Eh_dcShdn  
eh_clear  
2
2
f f f f - 1 - -  
- - - - - 0 - -  
Error handler  
clear  
Clears error handler. A low-to-high-to-low  
toggle clears the error handler.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 77 of 88  
V 1.1  
2022-02-09  
 
Read / Write Access (I2S format configuration)  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
0 0 0 0 0 0 0 0 i2s standard  
0 0 0 0 0 0 0 1 Left justified  
0 0 0 0 0 1 0 0 Right justified 16bits  
0 0 0 0 0 1 1 0 Right justified 18bits  
0 0 0 0 0 0 0 0 Right justified 20bits  
0 0 0 0 0 1 1 1 Right justified 24bits  
PCM word  
format  
0x35  
0x01  
i2s_format  
2:0  
Left PCM data word (of a simultaneously  
sampled PCM data pair) is send first  
0 0 0 0 0 0 0 1  
0 0 1 0 0 0 0 1  
0 0 0 0 0 0 0 1  
0 0 0 0 1 0 0 1  
0 0 0 1 0 0 0 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 1 0 1  
Left/right  
order of PCM  
words  
i2s_rightfirst  
i2s_framesize  
i2s_order  
5
4:3  
2
Right PCM data word (of a simultaneously  
sampled PCM data pair) is send first  
64 serial clock (SCK) cycles are present in each  
period of the word select signal (WS)  
Number of  
data bits per  
frame  
48 serial clock (SCK) cycles are present in each  
period of the word select signal (WS)  
32 serial clock (SCK) cycles are present in each  
period of the word select signal (WS)  
Most significant bit of the PCM data word is  
transmitted first  
Bit order of  
PCM data  
words  
Least significant bit of the PCM data word is  
transmitted first  
0x36  
0x01  
First word of a simultaneously sampled PCM  
0 0 0 0 0 0 0 1 data pair is transmitted while word select (WS)  
is low  
Pairing of  
data words  
i2s_ws_pol  
1
First word of a simultaneously sampled PCM  
0 0 0 0 0 0 1 1 data pair is transmitted while word select (WS)  
is high  
Serial data (SDX) and word select (WS) are  
changing at rising edge of the serial clock signal  
(SCK). The MA12070P will capture data at the  
0 0 0 0 0 0 0 0  
Clocking edge  
of the serial  
clock signal  
(SCK)  
falling edge of the serial clock signal SCK  
i2s_sck_pol  
0
Serial data (SDX) and word select (WS) are  
changing at falling edge of the serial clock  
0 0 0 0 0 0 0 1  
signal (SCK). The MA12070P will capture data  
at the rising edge of the serial clock signal SCK  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 78 of 88  
V 1.1  
2022-02-09  
 
Read / Write Access (Volume control and limiter)  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
0 0 0 0 0 0 0 1 Slow attack time  
0 1 0 0 0 0 0 1 Normal attack time  
1 0 0 0 0 0 0 1 Fast attack time  
0 0 0 0 0 0 0 1 Slow release time  
0 0 0 1 0 0 0 1 Normal release time  
0 0 1 0 0 0 0 1 Fast release time  
0 0 0 0 0 0 01 Bypass the audio processor  
0 0 0 0 1 0 01 Use the audio processor  
1 0 0 0 0 0 0 1 Mute audio  
Limiter attack audio_proc_rele  
7:6  
time control  
ase  
audio_proc_atta  
ck  
0x35  
0x01  
Limiter release  
time  
5:4  
Processor bypass audio_proc_ena  
3
7
6
mux  
ble  
audio_proc_mut  
e
Mute mux control  
0 0 0 0 0 0 0 1 Play audio  
0x36  
0x01  
0 0 0 0 0 0 0 1 Bypass the limiter  
0 1 0 0 0 0 0 1 Use the limiter  
Limiter bypass audio_proc_limi  
mux  
terEnable  
Control of integer value master dB volume  
(see Table 8-9 for mapping overview)  
Control of fractional value dB volume (see  
Table 8-9 for mapping overview)  
Control of integer value ch0L dB volume (see  
Table 8-9 for mapping overview)  
Control of integer value ch0R dB volume (see  
Table 8-9 for mapping overview)  
Control of integer value ch0L dB volume (see  
Table 8-9 for mapping overview)  
Control of integer value ch0R dB volume (see  
Table 8-9 for mapping overview)  
Control of fractional value ch0L dB volume  
(see Table 8-9 for mapping overview)  
Control of fractional value ch0R dB volume  
(see Table 8-9 for mapping overview)  
Control of fractional value ch1L dB volume  
(see Table 8-9 for mapping overview)  
Control of fractional value ch1R dB volume  
(see Table 8-9 for mapping overview)  
Control of integer value ch0L dBFS limiter  
Master integer dB  
volume  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x18  
0x00  
0x18  
0x18  
0x18  
0x18  
vol_db_master  
7:0  
1:0  
7:0  
7:0  
7:0  
7:0  
1:0  
3:2  
5:4  
7:6  
7:0  
7:0  
7:0  
7:0  
1:0  
1:0  
1:0  
1:0  
0 0 0 1 1 0 0 0  
f f f f f f 0 0  
Master fract dB  
volume  
vol_lsb_master  
vol_db_ch0  
vol_db_ch1  
vol_db_ch2  
vol_db_ch3  
vol_lsb_ch0  
vol_lsb_ch1  
vol_lsb_ch2  
vol_lsb_ch3  
thr_db_ch0  
thr _db_ch1  
thr _db_ch2  
thr _db_ch3  
thr _lsb_ch0  
thr _lsb_ch1  
thr _lsb_ch2  
thr _lsb_ch3  
Ch0L integer dB  
volume  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Ch0R integer dB  
volume  
Ch1L integer dB  
volume  
Ch1R integer dB  
volume  
Ch0L fract dB  
volume  
Ch0R fract dB  
volume  
0x46  
0x00  
Ch1L fract dB  
volume  
Ch0R fract dB  
volume  
Ch0L integer dBFS  
limiter  
0x47  
0x48  
0x49  
0x4A  
0x18  
0x18  
0x18  
0x18  
threshold (see section “Limiter”)  
Ch0R integer dBFS  
limiter  
Control of integer value ch0R dBFS limiter  
threshold (see section “Limiter”)  
Ch1L integer dBFS  
limiter  
Control of integer value ch0L dBFS limiter  
threshold (see section “Limiter)  
Ch1R integer dBFS  
limiter  
Control of integer value ch0R dBFS limiter  
threshold (see section “Limiter”)  
Ch0L fract dBFS  
limiter  
Control of fractional value ch0L dBFS limiter  
threshold (see section “Limiter”)  
Ch0R fract dBFS  
limiter  
Control of fractional value ch0R dBFS limiter  
threshold (see section “Limiter”)  
0x4B  
0x00  
Ch1L fract dBFS  
limiter  
Control of fractional value ch1L dBFS limiter  
threshold (see section “Limiter”)  
Ch0R fract dBFS  
limiter  
Control of fractional value ch1R dBFS limiter  
threshold (see section “Limiter”)  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 79 of 88  
V 1.1  
2022-02-09  
 
Read Only Access (Volume control and limiter monitor)  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Bit 4 high: limiter is active on channel 0L  
Indicates if  
limiters are  
active  
Bit 5 high: limiter is active on channel 0R  
Bit 6 high: limiter is active on channel 1L  
Bit 7 high: limiter is active on channel 0R  
Bit 0 high: clipping is present on channel 0L  
Bit 1 high: clipping is present on channel 0R  
Bit 2 high: clipping is present on channel 1L  
Bit 3 high: clipping is present on channel 0R  
audio_proc_li  
miter_mon  
0x7E  
0x00  
0x00  
7:4  
0 0 0 0 0 0 0 0  
Indicates if  
clipping  
occurs on the  
VLP output  
signals  
audio_proc_c  
lip_mon  
0x7E  
3:0  
0 0 0 0 0 0 0 0  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 80 of 88  
V 1.1  
2022-02-09  
 
Read Only Access (Monitor Channel 0 and Channel 1)  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Function  
Frequency mode monitor channel 0. Register  
to read out in which frequency mode channel 0  
of the device is currently operating in.  
Monitor  
register  
channel 0  
(Frequency  
and Power  
Mode)  
dcu_mon0.fr  
eqMode  
6:4  
- 0 0 0 f f 0 0  
0x60  
0x00  
Power mode monitor channel 0. Monitor to  
read out in which Power Mode channel 0 of  
the device is currently operating in.  
dcu_mon0.P  
M_mon  
1:0  
- - - - f f 0 0  
dcu_mon0.m  
ute  
dcu_mon0.vd  
d_ok  
dcu_mon0.pv  
dd_ok  
Channel 0 mute monitor. Monitor to read out  
if channel 0 is in mute or in unmute.  
Channel 0 VDD monitor. Monitor to read out if  
VDD for channel 0 is ok.  
Channel 0 PVDD monitor. Monitor to read out  
if PVDD for channel 0 is ok.  
5
4
3
2
1
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
Monitor  
register  
dcu_mon0.Vc  
fly2_ok  
Channel 0 Cfly2 protection monitor. Monitor to  
read out if Cfly2 for channel 0 is ok.  
0x61  
0x00  
channel 0  
dcu_mon0.Vc  
fly1_ok  
Channel 0 Cfly1 protection monitor. Monitor to  
read out if Cfly1 for channel 0 is ok.  
Channel 0 over current protection monitor.  
f f 0 0 0 0 0 0 Monitor to read out if an over current  
protection event has occurred.  
OCP Monitor  
channel 0  
0
Monitor  
register  
channel 0  
(Modulation  
Index)  
Channel 0 modulation index monitor. Monitor  
to read out live modulation index. Modulation  
index from 0 to 1 maps on the 8-bits register  
from 0 to 255.  
dcu_mon0.M  
_mon  
0x62  
0x64  
0x00  
0x00  
7:0  
0 0 0 0 0 0 0 0  
Frequency mode monitor channel 1. Register  
to read out in which frequency mode channel 1  
of the device is currently operating in.  
Monitor  
register  
channel 1  
(Frequency  
and Power  
Mode)  
dcu_mon1.fr  
eqMode  
6:4  
1:0  
- 0 0 0 f f 0 0  
- - - - f f 0 0  
Power mode monitor channel 1. Monitor to  
read out in which Power Mode channel 1 of  
the device is currently operating in.  
dcu_mon1.P  
M_mon  
dcu_mon1.m  
ute  
Channel 1 mute monitor. Monitor to read out  
if channel 1 is in mute or in unmute.  
5
4
3
2
1
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
f f 0 0 0 0 0 0  
dcu_mon1.vd  
d_ok  
Channel 1 VDD monitor. Monitor to read out if  
VDD for channel 1 is ok.  
dcu_mon1.pv  
dd_ok  
Channel 1 PVDD monitor. Monitor to read out  
if PVDD for channel 1 is ok.  
Monitor  
register  
0x65  
0x00  
dcu_mon1.Vc  
fly2_ok  
Channel 1 Cfly2 protection monitor. Monitor to  
read out if Cfly2 for channel 1 is ok.  
channel 1  
dcu_mon1.Vc  
fly1_ok  
Channel 1 Cfly1 protection monitor. Monitor to  
read out if Cfly1 for channel 1 is ok.  
Channel 1 over current protection monitor.  
f f 0 0 0 0 0 0 Monitor to read out if an over current  
protection event has occurred.  
OCP Monitor  
channel 1  
0
Monitor  
register  
channel 1  
(Modulation  
Index)  
Channel 1 modulation index monitor. Monitor  
to read out live modulation index. Modulation  
index from 0 to 1 maps on the 8-bits register  
from 0 to 255.  
dcu_mon1.M  
_mon  
0x66  
0x00  
7:0  
0 0 0 0 0 0 0 0  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 81 of 88  
V 1.1  
2022-02-09  
 
Read Only Access (Error Register Monitoring):  
Default  
Address Address  
Value  
Description  
Name  
Bit(s)  
Value  
Error monitor register. Gives the accumulated  
status of every potential error source. This  
register should be cleared by using the error  
handler clear register.  
All bits will be 0 in default/normal operation  
and 1 when triggered  
Error  
accumulated  
register  
Bit 0: flying capacitor over-voltage error  
Bit 1: over-current protection  
Bit 2: pll error  
0x6D  
0x00  
error_acc  
7:0  
0 0 0 0 0 0 0 0  
Bit 3: PVDD under-voltage protection  
Bit 4: over-temperature warning  
Bit 5: over-temperature error  
Bit 6: pin-to-pin low impedance protection  
Bit 7: DC protection  
MSEL[2:0] monitor register. Monitor to read  
out which output configuration the device is in:  
BTL, SE, BTL/SE or PBTL  
Monitor  
MSEL register  
0x75  
0x7C  
0x00  
0x00  
msel_mon  
2:0  
7:0  
f f f f f 0 0 0  
Error monitor register. Gives the live status of  
every potential error source.  
All bits will be 0 in default/normal operation  
and 1 when triggered  
Bit 0: flying capacitor over-voltage error  
Bit 1: over-current protection  
Bit 2: pll error  
Error register  
error  
0 0 0 0 0 0 0 0  
Bit 3: PVDD under-voltage protection  
Bit 4: over-temperature warning  
Bit 5: over-temperature error  
Bit 6: pin-to-pin low impedance protection  
Bit 7: DC protection  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 82 of 88  
V 1.1  
2022-02-09  
 
17 Package Information  
QFN pad-down 64-pin mechanical data  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 83 of 88  
V 1.1  
2022-02-09  
 
18 Tape and Reel Information  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 84 of 88  
V 1.1  
2022-02-09  
 
19 Revision History  
Doc. Rev.  
V 1.0  
Date  
Comments  
July  
2018  
Initial release in Infineon format  
Silicon update. Improve of DC offset in BTL, PBTL and 2.1 configurations. Correction of  
known issues and limitations in errata sheet v1.0 in sections 1.1, 1.2 and 1.4.  
Show power mode profile 5 value as “101” in 0X1D register address.  
Show channel disable register 0x07.  
Feb  
2022  
V 1.1  
Running the DAC directly from the MCLK is not supported, delete functionality.  
Amplifier gain modification is not supported, delete register.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 85 of 88  
V 1.1  
2022-02-09  
 
20 Contents  
Description  
Applications  
Features  
1
1
1
1
Package  
1
2
3
4
Ordering Information  
2
2
3
4
Known Issues and Limitations  
Typical Application Block Diagram  
Pin Description  
4.1  
4.2  
Pinout MA12070P  
Pin Function  
4
5
5
6
7
8
Absolute Maximum Ratings  
7
8
Recommended Operating Conditions  
Electrical and Audio Characteristics  
Functional description  
9
12  
Multi-level modulation  
Very low power consumption  
Power Mode Management  
Power Modes Profiles  
Power supplies  
12  
12  
12  
13  
14  
15  
15  
15  
16  
16  
16  
17  
17  
17  
19  
19  
20  
21  
22  
23  
24  
25  
26  
26  
Gate driver supplies  
Digital core supply  
Flying capacitors  
Protection  
Over-current protection on OUTXX nodes  
Temperature protection  
Power supply monitors  
DC protection  
Digital serial audio input  
Volume and limiter processor (VLP)  
Volume control  
Limiter  
VLP parameter interface  
Clock system  
MCU/Serial control interface  
I2C write operation  
I2C read operation  
/CLIP pin and soft-clipping  
/ERROR pin and error handling  
9
Application Information  
27  
Input/Output Configurations  
27  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 86 of 88  
V 1.1  
2022-02-09  
 
Bridge Tied Load (BTL) Configuration  
Single Ended (SE) Configuration  
27  
28  
29  
29  
30  
30  
30  
30  
31  
31  
Combined SE and BTL Configuration  
Parallel Bridge Tied Load (PBTL)  
EMC output filter Considerations  
Audio Performance Measurements  
Thermal Characteristics and Test Signals  
Start-up procedure  
Shut-down / power-down procedure  
Recommended PCB Design for MA12070P (EPAD-down package)  
10  
11  
12  
13  
14  
15  
16  
Typical Characteristics (PVDD = +26V, Load = 4Ω + 22µH)  
Typical Characteristics (PVDD = +26V, Load = 8Ω + 22µH)  
Typical Characteristics (PVDD = +24V, Load = 4Ω + 22µH)  
Typical Characteristics (PVDD = +24V, Load = 8Ω + 22µH)  
Typical Characteristics (PVDD = +21V, Load = 4Ω + 22µH)  
Typical Characteristics (PVDD = +21V, Load = 8Ω + 22µH)  
Register map  
32  
40  
48  
55  
62  
69  
76  
Read / Write Access (Power Mode Settings):  
76  
77  
78  
79  
80  
81  
82  
Read / Write Access (Power Mode Profile Settings):  
Read / Write Access (I2S format configuration)  
Read / Write Access (Volume control and limiter)  
Read Only Access (Volume control and limiter monitor)  
Read Only Access (Monitor Channel 0 and Channel 1)  
Read Only Access (Error Register Monitoring):  
17  
18  
19  
20  
Package Information  
Tape and Reel Information  
Revision History  
83  
84  
85  
86  
Contents  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 87 of 88  
V 1.1  
2022-02-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information contained in this application note is For further information on the product, technology,  
given as a hint for the implementation of the product delivery terms and conditions and prices please  
only and shall in no event be regarded as a contact your nearest Infineon Technologies office  
description or warranty of a certain functionality, (www.infineon.com).  
condition or quality of the product. Before  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
implementation of the product, the recipient of this  
application note must verify any function and other  
technical information given herein in the real  
application. Infineon Technologies hereby disclaims  
any and all warranties and liabilities of any kind  
(including without limitation warranties of non-  
infringement of intellectual property rights of any  
third party) with respect to any and all information  
given in this application note.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  

相关型号:

MA1209XD-2W

1W/2W, FIXED INPUT , ISOLA TED & REGULATED DUAL OUTPUT DC-DC CONVERTER
MICRODC

MA121

Silicon epitaxial planar type
PANASONIC

MA12101BAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101BBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101CAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101CBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101DAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101DBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101FAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101FBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101GAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA12101GBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA