MA5332MS [INFINEON]

MERUS™ 2 通道模拟输入 D 类音频放大器多芯片模块;
MA5332MS
型号: MA5332MS
厂家: Infineon    Infineon
描述:

MERUS™ 2 通道模拟输入 D 类音频放大器多芯片模块

放大器 音频放大器
文件: 总60页 (文件大小:3254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MA5332MS  
200W Stereo, Integrated Class D Amplifier  
Features  
2 channel analog input Class D audio amplifier in a small 7x7mm package  
Very low RDS(ON) at 24.4 mΩ typical, enabling heatsink-less operation at 2x100W at 4Ω  
95% efficiency Class D at 2x200W at 4Ω  
PG- IQFN-42  
Split or single power supply capable  
Differential or single-ended input  
Multiple configuration options: 2xSE, BTL, PSE (Parallel Single-Ended)  
Over-current, over-temperature and under-voltage protections with self-reset feature  
Start/stop click noise reduction  
Clip and Fault reporting outputs  
Applications  
Multi-channel home theatre system  
Studio monitor  
Active speaker  
Soundbar subwoofer  
Marine amplifier  
Aftermarket car audio system  
General-purpose audio power amplifier  
Total Harmonic Distortion  
Product validation  
Qualified for standard applications according to the  
relevant tests of J-STD-020 and JESD22.  
Product type  
Package  
7x7mm PG- IQFN-42  
MA5332MS  
Description  
The MA5332MS offers the same or higher output power than monolithic alternatives without heatsink and 50%  
less footprint. This MCM (multi-chip module) solution integrates 2 channel PWM controller, high voltage gate  
driver, and 4 low RDS(ON) MOSFETs. Like its predecessor, IR43x2M, it includes standard Class D protection  
features for reliable operation over various environmental conditions. As a powerful upgrade to IR43x2M and  
other monolithic solutions, MA5332MS’ 7x7 mm PG- IQFN-42 package showcases the benefit of small footprint,  
high power density, and heatsink-less operation.  
Topology  
Half-bridge / Full bridge  
MA5332MS Output power(Half-  
bridge,THD+N=10%, typical)  
150 W in 2 Ω / 300 W in 4 Ω  
200 W in 4 Ω / 400 W in 8 Ω  
160 W in 6 Ω  
*Residual noise (AES-17, IHF-A, typical)  
250 μVrms  
*THD+N (1kHz, 70W, 4 Ω, typical)  
0.01 %  
* In a typical application  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Applications................................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
Qualification information........................................................................................................ 4  
Device Comparison Table ........................................................................................................ 5  
3
3.1  
3.2  
Pin Configuration................................................................................................................... 6  
Lead assignments....................................................................................................................................6  
Lead definitions.......................................................................................................................................7  
4
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.7.1  
4.7.2  
4.7.3  
4.7.4  
4.7.5  
4.8  
4.8.1  
4.8.2  
4.8.3  
4.8.4  
4.9  
Specifications ........................................................................................................................ 8  
Absolute maximum ratings.....................................................................................................................8  
Recommended operating conditions.....................................................................................................9  
Electrical characteristics.......................................................................................................................10  
Audio characteristics (SE) .....................................................................................................................13  
Audio characteristics (BTL) ...................................................................................................................13  
Audio characteristics (PSE) ...................................................................................................................14  
Typical Audio characteristics (SE) ........................................................................................................15  
Power vs. THD+N..............................................................................................................................15  
Frequency vs. THD+N.......................................................................................................................16  
Frequency response.........................................................................................................................16  
Noise floor ........................................................................................................................................17  
Efficiency ..........................................................................................................................................17  
Typical Audio characteristics (BTL) ......................................................................................................18  
Power vs. THD+N..............................................................................................................................18  
Frequency vs. THD+N.......................................................................................................................19  
Frequency response.........................................................................................................................19  
Noise floor ........................................................................................................................................20  
Typical Audio characteristics (PSE) ......................................................................................................21  
Power vs. THD+N..............................................................................................................................21  
Frequency vs. THD+N.......................................................................................................................22  
Frequency response.........................................................................................................................22  
Noise floor ........................................................................................................................................23  
4.9.1  
4.9.2  
4.9.3  
4.9.4  
5
5.1  
5.2  
Thermal information .............................................................................................................24  
Peak power duration thermal information ..........................................................................................24  
Heatsink information ............................................................................................................................28  
6
7
8
Functional block diagram.......................................................................................................29  
Typical Implementation.........................................................................................................30  
Input / Output pin equivalent circuit diagrams .........................................................................33  
9
PWM Modulator Design ..........................................................................................................34  
Input Section .........................................................................................................................................34  
Control Loop Design..............................................................................................................................35  
PWM Frequency.....................................................................................................................................35  
Clock Synchronization ..........................................................................................................................36  
Click Noise Elimination .........................................................................................................................37  
9.1  
9.2  
9.3  
9.4  
9.5  
Datasheet  
2 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
9.6  
Differential Input ...................................................................................................................................38  
10  
Operational Mode..................................................................................................................39  
10.1  
Self-oscillation Start-up Condition.......................................................................................................39  
11  
Protections...........................................................................................................................40  
Self-Reset Protection .......................................................................................................................41  
Designing Ct......................................................................................................................................42  
Shutdown Input ...............................................................................................................................42  
Latched Protection...........................................................................................................................43  
Interfacing with System Controller .................................................................................................43  
Over Current Protection (OCP) .............................................................................................................44  
Over Temperature Protection (OTP) ....................................................................................................45  
Under Voltage Protection (UVP) ...........................................................................................................45  
11.1.1  
11.1.2  
11.1.3  
11.1.4  
11.1.5  
11.2  
11.3  
11.4  
12  
12.1  
12.2  
Status Output .......................................................................................................................46  
Fault Output ..........................................................................................................................................46  
CLIP Output ...........................................................................................................................................47  
13  
13.1  
13.2  
13.2.1  
13.2.2  
13.2.3  
13.3  
Power Supply Design.............................................................................................................48  
Supplying VAA and VSS .........................................................................................................................48  
Supplying VCC and VB...........................................................................................................................48  
Choosing Bootstrap Capacitance....................................................................................................49  
Choosing Bootstrap Diode...............................................................................................................49  
Charging VBS Prior to Start................................................................................................................49  
Power Supply Sequence .......................................................................................................................51  
14  
15  
Package details.....................................................................................................................52  
Board mounting, part marking, and ordering information .........................................................55  
Revision history.............................................................................................................................60  
 
Datasheet  
3 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
1
Qualification information  
Qualification Level (1)  
Standard (2)  
Qualified for standard applications according to the relevant tests  
of J-STD-020 and JESD22  
Moisture Sensitivity Level (MSL) (3)  
MSL3  
(per IPC/JEDEC J-STD-020)  
Class C2a  
(per JEDEC standard JS-002)  
ESD  
Charge Device  
Model  
Human Body  
Model  
Class 1B  
(per JEDEC standard JS-001)  
Class I, Level A  
(per JESD78)  
Yes  
IC Latch-Up Test  
RoHS Compliant  
Note:  
1. Qualification standards can be found at Infineon’s web site http://www.infineon.com/  
2. Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information.  
3. Higher MSL ratings may be available for the specific package types listed here. Please contact your International  
Rectifier sales representative for further information.  
Datasheet  
4 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
2
Device Comparison Table  
Table 1  
Device Name  
MA5332MS  
IR4302M  
IR4322M  
IR4312M  
IR4301M  
IR4321M  
IR4311M  
Description  
200W (4 Ω)*2 channel integrated analog input Class D audio Amplifier  
130W (4 Ω)*2 channel integrated analog input Class D audio Amplifier  
100W (2 Ω)*2 channel integrated analog input Class D audio Amplifier  
35W (4 Ω)*2 channel integrated analog input Class D audio Amplifier  
160W (4 Ω) single-channel integrated analog input Class D audio Amplifier  
135W (2 Ω) single-channel integrated analog input Class D audio Amplifier  
35W (4 Ω) single-channel integrated analog input Class D audio Amplifier  
Datasheet  
5 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
3
Pin Configuration  
3.1  
Lead assignments  
Figure 1  
Lead assignments  
Datasheet  
6 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
3.2  
Lead definitions  
Description  
Pin # Symbol  
1
2
3
4
5
CLIP  
Clipping detection output, open drain, referenced to GND  
CH2 PWM comparator input  
COMP2  
IN-2  
CH2 Analog inverting input  
IN+2  
GND  
CH2 Analog non-inverting input  
GND for internal shunt zener diodes to VAA and VSS, a reference to FAULT and CLIP  
outputs.  
6
VSS  
Floating input negative supply  
7
VAA  
Floating input positive supply  
8
IN+1  
IN-1  
COMP1  
CSD  
FAULT  
VCC  
COM  
CSH1  
VB1  
CH1 Analog non-inverting input  
9
CH1 Analog inverting input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
CH1 PWM comparator input  
Shutdown timing capacitor / shutdown input  
Fault reporting output, open drain, referenced to GND  
Low side supply  
Low side supply return, internally connected to pin 27  
CH1 High side over current sensing input, referenced to VS1  
CH1 High side floating supply  
VS1  
CH1 PWM output, internally connected to pin 19  
CH1 Positive power supply  
VP1  
VS1  
CH1 PWM output  
VN1  
VN2  
VS2  
CH1 Negative power supply, connect to COM externally  
CH2 Negative power supply, connect to COM externally  
CH2 PWM output, internally connected to pin 24  
CH2 Positive power supply  
VP2  
VS2  
CH2 PWM output  
VB2  
CH2 High side floating supply  
CSH2  
COM  
NC  
CH2 High side over current sensing input, referenced to VS2  
Low side supply return, internally connected to pin 14  
Datasheet  
7 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4
Specifications  
4.1  
Absolute maximum ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All  
voltage parameters are absolute voltages referenced to COM=VN1=VN2; all currents are defined positive into  
any lead. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still  
air conditions.  
Symbol Definition  
Min  
-
Max  
100  
Units  
VPn  
VBn  
VSn  
VCSHn  
VCC  
VAA  
VSS  
Positive power supply rail voltage, n=1-2  
High side floating supply voltage  
High side floating supply voltage(2), n=1-2  
CSH pin input voltage, n=1-2  
Low side supply voltage(2)  
Floating input positive supply voltage(2)  
Floating input negative supply voltage(2)  
-0.3  
115  
VBn -15  
VSn -0.3  
-0.3  
VBn +0.3  
VBn +0.3  
15  
-0.3  
110  
-1  
GND +0.3  
(See ISSZ)  
VSS -0.3  
VIN+n  
IINn  
Floating input supply ground voltage , n=1-2  
Input current between IN- and IN+ pins(1), n=1-2  
CSD pin input voltage  
VAA +0.3  
±3  
-
mA  
V
VCSD  
VCOMPn  
VCLIP  
ICLIP  
VSS -0.3  
VAA +0.3  
VAA +0.3  
VAA +0.3  
5
COMP pin input voltage, n=1-2  
VSS -0.3  
CLIP pin input voltage  
GND -0.3  
CLIP pin sinking current  
-
mA  
V
VFAULT  
IFAULT  
IAAZ  
FAULT pin input voltage  
GND -0.3  
VAA +0.3  
5
FAULT pin sinking current  
-
-
-
-
-
-
-
Floating input supply zener clamp current(2)  
Floating input negative supply zener clamp current(2)  
Low side supply zener clamp current(2)  
Floating supply zener clamp current(2), n=1-2  
20  
ISSZ  
20  
mA  
ICCZ  
20  
IBSZn  
20  
dVSn/dt Allowable Vs voltage slew rate, n=1-2  
50  
V/ns  
Allowable Vss voltage slew rate(3)  
dVSS/dt  
50  
V/ms  
Id@ 25ºC  
Continuous output current, from VPn to VSn, VSn to VNn,  
VCC=10V, VBn-VSn=10V  
-
-
-
16  
10  
64  
Id@ 100ºC Continuous output current, from VPn to VSn, VSn to VNn,  
VCC=10V, VBn-VSn=10V  
A
IDM  
Pulsed output current, from VPn to VSn, VSn to VNn, VCC=10V,  
VBn-VSn=10V(5)  
Power dissipation(4)@ TC = 25C  
Thermal resistance, junction to case(4)  
Control IC junction temperature  
FET junction temperature  
W
Pd  
-
-
-
-
25  
C/W  
RthJC  
TJIC  
5
150  
150  
C  
TJFET  
Datasheet  
8 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
TS  
TL  
Storage Temperature  
-55  
-
150  
300  
Lead temperature (Soldering, 10 seconds)  
Note:  
1. IN- and IN+ contain clamping diodes between the two pins.  
2. VAA -VSS, Vcc-COM and VBn-VSn contain internal shunt zener diodes. Note that the voltage ratings of these can be limited by  
the clamping current.  
3. For the rising and falling edges of step signal of 10V. Vss=15V to 100V.  
4. Per MOSFET.  
5. Repetitive rating, pulse width limited by maximum junction temperature.  
4.2  
Recommended operating conditions  
For proper operation, the device should be used within the recommended conditions below. The Vss and Vsn  
offset ratings are tested with supplies biased at COM=VN1=VN2, VAA-VSS=9.6V, VCC=12V and VBn-VSn=12V. All  
voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead.  
Symbol  
Definition  
Min  
Max  
Units  
Positive power supply voltage, n=1-2, without  
heatsink  
MA5332MS  
MA5332MS  
-
60  
VPn  
Positive power supply voltage, n=1-2, with  
heatsink  
-
80  
VBn  
VSn  
High side floating supply absolute voltage, n=1-2  
High side floating supply offset voltage, n=1-2  
VSn +10  
VSn +14  
100  
V
(6)  
MA5332MS  
MA5332MS  
Floating input positive supply voltage(7)  
VAA  
VSS  
VSS +9.0  
0
VSS + 9.8  
100  
Floating input negative supply voltage(7)  
Floating input supply zener clamp current(7)  
IAAZ  
ISSZ  
VCC  
1
1
10  
15  
15  
15  
mA  
Floating input negative supply zener clamp current(7)  
Low side fixed supply voltage  
VIC  
IN- and IN+ pins common mode input voltage  
Inverting input voltage, n=1-2  
CSD pin input voltage  
VSS + 2  
VIN+ -0.5  
VSS  
VAA - 2  
VIN+ +0.5  
VAA  
V
VIN-n  
VCSD  
VCOMPn  
COMP pin input voltage, n=1-2  
VSS  
VAA  
CCOMPn  
COMP pin phase compensation capacitor to GND , n=1-2  
1
-
nF  
VCSHn  
fSW  
TJ_IC  
CSH pin input voltage, n=1-2  
Switching frequency  
Juction temperature of controller IC  
VSn  
-
-40  
VBn  
500  
100  
V
kHz  
C  
Note:  
6. Logic operational for Vs equal to –5V to +100V. Logic state held for Vs equal to –5V to –VBS.  
7. GND input voltage is limited by IAAZ and ISSZ  
.
Datasheet  
9 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.3  
Electrical characteristics  
Unless otherwise specified, the following apply:  
VCC,VBS= 12 V  
VSS=VS1=VS2=VN1=VN2=COM=0V  
VAA=9.6V  
TA=25C  
Table 2  
Symbol  
Electrical characteristics  
Definition  
Min  
Typ  
Max  
Units  
Test conditions  
Low-side supply  
Vcc supply UVLO positive  
threshold  
UVCC+  
UVCC-  
8.4  
8.2  
8.9  
8.7  
9.4  
9.2  
V
V
Vcc supply UVLO negative  
threshold  
UVCCHYS  
IQCC  
UVCC hysteresis  
-
-
-
0.2  
-
-
V
Low side quiescent current  
Low side supply current  
3
-
mA  
mA  
ICC  
10  
f=400kHz  
ICC=5mA  
Low side zener diode clamp  
voltage, n=1-2  
VCLAMPL  
n
14.7  
15.3  
8.5  
16.2  
V
High-side floating supply  
High side well UVLO positive  
threshold, n=1-2  
UVBS+n  
8.0  
9.0  
V
High side well UVLO negative  
threshold, n=1-2  
UVBS-n  
UVBSHYSn  
IQBSn  
7.8  
8.3  
0.2  
-
8.8  
-
V
UVBS hysteresis, n=1-2  
-
-
V
High side quiescent current,  
n=1-2  
2.4  
mA  
High side quiescent current,  
with CSH pin open n=1-2  
IQBSn_OFF-CSH  
VCLAMPHn  
350  
500  
650  
uA  
V
High side zener diode clamp  
voltage, n=1-2  
14.7  
15.3  
16.2  
IBS=5mA  
Floating input supply  
VA+, VA- floating supply UVLO  
positive threshold from VSS  
VSS =0V, GND pin  
floating  
UVAA+  
UVAA-  
UVAAHYS  
IQAA0  
8.2  
7.7  
-
8.7  
8.2  
0.5  
1.5  
9.2  
8.7  
-
V
VA+, VA- floating supply UVLO  
negative threshold from VSS  
VSS =0V, GND pin  
floating  
V
VSS =0V, GND pin  
floating  
UVAA hysteresis  
V
VAA=9.6V, VSS =0V,  
VCSD =VSS  
Floating Input positive quiescent  
supply current  
-
3
mA  
VAA=9.6V, VSS =0V,  
VCSD =VAA  
Floating Input positive quiescent  
supply current  
IQAA1  
-
4
6
mA  
Datasheet  
10 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
VAA=9.6V, VSS =0V,  
VCSD =GND  
Floating Input positive quiescent  
supply current  
IQAA2  
ILKM  
-
-
5
-
7.5  
50  
mA  
µA  
VAA=VSS=VGND  
100V  
=
Floating input side to Low side  
leakage current  
IAA=5mA,  
ISS=5mA,  
VGND=0V,  
VAA floating supply zener diode  
clamp voltage, positive, with  
respect to GND  
VCLAMPM+  
4.9  
5.1  
5.4  
V
V
VCSD =VSS  
IAA=5mA,  
ISS=5mA,  
VGND=0V,  
VSS floating supply zener diode  
clamp voltage, negative, with  
respect to GND  
VCLAMPM-  
-5.4  
-5.1  
-4.9  
VCSD =VSS  
Audio input (VGND=0, VAA=4.8V, VSS=-4.8V)  
VOSn  
IBINn  
Input offset voltage, n=1-2  
Input bias current, n=1-2  
-18  
-
0
-
18  
40  
mV  
nA  
Small signal bandwidth in OTA, n=1-  
2
GBWn  
-
9
-
MHz  
CCOMP=1nF, Rf=0  
VIN+=0V, VIN-  
=10mV  
gmn  
GVn  
OTA transconductance, n=1-2  
-
10  
-
-
-
mS  
dB  
OTA gain, n=1-2  
50  
CHn OTA input noise voltage,  
n=1-2  
VNrmsn  
-
200  
330  
mVrms  
PWM  
PWM comparator threshold in  
COMP  
(VAA -  
VSS)/2  
VthPWM  
-
-
V
COMP pin star-up local oscillation  
frequency, n=1-2  
fOTAn  
0.7  
1.0  
1.5  
MHz  
VCSD =GND  
COMP to VS rising edge propagation  
delay, n=1-2  
Ton_n  
-
-
370  
-
-
ns  
ns  
COMP to VS trailing edge  
propagation delay, n=1-2  
Toff_n  
DTn  
320  
50  
Deadtime: Low-side turn-off to  
High-side turn-on (DTLO-HO) & High-  
side turn-off to Low-side turn-on  
(DTHO-LO) , n=1-2  
VP=30V,  
VN=-30V,  
-
-
ns  
Power MOSFET (FET1, FET2, FET3, FET4)  
At Tj=25°C, unless otherwise specified  
VGS=0V,  
ID=250uA  
(8)  
Drain-to-Source breakdown voltage  
100  
-
-
V
V(BR)DSS  
ID=3.3A, VGS=10V  
RDS(ON)  
Qg  
FET on resistance  
Total gate charge  
-
-
24.4  
12.7  
30.5  
19  
mΩ  
nC  
VGS=10V  
VP=100V(8)  
VCSD =VSS  
,
ILK0  
VP leakage current, VS=VN  
-
-
20  
µA  
Protection  
Datasheet  
11 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
Over current detection Positive  
IOCPn  
-
40  
-
A
A
V
threshold, n=1-2(8)  
Over current detection Negative  
IOCNn  
-
-40  
-
threshold, n=1-2(9)  
CSD pin shutdown release  
threshold  
Vth1  
0.62xVAA  
0.70xVAA  
0.78xVAA  
Vth2  
ICSD+  
ICSD-  
CSD pin self-reset threshold  
CSD pin discharge current  
CSD pin charge current  
0.26xVAA  
70  
0.30xVAA  
100  
0.34xVAA  
130  
V
VCSD = VSS +4.8V  
VCSD = VSS +4.8V  
µA  
µA  
70  
100  
130  
Shutdown propagation delay from  
VS < Vth1 to Shutdown, n=1-2  
COMP = VSS  
COMP = VSS  
COMP = VSS  
tSDn  
-
-
250  
ns  
ns  
ns  
V
CHn propagation delay time from  
IOn > IOCPn to Shutdown, n=1-2  
tOCPn  
-
-
500  
CHn propagation delay time from  
IOn < IOCNn to Shutdown, n=1-2  
tOCNn  
-
-
500  
Clip detection positive threshold in  
COMP  
Vth+CLIP  
Vth-CLIP  
tCLIP  
0.85xVAA  
0.90xVAA  
0.95xVAA  
Clip detection negative threshold in  
COMP  
0.05xVAA  
0.10xVAA  
0.15xVAA  
V
Clipping detection propagation  
delay  
-
40  
3
-
-
-
-
ns  
us  
ºC  
ºC  
Clipping detection minimum output  
duration  
tCLIPmin  
TSD  
-
Over-temperature shutdown  
threshold in controller IC  
100  
-
-
Over-temperature shutdown  
threshold hysteresis  
TSDHYS  
7
Datasheet  
12 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.4  
Audio characteristics (SE)  
Table 3  
Parameter  
Po Power output per channel(10)  
Test conditions  
Typ  
160  
200  
190  
150  
120  
150  
140  
110  
250  
Unit  
RL= 6Ω, 10%THD+N, Vbus = ± 40 V  
RL= 4Ω, 10%THD+N, Vbus = ± 36.5 V  
RL= 3Ω, 10%THD+N, Vbus = ± 31.5 V  
RL= 2Ω, 10%THD+N, Vbus = ± 23 V  
RL= 6Ω, 1%THD+N, Vbus = ± 40 V  
RL= 4Ω, 1%THD+N, Vbus = ± 36.5 V  
RL= 3Ω, 1%THD+N, Vbus = ± 31.5 V  
RL= 2Ω, 1%THD+N, Vbus = ± 23V  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 4Ω  
W
Residual noise(AES-17, IHF-A,  
typical)  
uV  
Idling supply current  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 4Ω  
+55  
-80  
95  
mA  
Efficiency(11)  
EVAL_AUDAMP25, Vbus = ± 36.5 V,  
Pout=200W, RL= 4Ω  
%
Note:  
8. Vp changes over temperature at a rate of 50mV/K compared to Tj=25°C.  
9. Over-current protection threshold measured under Tj=25°C condition.  
10. Tested with heatsink (digikey part number: V8818V)  
11. Class D stage only  
4.5  
Audio characteristics (BTL)  
Table 4  
Parameter  
Po Power output per channel(9)  
Test conditions  
Typ  
400  
380  
300  
300  
280  
220  
350  
Unit  
RL= 8Ω, 10%THD+N, Vbus = ± 36.5 V  
RL= 6Ω, 10%THD+N, Vbus = ± 31.5 V  
RL= 4Ω, 10%THD+N, Vbus = ± 23 V  
RL= 8Ω, 1%THD+N, Vbus = ± 36.5 V  
RL= 6Ω, 1%THD+N, Vbus = ± 31.5 V  
RL= 4Ω, 1%THD+N, Vbus = ± 23V  
W
Residual noise(AES-17, IHF-A,  
typical)  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 4Ω  
uV  
Idling supply current  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 8Ω  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 8Ω  
+55  
-80  
95  
mA  
Efficiency(10)  
%
Datasheet  
13 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.6  
Audio characteristics (PSE)  
Table 5  
Parameter  
Po Power output per channel(9)  
Test conditions  
Typ  
400  
300  
250  
Unit  
RL= 2Ω, 10%THD+N, Vbus = ± 36.5 V  
RL= 2Ω, 1%THD+N, Vbus = ± 36.5V  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 4Ω  
W
Residual noise(AES-17, IHF-A,  
typical)  
uV  
Idling supply current  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 4Ω  
EVAL_AUDAMP25 , Vbus = ± 36.5 V ,RL= 4Ω  
+55  
-80  
95  
mA  
Efficiency(10)  
%
Datasheet  
14 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.7  
Typical Audio characteristics (SE)  
Test conditions:  
All Measurements taken at Sine wave frequency= 1 kHz, AES17+ AUX-0025 measurement filters.  
Vbus = ± 40 V, Load impedance = 6 Ω, FPWM = 400 kHz  
Vbus = ± 36.5 V, Load impedance = 4 Ω, FPWM = 400 kHz  
Vbus = ± 31.5 V, Load impedance = 3 Ω, FPWM = 400 kHz  
Vbus = ± 23 V, Load impedance = 2 Ω, FPWM = 400 kHz  
4.7.1  
Power vs. THD+N  
Figure 2  
Power vs. THD+N  
Datasheet  
15 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.7.2  
Frequency vs. THD+N  
Figure 3  
Frequency vs. THD+N @1W  
4.7.3  
Frequency response  
Test conditions:  
Output power = 1 W, LPF = 22uH+0.47uF  
Figure 4  
Frequency response  
Datasheet  
16 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.7.4  
Noise floor  
Figure 5  
Noise floor  
4.7.5  
Efficiency  
Figure 6  
Efficiency 4 Ω load  
Datasheet  
17 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.8  
Typical Audio characteristics (BTL)  
Test conditions:  
All Measurements taken at Sine wave frequency= 1 kHz, AES17+ AUX-0025 measurement filters.  
Vbus = ± 40 V, Load impedance = 8 Ω, FPWM = 400 kHz  
Vbus = ± 31.5 V, Load impedance = 6 Ω, FPWM = 400 kHz  
Vbus = ± 23 V, Load impedance = 4 Ω, FPWM = 400 kHz  
4.8.1  
Power vs. THD+N  
Figure 7  
Power vs. THD+N  
Datasheet  
18 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.8.2  
Frequency vs. THD+N  
Figure 8  
Frequency vs. THD+N @1W  
4.8.3  
Frequency response  
Test conditions:  
Output power = 1 W, fixed LPF 22uH+0.47uF  
Figure 9  
Frequency response  
Datasheet  
19 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.8.4  
Noise floor  
Test conditions:  
No input signal  
Figure 10  
Noise floor  
Datasheet  
20 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.9  
Typical Audio characteristics (PSE)  
Test conditions:  
All Measurements taken at Sine wave frequency= 1 kHz, AES17+ AUX-0025 measurement filters.  
Vbus = ± 36.5 V, Load impedance = 2 Ω, FPWM = 400 kHz  
4.9.1  
Power vs. THD+N  
Figure 11  
Power vs. THD+N  
Datasheet  
21 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.9.2  
Frequency vs. THD+N  
Figure 12  
Frequency vs. THD+N @1W  
4.9.3  
Frequency response  
Test conditions:  
Output power = 1 W, fixed LPF 22uH+0.47uF  
Figure 13  
Frequency response  
Datasheet  
22 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
4.9.4  
Noise floor  
Test conditions:  
No input signal  
Figure 14  
Noise floor  
Datasheet  
23 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
5
Thermal information  
Benefits from unique co-packaging technique and superior MOSFET technology, MA5332MS has the  
best-in-class thermal performance, Peak power duration. It can deliver 100W*2/4Ω even without a heatsink.  
5.1  
Peak power duration thermal information  
Test conditions:  
All Measurements are taken at sinewave frequency= 1 kHz, AES17+ AUX-0025 measurement filters. Input signal  
= 1 kHz, FPWM = 400 kHz.  
Tests are based on Eval_AUDAMP25 board when both channels are driven.  
Table 6  
Peak power with heatsink  
10 percent THD+N power (W) Duration  
Load (Ω) ±Vbus (V)  
6
4
3
2
40  
160  
200  
190  
150  
More than 1 minute without thermal shutdown  
36.5  
31.5  
23  
Figure 15  
Peak power Pout = 164 W with 6 Ω load ±40 V  
Note:  
Maximum temperature 68.9°C at 1 minute.  
Datasheet  
24 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
Figure 16  
Peak power Pout = 200 W with 4 Ω load ±36.5 V  
Note:  
Maximum temperature 105°C at 1 minute.  
Figure 17  
Peak power Pout = 194 W with 3 Ω load ±31.5 V  
Note:  
Maximum temperature 130°C at 1 minute.  
Datasheet  
25 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
Figure 18  
Peak power Pout = 150 W with 2 Ω load ±23 V  
Note:  
Maximum temperature 154°C at 1 minute.  
Table 7  
Peak power without heatsink  
Load (Ω) ±Vbus (V)  
10 percent THD+N power  
(W)  
Duration  
4
2
26.5  
13.7  
100  
50  
More than 1 minute without thermal shutdown  
Figure 19  
Peak power Pout = 102 W with 4 Ω load ±26.5 V  
Note:  
Maximum temperature 146.7°C at 1 minute.  
Datasheet  
26 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
Figure 20  
Peak power Pout = 55 W with 2 Ω load ±13.7 V  
Note:  
Maximum temperature 142.8°C at 1 minute.  
Table 8  
1/8 power test with heatsink  
Load (Ω)  
±Vbus (V)  
40  
Max. T-case (°C)  
1/8 power (W)  
Duration (minutes)  
6
4
3
2
71.6  
85.6  
87.2  
84.8  
16.5  
19.8  
19.7  
15  
30  
30  
30  
30  
36.5  
31.5  
23  
Table 9  
1/8 power test without heatsink  
Load (Ω)  
±Vbus (V)  
22.7  
Max. T-case (°C)  
1/8 power (W)  
7.12  
Duration (minutes)  
4
2
84.6  
76.1  
30  
30  
13.7  
4.88  
Datasheet  
27 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
5.2  
Heatsink information  
Heatsink: V8818V  
Thermal pad: BER161-ND  
Figure 21  
Heatsink installation  
Datasheet  
28 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
6
Functional block diagram  
Figure 22 Block diagram  
Datasheet  
29 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
7
Typical Implementation  
The MA5332MS can be designed as single-ended, BTL or parallel single ended (PSE) output configuration, using  
a single or split power supply. Here are examples of typical configurations.  
A configuration for single-ended input with split power supply sets the base example. The front end section  
refers to GND which is common to speaker output GND.  
+B  
EXT CLK  
(OPTIONAL)  
CLIP  
COMP2  
CH2 INPUT  
IN-2  
VS2  
VN2  
CH2 OUTPUT  
Speaker  
IN+2  
GND  
VSS  
VAA  
IN+1  
VN1  
VS1  
Speaker  
CH1 INPUT  
IN-1  
COMP1  
CSD  
CH1 OUTPUT  
FAULT  
VCC  
-B  
Figure 23 Inverting amplifier with Split Power Supply  
+B  
EXT CLK  
(OPTIONAL)  
CLIP  
COMP2  
CH2 IN+  
CH2 IN-  
IN-2  
IN+2  
VS2  
CH2 OUTPUT  
Speaker  
VN2  
GND  
VSS  
VAA  
VN1  
VS1  
CH1 IN-  
CH1 IN+  
IN+1  
Speaker  
IN-1  
COMP1  
CSD  
CH1 OUTPUT  
FAULT  
VCC  
-B  
Figure 24 Differential amplifier with Split Power Supply  
Datasheet  
30 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
The single-supply configuration uses a virtual GND which sits in the middle of the power supply rail. The front-  
end section of the amplifier refers to the virtual GND as a reference. This method uses differential input to  
receive an input signal from a different voltage potential. It is recommended to allow input capacitors to fully  
settle to steady-state values before releasing the CSD pin to start PWM oscillation. The load current and  
inductor ripple current flow through the bus splitting capacitor.  
+B  
EXT CLK  
(OPTIONAL)  
CLIP  
COMP2  
CH2 IN+  
IN-2  
VS2  
VN2  
CH2 OUTPUT  
Speaker  
CH2 IN-  
IN+2  
GND  
VSS  
VAA  
IN+1  
VN1  
VS1  
CH1 IN-  
CH1 IN+  
Speaker  
IN-1  
COMP1  
CSD  
CH1 OUTPUT  
FAULT  
VCC  
Figure 25 Typical Application Circuit with Single Power Supply  
Balanced Tied Load (BTL) output takes two output legs for speaker output. It doubles output power with  
double load impedance. Any load current does not flow through supply dividing capacitor; therefore BTL  
configuration is free from GND fluctuations. Also, the bus splitting capacitor can be much smaller. Higher  
output power and absence of GND fluctuation make BTL suitable for subwoofer applications.  
+B  
EXT CLK  
(OPTIONAL)  
CLIP  
COMP2  
INPUT-  
VS2  
VN2  
IN-2  
IN+2  
GND  
VSS  
VAA  
IN+1  
Speaker  
VN1  
VS1  
INPUT+  
IN-1  
COMP1  
CSD  
FAULT  
VCC  
-B  
Figure 26 Typical Bridged Tied Load (BTL) Output Application with Split Power Supply  
Datasheet  
31 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
+B  
EXT CLK  
(OPTIONAL)  
CLIP  
COMP2  
IN-2  
INPUT-  
VS2  
VN2  
IN+2  
GND  
VSS  
VAA  
IN+1  
Speaker  
VN1  
VS1  
10V  
INPUT+  
IN-1  
COMP1  
CSD  
FAULT  
10V  
Figure 27 Typical Bridged Tied Load (BTL) Output Application with Single Power Supply  
Parallel Single Ended (PSE) output parallels two channels’ output legs for one speaker output. It doubles  
output current and makes it easier to drive a low impedance load. Higher output current with lower bus voltage  
makes PSE suitable for subwoofer applications.  
+B  
CLIP  
COMP2  
INPUT  
VS2  
VN2  
IN-2  
IN+2  
GND  
VSS  
VAA  
IN+1  
Speaker  
VN1  
VS1  
IN-1  
COMP1  
CSD  
FAULT  
VCC  
-B  
Figure 28 PSE amplifier with Split Power Supply  
Datasheet  
32 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
8
Input / Output pin equivalent circuit diagrams  
,
Figure 29 Input/output pin equivalent circuit diagrams  
Datasheet  
33 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
9
PWM Modulator Design  
The open-access front-end configuration of MA5332MS enables many ways to implement a PWM modulator.  
This section explains how PWM modulation works based on an example of a self-oscillating PWM modulator in  
a typical application.  
Figure 30 MA5332MS Typical Control Loop Design  
9.1  
Input Section  
The audio input stage of MA5332MS forms an inverting error amplifier. The voltage gain of the amplifier, GV, is  
determined by the ratio between input resistor RIN and feedback resistor RFB.  
RFB  
G   
V
R
IN  
Since the feedback resistor RFB is part of an integrator time constant, which determines switching frequency,  
changing the overall voltage gain by RIN is simpler and therefore recommended. Note that the input impedance  
of the amplifier is equal to the input resistor RIN.  
A DC blocking capacitor C3 should be connected in series with RIN to minimize the DC offset voltage on the output.  
Due to potential distortion, a ceramic capacitor is not recommended. Minimizing the DC offset is essential to  
minimize the audible noise during power-ON and -OFF.  
The connection of the non-inverting input IN+ is a reference for the error amplifier, and thus is crucial for audio  
performance. Connect IN+ to the signal reference ground in the system, which has the same potential as the  
negative terminal of the speaker output.  
Datasheet  
34 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
9.2  
Control Loop Design  
The MA5332MS allows the user to choose from numerous methods of PWM modulator implementations. In this  
section, all the explanations are based on a typical application circuit of a self-oscillating  
9.3  
PWM Frequency  
Choosing the switching frequency entails making a trade-off between many aspects. At lower switching  
frequency, conduction losses in the MOSFET stage increases due to higher inductor ripple current. The output  
carrier leakage in the speaker output increases. At higher switching frequency, the efficiency degrades due to  
higher switching losses. Higher switching frequency supports wider audio bandwidth. The inductor ripple  
decreases yet core loss might increase. For these reasons, 400kHz is chosen for a typical design example.  
Self-oscillating frequency has little influence from the bus voltage and input resistance RIN. Note that the  
nature of a self-oscillating PWM is for the switching frequency to decrease as PWM modulation deviates from  
idling.  
Table 10 summarizes suggested values of components for a given target self-oscillating frequency. The front-  
end operational transconductance amplifier (OTA) output has limited voltage and current compliances. This  
set of component values ensures that OTA operates within its linear region for optimal THD+N performance. In  
case the target frequency is somewhere in between the frequencies listed in Table 10, simply adjust the  
frequency by tweaking R1.  
Table 10  
External Component Values vs. Self-Oscillation Frequency  
Target Self-Oscillation  
Frequency (kHz)  
C1=C2 (nF)  
R1 (ohms)  
200  
500  
450  
400  
350  
300  
250  
200  
150  
100  
70  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
4.7  
10  
165  
141  
124  
115  
102  
41.2  
20.0  
14.0  
4.42  
10  
22  
Datasheet  
35 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
9.4  
Clock Synchronization  
In the PWM control loop design example, the self-oscillating frequency can be set and synchronized to an external  
clock. Through a set of resistors and a capacitor, the external clock injects periodic pulsating charges into the  
integrator, forcing oscillation to lock up to the external clock frequency. A typical setup with 5 Vp-p 50% duty  
clock signal uses RCK=22 kΩ and CCK=100 pF in Figure 31. To maximize audio performance, the self-running  
frequency without clock injection should be 20 to 30% higher than the external clock frequency.  
Figure 31 External Clock Synchronization  
Figure 32 shows how a self-oscillating frequency locks up to an external clock frequency. A design of a 400 kHz  
self-oscillating frequency synchronizes to an external clock whose frequency is within the red border lines.  
600  
500  
400  
300  
200  
100  
0
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
Duty Cycle  
Figure 32 Typical Lock Range to External Clock (RCK=22 kΩ and CCK=100 pF)  
Datasheet  
36 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
9.5  
Click Noise Elimination  
The MA5332MS has a unique feature that minimizes power-ON and -OFF audible click noise. When CSD is in  
between Vth1 and Vth2 during start-up, an internal closed loop around the OTA enables an oscillation that  
generates voltages at COMP and IN-, bringing them to steady-state values. It runs at around 1 MHz, independent  
from the switching oscillation.  
Figure 33 Audible Click Noise Elimination  
As a result, all capacitive components connected to COMP and IN- pins, such as C1, C2, C3 and Cc in Figure 33,  
are pre-charged to their steady-state values during the start-up sequence. This allows instant settling of closed-  
loop PWM operation.  
To utilize the click noise reduction function, the following conditions must be met.  
1. CSD pin has slow enough ramp up from Vth1 to Vth2 such that the voltages in the capacitors can settle  
to their target values.  
2. High-side bootstrap power supply needs to be charged up prior to starting oscillation.  
3. Audio input has to be zero.  
4. For internal local loop to override external feedback during the startup period, DC offset at speaker  
output prior to shutdown release has to satisfy the following condition.  
Datasheet  
37 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
9.6  
Differential Input  
Figure 34 shows an example of a differential input configuration. This design is useful in a single supply  
configuration. Use RIN1=RIN2, RFB1=RFB2, C3=C4.  
Voltage gain is given by a ratio between RIN and RFB.  
RFB  
G   
V
R
IN  
Figure 34 Differential Input  
Although component values in the feedback network are balanced between inverting and non-inverting inputs,  
the integration capacitor path in the non-inverting input creates unbalance at high frequencies, causing slightly  
higher distortion compared to an unbalanced input configuration. To improve the THD degradations, place  
optional RC network R2=R1 and C5=C1.  
Datasheet  
38 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
10  
Operational Mode  
The CSD pin determines the operational mode of the MA5332MS as shown in Figure 35. The OTA has three  
operational modes: shutdown, pop-less startup and normal operation; while the gate driver section has two  
modes: shutdown and normal operation.  
When VCSD < Vth2, the IC is in shutdown mode and the input OTA is cut off. When Vth2< VCSD < Vth1, the output  
MOSFETs are still in shutdown mode. The OTA is activated and starts local oscillation for pop-less start-up which  
pre-biases all the capacitive components in the error amplifier. When VCSD>Vth1, the MA5332MS enters normal  
operation mode and PWM operation starts.  
Figure 35 VCSD and Operational Mode  
10.1  
Self-oscillation Start-up Condition  
The MA5332MS requires the following conditions in order for pop-less startup to work properly.  
-
All the control power supplies, VAA, VSS, VCC and VBS are above the under-voltage lockout  
thresholds.  
CSD pin voltage is over Vth1 threshold.  
iIN iFB  
-
-
VIN  
RIN  
VB  
RFB  
i   
i   
FB  
Where  
,
.
IN  
-
The duration CSD voltage transitioning from Vth2 to Vth1 is long enough to pre-charge input and  
integration capacitors around OTA section.  
Datasheet  
39 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
11  
Protections  
Figure 36 Protection Functional Block Diagram  
The internal protection control block dictates the operational modes, normal or shutdown, using the input of the  
CSD pin. In shutdown mode, the controller IC turns off internal power MOSFETs.  
The CSD pin provides five functions.  
1. Power up delay timer  
2. Self-reset timer  
3. Shutdown input  
4. Latched protection configuration  
5. Shutdown status output (host I/F)  
The CSD pin cannot be paralleled with another MA5332MS directly.  
The operating statuses of the protection features are shown in Table 11.  
Datasheet  
40 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
Table 11  
Events and Actions of CSD and FAULT  
Event  
CSD  
Recycle  
n/a  
n/a  
n/a  
n/a  
FAULT  
L until CSD>Vth1  
n/a  
L at VAA<UVAA  
L at VAA<UVAA  
n/a  
UVCC, rising edge  
UVCC, falling edge  
UVAA, rising edge  
UVAA, falling edge  
UVBS, rising edge  
UVBS, falling edge  
n/a  
Keep recycling until OCP  
is reset  
n/a  
Over Current Protection  
Clip Detection  
Held L until OCP is reset  
n/a  
n/a  
Over Temperature  
Protection  
Keep recycling until OTP  
is reset  
*CSD recycle: CSD pin voltage  
discharges down to Vth2 and charges  
back to VAA, if CSD pin is configured  
as self reset protection.  
Held L until OTP is reset  
11.1.1  
Self-Reset Protection  
Attaching a capacitor between CSD and VSS configures the MA5332MS self-reset protection mode.  
Upon an OCP event, the CSD pin discharges the external capacitor voltage VCSD down to the lower threshold Vth2  
to reset the internal shutdown latch. Then, the CSD pin begins to charge the external capacitor, Ct, in an attempt  
to resume operation. Once the voltage of the CSD pin rises above the upper threshold, Vth1, the IC resumes normal  
operation.  
Figure 37 Self-Reset Protection Configuration  
Datasheet  
41 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
11.1.2  
Designing Ct  
The external timing capacitor, Ct, programs self-reset timings: tRESET and tSU.  
tRESET is the time that elapses from when the IC enters the shutdown mode to the time when the IC  
resumes operation. tRESET should be long enough to avoid over heating the MOSFETs from the repetitive  
sequence of shutting down and resuming operation during over-current conditions. In most  
applications, the minimum recommended time for tRESET is 0.1 seconds.  
tSU is the time between powering up the IC in shutdown mode to the moment the IC releases shutdown  
to begin normal operation.  
The Ct determines tRESET and tSU as following equations:  
CtVAA  
tRESET  
[s]  
[s]  
1.1ICSD  
Ct VAA  
tSU  
0.7ICSD  
where ICSD: the charge/discharge current at the CSD pin  
VAA: the floating input supply voltage with respect to VSS.  
11.1.3  
Shutdown Input  
During normal operation, pulling the CSD pin below the upper threshold Vth1 forces the IC into shutdown mode.  
Figure 38 shows how to add an external discharging path to shutdown the PWM.  
Figure 38 Shutdown Input  
Datasheet  
42 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Table of contents  
11.1.4  
Latched Protection  
Connecting CSD to VAA through a 10 kΩ or less resistor configures latched protection mode. The internal  
shutdown latch stays in shutdown mode after the overcurrent is detected. An external reset switch brings CSD  
below the lower threshold Vth2 for a minimum of 200 ns and resets the latch. At first power-up, a reset signal to  
the CSD pin is required to release the IC from shutdown mode.  
Figure 39 Latched Protection with Reset Input  
11.1.5  
Interfacing with System Controller  
The MA5332MS can communicate with an external system controller through a simple interfacing circuit shown  
in Figure 40. A generic PNP transistor, U1, detects the sink current at the CSD pin during protection event and  
outputs a shutdown flag signal to an external system controller. Another generic NPN transistor, U2, can then  
reset the internal protection logic by pulling the CSD voltage below the lower threshold Vth2. After the first  
power-up sequence, a reset signal to the CSD pin is required to release the IC from shutdown mode.  
Figure 40 Interfacing CSD with System Controller  
Datasheet  
43 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Protections  
11.2  
Over Current Protection (OCP)  
The MA5332MS features over current protection to protect the internal power MOSFETs during abnormal load  
conditions. The control logic diagrams are in Figure 41. As soon as either the high-side or low-side current sensing  
block detects over current, the following sequence will occur.  
1. The shutdown latch flips its logic states from normal operational mode to shutdown mode.  
2. Low-side and high-side MOSFETs go into an off state condition.  
3. The CSD pin starts discharging the external capacitor Ct.  
4. When voltage across Ct falls below the lower threshold Vth2, COMP2 resets the shutdown latch to normal  
mode.  
5. The CSD pin starts charging the external capacitor Ct.  
6. When VCSD goes above the upper threshold Vth1, the logic on COMP1 toggles and the IC resumes  
operation.  
Figure 41 summarizes the above. As long as the over current condition exists, the IC will repeat the over current  
protection sequence at a repetitive rate set by the CSD capacitor.  
Figure 41 Overcurrent Protection Timing Chart  
Datasheet  
44 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Protections  
11.3  
Over Temperature Protection (OTP)  
If the junction temperature TJ of the controller IC exceeds the on-chip thermal shutdown threshold, TSD, the on-  
chip over temperature protection shuts down the PWM.  
11.4  
Under Voltage Protection (UVP)  
In order to prevent a partial on-state of the internal MOSFET, under-voltage protection monitors the low side and  
high side gate bias supplies, VCC and VB. When VCC is below UVLO, both high and low side MOSFETs are turned  
off. When the high side supply VBS is below the UVLO threshold, the high side output is disabled, while the low  
side works normally.  
Datasheet  
45 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Status Output  
12  
Status Output  
12.1  
Fault Output  
FAULT output is an open drain output referenced to GND to report whether the MA5332MS is in shutdown mode  
or in normal operating mode. If the FAULT pin is open, the MA5332MS is in normal operation mode, i.e. the  
output MOSFETs are active. The following conditions trigger shutdown internally and pulls the FAULT pin down  
to GND.  
Over Current Protection  
Over Temperature Protection  
Shutdown mode from CSD pin voltage  
Figure 42 Fault Output  
Datasheet  
46 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Status Output  
12.2  
CLIP Output  
When the output of the amplifier loses track of an expected target value, the amplifier enters into clipping  
condition.  
The CLIP detection block monitors the COMP pin voltage with a window comparator. The CLIP pin is pulled to  
GND when a clipping condition is detected. The detection thresholds in the COMP pin are at 10% and 90% of  
VAA-VSS. The CLIP outputs are disabled in shutdown mode.  
VAA  
IN-  
OTA  
PWM  
IN+  
COMP  
VSS  
VAA  
R
CLIP1  
PGEN  
R
R
GND  
SD  
VSS  
Figure 43 CLIP Detection  
Datasheet  
47 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Power Supply Design  
13  
Power Supply Design  
13.1  
Supplying VAA and VSS  
VAA and VSS are supply voltages to the front-end of the analog section, hence are noise sensitive. For best  
audio performance, use regulated power supplies for VAA and VSS.  
10  
VAA  
7805  
2.2µF  
GND  
2.2µF  
10  
VSS  
7905  
MA53xx  
Figure 44 Supplying VAA and VSS with External Voltage Regulators  
When switched-mode regulators are used as supply voltages for VAA and VSS, place a two-stage R-C noise filter  
in the supply lines as shown in Figure 45.  
10  
10  
VAA  
+5V  
10µF  
2.2µF  
GND  
VSS  
10µF  
10  
2.2µF  
10  
-5V  
MA53xx  
Figure 45 Supplying VAA and VSS from Switched Mode Power Supply  
13.2  
Supplying VCC and VB  
Figure 46 shows the recommended power supply configuration for gate driver power supplies. The gate driver  
stage has three power supply inputs:  
1. VCC-COM: low side gate drive supply  
2. VB1-VS1: CH1 high side gate drive supply  
3. VB2-VS2: CH2 high side gate drive supply  
The low-side power supply, VCC, feeds the internal gate drive logic and low side gate driver. In order to protect  
VCC from switching noise generated by the VS node, it is recommended to insert a few ohms of RVBS in the  
bootstrap charging path.  
The high-side driver requires a floating supply VBn referenced to the respective switching node VSn where the  
source of the output MOSFET is connected. A charge pump method (floating bootstrap power supply)  
eliminates the need for a floating power supply and thus is used in the typical application circuit. The floating  
bootstrap power supply charges the bootstrap capacitor CBS from the low-side power supply VCC during the  
low-side MOSFET ON period. When the high-side MOSFET is ON, the diode cuts off and floats the VBS supply. CBS  
retains its VB supply voltage for the rest of the high-side ON duration.  
Datasheet  
48 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Power Supply Design  
IVCC IQCC IQBS 2  
QG fPWM  
/per channel  
Recommend to have minimum 20% design margin for Ivcc.  
RVPN2  
4.7  
CVBS2  
10uF  
CLIP  
COMP2  
IN-2  
VS2  
VN2  
IN+2  
GND  
VSS  
VAA  
IN+1  
CBP  
100nF  
VN1  
VS1  
Vbus  
IN-1  
COMP1  
CSD  
FAULT  
CVCC  
1uF  
CVB S1  
10uF  
VCC  
RVPN1  
4.7  
Figure 46 Recommended Power Supply Configurations for Output Stage  
13.2.1  
Choosing Bootstrap Capacitance  
Often MA5332MS uses hard clipping condition. The continuous high-side ON duration could continue as long as  
half of the lowest audio frequency, tens of milliseconds. A typical application uses a 22 uF CBS to support low  
audio frequency clipping. A ceramic capacitor (X7R, X5R or X5S type) or aluminum electrolytic capacitor with 25  
V or higher voltage rating is recommended.  
13.2.2  
Choosing Bootstrap Diode  
Use a bootstrap charging diode with voltage rating of 1.5 x the maximum bus voltage. In order to charge the  
bootstrap capacitor in a very short low-side ON period with a high PWM modulation ratio, a fast recovery diode  
type (trr<50ns) is recommended.  
13.2.3  
Charging VBS Prior to Start  
For proper start-up, pre-charging the bootstrap supply VBS prior to PWM start-up is necessary for self-oscillating  
PWM modulator topologies. A charging resistor, RCHARGE, inserted between the positive supply bus and VB,  
charges CBS prior to switching start as shown in Figure 47. The minimum resistance of RCHARGE is limited by the  
maximum PWM modulation index of the system. When the high-side MOSFET is on, RCHARGE drains the bootstrap  
power supply together with the quiescent current, IQBS, so it reduces the holding time, resulting in maximum  
continuous high-side on time.  
The maximum resistance of RCHARGE is limited by the current charge capability of the resistor during startup.  
Datasheet  
49 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Power Supply Design  
Pre-charging current flows into the speaker load. In order to startup without the load connected, a dummy load  
Rdummy in parallel with the speaker output provides a pre-charging current path.  
Figure 47 Bootstrap Supply Pre-Charging  
Datasheet  
50 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Power Supply Design  
13.3  
Power Supply Sequence  
The protection control block in the MA5332MS monitors the status of VAA and VCC to ensure that both voltage  
supplies are above their respective UVLO (under voltage lockout) thresholds before starting normal operation. If  
either VAA or VCC is below the under voltage threshold, the output MOSFETs are disabled in shutdown mode until  
both VAA and VCC rise above their voltage thresholds. As soon as VAA or VCC falls below its UVLO threshold, protection  
logic in the MA5332MS turns off high-side and low-side.  
Figure 48 MA5332MS UVLO Timing Chart  
Datasheet  
51 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Package details  
14  
Package details  
Figure 49 Package details  
Datasheet  
52 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Package details  
Figure 50 Package details; Bottom metallization detail view  
Datasheet  
53 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Package details  
Figure 51 Dimension table  
Datasheet  
54 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Board mounting, part marking, and ordering information  
15  
Board mounting, part marking, and ordering information  
Reliability of products in the PQFN package is subject to the board mounting process. The Soldering  
process is critical. Refer to Application Note AN-1170 Audio IC Board Mounting Application Note for  
specific footprint design and soldering methods.  
Device outline  
Figure 52 shows the outline for these devices. The relative pad positions are controlled to an accuracy of  
±0.050mm. For full dimensions and tolerances of each device, and to find out its size and outline, refer to the  
relevant product data sheet and package outline drawing.  
Figure 52 42-lead 7x7 device outline  
Datasheet  
55 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Board mounting, part marking, and ordering information  
Substrate/PCB layout  
Evaluations have shown that the best overall performance is achieved using the substrate/PCB layout shown in  
Figure 53 and Figure 54  
Figure 53 42-lead 7x7 substrate /PCB layout_1  
Figure 54 42-lead 7x7 substrate /PCB layout_2  
Datasheet  
56 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Board mounting, part marking, and ordering information  
Stencil Design  
Evaluations have shown that the best overall performance is achieved using the stencil design shown in  
Figure 55-58.  
Figure 55 42-lead 7x7 stencil design_1  
Datasheet  
57 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Board mounting, part marking, and ordering information  
Figure 56 42-lead 7x7 stencil design_2  
Figure 57 42-lead 7x7 stencil design_3  
Note:  
This design is for a stencil thickness of 0.127mm (0.005"). The reduction should be adjusted for  
stencils of other thicknesses. All soldering conditions are necessary to ensure reliability. More  
details please refer to Application Note AN-1170 Audio Power Quad Flat No-Lead (PQFN) Board  
Mounting Application  
Part marking  
Figure 58 Part marking  
Datasheet  
58 of 59  
V 2.0  
9/24/2021  
Integrated Class D Amplifier  
MA5332MS  
Board mounting, part marking, and ordering information  
Ordering information  
Standard pack  
Base part number Package type  
Form  
Complete part number  
Quantity  
MA5332MS  
7x7mm PG- IQFN-42  
Tape and Reel  
3000  
MA5332MS  
Datasheet  
59 of 59  
V 2.0  
9/24/2021  
100VꢀIntegratedꢀClassꢀDꢀAmplifier  
MA5332MS  
RevisionꢀHistory  
MA5332MS  
Revision:ꢀ2021-09-25,ꢀRev.ꢀ2.0  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
Release of final version  
2.0  
2021-09-25  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2020ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
60  
Rev.ꢀ2.0,ꢀꢀ2021-09-25  

相关型号:

MA535DP

Telephone Dialer Circuit, CMOS, PDIP18,
DYNEX

MA535DP

Telephone Circuit, CMOS, PDIP18,
MICROSEMI

MA535MP

Telephone Dialer Circuit, CMOS, PDSO18,
DYNEX

MA535MP

Telephone Circuit, CMOS, PDSO18,
MICROSEMI

MA53R

ACMOS ENABLE/DISABLE TRISTATE OUTPUT
CONNOR-WINFIE

MA53R-100MHZ

CMOS/TTL Output Clock Oscillator, 100MHz Nom, HERMETIC SEALED, METAL, WELDED PACKAGE-8/4
CONNOR-WINFIE

MA53R-FREQ

CMOS/TTL Output Clock Oscillator, 13MHz Min, 100MHz Max, HERMETIC SEALED, METAL, WELDED PACKAGE-8/4
CONNOR-WINFIE

MA54

8 PIN DIP ACMOS
CONNOR-WINFIE

MA5401

Flyback / Buck Transformer
COILCRAFT

MA5401-AEB

Flyback / Buck Transformer
COILCRAFT

MA5401-AEC

Flyback / Buck Transformer
COILCRAFT

MA5401-AED

Flyback / Buck Transformer
COILCRAFT