MA2304PNS [INFINEON]

MERUS™ D 类音频放大器,2x37 W,10-20 V,超低待机功率,无电感工作,带音量控制和峰值限制器;
MA2304PNS
型号: MA2304PNS
厂家: Infineon    Infineon
描述:

MERUS™ D 类音频放大器,2x37 W,10-20 V,超低待机功率,无电感工作,带音量控制和峰值限制器

限制器 放大器 音频放大器
文件: 总43页 (文件大小:2064K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢁ×ꢂꢆ W, ꢀꢅ to ꢁꢅ V, Ultra‑Low Idle Power, MERUS™ Multilevel Switching  
Class‑D Audio Amplifier with Inductor‑Less Operation  
MAꢁꢂꢅꢃPNS  
ꢀ FEATURES  
ꢂ DESCRIPTION  
MERUS™ multilevel switching technology  
The MAꢁꢄꢉꢈPNS is a ꢁ×ꢄꢆ W audio amplifier with IꢁS/TDM  
audio interface. It features the MERUS™ multilevel switch‑  
ing amplifier technology enabling unmatched power ef‑  
ficiency at both low and high output power. Multilevel  
switching also relaxes EMI and enables inductor‑less appli‑  
cations with lower cost and no compromise in audio perfor‑  
mance or eꢅiciency. A high order internal feedback loop en‑  
sures low THD for excellent audio performance. The ultra‑  
low idle power consumption is at least five times lower than  
the traditional class D audio amplifiers in the market, mak‑  
ing MAꢁꢄꢉꢈPNS ideal for battery powered speaker appli‑  
cations with extended battery life and/or reduced battery  
cell cost. In mains‑powered multichannel applications, the  
reduced and scalable EMI performance, enables otherwise  
impossible industrial designs, without the necessity for a  
heatsink or a traditional LC filter.  
• ꢀ‑level voltage modulation for ultra‑low idle power con‑  
sumption: ꢀꢁ mW @ ꢂꢃ PVDD (LPC mode) without the  
need of complex dynamic rail‑tracking systems  
• Inductor‑less application for reduced system cost without  
output power limitations  
• Reduced EMI emissions compared to traditional ꢁ and ꢄ  
level class D audio amplifiers for fast time to market with‑  
out compromises in audio performance or eꢅiciency  
• High eꢅiciency at low output power: ꢆꢇ %, ꢁ×ꢂ W, ꢃ Ω  
for extended battery life and easy thermal management  
in multichannel products even in idle state  
Flexible configuration and application  
• BTL rated output: ꢁ×ꢄꢆ W, ꢂꢃ V, ꢈ Ω, ꢂꢉ% THD  
• PBTL rated output: ꢂ×ꢆꢈ W, ꢂꢃ V, ꢁ Ω, ꢂꢉ% THD  
• PVDD voltage range: ꢂꢉ V to ꢁꢉ V  
ꢃ PRODUCT VALIDATION  
Qualification standard: Standard  
• High eꢅiciency at low output power: ꢆꢇ %, ꢁ×ꢂ W, ꢃ Ω  
ꢄ TYPICAL APPLICATION  
• Selectable power mode profiles: Low Power Consump‑  
tion (LPC) or High Audio Performance (HAP)  
1.8/3.3V  
EMC ferrite  
filter  
PVDD  
• Short circuit protection: ꢊ A peak (BTL) / ꢂꢁ A peak (PBTL)  
• External closed‑loop feedback for improved THD  
• Integrated DSP with limiters and volume control  
VDD  
FB0A  
OUT0A  
VDDIO  
MSEL  
PVDD  
Audio so urce  
I2S/TDM data  
CH1  
I2S_DI  
I2S_SCK  
I2S_WS  
• Easy configuration over IꢁC‑bus with up to ꢊꢈ device ad‑  
dresses  
FB0B  
OUT0B  
FB1A  
Audio sink  
I2S_DO  
I2S/TDM data  
• ꢃ‑bit auxiliary ADC for internal temp. / PVDD monitoring  
or sampling from external sources  
I2C_SCL  
I2C_SDA  
NMUTE  
ENABLE  
NERR  
OUT1A  
CH2  
• Configurable switching edge steepness and inter‑chip  
PWM sync for multi‑device systems.  
HOST/MCU  
• No external heatsink required  
NCLIP  
FB1B  
I2C_AD0  
Set address: 0x20  
Audio performance  
I2C_AD1 OUT1B  
• Output noise: ꢀꢁ μVrms (A‑weighted, HAP mode)  
• Dynamic range: ꢂꢉꢊ dB (A‑weighted, HAP mode)  
• THD+N: ꢉ.ꢉꢀ%, ꢀ W, ꢂ kHz  
Efficiency VS output power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Audio I/O  
• ꢄ‑wire digital audio interface (no MCLK required)  
• ꢄꢁ, ꢈꢈ.ꢂ, ꢈꢃ, ꢃꢃ.ꢁ, ꢇꢊ, ꢂꢆꢊ.ꢈ, ꢂꢇꢁ kHz sample rates  
• IꢁS and TDM formats supported  
• Low input‑to‑output latency for echo cancellation  
• Post‑DSP IꢁS output for chaining / echo cancellation  
PVDD=18V  
Load=8 +22µH  
MERUS multilevel  
Traditional class D  
ꢁ TARGET APPLICATIONS  
• Battery powered speakers  
0.1  
1
4
10  
20  
• Bluetooth/wireless/smart speakers and soundbars  
• Conference speakers  
Output power [W]  
• Multichannel/multi‑room audio systems  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page ꢂ of ꢈꢁ  
INTVꢁ.ꢂ.ꢇ  
August, ꢁꢉꢁꢁ  
 
 
 
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢇ Functional Application Block Diagram  
VDD_IO  
1 uF  
1 µF  
1 µF  
VDD  
PVDD  
-
DVSS  
VDD  
PVDD  
PVDD  
PVSS  
AUX  
ADC  
Temp  
Low voltage  
supplies and  
reference  
sensor  
1 µF 10 µF  
470 µF  
1 µF  
voltages  
AVSS  
FB0A  
OUT0A  
VFC0AP  
VFC0AN  
Audio  
source / sink  
DAC  
DAC  
I2S_DI  
10 µF  
I2S_DO  
I2S_SCK  
I2S_WS  
CF0A  
0L  
Power  
Amp  
I2S/TDM data  
FB0B  
OUT0B  
VFC0BP  
VFC0BN  
10 µF  
CF0B  
FB1A  
OUT1A  
VFC1AP  
VFC1AN  
Clock  
Power  
management  
management  
10 µF  
CF1A  
0R  
Power  
Amp  
FB1B  
OUT1B  
VFC1BP  
VFC1BN  
Control and protection  
10 µF  
CF1B  
EPAD: VSS  
HW  
setting  
Figure ꢇ.ꢀ: Functional Application Block Diagram  
Host system  
Datasheet  
page ꢁ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Contents  
FEATURES  
TARGET APPLICATIONS  
DESCRIPTION  
PRODUCT VALIDATION  
TYPICAL APPLICATION  
Functional Application Block Diagram  
Device Comparison Table  
Pin Configuration  
Pin List  
ꢀꢅ Specifications  
ꢂꢉ.ꢂ Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ꢂꢉ.ꢁ ESD and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ꢂꢉ.ꢄ Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ꢂꢉ.ꢈ Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ꢀꢀ Functional description  
ꢀꢀ  
ꢂꢂ.ꢂ MERUS™ Multilevel Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢂ  
ꢂꢂ.ꢂ.ꢂ Multilevel Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢂ  
ꢂꢂ.ꢂ.ꢁ Reduced Inductor Ripple Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢂ  
ꢂꢂ.ꢂ.ꢄ Ultra Low Power Consumption with Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢁ  
ꢂꢂ.ꢂ.ꢈ EMI Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢁ  
ꢂꢂ.ꢂ.ꢀ Power Mode Profiles (PMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢁ  
ꢂꢂ.ꢁ Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢄ  
ꢂꢂ.ꢁ.ꢂ Normal Operation / Shutdown (ENABLE pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢄ  
ꢂꢂ.ꢁ.ꢁ Mute / Unmute (NMUTE pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢄ  
ꢂꢂ.ꢁ.ꢄ Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢄ  
ꢂꢂ.ꢄ BTL/PBTL Output Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢄ  
ꢂꢂ.ꢈ Gain Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢄ  
ꢂꢂ.ꢀ Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢈ  
ꢂꢂ.ꢀ.ꢂ Errors and Error Handling (NERR pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢈ  
ꢂꢂ.ꢀ.ꢁ Output DC Protection (DCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢈ  
ꢂꢂ.ꢀ.ꢄ Over‑Current Protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢀ  
ꢂꢂ.ꢀ.ꢈ PVDD Over/Under‑Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢀ  
ꢂꢂ.ꢀ.ꢀ Over Temperature Protection (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢀ  
ꢂꢂ.ꢀ.ꢊ PLL Error and IꢁS Input Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢀ  
ꢂꢂ.ꢀ.ꢆ Flying Capacitor Over/Under‑Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢀ  
ꢂꢂ.ꢀ.ꢃ NCLIP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢊ  
ꢂꢂ.ꢊ Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢊ  
ꢂꢂ.ꢊ.ꢂ Supplies for Internal Analog/Digital Circuitry (VDD/VDD_IO) . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢊ  
ꢂꢂ.ꢊ.ꢁ Flying Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢊ  
ꢂꢂ.ꢊ.ꢄ Power Stage Supply (PVDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢊ  
ꢂꢂ.ꢆ Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
ꢂꢂ.ꢃ Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
ꢂꢂ.ꢃ.ꢂ Digital Serial Audio Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
ꢂꢂ.ꢃ.ꢁ Digital Serial Audio Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
ꢂꢂ.ꢃ.ꢄ Input‑to‑Output Audio Propagation Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
ꢂꢂ.ꢇ Digital Signal Processor (DSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
ꢂꢂ.ꢇ.ꢂ ROM Code / Static Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢆ  
Datasheet  
page ꢄ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢂꢂ.ꢇ.ꢁ Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢃ  
ꢂꢂ.ꢇ.ꢄ Peak Limiter (ROM Code) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢃ  
ꢂꢂ.ꢂꢉAuxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢃ  
ꢂꢂ.ꢂꢂIꢁC Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢇ  
ꢂꢂ.ꢂꢂ.ꢂ Device Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢂꢇ  
ꢂꢂ.ꢂꢂ.ꢁ IꢁC Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢉ  
ꢂꢂ.ꢂꢂ.ꢄ IꢁC Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢉ  
ꢂꢂ.ꢂꢁEMI Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢉ  
ꢂꢂ.ꢂꢁ.ꢂ Configurable Switching Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢉ  
ꢂꢂ.ꢂꢁ.ꢁ PWM Synchronization for EMI Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢉ  
ꢂꢂ.ꢂꢄPost‑Ferrite Filter Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢂ  
ꢀꢁ Application Information  
ꢁꢁ  
ꢂꢁ.ꢂ EMC Ferrite Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢁ  
ꢂꢁ.ꢂ.ꢂ Capacitor Value Impact on Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢁ  
ꢂꢁ.ꢂ.ꢁ Ferrite Filter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢁ  
ꢂꢁ.ꢂ.ꢄ Ferrite Filter Stability Under Light Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢄ  
ꢂꢁ.ꢂ.ꢈ LC filter options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢄ  
ꢂꢁ.ꢁ Thermal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢄ  
ꢂꢁ.ꢄ Start‑up Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢄ  
ꢂꢁ.ꢈ Procedure for handling discontinuous audio clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢈ  
ꢂꢁ.ꢀ Power‑down Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢈ  
ꢂꢁ.ꢊ Recommended Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢈ  
ꢂꢁ.ꢆ Evaluation Board as Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢀ  
ꢀꢂ Typical Characteristics  
ꢁꢆ  
ꢂꢄ.ꢂ Eꢅiciency and power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢁꢆ  
ꢂꢄ.ꢁ Thermal performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢄꢉ  
ꢂꢄ.ꢄ Audio performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢄꢂ  
ꢀꢃ Register map  
ꢂꢃ  
ꢃꢅ  
ꢃꢁ  
ꢀꢄ Package Information  
ꢀꢇ Tape and Reel Information  
Datasheet  
page ꢈ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢆ Device Comparison Table  
Table ꢀ: Device comparison  
Device name  
MAꢁꢄꢉꢈDNS  
MAꢁꢄꢉꢈPNS  
Functional variance  
Fully configurable DSP, ꢉ‑ꢁꢉ V  
Audio limiter and volume control only, ꢂꢉ‑ꢁꢉ V  
ꢈ Pin Configuration  
FB0A  
VFC0AN  
OUT0A  
VFC0AP  
PVDD  
1
2
3
4
5
6
7
8
9
30 FB1A  
29 VFC1AN  
28 OUT1A  
27 VFC1AP  
26 PVDD  
25 PVDD  
24 VFC1BP  
23 OUT1B  
22 VFC1BN  
21 FB1B  
Exposed thermal pad  
on bottom side (EPAD):  
PVDD  
VSS  
VFC0BP  
OUT0B  
VFC0BN  
FB0B 10  
Figure ꢈ.ꢀ: Package Overview ‑ ꢊxꢊ mm QFN‑ꢈꢉ pins  
ꢉ Pin List  
Table ꢁ: Pin List MAꢁꢄꢉꢈPNS  
Pin Nr.  
Name  
FBꢉA  
Type Description  
I
Output channel ꢉA post‑ferrite feedback  
Negative side flying capacitor for channel ꢉA  
Audio output channel ꢉA  
VFCꢉAN  
OUTꢉA  
VFCꢉAP  
PVDD  
P
O
P
P
P
P
O
Positive side flying capacitor for channel ꢉA  
Power supply for power stage  
PVDD  
Power supply for power stage  
VFCꢉBP  
OUTꢉB  
Positive side flying capacitor for channel ꢉB  
Audio output channel ꢉB  
Datasheet  
page ꢀ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
VFCꢉBN  
FBꢉB  
P
I
Negative side flying capacitor for channel ꢉB  
Output channel ꢉB post‑ferrite feedback  
Error indicator – open drain output. Use this pin as interrupt for host  
microcontroller to read error register.  
ꢂꢉ  
ꢂꢂ  
NERR  
O
ꢂꢁ  
ꢂꢄ  
ꢂꢈ  
ꢂꢀ  
ꢂꢊ  
ꢂꢆ  
ꢂꢃ  
ꢂꢇ  
ꢁꢉ  
ꢁꢂ  
ꢁꢁ  
ꢁꢄ  
ꢁꢈ  
ꢁꢀ  
ꢁꢊ  
ꢁꢆ  
ꢁꢃ  
ꢁꢇ  
ꢄꢉ  
ꢄꢂ  
ꢄꢁ  
ꢄꢄ  
ꢄꢈ  
NCLIP  
I/O  
O
I
Clipping indicator output (default) or PWM synchronization I/O  
IꢁS/TDM digital audio data output  
IꢁS_DO  
IꢁS_WC  
IꢁS_SCK  
IꢁS_DI  
IꢁC_SDA  
IꢁC_SCL  
NMUTE  
ENABLE  
FBꢂB  
IꢁS/TDM digital audio word clock  
I
IꢁS/TDM digital audio bit clock  
I
IꢁS/TDM digital audio data input  
I/O  
I/O  
I
IꢁC bus serial clock  
IꢁC bus serial data  
Mutes audio output when pulled low  
I
Enables device when pulled high. Pulling this pin low shuts down the device.  
Output channel ꢂB post‑ferrite feedback  
Negative side flying capacitor for channel ꢂB  
Audio output channel ꢂB  
I
VFCꢂBN  
OUTꢂB  
VFCꢂBP  
PVDD  
P
O
P
P
P
P
O
P
I
Positive side flying capacitor for channel ꢂB  
Power supply for power stage  
PVDD  
Power supply for power stage  
VFCꢂAP  
OUTꢂA  
VFCꢂAN  
FBꢂA  
Positive side flying capacitor for channel ꢂA  
Audio output channel ꢂA  
Negative side flying capacitor for channel ꢂA  
Output channel ꢂa post‑ferrite feedback  
Auxiliary ADC input  
ADC_IN  
VDD_IO  
AVSS  
I
P
P
I
Digital I/O supply. Used for external resistor pull‑ups, e.g. for IꢁC bus.  
Ground for internal analog circuitry  
MSEL  
Hardware select for BTL (pull high) or PBTL (pull low)  
IꢁC bus address pin ꢂ. Use IꢁC_ADꢂ and IꢁC_ADꢉ to set IꢁC address: ꢉꢉ:ꢉxꢁꢉ,  
ꢉꢂ:ꢉxꢁꢂ, ꢂꢉ:ꢉxꢁꢁ, ꢂꢂ:ꢉxꢁꢄ.  
ꢄꢀ  
ꢄꢊ  
ꢄꢆ  
IꢁC_ADꢂ  
IꢁC_ADꢉ  
CD_DIG  
I
I
IꢁC bus address pin ꢉ  
Internal digital core supply charge‑pump. Connect ꢂ μF between this pin and  
DVDD_REG.  
P
ꢄꢃ  
ꢄꢇ  
DVDD_REG  
AVDD_REG  
VDD  
P
P
P
P
Internal regulated supply decoupling. Connect ꢂ μF between this pin and ground.  
Internal regulated supply decoupling. Connect ꢂ μF between this pin and ground.  
External low voltage supply.  
ꢈꢉ  
EPAD  
VSS  
Ground for internal digital circuitry and PVDD  
Datasheet  
page ꢊ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢅ Specifications  
ꢀꢅ.ꢀ Absolute Maximum Ratings  
NOTE: Usage outside the specifications stated in this table may cause permanent damage to the device and/or compromise  
reliability.  
Table ꢂ: Absolute Maximum Ratings  
Parameter  
VDD  
Description  
Min  
‑ꢉ.ꢄ  
‑ꢉ.ꢄ  
‑ꢉ.ꢄ  
‑ꢉ.ꢄ  
Max  
ꢀ.ꢀ  
Unit  
Low voltage supply  
V
V
V
V
PVDD  
Power amp supply  
ꢁꢁ  
VDD_IO  
Vspeak  
Digital I/O supply  
ꢀ.ꢀ  
Speaker node output pins  
PVDD+ꢁ  
IO and hardware setting pins (NERR, NCLIP, IꢁS_DO, IꢁS_WC, IꢁS_SCK,  
IꢁS_DI, IꢁC_SDA, IꢁC_SCL, NMUTE, ENABLE, MSEL, IꢁC_ADꢉ, IꢁC_ADꢂ)  
ADC_IN pin  
VPIO  
‑ꢉ.ꢄ  
VDD_IO  
V
VADC  
TAMB  
TJ  
‑ꢉ.ꢄ  
ꢂ.ꢀ  
ꢃꢀ  
V
Ambient operating temperature  
‑ꢁꢀ.ꢉ  
‑ꢁꢀ.ꢉ  
‑ꢀꢀ.ꢉ  
°C  
°C  
°C  
Junction temperature  
ꢂꢀꢉ  
ꢂꢀꢉ  
TSTORE  
Storage temperature  
ꢀꢅ.ꢁ ESD and Thermal Characteristics  
Table ꢃ: ESD and Thermal Characteristics  
Parameter  
VESD,HB  
Description  
Min  
‑ꢄꢉꢉꢉ  
‑ꢂꢉꢉꢉ  
Typ  
Max  
+ꢄꢉꢉꢉ  
+ꢂꢉꢉꢉ  
Unit  
ESD Human Body Model  
V
V
VESD,CD  
ESD Charged Device Model  
Thermal resistance, Junction‑to‑Ambient, ꢈ‑layer PCB  
(EVAL_MAꢁꢄxx)  
TθJA  
TθJC  
ꢁꢃ.ꢇ  
ꢂ.ꢇ  
°C/W  
°C/W  
Thermal resistance, Junction‑to‑Case (EPAD)  
ꢀꢅ.ꢂ Recommended Operating Conditions  
NOTE:Usageoutsidetherecommendedoperatingconditionsstatedinthistablemaycausethedevicetonotbehaveproperly.  
This can lead to interrupted audio playback, protection features being triggered etc. This applies to DC+AC values outside the  
min/max values.  
Table ꢄ: Recommended Operating Conditions  
Parameter  
VDD  
Description  
Min  
ꢂ.ꢊꢁ  
ꢂꢉ.ꢉ  
ꢂ.ꢊꢁ  
Typ  
ꢂ.ꢃ  
ꢂꢃ  
Max  
ꢄ.ꢊꢀ  
ꢁꢉ  
Unit  
Low voltage supply (DC+AC ripple)  
Power amp supply (DC+AC ripple)  
Digital I/O supply (DC+AC ripple)  
Minimum required equivalent load inductance per output pin  
for short circuit protection  
V
V
V
PVDD  
VDD_IO  
ꢂ.ꢃ  
ꢄ.ꢊꢀ  
ILEQ  
ꢉ.ꢀ  
μH  
Refer to sections ꢂꢂ.ꢀ and ꢂꢂ.ꢀ.ꢈ for more details on supply voltages and their protection mechanisms.  
Datasheet  
page ꢆ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢅ.ꢃ Electrical Characteristics  
Conditions (unless specified otherwise): PVDD=ꢂꢃ V, VDD/VDD_IO=ꢄ.ꢄ V, Power Mode Profile: LPC, TAMB=ꢁꢀ °C, Load: ꢈ ohm +  
ꢁꢁ μH, PCB: EVAL_AUDIO_MAꢁꢄxx (no output filter)  
Table ꢇ: Electrical characteristics.  
Parameter  
Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
BTL Output Power  
Load=ꢈΩ+ꢁꢁμH, sig=pink noise,  
CF=ꢇdB; Thermal Warning  
triggered  
PCOUT,BTL  
Continuous Output Power p/ch  
ꢂꢁ  
W
Load=ꢈΩ+ꢁꢁμH, sig=pink noise,  
CF=ꢇdB, Thermal Error triggered  
(device shuts down)  
ꢂꢈ  
W
Load=ꢃΩ+ꢁꢁμH, sig=ꢂ kHz sine,  
THD+N=ꢂ%  
ꢂꢆ  
ꢁꢉ  
ꢄꢉ  
ꢄꢆ  
ꢊꢉ  
W
W
W
W
Load=ꢃΩ+ꢁꢁμH, sig=ꢂ kHz sine,  
THD+N=ꢂꢉ%  
Load=ꢈΩ+ꢁꢁμH, sig=ꢂ kHz sine,  
THD+N=ꢂ%  
PRMSOUT,BTL  
RMS Output Power p/ch  
Load=ꢈΩ+ꢁꢁμH, sig=ꢂ kHz sine,  
THD+N=ꢂꢉ%  
Instantaneous Peak Output  
Load=ꢈΩ+ꢁꢁμH, sig=ꢂ kHz sine,  
THD+N=ꢂ%  
PIPOUT,BTL  
IOUT,BTL  
W
A
Power p/ch  
Maximum Output Current p/ch  
Case temperature on board at  
PCB=EVAL_AUDIO_MAꢁꢄxx,  
TCASE,BTL  
’Continuous Output Power p/ch’  
PBTL Output Power  
ꢂꢂꢄ  
°C  
Load=ꢈΩ+ꢁꢁμH  
Load=ꢈΩ+ꢁꢁμH, sig=pink noise,  
CF=ꢇdB, Thermal Warning  
triggered  
PCOUT,PBTL  
Continuous Output Power p/ch  
ꢁꢈ  
W
Load=ꢈΩ+ꢁꢁμH, sig=pink noise,  
CF=ꢇdB, Thermal Error triggered  
(device shuts down)  
ꢁꢃ  
W
Load=ꢁΩ+ꢁꢁμH, sig=ꢂkHz sine,  
THD+N=ꢂ%  
PRMSOUT,PBTL RMS Output Power p/ch  
ꢊꢉ  
W
Load=ꢁΩ+ꢁꢁμH, sig=ꢂkHz sine,  
THD+N=ꢂꢉ%  
ꢆꢈ  
W
Instantaneous Peak Output  
Load=ꢁΩ+ꢁꢁμH, sig=ꢂkHz sine,  
THD+N=ꢂ%  
PIPOUT,PBTL  
IOUT,PBTL  
TCASE,PBTL  
Power stage  
ꢂꢁꢉ  
W
A
Power p/ch  
Maximum Output Current p/ch  
Case temperature on board at  
ꢂꢁ  
PCB=EVAL_AUDIO_MAꢁꢄxx,  
ꢆꢃ  
°C  
’Continuous Output Power p/ch’  
Load=ꢁΩ+ꢁꢁμH  
POUT=ꢁxꢂꢉꢉmW,  
η
Eꢅiciency (BTL)  
ꢀꢆ  
%
BTL  
Load=ꢃΩ+ꢁꢁμH  
POUT=ꢁxꢂW, Load=ꢃΩ+ꢁꢁμH  
POUT=full scale, Load=ꢃΩ+ꢁꢁμH  
POUT=ꢁxꢂꢉꢉmW,  
ꢆꢇ  
ꢇꢉ  
%
%
ꢀꢈ  
%
Load=ꢈΩ+ꢁꢁμH  
POUT=ꢁxꢂW, Load=ꢈΩ+ꢁꢁμH  
POUT=full scale, Load=ꢈΩ+ꢁꢁμH  
BTL on‑resistance: ꢈx MOSFETS  
in series + bond wires  
ꢆꢄ  
ꢃꢈ  
%
%
Total on‑resistance of the  
RON,BTL  
ꢈꢉꢉ  
mΩ  
mΩ  
internal power stage (BTL)  
Total on‑resistance of the  
PBTL on‑resistance: ꢁx BTL  
power stages in parallel  
LPC mode, low signal level  
LPC mode, high signal level  
RON,PBTL  
fSW,FET  
ꢁꢉꢉ  
internal power stage (PBTL)  
Internal MOSFET switching  
ꢂꢁꢃ  
ꢁꢀꢊ  
kHz  
kHz  
frequency  
Datasheet  
page ꢃ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
HAP mode  
ꢁꢀꢊ  
ꢀꢂꢁ  
kHz  
kHz  
kHz  
kHz  
fSW,LOAD  
Switching frequency seen  
diꢅerentially by the load  
LPC mode, low signal level  
LPC mode, high signal level  
HAP mode  
ꢂꢉꢁꢈ  
ꢂꢉꢁꢈ  
Power Consumption  
Total idle power consumption for  
PIDLE  
PVDD=ꢂꢃV, LPC mode  
ꢀꢁ  
mW  
VDD+PVDD+VDD_IO  
(device enabled and unmuted)  
PVDD=ꢂꢃV, HAP mode  
PVDD=ꢂꢃV, LPC mode  
PVDD=ꢂꢃV, HAP mode  
VDD=ꢄ.ꢄ V, LPC mode  
VDD=ꢂ.ꢃ V, LPCmode  
VDD=ꢄ.ꢄ V, HAP mode  
VDD=ꢂ.ꢃ V, HAP mode  
VDD_IO = ꢄ.ꢄ V, No load on  
IꢁS_DO  
ꢆꢉ  
ꢁ.ꢁ  
ꢄ.ꢁ  
ꢄ.ꢀ  
ꢄ.ꢀ  
ꢄ.ꢊ  
ꢄ.ꢊ  
mW  
mA  
mA  
mA  
mA  
mA  
mA  
IPVDD,IDLE  
Quiescent/idle current, PVDD  
(device enabled and unmuted)  
IVDD,IDLE  
Quiescent/idle current, VDD  
(device enabled and unmuted)  
Quiescent/idle current, VDD_IO  
Total power consumption in  
IVDD_IO,IDLE  
ꢁ.ꢄ  
μA  
VDD_IO = ꢂ.ꢃ V, No load on  
IꢁS_DO  
ꢁ.ꢄ  
μA  
PIDLE,STANDBY standby mode for  
VDD+PVDD+VDD_IO  
PVDD=ꢂꢃV, VDD=ꢂ.ꢃV  
ꢁ.ꢃ  
mW  
PVDD=ꢂꢃV, VDD=ꢄ.ꢄV  
ꢈ.ꢆ  
mW  
Audio Performance/IO  
ꢁꢉ‑ꢁꢉkHz integrated noise,  
A‑weighted, LPC mode  
VNOISE  
Output integrated noise level  
ꢃꢁ  
μV  
ꢁꢉ‑ꢁꢉkHz integrated noise,  
A‑weighted, HAP mode  
ꢀꢁ  
μV  
DNR  
Dynamic Range  
‑ꢊꢉdBFS method, LPC mode  
‑ꢊꢉdBFS method, HAP mode  
ꢂꢉꢁ  
ꢂꢉꢊ  
dB  
dB  
Total Harmonic Distortion +  
THD+N  
POUT=ꢀW, sig=ꢂkHz, Load=ꢈΩ  
ꢉ.ꢉꢀ  
%
Noise  
Output oꢅset voltage for low  
pop/click‑noise  
VOS  
‑ꢁꢀ  
‑/+ ꢄ  
ꢁꢀ  
mV  
ꢄꢁ  
ꢈꢈ.ꢂ  
ꢈꢃ  
Supported IꢁS/TDM input  
fS  
ꢃꢃ.ꢁ  
ꢇꢊ  
kHz  
sampling rates  
ꢂꢆꢊ.ꢈ  
ꢂꢇꢊ  
Propagation delay from audio  
Sample rate = ꢈꢃ kHz, DSP  
enabled running ROM code  
tPD  
ꢂꢈꢊ  
ꢁꢀ  
ꢂꢊ  
μs  
input to amplifier  
Maximum supported bit clock on  
IꢁS_SCKMAX  
MHz  
IꢁS_SCK pin  
Maximum supported input  
NCH,MAX,IN  
IꢁS/TDM channels  
Maximum supported output  
NCH,MAX,OUT  
G
IꢁS/TDM channels  
Amplifier gain in dB (Vrms/FS)  
pvdd_scale=ꢂꢂ, PVDD=ꢂꢃ V  
pvdd_scale=ꢂꢉ, PVDD=ꢂꢀ V  
pvdd_scale=ꢉꢂ, PVDD=ꢂꢁ V  
pvdd_scale=ꢉꢉ, PVDD=ꢂꢉ V  
ꢁꢁ.ꢀ  
ꢁꢂ.ꢁ  
ꢂꢇ  
dB  
dB  
dB  
dB  
ꢂꢊ.ꢀ  
Enable/Mute  
Time from ENABLE=high until  
TENABLE  
ꢂꢀ  
ms  
ready for IꢁC communication  
Unmute time delay until audio  
TUNMUTE  
ꢄꢉ  
ms  
output  
Datasheet  
page ꢇ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
IꢁC serial control interface  
fSCL  
IꢁC clock frequency  
Standard Mode  
Fast Mode  
ꢂꢉꢉ  
ꢈꢉꢉ  
ꢄꢉ  
kHz  
kHz  
%
VIL  
Logic low voltage  
Percentage of VDD_IO voltage  
Percentage of VDD_IO voltage  
Standard Mode  
Standard Mode  
Standard Mode  
Standard Mode  
Standard Mode  
Standard Mode  
Standard Mode  
Fast Mode  
VIH  
Logic high voltage  
ꢆꢉ  
%
tr  
SDA and SCL rise time  
ꢂꢉꢉꢉ  
ꢄꢉꢉ  
ns  
tf  
SDA and SCL fall time  
ns  
tHIGH  
tLOW  
SCL clock high  
ꢈ.ꢆ  
ꢁꢀꢉ  
μs  
SCL clock low  
μs  
tSU;DAT  
tHD;DAT  
tBUF  
Data, setup  
ns  
Data, hold  
ns  
Min. stop to start condition  
ꢈ.ꢆ  
μs  
RPU,FM  
RPU,SM  
Protection  
Pull‑up resistor for SDA/SCL  
ꢈ.ꢆ  
ꢀ.ꢊ  
kΩ  
kΩ  
Pull‑up resistor for SDA/SCL  
Standard Mode  
PVDD undervoltage lock‑out  
threshold (IꢁC interface  
functional)  
UVLOPVDD  
ꢊ.ꢀ  
V
PVDD over‑voltage error  
threshold  
OVPPVDD  
PVDD rising  
ꢁꢂ.ꢀ  
V
PVDD falling while OVP error  
triggered  
OVPPVDD,CLR PVDD over‑voltage error clear  
ꢁꢉ  
V
OTETRIG  
OTECLR  
Over‑temperature error trigger  
Over‑temperature error clear  
Over‑temperature warning  
trigger  
Temperature rising  
Temperature falling  
ꢂꢈꢀ  
ꢂꢈꢉ  
°C  
°C  
OTWTRIG  
OTWCLR  
Temperature rising  
Temperature falling  
ꢂꢂꢀ  
ꢂꢂꢉ  
°C  
°C  
Over‑temperature warning clear  
Guaranteed by design simulation.  
Measured on EVAL_MAꢁꢄꢉꢈ evaluation kit PCB. Parameter may depend on application/layout/board stackup etc.  
Datasheet  
page ꢂꢉ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
 
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢀ Functional description  
PVDD  
Switching waveform  
Fullscale sine output  
ꢀꢀ.ꢀ MERUS™ Multilevel Switching  
PVDD/2  
0
MERUS™ multilevel switching features several benefits in  
class D audio amplification compared to conventional ꢁ‑  
level switching:  
-PVDD/2  
-PVDD  
• Ultra low power consumption  
• Unmatched power eꢅiciency  
• Low electromagnetic emission  
• Reduced system cost  
Time (zoom in)  
Switching waveform  
PVDD  
PVDD/2  
0
-8 dB sine output  
This chapter aims to explain these benefits in more detail.  
ꢀꢀ.ꢀ.ꢀ Multilevel Topology  
The integrated power stage of the MAꢁꢄꢉꢈPNS is a MERUS™  
multilevel switching topology. It consists of two half‑  
bridges with each four power MOSFETs and a flying capac‑  
itor. An intermediate voltage supply is generated over the  
flyingcapacitor’sterminals, which togetherwiththeswitch‑  
ing scheme of the MOSFETs result in a ꢁ‑phase PWM output  
with three voltage levels (ꢉV, ½PVDD and PVDD) rather than  
the conventional two. This doubles the eꢅective switching  
frequency seen at the PWM output.  
-PVDD/2  
-PVDD  
Time (zoom in)  
PVDD  
PVDD/2  
0
Switching waveform  
Idle output (noise)  
PVDD  
PVDD  
M1  
M1  
M2  
M2  
-PVDD/2  
-PVDD  
M3  
M4  
M3  
M4  
Time (zoom in)  
Figure ꢀꢀ.ꢀ: BTL/PBTL configuration of two ꢄ‑level half  
PVDD  
PVDD/2  
0
Switching waveform  
bridges  
Fullscale music output  
In MAꢁꢄꢉꢈPNS, two half‑bridges are combined in a  
BTL/PBTL configuration (Figure ꢂꢂ.ꢂ) with a relative phase  
shiꢋ of ꢁꢆꢉ°achieving a ꢀ‑level switching scheme across  
the load, eꢅectively quadrupling the switching frequency  
seen at the load. This allows the internal MOSFETs to  
be driven with lower switching frequency, thus reducing  
power losses related to switching. Switching waveforms  
are shown in Figure ꢂꢂ.ꢁ.  
-PVDD/2  
-PVDD  
Time (zoom out)  
Figure ꢀꢀ.ꢁ: Multilevel switching with various signals.  
ꢀꢀ.ꢀ.ꢁ Reduced Inductor Ripple Current  
The multilevel topology reduces the voltage magnitude  
over the output filter inductor during switching, which in  
turnreducestheripplecurrentandrelaxesfilterinductorre‑  
quirements. At idle operation where the output signal level  
is low, the MOSFETs are switched at ꢀꢉ % duty cycle, re‑  
sulting in near‑zero ripple current. Hysteresis losses in the  
inductor core material are therefore also greatly reduced  
which improves overall power eꢅiciency. From Figure ꢂꢂ.ꢄ  
itisclearthat‑levelswitchingprovidesgreatlyreducedrip‑  
ple current over the entire duty cycle range compared to  
conventional ꢁ‑level switching. In fact, it is not even nec‑  
essary to use a standard LC filter for electromagnetic inter‑  
Datasheet  
page ꢂꢂ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Efficiency VS output power percentage  
ference (EMI) suppression. The MAꢁꢄꢉꢈPNS can even oper‑  
100  
ate with a simple ferrite filter reducing both application cost  
and size. See Section ꢂꢂ.ꢂ.ꢈ and ꢂꢁ for more information.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1
0.9  
0.8  
0.7  
0.6  
Traditional class D  
3-level  
5-level  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MERUS multilevel  
Traditional class D  
Realistic Pavg limit for music  
0.5  
5
20  
50  
100  
Sinusoid output power percentage [%]  
Figure ꢀꢀ.ꢃ: MERUS™ multilevel modulation eꢅiciency  
compared to traditional ꢁ‑level modulation  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output PWM duty cycle  
Figure ꢀꢀ.ꢂ: Ripple current comparison  
1
for multilevel compared to traditional class D. In addition,  
MAꢁꢄꢉꢈPNS makes it possible to address EMC issues from  
a soꢋware perspective with its PWM synchronization fea‑  
ture as well as configurable switching edge steepness (slew  
rate), all to reduce EMI in applications with many devices,  
e.g. multi‑channel amplifiers.  
ꢀꢀ.ꢀ.ꢂ Ultra Low Power Consumption with Music  
MAꢁꢄꢉꢈPNS exhibits ultra low power consumption at low  
and mid output power, which is ensured by low MOSFET  
switching frequency, smaller voltage transitions when  
switching and near zero‑ripple current. The low idle power  
consumption can make battery‑powered applications last  
significantly longer or reduce the amount of battery cells  
required for a particular application.  
ꢀꢀ.ꢀ.ꢄ Power Mode Profiles (PMP)  
The MAꢁꢄꢉꢈPNS features two selectable power mode pro‑  
files (PMP):  
• Low Power Consumption (LPC) Mode  
• High Audio Performance (HAP) Mode  
Because of the low power consumption at lower output  
power levels, the MAꢁꢄꢉꢈPNS is ideal for real applications  
with dynamic signals like music/noise that exhibit a high  
signal peak‑to‑RMS ratio (crest factor). Power eꢅiciency can  
be as high as ꢃꢉ % at ꢂ W output power per channel, and be‑  
cause of the low power losses MAꢁꢄꢉꢈPNS may run without  
external heatsink in most applications. Figure ꢂꢂ.ꢈ shows  
the diꢅerence in power eꢅiciency between multilevel and  
traditional class D. From the figure it is clear that multilevel  
operation yields superior results for lower playback levels,  
which is the normal usage in common speaker products.  
LPC mode keeps eꢅiciency as high as possible and mini‑  
mizes idle losses by using a lower switching frequency for  
low output levels. HAP mode improves noise by using a  
higher switching frequency and therefore achieves a feed‑  
back loop with higher bandwidth. Switching frequency is  
dynamic for LPC mode and varies with output power with  
no audible artifacts. Table shows the general properties  
of the two modes.  
Table ꢆ: Power Mode Profiles  
*PVDD=ꢂꢃ V, VDD/VDD_IO=ꢂ.ꢃ V, BTL, Load=ꢃ Ω+ꢁꢁ μH,  
PCB=EVAL_AUDIO_MAꢁꢄxx  
ꢀꢀ.ꢀ.ꢃ EMI Reduction  
Parameter  
LPC  
HAP  
Complying with EMC regulations is a typical challenge with  
classDamplifiersduetothehighpowersquarewaveoutput  
waveform. Traditional class D amplifiers have maximum  
current ripple in the output filter inductor at ꢀꢉ % duty cycle  
(idle operation) which gives rise to high amount of common  
mode frequency content. However, MERUS™ multilevel op‑  
eration exhibits minimal switching at idle which ensures  
minimal common mode emission at idle operation. The  
diꢅerential mode content at higher playback levels, when  
switching activity is stronger, is also significantly reduced  
as the transition between voltage levels is relatively small  
Idle consumption*  
Eꢅiciency ꢉ.ꢂ W*  
Eꢅiciency ꢂ W*  
Eꢅiciency ꢂꢉ W*  
FET switch. freq.  
ꢀꢁ mW  
ꢀꢆ %  
ꢆꢉ mW  
ꢈꢆ %  
ꢆꢇ %  
ꢆꢇ %  
ꢇꢄ %  
ꢇꢄ %  
ꢂꢁꢃ‑ꢁꢀꢊ kHz  
ꢁꢀꢊ kHz  
ꢂꢉꢁꢈ kHz  
ꢉ.ꢉꢀ %  
ꢀꢁ μV  
Switch. freq. atload. ꢀꢂꢁ‑ꢂꢉꢁꢈ kHz  
THD+N, ꢂ kHz, ꢀ W  
Noise, A‑weighted  
Dynamic Range  
ꢉ.ꢉꢀ %  
ꢃꢁ μV  
ꢂꢉꢁ dB  
ꢂꢉꢊ dB  
Datasheet  
page ꢂꢁ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢀ.ꢁ Modes of Operation  
ꢂꢂ.ꢀ and ꢂꢂ.ꢊ for configuration diagrams.  
ꢀꢀ.ꢁ.ꢀ Normal Operation / Shutdown (ENABLE pin)  
PBTL mode dynamically enables the second output based  
on the signal level so that idle power consumption can be  
as low as possible when high output power is not needed.  
The ENABLE pin (ꢁꢉ) controls the shutdown state of  
MAꢁꢄꢉꢈPNS. When ENABLE is low, the device is in shutdown  
mode. When ENABLE becomes high, the device exits shut‑  
down state, boots up and enters normal operation. Refer to  
specifications for ENABLE timing.  
VDD_IO  
FB0A  
OUT0A  
CH1  
MSEL  
Audio source  
ꢀꢀ.ꢁ.ꢁ Mute / Unmute (NMUTE pin)  
I2S_DI  
I2S/TDM Data  
(CH1,CH2)  
NMUTE (ꢂꢇ) controls muting of the amplifier output and is  
an active‑low pin, i.e. if NMUTE=high the output will be un‑  
muted. Muting is instantaneous, but unmuting is a timed  
function with a delay (refer to NMUTE timing)  
FB0B  
OUT0B  
FB1A  
I2S_SCK  
I2S_WS  
BITCLOCK  
WORDCLOCK  
OUT1A  
CH2  
Muting can also be performed with the mute_chꢉ/ꢂ register  
for individual channels. Use mute_source to choose the  
source of muting: NMUTE pin or register setting.  
FB1B  
OUT1B  
In muted state, no audio content is present at the amplifier  
output, but there will be some switching activity to balance  
and pre‑charge the flying capacitors. If no switching activity  
is desired the individual amplifier channels can be disabled  
with the disable_chꢉ/ꢂ registers.  
Figure ꢀꢀ.ꢄ: Bridge Tied Load (BTL) configuration  
FB0A  
ꢀꢀ.ꢁ.ꢂ Standby  
OUT0A  
CH1  
MSEL  
The device can be put in standby mode for lowest possible  
power consumption while still maintaining a functional IꢁC  
interface(towakethedeviceatalaterpoint). Standbymode  
is controlled with the standby register.  
Audio source  
I2S_DI  
I2S/TDM Data  
(CH1,dummy)  
FB0B  
OUT0B  
FB1A  
I2S_SCK  
I2S_WS  
BITCLOCK  
WORDCLOCK  
ꢀꢀ.ꢂ BTL/PBTL Output Configurations  
The amplifier output can be configured to operate in  
• Bridge Tied Load (BTL)  
OUT1A  
FB1B  
• Parallel Bridge Tied Load (PBTL)  
OUT1B  
Figure ꢀꢀ.ꢇ: Bridge Tied Load (PBTL) configuration. Note:  
It is also possible to connect output pins A and B before the  
ferrite filter in order to use two ferrites in total instead of  
four.  
Table ꢈ: BTL/PTBL properties  
Parameter  
PBTL  
ꢂꢁ A  
BTL  
Min. current limit  
Recommended load  
MSEL pin tie‑oꢅ  
ꢊ A  
ꢁ‑ꢈ Ω  
Ground  
ꢈ‑ꢃ Ω  
VDD_IO  
The MSEL pin (ꢄꢈ) controls the output configuration and  
must be set before the device powers up (when ENABLE=ꢂ).  
Alternatively, the mode_pbtl register can be used to con‑  
figure the output aꢋer the device has powered up. The  
TBD_reg_ctrl register must also be set for the mode_pbtl  
register to take eꢅect and override the hardware setting of  
the MSEL pin.  
ꢀꢀ.ꢃ Gain Configuration  
MAꢁꢄꢉꢈPNS oꢅers diꢅerent gain configurations for match‑  
ing full scale output with the desired PVDD voltage in an ap‑  
plication. The gain is controlled with the pvdd_scale reg‑  
ister. Reducing the amplifier gain to a lower value also re‑  
duces output noise. Gain frequency response is shown in  
Figure ꢂꢄ.ꢁꢃ. Changing gain settings while the power stage  
is unmuted can result in significant pop/click and should be  
avoided. The table below shows the recommended pvdd  
scale setting for each diꢅerent typical PVDD supply level.  
For a complete usable PVDD range in each pvdd scale set‑  
ting refer to Figure ꢂꢄ.ꢄꢉ . Setting ꢂꢂ and ꢂꢉ can be used  
BTL is best suited for standard current, two‑channel ap‑  
plications, e.g. stereo speaker pairs and ꢁ‑way systems.  
PTBL is a ꢂ‑channel configuration but with twice the output  
power/current capability, which can be useful for sub‑  
woofers and/or low impedance speakers. Refer to Figure  
Datasheet  
page ꢂꢄ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
from ꢂꢉV to ꢂꢃV, setting ꢉꢂ can be used from ꢂꢉV to ꢂꢊV and  
setting ꢉꢉ can be used from ꢂꢉV to ꢂꢀV.  
errVect_acc.errVector_all__ꢉ (accumulated/sticky)  
Individual channel errors:  
• DC error  
• Flying capacitor error  
• Over‑current error  
Table ꢉ: Gain options for recommended (guideline) PVDD  
voltages.  
pvdd_scale  
Recommended PVDD  
ꢉꢉ  
ꢂꢉ V  
ꢂꢁ V  
ꢂꢀ V  
ꢂꢃ V  
ꢉꢂ  
ꢂꢉ  
The errors above can be read as individual bits in the follow‑  
ing registers:  
ꢂꢂ (default)  
For additional noise characteristics as a function of gain  
and PVDD, please see Figure ꢂꢄ.ꢁꢇ and ꢂꢄ.ꢄꢉ.  
errVect_acc.errVector_chꢉ (Channel ꢉ accumulated /  
sticky errors)  
Note that the power stage cannot operate at full scale above  
ꢁꢉ kHz. HAP mode is preferred if out‑of‑band operation is  
desired as its bandwidth is greater than LPC mode.  
errVect_acc.errVector_chꢂ (Channel ꢂ accumulated /  
sticky errors)  
Clearing errors  
Errors can be cleared by toggling the reg.errTrig_reset  
register from ꢉ to ꢂ and then back to ꢉ.  
ꢀꢀ.ꢄ Protection  
MAꢁꢄꢉꢈPNS oꢅers a range of protection features to avoid  
damage to the device itself or attached speakers.  
Error handling:  
It is generally recommended to use to accumulated error  
registers for error detection and handling. Normal error  
handling procedure:  
ꢀꢀ.ꢄ.ꢀ Errors and Error Handling (NERR pin)  
The protection system in MAꢁꢄꢉꢈPNS monitors a range of  
parameters to check if min/max thresholds are exceeded.  
Exceeding the thresholds will trigger an error event in the  
protection system and the NERR pin (pin ꢂꢂ) will change  
from high to low. The NERR pin will only report errors  
correctly aꢋer the first PLL lock which requires clocks  
present on IꢁS_SCK and IꢁS_WC pins.  
• Disregard errors during start‑up of the device defined  
by TENABLE  
.
• Clear errors immediately aꢋer start‑up.  
• Monitor accumulated error registers (general + chan‑  
nel) and take appropriate action if an error occurs.  
The NERR pin can be used as an interrupt flag for an  
external host control device, e.g. a system microcontroller.  
Alternatively, the err_pin register can be used to monitor  
the NERR pin as well. Once an error has been detected  
by the host, the error type can be identified by reading  
the error registers. Connect a ꢀꢂ kΩ resistor from NERR to  
VDD_IO.  
• Clear error register(s) aꢋer action has been taken to  
again monitor for new errors.  
VDD_IO  
51 kΩ  
51 kΩ  
MCU/HOST  
General device errors:  
• Low temperature warning  
• IꢁS input error  
NERR  
NCLIP  
Figure ꢀꢀ.ꢆ: NERR/NCLIP schematic  
• PLL error  
• PVDD over‑voltage  
• PVDD under‑voltage  
• Over‑temperature error  
• Over‑temperature warning  
ꢀꢀ.ꢄ.ꢁ Output DC Protection (DCP)  
The amplifier output can detect if a DC voltage is present  
at the output terminals. If the output voltage stays above  
the DCP threshold for too long, corresponding to a ꢂ Hz si‑  
nusoid, the power stage will shut down, a DC error will be  
reported to the channel error register and the power stage  
will attempt to restart and resume operation. Each output  
channel is monitored separately.  
The errors above can be read as individual bits in the follow‑  
ing registers:  
errVect_now.errVector_all__ꢉ (instantaneous)  
Datasheet  
page ꢂꢈ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢀ.ꢄ.ꢂ Over‑Current Protection (OCP)  
ꢀꢀ.ꢄ.ꢄ Over Temperature Protection (OTP)  
Over‑current (OC) events can be triggered by e.g. driving  
low impedance loads with high PVDD and shorting speaker  
terminals to each other or to ground. The current flowing in  
each internal MOSFET in the output stage is monitored. If  
the threshold is exceeded (refer to BTL threshold and PBTL  
threshold) the power stage will shut down, an OCP error will  
be reported to the error register and the power stage will at‑  
tempt to restart and resume operation.  
An internal temperature sensor eꢅectively safeguards the  
device against a thermally induced failure due to overload‑  
ing and/or insuꢅicient cooling. A high die temperature ini‑  
tially causes an Over Temperature Warning (OTW). During  
an OTW event, the device will continue to operate normally  
but if the temperature rises further, the device will reach  
Over Temperature Error (OTE). An OTE event will cause  
the device to stop all output switching activity in order to  
avoid permanent damage. The device will resume switch‑  
ing when the temperature has dropped suꢅiciently. Both  
OTW and OTE will report to the NERR pin and the error reg‑  
isters. Refer to specifications for OTE and OTW trigger and  
clear temperatures.  
ꢀꢀ.ꢄ.ꢃ PVDD Over/Under‑Voltage Protection  
PVDD features over‑voltage (OVP) and under‑voltage (UVP)  
protection as well as under‑voltage lockout (UVLO). Thresh‑  
old voltages can be found in specifications. Refer to Figure  
ꢂꢂ.ꢃ for an overview of the voltage protection on PVDD.  
ꢀꢀ.ꢄ.ꢇ PLL Error and IꢁS Input Error  
PVDD voltage range  
Functionality  
PLL error will occur in case of lost clock signals on the  
IꢁS_SCK and IꢁS_WC. The MAꢁꢄꢉꢈPNS relies on these clock  
signals to operate properly and if they are not present or  
faulty, the core will come to a halt state, reporting to the er‑  
rorsystemthatthePLLisnotlocked. Whentheclocksignals  
return, operation is resumed. In the event of bad audio in‑  
put an error will also be reported to the error register on a  
separate bit.  
Above absolute maximum  
OVP area  
Device breakdown  
Output muted  
Recommended operating  
conditions  
Normal  
operation  
UVP area  
Output muted  
Device in reset  
Figure ꢀꢀ.ꢈ: PVDD voltage protection overview  
UVLO area  
ꢀꢀ.ꢄ.ꢆ Flying Capacitor Over/Under‑Voltage Protec‑  
tion  
The flying capacitors connected to the VFCxxx pins are  
essential for MERUS™ multilevel switching to function  
properly. During normal operation an internal voltage  
balancing circuit will generate a virtual PVDD/ꢁ supply  
across the external flying capacitor. To protect the internal  
MOSFETs against permanent damage the MAꢁꢄꢉꢈPNS  
features over/under‑voltage protection (OVP/UVP) in case  
of loop instability or flying capacitor balancing errors.  
The flying capacitor voltage is monitored and OVP/UVP  
is triggered if the voltage over the flying capacitors is  
deviating too far from PVDD/ꢁ. In this event, the output  
stage stops switching (output muted). When the flying  
capacitor voltage has again been balanced the device starts  
switching automatically (output unmuted).  
OVP protects the MOSFETs in the output power stage  
against permanent damage due to over‑voltage. If PVDD  
voltage rises above OVPPVDD the power stage will stop  
switching and the output will eꢅectively be muted (overrid‑  
ing NMUTE pin). PVDD voltage must fall below OVPPVDD,CLR  
voltage before the device exits muted state. OVP will not  
protect the device against PVDD voltages rising above the  
absolute maximum value.  
UVP behaves similarly and also mutes the output (with‑  
out audio artifacts) by stopping all switching in the output  
power stageif PVDD voltage dropsbelow the recommended  
operating conditions. In UVP state it is still possible to com‑  
municate with the device but mute is sustained. UVP  
should be considered a warning for low and/or unstable  
PVDD.  
Note that flying capacitor over/under‑voltage protection  
will not trigger if the PVDD voltage is below ꢂꢄ V. The reason  
is that the feature is designed to protect the internal MOS‑  
FETs against over‑voltage conditions that could cause per‑  
manent damage to the IC, and at lower PVDD voltages the  
MOSFETs are no longer prone to this condition.  
If PVDD is reduced further, falling below the UVLOPVDD  
threshold, the deviceshutsdown. Power‑onresetisapplied  
when raising PVDD above the rising threshold again. When  
shut down, the device is not functional.  
Datasheet  
page ꢂꢀ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
VDD  
OVP Vth  
VDD  
AVDD_REG  
DVDD_REG  
CD_DIG  
1 µF  
X5R/X7R  
PVDD/2  
Fly Cap voltage  
3x  
1 µF  
X5R/X7R  
UVP Vth  
HIGH  
VDD_IO  
AVSS  
MUTE  
VDD_IO  
1 µF  
X5R/X7R  
LOW  
Figure ꢀꢀ.ꢉ: Flying capacitor protection behaviour  
Figure ꢀꢀ.ꢀꢅ: Decoupling/supply capacitor schematic  
with recommended specifications  
ꢀꢀ.ꢄ.ꢈ NCLIP Pin  
The NCLIP works as a clipping indicator and starts pulsing  
from high to low at higher levels and becomes constant low  
when near clipping. A system microcontroller can use this  
pin as an indicator to decrease volume/gain if desired when  
clipping occurs. Alternatively, the integrated DSP features  
a configurable output limiter that can be used to prevent  
clipping. Triggering NCLIP does not register as an error, but  
the clip_pin register can be used monitor the state of NCLIP.  
Connect a ꢀꢂ kΩ resistor from NCLIP to VDD_IO as shown in  
Figure ꢂꢂ.ꢆ.  
flying capacitor, with a positive and a negative ter‑  
minal, VCFxxP and VCFxxN pins. The fly‑cap pins are  
high power pins and care must be taken to reduce induc‑  
tance/resistance in the PCB layout as the full output current  
will flow through pins/caps. Keep the flying capacitors as  
close to the device as possible with as short and wide PCB  
traces as possible. Refer to Section ꢂꢁ for more information.  
FB0A  
OUT0A  
VCF0AP  
Flycap  
ꢀꢀ.ꢇ Power Supplies  
ꢀꢀ.ꢇ.ꢀ Supplies for Internal Analog/Digital Circuitry  
(VDD/VDD_IO)  
VCF0AN  
FB0B  
OUT0B  
MAꢁꢄꢉꢈPNS generates its own internal analog/digital sup‑  
plies from VDD with the use of external capacitors and the  
AVDD_REG,DVDD_REGandCD_DIGpins. AVSSistheground  
reference pin for the internal analog circuitry. MAꢁꢄꢉꢈPNS  
is designed to work with common power supply voltages,  
ꢂ.ꢃ V / ꢄ.ꢄ V, which are typically found in applications pow‑  
ering the host device already. When VDD is power cycled,  
theMAꢁꢄꢉꢈPNSregistersettingsareresettodefault. AllVDD  
decoupling capacitors should be placed as close as possible  
to the supply pins. The recommended capacitor specifica‑  
tions are shown in Figure ꢂꢂ.ꢂꢉ.  
Figure ꢀꢀ.ꢀꢀ: Flying capacitor schematic with  
recommended specifications  
When choosing flying capacitors, it is necessary to keep ca‑  
pacitance derating vs. DC bias voltage in mind if multi‑  
layer ceramic capacitors (MLCC) are used. The fly‑caps  
are constantly charged to ½PVDD, which will derate the  
expected capacitance. In general, high quality ꢂꢉ μF  
ꢁꢀV XꢀR/XꢆR ꢉꢃꢉꢀ MLCCs are recommended (example:  
CꢁꢉꢂꢁXꢀRꢂEꢂꢉꢊKꢂꢁꢀAB). The minimum eꢅective capaci‑  
tance should be ꢈ.ꢉ μF at ½PVDD for correct operation.  
VDD_IO is used for pull‑up resistors to I/O pins on the south  
side of MAꢁꢄꢉꢈPNS (pins ꢂꢂ‑ꢂꢃ). These are NERR (ꢂꢂ),  
NCLIP (ꢂꢁ), IꢁS_DO (ꢂꢄ), IꢁS_WC (ꢂꢈ), IꢁS_SCK (ꢂꢀ), IꢁS_DI  
(ꢂꢊ), IꢁC_SDA (ꢂꢆ), IꢁC_SCL (ꢂꢃ), NMUTE (ꢂꢇ) and ENABLE  
(ꢁꢉ). Note that the serial audio data output pin IꢁS_DO is  
internally driven by the VDD_IO supply.  
ꢀꢀ.ꢇ.ꢂ Power Stage Supply (PVDD)  
PVDD supplies current to the output power stage to drive  
the load. A bulk decoupling capacitor is recommended on  
the PCB to keep the supply stable, e.g. aluminium elec‑  
trolytic type capacitor. Capacitance value will depend on  
the application (lowest playback frequency, ripple voltage  
and maximum peak power requirements). In general, a ꢈꢆꢉ  
μF aluminium electrolytic capacitor will be suꢅicient for  
most applications.  
For simplicity, VDD_IO and VDD can be tied to the same low  
voltage supply in the application.  
ꢀꢀ.ꢇ.ꢁ Flying Capacitors  
The MAꢁꢄꢉꢈPNS power stage uses flying capacitors to  
generate a ½PVDD supply voltage for multilevel operation.  
Each output switch node pin OUTxx has a corresponding  
Datasheet  
page ꢂꢊ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
data line, making it ideal for multi‑channel applications  
Capacitance  
with multiple ICs.  
100%  
50%  
By default, the internal audio receiver in MAꢁꢄꢉꢈPNS  
will look for starting edge on the word clock and receive  
packages based on the package slot size (also known as  
frame width, see slot_size register), irrelevant of the frame  
midpoint transition on the word clock. This means that  
IꢁS (ꢁ‑channel) and TDM (multichannel) are processed  
similarly by the receiver, the diꢅerence being the amount  
of slot size packages received between two starting edges  
of the word clock. For example, a ꢁ‑channel ꢄꢁ bit IꢁS audio  
stream will have a ꢊꢈ bit audio frame cycle between word  
clock starting edges, whereas a ꢈ‑channel ꢄꢁ bit TDM audio  
stream will have ꢂꢁꢃ bit between starting edges (refer to  
audio data configuration examples in Figures ꢂꢂ.ꢂꢀ and  
ꢂꢂ.ꢂꢊ). In this way, MAꢁꢄꢉꢈPNS can automatically detect  
if the format is ꢁ‑channel or multichannel (IꢁS/TDM) as  
long as slot_size, data_size (bit depth), data_alignment,  
sck_pol, ws_fs_rising and lsb_first registers are configured  
to match for both the external transmitter (source) and the  
MAꢁꢄꢉꢈPNS (sink).  
Voltage  
0%  
0V  
Figure ꢀꢀ.ꢀꢁ: Typical derating for multi‑layer ceramic  
capacitors (MLCC) with diꢅerent package sizes  
Todecouplefasttransitents, itcanbebeneficialtoplacetwo  
low ESR capacitors with smaller capacitance value, e.g. ꢂ  
μF and ꢂꢉ μF, close to the PVDD pins on each opposing side  
of the MAꢁꢄꢉꢈPNS. Figure ꢂꢂ.ꢂꢄ shows the recommended  
PVDD decoupling schematic.  
Application  
dependent  
10 µF  
1 µF  
X5R/X7R X5R/X7R  
5
6
26  
PVDD  
PVDD  
PVDD  
PVDD  
Mirror  
+
PVDD  
25 PVDD caps  
to this  
To configure the input channel routing, refer to the  
tdm_input_map register.  
side also  
Figure ꢀꢀ.ꢀꢂ: Typical derating for multi‑layer ceramic  
capacitors (MLCC) with diꢅerent package sizes  
ꢀꢀ.ꢈ.ꢁ Digital Serial Audio Output  
MAꢁꢄꢉꢈPNS features a serial audio data output (pin ꢂꢄ:  
IꢁS_DO) with the same audio format properties as the serial  
audio input. To enable the audio output, the tx_enable  
register must be enabled. By default (refer to ROM code),  
the DSP output channels ꢂ and ꢁ (the signals received  
by the amplifier) are routed to IꢁS_DO, but this can be  
configured using the tdm_output_mapꢉ‑ꢂꢀ registers.  
ꢀꢀ.ꢆ Clock System  
MAꢁꢄꢉꢈPNS generates its own internal clock through a PLL  
in the presence of a serial audio bit clock (IꢁS_SCK) and a  
word clock (IꢁS_WC).  
The frequency of the audio bit clock is auto‑detected and  
clock frequencies up to ꢁꢈ.ꢀꢆꢊ MHz are supported. The au‑  
dio bit clock frequency will depend on sampling frequency,  
slot size (frame width) and the number of channels in the  
audio stream according to Equation .  
ꢀꢀ.ꢈ.ꢂ Input‑to‑Output Audio Propagation Delay  
MAꢁꢄꢉꢈPNS oꢅers a very low propagation delay from audio  
input to amplified output, making it ideal for delay sensi‑  
tive applications such as echo‑cancelling speaker phones  
and conference equipment. Refer to specifications for more  
info.  
fSCK = fs · slot_size · NCH 24.576MHz  
(ꢂ)  
ꢀꢀ.ꢈ Audio Interface  
ꢀꢀ.ꢈ.ꢀ Digital Serial Audio Input  
ꢀꢀ.ꢉ Digital Signal Processor (DSP)  
MAꢁꢄꢉꢈPNS has a single serial data audio input port that  
consistsof the pins IꢁS_WC(wordclock), IꢁS_SCK (bitclock)  
and IꢁS_DI (data in). The input port supports two‑channel  
IꢁS and multi‑channel TDM audio formats with sampling  
rates of ꢄꢁ, ꢈꢈ.ꢂ, ꢈꢃ, ꢃꢃ.ꢁ, ꢇꢊ, ꢂꢆꢊ.ꢈ and ꢂꢇꢁ kHz with data‑  
words of ꢂꢊ, ꢁꢈ or ꢄꢁ bits in length. The format alignment  
is configured in the data_alignment register. MAꢁꢄꢉꢈPNS is  
always configured as an audio sink device (receiver). TDM  
format is capable of up to ꢂꢊ audio channels on a single  
ꢀꢀ.ꢉ.ꢀ ROM Code / Static Memory  
The MAꢁꢄꢉꢈPNS contains ROM code (static memory) with a  
preconfigured DSP program that includes volume control  
and peak limiters. The ROM code is applied to the DSP by  
default when MAꢁꢄꢉꢈPNS is reset.  
Datasheet  
page ꢂꢆ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
dsp_bypass*  
MA2304  
Power amps  
CLK  
Clock  
system  
tdm_input_map0-1*  
OUT0  
OUT1  
2ch  
I2S  
input  
SCK  
Serial  
2-16ch  
16ch  
DSP  
audio  
receiver  
2ch  
tdm_output_map0-15*  
tx_loopback*  
I2S/TDM  
2ch  
16ch  
tx_enable*  
I2S_DO  
16ch  
Serial audio  
transmitter  
2-16ch  
I2S/TDM  
*Refer to register map for description  
Figure ꢀꢀ.ꢀꢃ: Audio routing  
data_alignment  
Two-channel audio data example  
data_size  
I2S delayed 1 bit  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
16 bit  
24 bit  
I2S  
LJ  
LSB  
LSB  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
16 bit  
24 bit  
LSB  
LSB  
MSB  
LSB  
LSB  
MSB  
LSB  
LSB  
16 bit  
24 bit  
RJ  
MSB  
MSB  
Lechannel / slot 0  
Right channel / slot 1  
slot_size: 32 bit  
Audio frame: 64 bit (2 channels of 32 bit)  
I2S_WC  
Figure ꢀꢀ.ꢀꢄ: Audio data configuration/timing for two channels  
ꢀꢀ.ꢉ.ꢁ Volume Control  
DSP (ROM Code)  
Volume can be controlled with the volume_ch register. The  
audio volume is not applied instantly but ramped to avoid  
audible click/pop artifacts. Volume ramping can be dis‑  
abled by enabling the vol_instant register.  
OUT0/1  
I2S_DO  
2ch  
2ch  
Audio TX  
Volume  
Peak Limiter  
tx_enable*  
ꢀꢀ.ꢉ.ꢂ Peak Limiter (ROM Code)  
*Refer to register map for description  
Figure ꢀꢀ.ꢀꢆ: DSP ROM code  
The peak limiters in the ROM code can be configured with  
attack_ch, release_ch and threshold_ch registers, which  
control the attack and release times as well as the threshold  
for limiting. The attack and release times are sample rate  
dependent in the way that a higher register value should  
be chosen for higher sample rates to achieve an equivalent  
attack/release time.  
The ROM code can be disabled by disabling the DSP entirely  
in the dsp_enable register. Alternatively, the DSP can be  
bypassed with the dsp_bypass register. The output signal  
would be identical using either method, but the power con‑  
sumption is slightly reduced by disabling the DSP instead of  
bypassing.  
ꢀꢀ.ꢀꢅ Auxiliary ADC  
MAꢁꢄꢉꢈPNS features an ꢃ‑bit auxiliary ADC. The ADC can  
sample from the power stage supply PVDD, the internal  
Datasheet  
page ꢂꢃ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
data_alignment  
Four-channel audio data example (TDM)  
I2S delayed 1 bit  
(Equal to LJ + 1 bit shi)  
data_size  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
16 bit  
24 bit  
I2S  
LJ  
LSB  
LSB  
LSB  
LSB  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
16 bit  
24 bit  
LSB  
LSB  
LSB  
LSB  
MSB  
LSB  
LSB  
MSB  
LSB  
LSB  
MSB  
LSB  
LSB  
MSB  
LSB  
LSB  
16 bit  
24 bit  
RJ  
MSB  
MSB  
MSB  
MSB  
Channel/slot 0  
Channel/slot 1  
Channel/slot 2  
Channel/slot 3  
slot_size: 32 bit  
Audio frame: 128 bit (4 channels of 32 bit)  
I2S_WC  
Figure ꢀꢀ.ꢀꢇ: Audio data configuration/timing for four channels. Note that choosing ’IꢁS’ in data_alignment for  
MAꢁꢄꢉꢈPNS does not restrict the data stream to only two channels. ’IꢁS’ in data_alignment just refers to the data being  
aligned to the leꢋ and delayed by one bit.  
Device address Register address  
ꢆ bits + R/W bit ꢂꢊ bits  
Data  
ꢃ bits  
temperature sensor or a voltage on the ADC_IN pin from an  
external source. The sampled data is available in registers  
pvdd_chip, temp_chip and adc_pin. The ADC_IN pin  
voltage range is ꢉ V (min) to ꢂ V (max).  
Please see Section ꢂꢂ.ꢂꢂ.ꢁ and ꢂꢂ.ꢂꢂ.ꢄ for device address‑  
ing and write/read commands.  
The ADC can be useful for general purpose monitoring, e.g.  
keeping temperature below a specified point by adjusting  
volume if temperature readings become too high according  
to the application specification. The ADC is not designed for  
tasks with high precision.  
The SDA and SCL lines must be pulled high once per  
application to the voltage supplying VDD_IO through a  
resistor, e.g. ꢁ.ꢁ kΩ, to ensure correct IꢁC functionality. The  
minimum and maximum recommended pull‑up resistor  
value is shown in specifications.  
ꢀꢀ.ꢀꢀ IꢁC Serial Control Interface  
Please refer to the original IꢁC bus specification and user  
manual provided by NXP Semiconductors for more detailed  
information on IꢁC communication.  
MAꢁꢄꢉꢈPNS oꢅers a serial control interface through the  
standard ꢁ‑wire IꢁC protocol using IꢁC_SDA (data) and  
IꢁC_SCL (clock) lines. An application host device may then  
access the register map to configure the MAꢁꢄꢉꢈPNS.  
ꢀꢀ.ꢀꢀ.ꢀ Device Address  
Device addresses for IꢁC communication can be set by  
pulling the IꢁC_ADꢉ (pin ꢄꢊ) and IꢁC_ADꢂ (pin ꢄꢀ) pins to  
VDD_IO(high)orground(low). Thisgivesfouruniquedevice  
addresses for applications with up to eight BTL channels.  
ThepinconfigurationonIꢁC_ADandIꢁC_ADareonlyread  
once during start‑up of the device.  
VDD_IO  
MA23xx  
Host device  
(Microcontroller)  
2.2 kꢀ  
2.2 kꢀ  
I2C_SDA (17)  
I2C_SCL (18)  
SDA  
SCL  
Table ꢀꢅ: Device addresses combinations  
Figure ꢀꢀ.ꢀꢈ: IꢁC serial control interface block diagram  
IꢁC address  
ꢉxꢁꢉ  
IꢁC_ADꢀ  
Low  
IꢁC_ADꢅ  
Low  
ꢉxꢁꢂ  
Low  
High  
MAꢁꢄꢉꢈPNS uses ꢂꢊ bit register adresses for its internal  
register map (example: ꢉxꢉꢉꢉꢂ). The SDA line is sampled  
on the rising edge of the SCL line and the IꢁC command is  
shiꢋed/sampled with MSB first.  
ꢉxꢁꢁ  
High  
Low  
ꢉxꢁꢄ  
High  
High  
If four device addresses are not suꢅicient, hardware resis‑  
tor programming can be used for the IꢁC_ADꢉ and IꢁC_ADꢂ  
pins to enable up to ꢊꢈ unique device addresses. The pins  
must be connected to ground through a resistor of a spe‑  
Communicating properly with the MAꢁꢄꢉꢈPNS to access a  
single register must contain the following IꢁC sequence:  
Datasheet  
page ꢂꢇ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
cific value as shown in Figure ꢂꢂ.ꢂꢇ. Table ꢂꢂ illustrates the  
combination of resistors to yield a specific address.  
command to the IꢁC address (bit ꢃ, write=ꢂ), followed by  
the device address to read from.  
The device will acknowledge the two bytes and data can  
now be read from the device by sending a repeated start,  
followed by an IꢁC read command (bit ꢃ, read=ꢂ).  
I2C_AD1  
I2C_AD0  
R1  
R2  
The device will acknowledge the read request and start to  
drive the SDA bus with the bits from the requested register  
bank address.  
Figure ꢀꢀ.ꢀꢉ: Resistor programming schematic  
If the user tries to read in a non‑existing address, acknowl‑  
edge will be sent anyway but read will be ignored internally  
(ꢉxꢉꢉ will be sent to the IꢁC read requester).  
Table ꢀꢀ: Device addresses using resistor programming.  
Addresses are shown in decimal format  
The read transaction continues until the IꢁC source does  
not acknowledge the ꢇth bit of the data read byte transac‑  
tion and sends a stop condition (rising edge on SDA during  
SCL kept high).  
Rꢁ  
ꢀꢄꢅk ꢀꢅꢅk ꢇꢈk ꢃꢆk ꢂꢂk ꢁꢁk ꢀꢄk ꢀꢅk  
Rꢀ  
ꢀꢄꢅk  
ꢀꢅꢅk  
ꢇꢈk  
ꢃꢆk  
ꢂꢂk  
ꢁꢁk  
ꢀꢄk  
ꢀꢅk  
ꢂꢉ  
ꢂꢃ  
ꢁꢊ  
ꢄꢈ  
ꢈꢁ  
ꢀꢉ  
ꢀꢃ  
ꢂꢂ  
ꢂꢇ  
ꢁꢆ  
ꢄꢀ  
ꢈꢄ  
ꢀꢂ  
ꢀꢇ  
ꢂꢁ  
ꢁꢉ  
ꢁꢃ  
ꢄꢊ  
ꢈꢈ  
ꢀꢁ  
ꢊꢉ  
ꢂꢄ  
ꢁꢂ  
ꢁꢇ  
ꢄꢆ  
ꢈꢀ  
ꢀꢄ  
ꢊꢂ  
ꢂꢈ  
ꢁꢁ  
ꢄꢉ  
ꢄꢃ  
ꢈꢊ  
ꢀꢈ  
ꢊꢁ  
ꢂꢀ  
ꢁꢄ  
ꢄꢂ  
ꢄꢇ  
ꢈꢆ  
ꢀꢀ  
ꢊꢄ  
Refer to Figure ꢂꢂ.ꢁꢉ for read sequence.  
ꢂꢊ  
ꢁꢈ  
ꢄꢁ  
ꢈꢉ  
ꢈꢃ  
ꢀꢊ  
ꢂꢆ  
ꢁꢀ  
ꢄꢄ  
ꢈꢂ  
ꢈꢇ  
ꢀꢆ  
Read Operation without Write Start  
To read data from the device register bank, the IꢁC source  
can send a read transaction without write command first,  
meaning an IꢁC read command consisting of a byte with  
the device IꢁC address and the R/W bit set. The device will  
acknowledge the read request and start to drive the SDA  
bus with the bits from the last requested register bank ad‑  
dress+ꢂ.  
ꢀꢀ.ꢀꢀ.ꢁ IꢁC Write Operation  
Each IꢁC transaction is initiated from an IꢁC transmitter  
by sending an IꢁC start condition followed by the ꢆ‑bit IꢁC  
device address and the read/write bit (bit ꢃ, write=ꢉ).  
ꢀꢀ.ꢀꢁ EMI Mitigation  
In addition to the inherently low EMI levels from the  
MERUS™ multilevel switching output, MAꢁꢄꢉꢈPNS features  
ways to mitigate EMI further, which can be useful for appli‑  
cations with multiple devices.  
If the transmitted IꢁC address matches the configured  
address of the device, the device will acknowledge the  
request by pulling the SDA line to ground (bit ꢇ). The IꢁC  
transmitter samples the acknowledged bit from the device  
on the next rising edge of SCL.  
ꢀꢀ.ꢀꢁ.ꢀ Configurable Switching Edge  
To complete the write operation, the IꢁC transmitter must  
continue transmitting the address and at least one data  
byte. The device continues to acknowledge each byte  
received on the ꢇth SCL rising edge. Each additional data  
byte written to the device is written to the next address in  
the register bank.  
Fast square wave switching transients usually increase the  
amount of unwanted high frequency EMI. The switching  
edge steepness (slew rate) can be controlled in the gd_dVdt  
register which can be used as a tool for tuning applications  
forEMIcompliance. Thecompromiseis eꢅiciency, asslower  
transients will result in higher switching losses). Additional  
EMI suppression can be achieved by reducing the switching  
edge steepness (tested using the MAꢁꢄꢉꢈPNS EVK).  
The write transaction is terminated when the IꢁC transmit‑  
ter sends a stop condition to the device (rising edge on SDA  
during SCL kept high).  
ꢀꢀ.ꢀꢁ.ꢁ PWM Synchronization for EMI Reduction  
Block writing large amounts of data is also supported.  
Refer to Figure ꢂꢂ.ꢁꢉ for write sequence.  
ꢀꢀ.ꢀꢀ.ꢂ IꢁC Read Operation  
In multi‑channel systems with multiple MAꢁꢄꢉꢈPNS de‑  
vices, it can be increasingly necessary to suppress EMI. The  
NCLIP pin (ꢂꢁ) can be used as an input/output to synchro‑  
nize PWM signals of multiple devices and allow them to be  
driven out of phase which can have an influence on EMI per‑  
formance. PWMsyncisconfiguredaccordingtoFigureꢂꢂ.ꢁꢄ  
as follows:  
To read data from the device register bank, the read trans‑  
action is started by the IꢁC transmitter, sending a write  
Datasheet  
page ꢁꢉ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
I2C rite singlebyte:  
S
Device addr [6:0] W  
A
A
Register addr [15:8]  
Register addr [15:8]  
Register addr [15:8]  
A
A
A
Register addr [7:0]  
Register addr [7:0]  
Register addr [7:0]  
A
A
A
Data [7:0]  
Data [7:0]  
S
A
A
S
S
I2C write multiple bytes:  
Device addr [6:0] W  
S
Data [7:0]  
A
...  
S
I2C read single byte:  
S
Device addr [6:0] W  
A
A
S
Device addr [6:0]  
R
Data [7:0]  
A
S
A
W
R
Acknowledge  
Write  
I2C read multiple bytes:  
S
Device addr [6:0] W  
A
A
Register addr [15:8]  
Data [7:0]  
A
Register addr [7:0]  
A
S
Read  
S
Device addr [6:0]  
R
A
Data [7:0]  
A
...  
S
S
Start/stop  
Figure ꢀꢀ.ꢁꢅ: IꢁC write and read sequences  
VDD_IO  
10 kΩ  
I2S_WC  
NCLIP  
AUDIO  
HOST  
MA23xx  
PWM source  
Figure ꢀꢀ.ꢁꢀ: Configurable PWM switching edges to  
I2S_SCK  
(output)  
reduce high frequency EMI content  
I2S_WC  
NCLIP  
MA23xx  
PWM sink  
Efficiency vs. gd_dVdt settings  
90  
I2S_SCK  
(input)  
85  
80  
75  
70  
65  
I2S_WC  
NCLIP  
MA23xx  
PWM sink  
I2S_SCK  
(input)  
Figure ꢀꢀ.ꢁꢂ: PWM synchronization for multiple  
MAꢁꢄꢉꢈPNS devices  
sink devices by setting time lag in reg.pwm_phase  
gd_dVdt=11  
gd_dVdt=10  
gd_dVdt=01  
gd_dVdt=00  
60  
55  
50  
PMP=LPC  
NCLIPmustbepulleduptoVDD_IOthroughakΩresistor.  
The clock signals IꢁS_SCK and IꢁS_WC in the audio stream  
must be the same for all devices.  
0.1  
1
10  
30  
Output Power p/ch [W]  
Figure ꢀꢀ.ꢁꢁ: Eꢅiciency for diꢅerent gd_dVdt settings  
ꢀꢀ.ꢀꢂ Post‑Ferrite Filter Feedback  
MAꢁꢄꢉꢈPNS can include an output filter ferrite in the inter‑  
nal control loop to compensate for the non‑linearities in  
the ferrite material and as such improve audio performance  
in terms of THD+N. This relaxes the requirements for high  
quality ferrites and can therefore minimize cost of the  
output filter.  
ꢂ. Configure NCLIP pin to act as PWM input/output  
gpio_sync_zclip  
ꢁ. Configure PWM source device by setting  
sync_out_enable  
The feedback pins (FBXA and FBXB) must always be con‑  
nected for loop stability. If post‑ferrite feedback is not  
desired, the feedback pins must be directly connected to  
the OUTXA and OUTXB pins, respectively as shown in Figure  
ꢂꢂ.ꢁꢀ.  
ꢄ. Configure PWM sink devices by setting sync_in_enable  
ꢈ. Control PWM phase relationship in either source or  
Datasheet  
page ꢁꢂ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Post Ferrite Filter Feedback  
FB0A  
OUT0A  
Amp only (no filter)  
Pre-filter feedback  
Post-filter feedback  
Ferrite: BLM31KN471SH1L  
Config:BTL  
FB  
FB  
10  
1
Cf  
Cf  
Load: 4 +22µH  
Signal:1kHz  
FB0B  
OUT0B  
Figure ꢀꢁ.ꢀ: EMC ferrite output filter  
0.1  
0.01  
Table ꢀꢁ: EMC ferrite filter recommendation  
Ferrite  
Capacitor  
ꢁꢁꢉ pF  
NFZꢁMSDꢂꢀꢉSNꢂꢉL  
NFZꢁMSDꢄꢉꢂSZꢂꢉL  
0.01  
0.1  
1
10  
ꢁꢁꢉ pF  
Output power [W]  
Figure ꢀꢀ.ꢁꢃ: Example of the post‑ferrite filter feedback  
PCB layout for the output filter should be tight and with  
the smallest possible current return path for optimal EMI  
performance. In an application, cables connected from  
speaker terminals to the PCB should be twisted if possible  
for the same reason.  
eꢅect on distortion characteristics  
Post-ferrite  
Pre-ferrite  
FBXA  
FBXA  
ꢀꢁ.ꢀ.ꢀ Capacitor Value Impact on Power Consumption  
OUTXA  
OUTXA  
The filter capacitor can have a significant impact on the  
MAꢁꢄꢉꢈPNS power consumption and must be of relatively  
low capacitance value, e.g. ꢂꢉꢉ‑ꢁꢁꢉ pF for minimal impact.  
For a ꢁꢁꢉ pF capacitor on each output channel in a BTL  
configuration results in approximately ꢂꢉ‑ꢁꢉ mW additional  
power consumption at idle operation. Higher capacitance  
values will increase power consumption further, but also  
provide a lower corner frequency with improved suppres‑  
sion of EMI. The capacitor value should be balanced for the  
target application, however, no more than ꢂ nF should be  
used.  
FBXB  
OUTXB  
FBXB  
OUTXB  
Figure ꢀꢀ.ꢁꢄ: Post‑ferrite filter feedback schematic  
It is not recommended to use an LC filter with post‑ferrite  
filter feedback because the phase introduced by the LC fil‑  
ter can cause loop instability. If an LC filter is desired in the  
application, pre‑ferrite feedback should be used.  
Please refer to MAꢁꢄꢉꢈPNS application notes for more infor‑  
mation and EMI measurement results.  
ꢀꢁ.ꢀ.ꢁ Ferrite Filter Selection  
ꢀꢁ Application Information  
The most important factor in EMI suppression is the output  
filter ferrite bead. Ferrite bead performance may vary  
greatly in terms of eꢅective frequency region and suppres‑  
sion magnitude. This means that one ferrite part cannot  
necessarily replace another directly, and must be tested  
at an EMC lab for verification of compliance with regula‑  
tions. An important characteristic is saturation current of  
ferrite material, which must comply with the maximum  
application output current in order to be eꢅective at high  
output levels. Ferrites in ꢉꢃꢉꢀ/ꢂꢁꢉꢊ SMD packages will  
usually provide suꢅicient specifications. The NFZ‑series  
from Murata yields good results, e.g. NFZꢁMSDꢄꢉꢂSZꢂꢉL  
and NFZꢁMSDꢂꢀꢉSNꢂꢉL.  
ꢀꢁ.ꢀ EMC Ferrite Output Filter  
The MAꢁꢄꢉꢈPNS allows for inductor‑less operation while  
achieving EMI compliance. This is mainly due to the  
MERUS™ multilevel switching technology which reduces  
the magnitude of the switching waveform at all output lev‑  
els. A simple and inexpensive ferrite‑capacitor output filter  
can be used to suppress the emissions from the amplifier  
output. The filter schematic is shown in Figure ꢂꢁ.ꢂ and rec‑  
ommended filter component values are shown in Table ꢂꢁ.  
Datasheet  
page ꢁꢁ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Table ꢀꢄ: Power and noise performance characteristics for  
ꢀꢁ.ꢀ.ꢂ Ferrite Filter Stability Under Light Loads  
recommended LC filter designs.  
Operating the MAꢁꢄꢉꢈPNS under very light output loads  
above ꢀꢉꢉ Ω can result in the amplifier’s feedback loop be‑  
coming unstable, which can be a real scenario if the load is  
planned to be disconnected from time to time. If the load  
is planned to be disconnected during normal operation, it  
is recommended to use an RC damping network (snubber)  
similar to the damping network using an LC filter (Refer to  
Sectionꢂꢁ.ꢂ.ꢈ). StartingpointRCvaluescanbeR<ꢀꢉΩand  
C=ꢁꢁ nF but they need to be tuned to the specific applica‑  
tion. The RC network will help maintain loop stability when  
the load is removed.  
*Ref: Reference using no filter. Same device and board  
(EVK) was used to test all filter designs including reference.  
**LPC mode was not applicable with high capacitance filter  
components.  
Idle power  
LPC  
Output noise  
Design  
HAP  
LPC  
HAP  
Ref*  
#ꢂ  
ꢈꢇ mW  
ꢆꢀ mW  
ꢆꢊ mW  
ꢆꢉ mW  
N/A**  
ꢆꢈ mW  
ꢂꢉꢊ mW  
ꢇꢊ mW  
ꢃꢁ mW  
ꢊꢇ mW  
ꢇꢉ μV  
ꢂꢁꢉ μV  
ꢂꢉꢂ μV  
ꢇꢀ μV  
N/A**  
ꢀꢈ μV  
ꢊꢉ μV  
ꢀꢀ μV  
ꢀꢈ μV  
ꢀꢄ μV  
#ꢁ  
#ꢄ  
#ꢈ  
ꢀꢁ.ꢀ.ꢃ LC filter options  
ꢀꢁ.ꢁ Thermal Design  
The MAꢁꢄꢉꢈPNS is designed to be used in applications  
without external heatsink. A well‑designed ꢈ‑layer PCB  
can act as a heatsink. The bottom thermal pad (EPAD) of  
the IC package should be thermally well‑connected to the  
top layer copper with as many vias as possible to the other  
layers. It is recommended to keep routed traces in the  
middle layers to a minimum, avoiding any routing at all  
if possible. Let the bottom layer only be used for routing  
traces between layers. Deadspace in all layers should  
be filled with copper connected to ground to maintain  
unhindered thermal flow away from the IC. Refer to Figure  
ꢂꢁ.ꢃ for PCB layout reference.  
MAꢁꢄꢉꢈPNS can also operate with a LC filter for even  
higher EMI suppression. An LC filter can provide additional  
suppression of EMI, but will usually be higher cost and  
footprint size on board than a ferrite filter.  
FB0A  
OUT0A  
L
Cd  
Rd  
Cf  
Cf  
Rd  
Cd  
FB0B  
OUT0B  
L
Heat is generated primarily in the on‑resistance of the in‑  
ternal MOSFETs, as well as the bond wires from the sili‑  
con to the IC pins, and will be dependent on load current.  
The losses due to heat will be more severe with lower load  
impedances, as conduction losses in the IC will dominate  
with increasing current. A comparison between load and  
output configuration (BTL/PBTL) is shown in Figure ꢂꢄ.ꢂꢁ  
and ꢂꢄ.ꢂꢄ.  
Table ꢀꢂ: LC filter schematic  
The LC filter has to be carefully designed and tested to  
properly avoid instability with MAꢁꢄꢉꢈPNS. Stability issues  
can occur if the filter corner frequency is too low and  
non‑suꢅicient EMI suppression may occur if the corner  
frequency is too high. The LC filter should consist of a  
filtering part (L and Cf) and a damping network (Cd and  
Rd) as shown in Figure ꢂꢄ. Typical recommended LC filter  
component values are shown in Table ꢂꢈ.  
ꢀꢁ.ꢂ Start‑up Procedure  
The recommended procedure for proper start‑up of the de‑  
vice:  
ꢂ. Keep the device disabled and muted: ENABLE = ꢉ,  
NMUTE = ꢉ.  
Table ꢀꢃ: Recommended LC filter component values  
Design  
#ꢂ  
L
Cf  
Cd + Rd  
ꢁ. Ensure MSEL, ADꢉ and ADꢂ pins are configured cor‑  
rectly.  
ꢄ.ꢄ μH  
ꢈ.ꢆ μH  
ꢊ.ꢃ μH  
ꢂꢉ μH  
ꢈꢆꢉ pF  
ꢂ nF  
ꢂ nF + ꢁꢁꢉ Ω  
ꢂꢉ nF + ꢂꢉꢉ Ω  
ꢂꢉꢉ nF + ꢁꢁ Ω  
ꢂ μF + ꢂꢉ Ω  
#ꢁ  
#ꢄ  
ꢂꢉ nF  
ꢁꢁꢉ nF  
ꢄ. Enable VDD, VDD_IO and PVDD supplies and wait for  
them to become stable.  
#ꢈ  
ꢈ. Ensure IꢁS bit clock and frame clock are present.  
ꢀ. Enable device: ENABLE = ꢂ.  
Table ꢂꢀ shows the diꢅerence in output noise (A‑weighted)  
and idle power consumption as a function of the LC filter  
components and Power Mode Profile. All characteristics  
shown in the table are derived from the same device on the  
same board (EVK).  
ꢊ. Wait TENABLE until the device has started up in order to  
readtheNERRpinstatusandstartcommunicatingwith  
IꢁC.  
Please refer to MAꢁꢄꢉꢈPNS application notes for more infor‑  
mation and EMI measurement results.  
ꢆ. Program/initialize the device via IꢁC (if needed)  
Datasheet  
page ꢁꢄ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢃ. Unmute device: NMUTE = ꢂ. When NMUTE time has  
elapsed, the device is ready for audio playback.  
Fly‑caps: Flying capacitors for VFCxxx pins must be  
kept as close to the device as possible and care must  
be taken to keep the current loop tight and short to en‑  
sure multilevel switching stability.  
ꢇ. The device is now in normal operation state (idle) and  
ready to play audio.  
PCB layers: A PCB with four layers is recommended  
to achieve power output performance stated in the  
electrical characteristics. Via stitching/array between  
board layers is encouraged on the ground net (GND),  
especially below the bottom thermal pad of the de‑  
vice which uses the PCB as a heatsink to dissipate heat.  
In general, the unused copper (deadspace) in all lay‑  
ers should be connected to ground for optimal thermal  
and EMI performance. Avoid breaking up the ground  
planes with any routing traces in all layers as much as  
possible to ensure good thermal connection through‑  
out all PCB layers.  
ꢀꢁ.ꢃ Procedure for handling discontinuous  
audio clock  
In some applications the audio clocks may be stopped by  
the transmitter side from time to time, which will also  
halt the MAꢁꢄꢉꢈPNS audio playback. When the clocks re‑  
turn, MAꢁꢄꢉꢈPNS will continue operation once the PLL has  
locked again. MAꢁꢄꢉꢈPNS is designed to handle loss of  
clocks without any audio artifacts without muting. For op‑  
timal performance, it is recommended to follow this proce‑  
dure:  
ꢂ. The device is in normal operation and audio clocks are  
present.  
Output filter: The traces from the output to the filter  
should be kept as short as possible for optimal EMI per‑  
formance.  
ꢁ. Mute the device: NMUTE=ꢉ. Alternatively, put the de‑  
vice in standby mode.  
RC filter on IꢁS: Digital audio/control lines (IꢁS/IꢁC)  
can have an impact on EMI performance. It is sug‑  
gested to implement a RC first order lowpass filter  
close to the source on these lines to slow the transients  
and hence avoiding high frequency EMI. Values for the  
resistor and capacitor in the lowpass filter will be ap‑  
plication dependent, but a good starting point could  
be ꢄꢄ Ω and ꢂꢃꢉ pF.  
ꢄ. Disable the audio clocks from the transmitting side.  
The device is now only operational through IꢁC. PLL er‑  
ror is reported to the error register internally.  
ꢈ. When audio playback is required again, enable the au‑  
dio clocks, wait for the PLL to lock and the device to be  
fully operational again (see timing for TENABLE  
)
Output cables placement: Keep output speaker ter‑  
minals/cables on the opposite side of the PCB from  
PVDD for EMI reasons. Radiated emission from the out‑  
put switching waveform can couple from the output  
cables to the PVDD traces/cables and influence con‑  
ducted emission performance significantly.  
ꢀ. Unmute the device: NMUTE=ꢂ. Alternatively, put the  
device out of standby mode.  
ꢊ. The device is now in normal operation again and ready  
to play audio.  
ꢀꢁ.ꢄ Power‑down Procedure  
The recommended procedure for proper power‑down de‑  
scribed below:  
ꢂ. The device is in normal operation state.  
ꢁ. Mute device: NMUTE = ꢉ.  
ꢄ. Disable device: ENABLE = ꢉ.  
ꢈ. The device is now in power‑down state.  
ꢀ. (Optional: Bring down VDD, VDD_IO and PVDD sup‑  
plies.)  
ꢀꢁ.ꢇ Recommended Layout  
The recommended application/PCB layout is shown in Fig‑  
ure ꢂꢁ.ꢃ:  
Decoupling: Decoupling capacitors for power sup‑  
plies VDD, AVDD_REG, DVDD_REG, CD_DIG, PVDD and  
VDD_IO must be kept as close to the device as possible.  
The smallest value capacitors should be placed closest  
to the device to handle fast transients.  
Datasheet  
page ꢁꢈ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢁ.ꢆ Evaluation Board as Reference  
The EVAL_AUDIO_MAꢁꢄꢉꢈPNS evaluation board can be used as reference when designing an application. The evaluation  
board layout has specifically been optimized to achieve best possible thermal performance without an external heatsink.  
Refer to Figures ꢂꢁ.ꢁ through ꢂꢁ.ꢆ and/or refer to design files on infineon.com  
Figure ꢀꢁ.ꢂ: Evaluation board bottom side  
Figure ꢀꢁ.ꢁ: Evaluation board top side  
Figure ꢀꢁ.ꢃ: Top Layer  
Figure ꢀꢁ.ꢄ: Mid Layer ꢂ  
Figure ꢀꢁ.ꢇ: Mid Layer ꢁ  
Figure ꢀꢁ.ꢆ: Bottom Layer  
Datasheet  
page ꢁꢀ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
 
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Bottom thermal pad: VSS (ground)  
West side:  
North side:  
PVDD input and amplifier output  
Power suppliesand static tie-offs  
Connect VSS topower ground with via  
array/stitching good thermal  
performance  
VDD_IO or GND  
or resistors  
Supply  
decoupling  
caps close  
to IC  
GND: PBTL  
VDD_IO: BTL  
0402  
X5R  
1uF  
0402  
X5R  
1uF  
6.3V  
6.3V  
VDD_IO  
VDD  
ADC input  
1V=0dB  
0402  
X5R  
1uF  
0402  
X5R  
1uF  
6.3V  
6.3V  
VDD  
FB0A  
1
2
3
4
5
6
7
8
9
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
FB1A  
OUT0B  
OUT0A  
VFC0AN  
OUT0A  
VFC0AP  
PVDD  
VFC1AN  
OUT1A  
VFC1AP  
PVDD  
0603  
X5R  
1uF  
25V  
PVDD  
PVDD  
VFC0BP  
OUT0B  
VFC0BN  
VFC1BP  
OUT1B  
VFC1BN  
FB1B  
10 FB0B  
0805  
10uF  
25V  
0402  
0402  
51kΩ  
South side:  
DigitalI/O  
X5R  
Via to GND  
51kΩ  
PCB copper layer stack (4-layer)  
Top  
Layer  
Signallayer. Fill deadspace with ground.  
Mid  
Layer 1  
Ground layer. Avoid any traces in this layer  
for best thermalperformance.  
Mid  
Layer 2  
Ground layer. Avoid any traces in this layer  
for best thermalperformance.  
Bottom Ground layer. Place traces to a minimal  
Layer extend only. Avoid long traces in this layer.  
Figure ꢀꢁ.ꢈ: Recommended application/PCB layout for best performance  
Datasheet  
page ꢁꢊ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢂ Typical Characteristics  
Note that some characteristics are based on interpolated/averaged data.  
ꢀꢂ.ꢀ Eꢊiciency and power consumption  
Efficiency VS output power  
Efficiency VS output power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
PVDD=18V  
Signal=1kHz  
PVDD=18V  
Signal=1kHz  
BTL 4 +22µH HAP  
BTL 4 +22µH LPC  
BTL 8 +22µH HAP  
BTL 8 +22µH LPC  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
Output power p/ch [W]  
Output power p/ch [W]  
Figure ꢀꢂ.ꢀ  
Figure ꢀꢂ.ꢁ  
Efficiency VS output power  
Efficiency VS output power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
PVDD=18V  
Signal=1kHz  
PVDD=18V  
Signal=1kHz  
PBTL 2 +22µH HAP  
PBTL 2 +22µH LPC  
PBTL 4 +22µH HAP  
PBTL 4 +22µH LPC  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
Output power p/ch [W]  
Output power p/ch [W]  
Figure ꢀꢂ.ꢂ  
Figure ꢀꢂ.ꢃ  
Datasheet  
page ꢁꢆ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Efficiency VS output power  
100  
Efficiency VS output power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
PVDD=18V  
PVDD=18V  
Signal=1kHz  
Signal=1kHz  
40  
BTL 4 +22µH LPC  
BTL 4 +22µH HAP  
BTL 8 +22µH HAP  
PBTL 2 +22µH HAP  
PBTL 4 +22µH HAP  
30  
BTL 8 +22µH LPC  
PBTL 2 +22µH LPC  
20  
PBTL 4 +22µH LPC  
10  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
Output power p/ch [W]  
Output power p/ch [W]  
Figure ꢀꢂ.ꢄ  
Figure ꢀꢂ.ꢇ  
Input power VS output power  
Input power VS output power  
40  
10  
40  
10  
1
1
0.1  
PVDD=18V  
PVDD=18V  
0.1  
Signal=1kHz  
Signal=1kHz  
BTL 4 +22µH LPC  
BTL 4 +22µH HAP  
BTL 8 +22µH LPC  
BTL 8 +22µH HAP  
0.01  
0.01  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
Output power [W]  
Output power [W]  
Figure ꢀꢂ.ꢆ  
Figure ꢀꢂ.ꢈ  
Input power VS output power  
Input power VS output power  
40  
10  
40  
10  
1
0.1  
1
0.1  
PVDD=18V  
Signal=1kHz  
PVDD=18V  
Signal=1kHz  
PBTL 2 +22µH LPC  
PBTL 2 +22µH HAP  
PBTL 4 +22µH LPC  
PBTL 4 +22µH HAP  
0.01  
0.01  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
40  
Output power [W]  
Output power [W]  
Figure ꢀꢂ.ꢉ  
Figure ꢀꢂ.ꢀꢅ  
Datasheet  
page ꢁꢃ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Total idle power consumption vs PVDD voltage  
VDD=1.8V, LPC  
VDD=1.8V, HAP  
80  
VDD=3.3V, LPC  
VDD=3.3V, HAP  
70  
60  
50  
40  
Config=BTL  
Load=4 +22µH  
30  
20  
Output filter=None  
Output unmuted  
10  
11  
12  
13  
14  
15  
16  
17  
18  
PVDD [V]  
Figure ꢀꢂ.ꢀꢀ  
Datasheet  
page ꢁꢇ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢂ.ꢁ Thermal performance  
Thermal Curves  
Thermal Curves  
150  
150  
140  
130  
120  
110  
100  
90  
Temp Error  
Temp Error  
140  
130  
120  
Temp Warning  
Temp Warning  
110  
100  
90  
80  
80  
70  
70  
60  
60  
2 ohm + 22 uH - 2x6W  
50  
40  
30  
50  
PVDD=18V  
Config=BTL  
PVDD=18V  
4 ohm + 22 uH - 2x12W  
8 ohm + 22 uH - 2x20W  
2 ohm + 22 uH - 1x24W  
4 ohm + 22 uH - 1x30W  
Config=PBTL  
40  
30  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time [min]  
Time [min]  
Figure ꢀꢂ.ꢀꢁ  
Figure ꢀꢂ.ꢀꢂ  
Figure ꢀꢂ.ꢀꢃ: Thermal photo of EVAL_AUDIO_MAꢁꢄꢉꢈPNS Figure ꢀꢂ.ꢀꢄ: Thermal photo of EVAL_AUDIO_MAꢁꢄꢉꢈPNS  
at ꢁxꢂ W, ꢈ Ω  
EVK at ꢁxꢂꢁ W, ꢈ Ω  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
BTL 4 +22 µH  
PBTL 2 +22 µH  
BTL 8 / PBTL 4  
will not trigger OTE  
on evaluation board  
10  
10  
30  
100  
300  
600  
Time elapsed before Temperature Error [s]  
Figure ꢀꢂ.ꢀꢇ  
Datasheet  
page ꢄꢉ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢂ.ꢂ Audio performance  
THD+N vs Power  
10  
THD+N vs Power  
10  
1
4
8
4
8
+22µH LPC  
+22µH LPC  
+22µH HAP  
+22µH HAP  
2
4
2
4
+22µH LPC  
Config:BTL  
Signal:1kHz  
Config:PBTL  
Signal:1kHz  
+22µH LPC  
+22µH HAP  
+22µH HAP  
1
0.1  
0.1  
0.01  
0.0001  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output power [W]  
Output power [W]  
Figure ꢀꢂ.ꢀꢆ  
Figure ꢀꢂ.ꢀꢈ  
THD+N vs Power  
THD+N vs Power  
10  
1
10  
1
4
8
4
8
+22µH LPC  
2
4
2
4
+22µH LPC  
Config:BTL  
Config:PBTL  
+22µH LPC  
+22µH HAP  
+22µH HAP  
+22µH LPC  
+22µH HAP  
+22µH HAP  
Signal:6.3 kHz  
Signal:6.3 kHz  
0.1  
0.1  
0.01  
0.0001  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
Output power [W]  
Output power [W]  
Figure ꢀꢂ.ꢀꢉ  
Figure ꢀꢂ.ꢁꢅ  
THD+N vs Frequency  
THD+N vs Frequency  
10  
1
10  
1
LPC 4 +22µH  
LPC 8 +22µH  
HAP 4 +22µH  
HAP 8 +22µH  
LPC 2 +22µH  
LPC 4 +22µH  
HAP 2 +22µH  
HAP 4 +22µH  
Config=BTL  
5W p/ch  
Config=PBTL  
5W p/ch  
0.1  
0.1  
0.01  
0.01  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency [Hz]  
Frequency [Hz]  
Figure ꢀꢂ.ꢁꢀ  
Figure ꢀꢂ.ꢁꢁ  
Datasheet  
page ꢄꢂ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Output power VS PVDD  
40  
Output power VS PVDD  
25  
20  
15  
10  
5
Config: BTL  
Config: BTL  
Load: 8 + 22 µH  
35  
30  
25  
20  
15  
10  
5
Load: 4 + 22 µH  
1% THD  
1% THD  
10% THD  
10% THD  
0
10  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
11  
12  
13  
14  
15  
16  
17  
18  
PVDD [V]  
PVDD [V]  
Figure ꢀꢂ.ꢁꢂ  
Figure ꢀꢂ.ꢁꢃ  
Output power VS PVDD  
Output power VS PVDD  
80  
70  
60  
50  
40  
30  
20  
10  
40  
35  
30  
25  
20  
15  
10  
Config: PBTL  
Load: 2 + 22 µH  
Config: PBTL  
Load: 4 + 22 µH  
1% THD  
1% THD  
10% THD  
10% THD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
PVDD [V]  
PVDD [V]  
Figure ꢀꢂ.ꢁꢄ  
Figure ꢀꢂ.ꢁꢇ  
Datasheet  
page ꢄꢁ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Noise spectrum  
-40  
Gain vs frequency  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
LPC mode  
HAP mode  
Load=4 +22 uH  
Config=BTL  
-60  
Signal=1kHz -60dBFS  
Filter=10Hz-20kHz  
Averages=20  
-80  
-100  
pvdd_scale=00  
PMP=HAP  
pvdd_scale=01  
pvdd_scale=10  
pvdd_scale=11  
Signal=1kHz  
Level=-17dBFS  
-120  
-140  
20  
100  
1k  
10k 20k  
10  
100  
1k  
10k  
80k  
Frequency [Hz]  
Frequency [Hz]  
Figure ꢀꢂ.ꢁꢆ  
Figure ꢀꢂ.ꢁꢈ  
Noise VS PVDD (LPC mode)  
Noise VS PVDD (HAP mode)  
110  
100  
90  
110  
100  
90  
pvdd_scale=00  
pvdd_scale=00  
PMP=LPC  
PMP=HAP  
pvdd_scale=01  
pvdd_scale=10  
pvdd_scale=11  
pvdd_scale=01  
pvdd_scale=10  
pvdd_scale=11  
Signal=1kHz -60dBFS  
Weighting=A-wgt  
Filter=10Hz-20kHz  
Signal=1kHz -60dBFS  
Weighting=A-wgt  
Filter=10Hz-20kHz  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
10  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
11  
12  
13  
14  
15  
16  
17  
18  
PVDD voltage [V]  
PVDD voltage [V]  
Figure ꢀꢂ.ꢁꢉ  
Figure ꢀꢂ.ꢂꢅ  
Datasheet  
page ꢄꢄ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢃ Register map  
Legend:  
Red: Bits in the register which correspond to the specific Name/Function.  
pa  
Address Reset Name/Function  
Bits  
Value  
Description  
Power Mode Profile selection  
ꢁ:ꢉ ꢉꢉꢂꢂꢉꢉꢂꢉ ꢉꢂꢉ: LPC mode  
ꢂꢉꢉ: HAP mode  
Output channel configuration  
ꢉꢉꢂꢂꢉꢂꢉ ꢉ: BTL mode  
ꢉxꢉꢉꢉꢉ  
ꢉxꢄꢁ PMP_select  
mode_pbtl  
ꢂ: PBTL mode  
Gain scaling.  
ꢉꢉ: Optimized for PVDD=ꢂꢉV  
pvdd_scale  
ꢀ:ꢈ ꢉꢉꢂꢂꢉꢉꢂꢉ ꢉꢂ: Optimized for PVDD=ꢂꢁV  
ꢂꢉ: Optimized for PVDD=ꢂꢀV  
ꢂꢂ: Optimized for PVDD=ꢂꢃV  
Override pin/hardware programmed settings  
with register stettings  
TBD_reg_ctrl  
ꢂꢂꢉꢉꢂꢉ  
ꢉ: Hardware settings are chosen  
ꢂ: Register settings are chosen  
Gate drive strength (dV/dt)  
ꢉꢉ: Lowest  
ꢉxꢉꢉꢉꢂ  
ꢉxꢉꢄ gd_dVdt  
ꢂ:ꢉ ꢉꢉꢉꢉꢉꢉꢂꢂ ꢉꢂ: Low  
ꢂꢉ: High  
ꢂꢂ: Highest  
Mute channel ꢉ (mute_source must be set first)  
ꢉꢉꢉꢉꢉꢉꢉꢉ: Unmute  
ꢂ: Mute  
Mute channel ꢂ (mute_source must be set first)  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: Unmute  
ꢉxꢉꢉꢉꢁ  
ꢉxꢉꢉ mute_chꢉ  
mute_chꢂ  
ꢂ: Mute  
ꢉ: Channel ꢉ is enabled  
ꢂ: Channel ꢉ is disabled  
ꢉ: Channel ꢂ is enabled  
ꢂ: Channel ꢂ is disabled  
ꢉ: Disable standby  
disable_chꢉ  
disable_chꢂ  
standby  
ꢉꢉꢉꢉꢉꢉꢉ  
ꢉꢉꢉꢉꢉꢉꢉ  
ꢉꢉꢉꢉꢉꢉꢉ  
ꢂ: Enable standby  
Select source for the internal mute signal  
mute_source  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: NMUTE pin  
ꢂ: mute_chꢉ/ꢂ register settings  
Channel ꢉ volume setting. Step size: ‑ꢉ.ꢆꢀ dB  
per register value increment.  
ꢉxꢉꢉ: +ꢁꢈ dB  
ꢉxꢉꢂ: +ꢁꢄ.ꢁꢀ dB  
..  
ꢉxꢉꢉꢉꢄ  
ꢉxꢁꢉ volume_chꢉ  
ꢆ:ꢉ ꢉꢉꢂꢉꢉꢉꢉꢉ  
ꢉxꢂF: +ꢉ.ꢆꢀ dB  
ꢉxꢁꢉ: +ꢉ.ꢉꢉ dB (default)  
ꢉxꢁꢂ: ‑ꢉ.ꢆꢀ dB  
..  
ꢉxFF: ‑ꢂꢊꢆ.ꢁꢀ dB  
Channel ꢂ volume setting. See volume_chꢉ for  
more information.  
ꢉxꢉꢉꢉꢈ  
ꢉxꢁꢉ volume_chꢂ  
ꢆ:ꢉ ꢉꢉꢂꢉꢉꢉꢉꢉ  
Enable digital audio processor (DSP)  
ꢉxꢉꢉꢉꢀ  
ꢉxꢉꢉ dsp_enable  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: DSP disabled  
ꢂ: DSP enabled  
Datasheet  
page ꢄꢈ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Audio routing bypasses DSP  
dsp_bypass  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: Audio is routed through DSP  
ꢂ: Audio is routed directly to amplifier  
Volume control ramp disable  
vol_instant  
ꢉꢉꢉꢉꢉꢉꢉꢉ: Volume is ramped  
ꢂ: Volume is applied instantly ‑ no ramp  
NCLIP pin function select  
ꢉ: NCLIP is output pin indicating amp clipping  
ꢂ: NCLIP pin is used for inter‑IC PWM  
ꢉꢉꢉꢉꢉꢉꢉ  
gpio_sync_zclip  
synchronization (use sync_in_enable and  
sync_out_enable registers to select if NCLIP is  
input/output)  
State of the clip signal driving the NCLIP pin  
(read‑only)  
ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢉxꢉꢉꢉꢊ  
ꢉxꢉꢉ clip_pin  
ꢉ: No clipping  
ꢂ: Clipping  
State of the error signal driving the NERR pin  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: No error  
err_pin  
ꢂ: Error  
ADC reading from ADC_IN pin spanning  
ꢉxꢉꢉꢉꢆ  
ꢉxꢉꢉꢉꢃ  
ꢉxꢉꢉꢉꢇ  
ꢉxꢉꢉ adc_pin  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
between ꢉ V (min) and ꢂ V (max)  
Read internal temperature sensor. Resolution is  
ꢂ °C per increment with ꢉxꢉꢉ=‑ꢀꢉ °C  
Read internal PVDD sensor. Resolution is ꢂꢁꢀ  
mV per increment  
ꢉxꢉꢉ temp_chip  
ꢉxꢉꢉ pvdd_chip  
Channel ꢂ attack time for peak limiter (ROM  
code). Sample rate dependent. At ꢈꢃ kHz:  
ꢉxꢉꢉ: ꢉ ms/ꢂꢉ dB (default)  
ꢉxꢉꢃ: ꢂ ms/ꢂꢉ dB  
ꢉxꢉꢇ: ꢁ ms/ꢂꢉ dB  
ꢉxꢉꢉꢉB  
ꢉxꢉꢉ attack_chꢂ  
ꢈ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢉxꢉA: ꢈ ms/ꢂꢉ dB  
ꢉxꢉB: ꢃ ms/ꢂꢉ dB  
ꢉxꢉC: ꢂꢊ ms/ꢂꢉ dB  
ꢉxꢉD: ꢄꢁ ms/ꢂꢉ dB  
ꢉxꢉE: ꢊꢈ ms/ꢂꢉ dB  
ꢉxꢉF: ꢂꢁꢃ ms/ꢂꢉ dB  
Channel ꢉ attack time for peak limiter (ROM  
ꢉxꢉꢉꢉA  
ꢉxꢉꢉ attack_chꢉ  
ꢈ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢈ:ꢉ ꢉꢉꢉꢂꢉꢉꢂꢉ  
ꢈ:ꢉ ꢉꢉꢉꢂꢉꢉꢂꢉ  
code). See attack_chꢉ for more information.  
Channel ꢉ release time for peak limiter (ROM  
code). Sample rate dependent. At ꢈꢃ kHz:  
ꢉxꢉC: ꢂꢊ ms/ꢂꢉ dB  
ꢉxꢉD: ꢄꢁ ms/ꢂꢉ dB  
ꢉxꢉE: ꢊꢈ ms/ꢂꢉ dB  
ꢉxꢉꢉꢉC  
ꢉxꢂꢁ release_chꢉ  
ꢉxꢉF: ꢂꢁꢃ ms/ꢂꢉ dB  
ꢉxꢂꢉ: ꢁꢀꢊ ms/ꢂꢉ dB  
ꢉxꢂꢂ: ꢀꢂꢁ ms/ꢂꢉ dB  
ꢉxꢂꢁ: ꢂꢉꢁꢈ ms/ꢂꢉ dB (default)  
ꢉxꢂꢄ: ꢁꢉꢈꢃ ms/ꢂꢉ dB  
Channel ꢂ release time for peak limiter (ROM  
code). See release_chꢉ for more information.  
ꢉxꢉꢉꢉD ꢉxꢂꢁ release_chꢂ  
Datasheet  
page ꢄꢀ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Channel ꢉ threshold for peak limiter (ROM  
code). Step size: ‑ꢉ.ꢆꢀ dB per register value  
increment.  
ꢉxꢉꢉ: +ꢁꢈ dB  
ꢉxꢉꢂ: +ꢁꢄ.ꢁꢀ dB  
ꢉxꢉꢉꢉE  
ꢉxꢉꢉ threshold_chꢉ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ..  
ꢉxꢂF: +ꢉ.ꢆꢀ dB  
ꢉxꢁꢉ: +ꢉ.ꢉꢉ dB (default)  
ꢉxꢁꢂ: ‑ꢉ.ꢆꢀ dB  
..  
ꢉxFF: ‑ꢂꢊꢆ.ꢁꢀ dB  
Channel ꢂ threshold for peak limiter (ROM  
code). See threshold_chꢉ for more information.  
ꢉxꢉꢉꢉF  
ꢉxꢉꢉ threshold_chꢂ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
iꢁs_tdm  
Address Reset Name/Function  
Bits  
Value  
Description  
IꢁS/TDM data alignment  
ꢉꢉ: IꢁS  
ꢉxꢉꢉꢂꢉ  
ꢉxꢂꢉ data_alignment  
ꢂ:ꢉ ꢉꢉꢉꢂꢉꢉꢉꢉ  
ꢉꢂ: Leꢋ Justified  
ꢂꢉ: Right Justified  
IꢁS/TDM clock polarity  
sck_pol  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: Data changes on rising edge of SCK  
ꢂ: Data changes on falling edge of SCK  
IꢁS/TDM channel slot size (frame width)  
ꢉꢉ: ꢄꢁ bit  
slot_size  
ꢊ:ꢀ ꢉꢉꢉꢂꢉꢉꢉꢉ  
ꢉꢂ: ꢁꢈ bit  
ꢂꢉ: ꢂꢊ bit  
IꢁS/TDM word/frame clock polarity  
ws_fs_rising  
ꢉꢉꢂꢉꢉꢉꢉ ꢉ: Word/frame starts at falling edge  
ꢂ: Frame starts at rising edge  
Data size / bit depth  
ꢉꢉ: ꢁꢈ bit  
data_size  
ꢄ:ꢁ ꢉꢉꢉꢂꢉꢉꢉꢉ ꢉꢂ: ꢁꢉ bit  
ꢂꢉ: ꢂꢃ bit  
ꢂꢂ: ꢂꢊ bit  
IꢁS/TDM word order  
ꢉꢉꢉꢉꢉꢉꢉꢉ: MSB is transmitted first  
ꢉxꢉꢉꢂꢂ  
ꢉxꢉꢉ lsb_first  
ꢂ: LSB is transmitted first  
Select channel (ꢉ‑ꢂꢊ) in received IꢁS/TDM  
stream to pass on to DSP/amp channel ꢉ.  
ꢉꢉꢉꢉꢉ: Channel ꢉ  
ꢉxꢉꢉꢂꢁ  
ꢉxꢉꢉ tdm_input_mapꢉ  
ꢈ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢉꢉꢉꢉꢂ: Channel ꢂ  
..  
ꢉꢂꢂꢂꢉ: Channel ꢂꢈ  
ꢉꢂꢂꢂꢂ: Channel ꢂꢀ  
Select channel (ꢉ‑ꢂꢊ) in received IꢁS/TDM  
stream to pass on to DSP/amp channel ꢂ. See  
tdm_input_mapꢉ register description for more  
information.  
ꢉxꢉꢉꢂꢄ  
ꢉxꢉꢂ tdm_input_mapꢂ  
ꢈ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢂ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢉ of IꢁS/TDM stream.  
ꢉꢉꢉ: Zero  
ꢉxꢉꢉꢂꢊ  
ꢉxꢂA tdm_output_mapꢉ  
ꢁ:ꢉ ꢉꢉꢉꢂꢂꢉꢂꢉ  
ꢉꢉꢂ: High‑Z  
ꢉꢂꢉ: DSP output channel ꢉ  
ꢉꢂꢂ: DSP output channel ꢂ  
Audio channel transmitted to IꢁS_DO pin in slot  
tdm_output_mapꢂ  
ꢀ:ꢄ ꢉꢉꢉꢂꢂꢉꢂꢉ ꢂ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
Datasheet  
page ꢄꢊ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢁ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉꢂꢆ  
ꢉxꢉꢉꢂꢃ  
ꢉxꢉꢉꢂꢇ  
ꢉxꢉꢉꢂA  
ꢉxꢉꢉꢂB  
ꢉxꢉꢉꢂC  
ꢉxꢉꢉ tdm_output_mapꢁ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢄ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢄ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢈ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉ tdm_output_mapꢈ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢀ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢀ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢊ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉ tdm_output_mapꢊ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢆ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢆ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢃ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉ tdm_output_mapꢃ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢇ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢇ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢂꢉ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉ tdm_output_mapꢂꢉ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢂꢂ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢂꢂ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢂꢁ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉ tdm_output_mapꢂꢁ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢂꢄ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢂꢄ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢂꢈ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
ꢉxꢉꢉꢂD ꢉxꢉꢉ tdm_output_mapꢂꢈ  
Audio channel transmitted to IꢁS_DO pin in slot  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ ꢂꢀ of IꢁS/TDM stream. Setup is similar to  
tdm_output_mapꢉ.  
tdm_output_mapꢂꢀ  
Selects if transmitted audio data should be a  
copy of the received data.  
ꢉxꢉꢉꢁꢊ  
ꢉxꢉA tx_loopback  
ꢉꢉꢉꢉꢂꢉꢂꢉ  
ꢉ: IꢁS_DO is configured by tdm_output_map  
ꢂ: IꢁS_DO is a copy of IꢁS_DI  
IꢁS/TDM transmitter enable  
tx_enable  
ꢉꢉꢉꢉꢂꢂꢉ ꢉ: Disabled  
ꢂ: Enabled  
IꢁS/TDM receiver enable (necessary to play  
audio)  
rx_enable  
ꢉꢉꢉꢉꢂꢉꢉ  
ꢉ: Disabled  
ꢂ: Enabled  
Drive strength for IꢁS_DO pin  
tx_strong_drive  
ꢉꢉꢉꢉꢉꢂꢉ ꢉ: Normal  
ꢂ: Strong  
Datasheet  
page ꢄꢆ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Configure NCLIP pin as input for PWM  
synchronization  
ꢉxꢉꢉꢁꢆ  
ꢉxꢉꢈ sync_in_enable  
sync_out_enable  
fast_sync  
ꢉꢉꢉꢉꢉꢂꢉꢉ  
ꢉ: Disable  
ꢂ: Enable  
Configure NCLIP pin as output (open‑drain) for  
ꢉꢉꢉꢉꢉꢂꢉ PWM synchronization.  
ꢉ: Disable ꢂ: Enable  
Select frequency of the PWM synchronization  
signal  
ꢉꢉꢉꢉꢉꢉꢉ  
ꢉ: Slow (fs/ꢂꢁꢁꢃꢃ)  
ꢂ: Fast (fs/ꢂꢁ)  
pmc  
Value  
Address Reset Name/Function  
ꢉxꢉꢉBD ꢉxꢉꢉ PM_chꢉ  
PM_chꢂ  
Bits  
Description  
ꢁ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ Current selected Power Mode for channel ꢉ  
ꢀ:ꢄ ꢉꢉꢉꢉꢉꢉꢉꢉ Current selected Power Mode for channel ꢂ  
Channel ꢉ modulation index M detector output.  
If register value is ꢉ, modulation index is ꢉ.ꢉ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢉxꢉꢉBE ꢉxꢉꢉ Mdetector_chꢉ  
(minimum). If register value is ꢁꢀꢀ, modulation  
index is ꢂ.ꢉ (full modulation)  
Channel ꢂ modulation index M detector output.  
If register value is ꢉ, modulation index is ꢉ.ꢉ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢉxꢉꢉBF  
ꢉxꢉꢉ Mdetector_chꢂ  
(minimum). If register value is ꢁꢀꢀ, modulation  
index is ꢂ.ꢉ (full modulation)  
prot_sys  
Address Reset Name/Function  
Bits  
Value  
Description  
Error register reset  
ꢉꢉꢉꢉꢉꢉꢉ ꢉ: Do not reset error trigger  
ꢂ: Reset error trigger  
ꢉxꢉꢂꢉꢇ  
ꢉxꢉꢉ reg.errTrig_reset  
Instantaneous error vector ꢉ.  
Bit ꢆ: Low temperature warning  
Bit ꢊ: IꢁS input error  
Bit ꢀ: PLL not locked  
ꢉxꢉꢂꢂA  
ꢉxꢉꢉ errVect_now.errVector_all__ꢉ  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ Bit ꢈ: PVDD over‑voltage  
Bit ꢄ: Reserved  
Bit ꢁ: PVDD under‑voltage  
Bit ꢂ: Over‑temperature error  
Bit ꢉ: Over‑temperature warning  
Accumulated channel ꢉ error vector.  
Bit ꢈ: Reserved  
Bit ꢄ: DC error  
ꢉxꢉꢂꢂC  
ꢉxꢉꢉ errVect_acc.errVector_chꢉ  
ꢈ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
Bit ꢁ: Flying cap error  
Bit ꢂ: Reserved  
Bit ꢉ: Over‑current protection  
Accumulated channel ꢂ error vector. See  
ꢈ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢉxꢉꢂꢂD ꢉxꢉꢉ errVect_acc.errVector_chꢂ  
description for errVect_acc.errVector_chꢉ  
Accumulated error vector ꢉ.  
Bit ꢆ: Low temperature warning  
Bit ꢊ: IꢁS input error  
Bit ꢀ: PLL not locked  
Bit ꢈ: PVDD over‑voltage  
ꢆ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢉxꢉꢂꢂE  
ꢉxꢉꢉ errVect_acc.errVector_all__ꢉ  
Bit ꢄ: Reserved  
Bit ꢁ: PVDD under‑voltage  
Bit ꢂ: Over‑temperature error  
Bit ꢉ: Over‑temperature warning  
pa_hw  
Address Reset Name/Function  
Bits  
Value  
Description  
Datasheet  
page ꢄꢃ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
Unmute time delay from NMUTE=high to audio  
playback.  
ꢉxꢉꢂꢈꢁ  
ꢉxꢉꢄ otp.unmute_cnt  
ꢄ:ꢉ ꢉꢉꢉꢉꢉꢉꢂꢂ  
ꢉꢉꢂꢂ: ꢄꢉꢉ ms  
ꢂꢂꢉꢂ: ꢄꢉ ms (default)  
Time/phase delay of PWM signal in ꢁꢁ.ꢀ degree  
increments. Used with PWM sync to change  
relative PWM phase of synchronized devices.  
ꢉꢉꢉꢉꢉꢉꢉ: ꢉ deg  
ꢉxꢉꢂꢀF  
ꢉxꢉꢉ reg.pwm_phase  
ꢊ:ꢉ ꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢉꢉꢉꢉꢉꢉꢂ: +ꢁꢁ.ꢀ deg  
...  
ꢉꢉꢉꢂꢂꢂꢂ: +ꢄꢄꢆ.ꢀ deg  
ꢉꢉꢂꢉꢉꢉꢉ: +ꢄꢊꢉ deg (equivalent to ꢉ deg)  
Datasheet  
page ꢄꢇ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢄ Package Information  
Dimensions are in millimeter unless otherwise specified.  
Figure ꢀꢄ.ꢀ: QFN pad‑down ꢈꢉ‑pin MAꢁꢄꢉꢈPNS package dimensions. Leꢋ: Top view. Middle: Side view. Right: Bottom  
view.  
Figure ꢀꢄ.ꢁ: Package marking  
Datasheet  
page ꢈꢉ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
2.25  
2.25  
0.5  
36×  
0.25  
40×  
0.5  
0.23  
36×  
40×  
0.92  
16×  
0.56  
8×  
Pin1  
4.7  
1.68  
8×  
copper  
solder mask  
All dimensions are in units mm  
stencil apertures  
Figure ꢀꢄ.ꢂ: Recommended land pattern  
Datasheet  
page ꢈꢂ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
MAꢁꢂꢅꢃPNS  
MERUS™ Multilevel Switching Class‑D Audio Amplifier  
ꢀꢇ Tape and Reel Information  
Figure ꢀꢇ.ꢀ: Tape reel information  
Pin1 marking  
12  
4
0.3  
1.1  
6.3  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1 [  
]
Figure ꢀꢇ.ꢁ: Carrier tape information  
Datasheet  
page ꢈꢁ of ꢈꢁ  
August, ꢁꢉꢁꢁ  
 
MERUSªꢀMultilevelꢀSwitchingꢀClassꢀDꢀAudioꢀAmplifier  
MA2304PNS  
RevisionꢀHistory  
MA2304PNS  
Revision:ꢀ2022-08-23,ꢀRev.ꢀ2.2  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
Release of final version  
2.0  
2.1  
2.2  
2022-07-06  
2022-07-18  
2022-08-23  
Add filter condition on electrical characteristics  
Add continuous output power data at 8 ohm load  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2022ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
43  
Rev.ꢀ2.2,ꢀꢀ2022-08-23  

相关型号:

MA230LBC002

MA.230 Stream 3 in 1 High Performance Adhesive Mount Combination Antenna
ETC

MA231.LBC.003

MA231 3in1 Stream 3M
TAOGLAS

MA231.LBC.003_17

MA231 3in1 Stream 3M
TAOGLAS

MA23101BAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101BBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101CAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101CBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101DAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101DBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101FAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101FBN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA

MA23101GAN

HIGH FREQUENCY CERAMIC CAPACITORS
MURATA