PEB20570 [INFINEON]

ICs for Communications; 集成电路通信
PEB20570
型号: PEB20570
厂家: Infineon    Infineon
描述:

ICs for Communications
集成电路通信

电信集成电路 局域网 通信
文件: 总291页 (文件大小:3798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
DSP Embedded Line and Port Interface Controller  
DELIC-LC  
PEB 20570 Version 2.1  
DELIC-PB  
PEB 20571 Version 2.1  
Preliminary Data Sheet 2003-08  
DS 1.1  
PEB 20570  
PEB 20571  
Revision History:  
Current Version: 2003-08  
07.99  
Previous Version:  
Page  
(in previous (in current  
Version) Version)  
Page  
Subjects (major changes since last revision)  
Trademarks changed  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices  
in Germany or the Infineon Technologies Companies and Representatives worldwide:  
see our webpage at http://www.infineon.com  
ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56,  
FALC®-E1, FALC®-LH, IDEC®, IOM®, IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE,  
ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC,  
SLICOFI® are registered trademarks of Infineon Technologies AG.  
ACE, ASM, ASP, POTSWIRE, QuadFALC, SCOUTare trademarks of Infineon Technologies AG.  
Note: OCEM® and OakDSPCore® (OAK®) are registered trademarks of ParthusCeva,  
Inc..  
Edition 2003-08  
Published by Infineon Technologies AG,  
TR,  
Balanstraße 73,  
81541 München  
© Infineon Technologies AG 5/8/03.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for  
applications, processes and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales  
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice  
you for any costs incurred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with  
the express written approval of the Infineon Technologies AG.  
1 A critical component is a component used in a life-support device or system whose failure can reasonably be  
expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that  
device or system.  
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or  
maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be en-  
dangered.  
DELIC  
Preface  
This document provides reference information on the DELIC-PB and -LC version 2.1.  
Organization of this Document  
This Preliminary Data Sheet is divided into 11 chapters and appendices. It is organized  
as follows:  
• Chapter 1, Introduction  
Gives a general description of the product and its family, lists the key features, and  
presents some typical applications.  
• Chapter 2, Pin Description  
Lists pin locations with associated signals, categorizes signals according to function,  
and describes signals.  
• Chapter 3, Interface Description  
Describes the DELIC external interfaces.  
• Chapter 4, Functional IC Description  
Describes the features of the main functional blocks.  
• Chapter 5, Memory Structure  
• Chapter 6, Register Descriptions  
Containes the detailed register description.  
• Chapter 7, Package Outlines  
• Chapter 8, Electrical Characteristics  
Containes the DC specification.  
• Chapter 9, Timing Diagrams  
Contains the AC specification (as far as available).  
• Chapter 10, Application Hints  
• Chapter 11, Mailbox Protocol Description  
Describes the communication protocol to an external µP.  
Preliminary Data Sheet  
III  
2003-08  
DELIC  
Your Comments  
We welcome your comments on this document as we are continuously aiming at  
improving our documentation. Please send your remarks and suggestions by e-mail to  
sc.docu_comments@infineon.com  
Please provide in the subject of your e-mail:  
device name (DELIC-LC/ -PB), device number (PEB 20570/ PEB 20571), device version  
(Version 2.1), or and in the body of your e-mail:  
document type (Preliminary Data Sheet), issue date (2003-08) and document revision  
number (DS 1.1).  
Preliminary Data Sheet  
IV  
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
1
1.1  
1.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
2
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Pin Diagram DELIC-LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Pin Diagram DELIC-PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Pin Definitions and Functions for DELIC-LC . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Pin Definitions and Functions for DELIC-PB . . . . . . . . . . . . . . . . . . . . . . 2-15  
Strap Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28  
2.1  
2.2  
2.3  
2.4  
2.5  
3
3.1  
3.2  
Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Overview of Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
IOM-2000 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
IOM-2000 Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Command and Status Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
UPN State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
INFO Structure on the UPN Interface . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
UPN Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
S/T State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23  
Signals / Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23  
µP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24  
Intel/Siemens or Motorola Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24  
De-multiplexed or Multiplexed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24  
DMA or Non-DMA Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25  
DELIC External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26  
JTAG Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27  
Boundary Scan Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27  
TAP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27  
3.2.1  
3.2.2  
3.2.2.1  
3.2.2.2  
3.2.3  
3.2.3.1  
3.2.3.2  
3.2.4  
3.2.4.1  
3.2.4.2  
3.3  
3.3.1  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.5  
3.5.1  
3.5.2  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.4.1  
4.2.4.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Functional Overview and Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
IOM-2000 Transceiver Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
TRANSIU Overview of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
TRANSIU Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
Initialization of VIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
S/T Mode Control and Framing Bits on IOM-2000 . . . . . . . . . . . . . . . . 4-4  
Framing Bit (F-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
Multiframing Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
Preliminary Data Sheet  
V
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
4.2.4.3  
4.2.4.4  
4.2.5  
4.2.5.1  
4.2.5.2  
4.2.5.3  
4.2.6  
Fa/N Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
DC-Balancing Bit (L-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
UPN Mode Control and Framing Bits on IOM-2000 . . . . . . . . . . . . . . . 4-6  
Framing Bit (LF-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
Multiframing Bit (M-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
DC-Balancing Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
IOM-2000 Command and Status Interface . . . . . . . . . . . . . . . . . . . . . . 4-7  
IOM-2000 Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
UPN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
UPN Scrambler/Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
S/T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12  
IOM-2 Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14  
IOMU Overview of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14  
IOMU Functional and Operational Description . . . . . . . . . . . . . . . . . . 4-15  
Frame-Wise Buffer Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15  
I-buffer Logical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15  
DSP Access to the D-Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16  
IOM-2 Interface Data Rate Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16  
IOMU Serial Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18  
IOMU Parallel Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18  
IOM-2 Push-Pull and Open-Drain Modes . . . . . . . . . . . . . . . . . . . . 4-19  
Support of DRDY Signal from QUAT-S . . . . . . . . . . . . . . . . . . . . . . 4-20  
PCM Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21  
PCMU Functional and Operational Description . . . . . . . . . . . . . . . . . . 4-22  
Frame-Wise Buffer Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22  
DSP Inaccessible Buffer (I-buffer) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22  
DSP Accessible Buffer (D-Buffer) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23  
PCMU Interface Data Rate Modes . . . . . . . . . . . . . . . . . . . . . . . . . 4-24  
PCMU Serial Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25  
PCMU Parallel Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25  
PCMU Tri-state Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26  
A-law/µ-law Conversion Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29  
HDLC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30  
HDLCU Unit Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30  
DSP Operation of the HDLCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31  
Initialization of the HDLCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31  
Transmitting a Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31  
Ending a Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32  
Aborting a Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32  
DSP Access to the HDLCU Buffers . . . . . . . . . . . . . . . . . . . . . . . . . 4-32  
GHDLC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34  
GHDLC Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34  
4.2.7  
4.2.7.1  
4.2.7.2  
4.2.7.3  
4.3  
4.3.1  
4.3.2  
4.3.2.1  
4.3.2.2  
4.3.2.3  
4.3.2.4  
4.3.2.5  
4.3.2.6  
4.3.2.7  
4.3.2.8  
4.4  
4.4.1  
4.4.1.1  
4.4.1.2  
4.4.1.3  
4.4.1.4  
4.4.1.5  
4.4.1.6  
4.4.1.7  
4.5  
4.6  
4.6.1  
4.6.2  
4.6.2.1  
4.6.2.2  
4.6.2.3  
4.6.2.4  
4.6.2.5  
4.7  
4.7.1  
Preliminary Data Sheet  
VI  
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
4.7.2  
4.7.3  
4.7.4  
4.7.5  
4.7.5.1  
4.7.5.2  
4.7.6  
4.7.7  
4.8  
4.8.1  
4.8.2  
4.8.3  
4.8.4  
4.8.5  
4.8.6  
4.8.7  
4.9  
4.9.1  
4.9.2  
4.9.3  
4.10  
4.10.1  
4.10.2  
4.10.3  
4.10.4  
4.10.5  
4.10.6  
4.10.7  
4.11  
GHDLC Channel External Configurations . . . . . . . . . . . . . . . . . . . . . . 4-34  
GHDLC General Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34  
GHDLC Protocol Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35  
External Configuration and Handshaking in Bus Mode . . . . . . . . . . . . 4-35  
External Tri-State in Point-to-Multi-Point Mode . . . . . . . . . . . . . . . . 4-35  
Arbitration of GHDLCs on a Collision Bus . . . . . . . . . . . . . . . . . . . . 4-36  
GHDLC Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36  
GHDLC Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37  
DSP Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38  
DSP Address Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38  
Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38  
DSP Run Time Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39  
Data Bus and Program Bus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . 4-40  
Boot Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40  
Reset Execution and Boot Strap Pin Setting . . . . . . . . . . . . . . . . . . . . 4-41  
General Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42  
µP Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42  
OAK Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43  
DMA Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45  
Intel/Siemens Mode and Motorola Mode (Memory-to-Memory) . . . . . 4-45  
Fly-By Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45  
PEC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46  
Transmit Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46  
Receive Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47  
Access to the DMA FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48  
DSP Core OAK+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-49  
Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50  
DSP Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52  
PCM Master/Slave Mode Clocks Selection . . . . . . . . . . . . . . . . . . . . . 4-52  
DELIC Clock System Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 4-52  
IOM-2 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52  
IOM-2000 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53  
REFCLK Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53  
GHDLC Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53  
4.12  
4.12.1  
4.12.2  
4.12.3  
4.12.4  
4.12.5  
4.12.6  
4.12.7  
4.12.8  
5
5.1  
5.1.1  
5.1.2  
DELIC Memory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
DSP Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
DSP Register Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
DSP Program Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Preliminary Data Sheet  
VII  
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
5.1.3  
5.2  
DSP Data Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
µP Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
6
6.1  
6.2  
6.2.1  
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10  
TRANSIU Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10  
TRANSIU IOM-2000 Configuration Register . . . . . . . . . . . . . . . . . . 6-10  
TRANSIU Channel Configuration Registers . . . . . . . . . . . . . . . . . . 6-11  
VIP Command Registers (VIPCMR0, VIPCMR1, VIPCMR2) . . . . . 6-12  
VIP Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
TRANSIU Initialization Channel Command Register . . . . . . . . . . . . 6-15  
TRANSIU Initialization Channel Status Register (TICSTR) . . . . . . . 6-20  
Scrambler Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21  
Scrambler Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21  
IOMU Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22  
IOMU Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22  
IOMU Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23  
IOMU Tri-State Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24  
IOMU DRDY Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25  
IOMU Data Prefix Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26  
PCMU Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27  
PCMU Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27  
PCMU Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28  
PCMU Tri-state Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29  
PCMU Data Prefix Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30  
A-/µ-law Unit Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31  
A/µ-law Unit Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31  
A/µ-law Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31  
A/µ-law Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32  
HDLCU Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33  
HDLCU Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33  
HDLCU Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34  
Channel Command Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-35  
Channel Status Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36  
GHDLC Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38  
GHDLC Test/ Normal Mode Register . . . . . . . . . . . . . . . . . . . . . . . 6-38  
GHDLC Channel Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38  
GHDLC Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-39  
GHDLC FSC Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . 6-39  
GHDLC Receive Channel Status Registers 0..3 . . . . . . . . . . . . . . . 6-40  
GHDLC Receive Data and Status . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41  
GHDLC Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-42  
6.2.1.1  
6.2.1.2  
6.2.1.3  
6.2.1.4  
6.2.1.5  
6.2.1.6  
6.2.1.7  
6.2.1.8  
6.2.2  
6.2.2.1  
6.2.2.2  
6.2.2.3  
6.2.2.4  
6.2.2.5  
6.2.3  
6.2.3.1  
6.2.3.2  
6.2.3.3  
6.2.3.4  
6.2.4  
6.2.4.1  
6.2.4.2  
6.2.4.3  
6.2.5  
6.2.5.1  
6.2.5.2  
6.2.5.3  
6.2.5.4  
6.2.6  
6.2.6.1  
6.2.6.2  
6.2.6.3  
6.2.6.4  
6.2.6.5  
6.2.6.6  
6.2.6.7  
Preliminary Data Sheet  
VIII  
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
6.2.6.8  
6.2.6.9  
6.2.6.10  
6.2.6.11  
6.2.6.12  
6.2.6.13  
6.2.6.14  
6.2.7  
6.2.7.1  
6.2.7.2  
6.2.7.3  
6.2.7.4  
6.2.8  
6.2.8.1  
6.2.8.2  
6.2.8.3  
6.2.9  
6.2.9.1  
6.2.9.2  
6.2.9.3  
6.2.9.4  
6.2.9.5  
6.2.9.6  
6.2.9.7  
6.2.9.8  
6.2.10  
GHDLC Channel Transmit Command Registers . . . . . . . . . . . . . . . 6-43  
ASYNC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44  
LCLK0 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-45  
LCLK1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46  
LCLK2 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-47  
LCLK3 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-48  
Muxes Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-49  
DCU Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50  
Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50  
Status Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50  
Statistics Counter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-51  
Statistics Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-52  
µP Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-52  
µP Interface Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . 6-52  
Device Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-54  
Interrupt Vector Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-54  
µP Mailbox Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-55  
µP Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-55  
µP Mailbox Busy Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-55  
µP Mailbox Generic Data Register . . . . . . . . . . . . . . . . . . . . . . . . . 6-56  
µP Mailbox (General and DMA Mailbox) Data Registers . . . . . . . . . 6-57  
DSP Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-57  
DSP Mailbox Busy Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-58  
DSP Mailbox Generic Data Register . . . . . . . . . . . . . . . . . . . . . . . . 6-59  
DSP Mailbox (General and DMA Mailbox) Data Registers . . . . . . . 6-59  
DMA Mailbox Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . 6-60  
DMA Mailbox Transmit Counter Register . . . . . . . . . . . . . . . . . . . . 6-60  
DMA Mailbox Receive Counter Register . . . . . . . . . . . . . . . . . . . . . 6-60  
DMA Mailbox Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . 6-61  
Clock Generator Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 6-62  
PDC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-62  
PFS Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-62  
CLKOUT Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-63  
DCXO Reference Clock Select Register . . . . . . . . . . . . . . . . . . . . . 6-64  
REFCLK Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-65  
DCL_2000 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66  
DCL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66  
FSC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-67  
L1_CLK Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-68  
PFS Sync Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-69  
Realtime Counter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-69  
Strap Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-70  
6.2.10.1  
6.2.10.2  
6.2.10.3  
6.2.11  
6.2.11.1  
6.2.11.2  
6.2.11.3  
6.2.11.4  
6.2.11.5  
6.2.11.6  
6.2.11.7  
6.2.11.8  
6.2.11.9  
6.2.11.10  
6.2.11.11  
6.2.11.12  
Preliminary Data Sheet  
IX  
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
7
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1  
8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3  
Recommended 16.384 MHz Crystal Parameters . . . . . . . . . . . . . . . . . . . 8-3  
8.1  
8.2  
8.3  
8.4  
8.5  
9
9.1  
9.2  
9.2.1  
9.2.2  
9.3  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1  
µP Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1  
µP Access Timing in Motorola mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1  
µP Access Timing in Intel/Infineon Mode . . . . . . . . . . . . . . . . . . . . . . . . 9-3  
Interrupt Acknowledge Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7  
DMA Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9  
DMA Access Timing In Motorola Mode . . . . . . . . . . . . . . . . . . . . . . . . . 9-9  
DMA Access Timing in Intel/Infineon Mode . . . . . . . . . . . . . . . . . . . . . 9-12  
IOM®-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15  
9.4  
9.4.1  
9.4.2  
9.5  
10  
10.1  
10.2  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1  
DELIC Connection to External Microprocessors . . . . . . . . . . . . . . . . . . . 10-1  
DELIC Worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3  
11  
11.1  
Mailbox Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1  
Mailbox Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1  
Mailbox Access Transmit Direction (µP->DELIC) . . . . . . . . . . . . . . . . 11-1  
Mailbox Access Receive Direction (DELIC->µP) . . . . . . . . . . . . . . . . . 11-1  
Subscriber Address (SAD) Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 11-4  
SAD as IOM-2 Port and Channel Number . . . . . . . . . . . . . . . . . . . . . . 11-4  
SAD as IOM-2000 VIP and Channel Number . . . . . . . . . . . . . . . . . . . 11-5  
Overview of Commands and Indications . . . . . . . . . . . . . . . . . . . . . . . . . 11-5  
Commands and Indications for Boot Sequence . . . . . . . . . . . . . . . . . 11-5  
General Commands and Indications . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6  
Commands and Indications for Configuration . . . . . . . . . . . . . . . . . . . 11-7  
Commands and Indications for IOM-2 C/I Channels . . . . . . . . . . . . . . 11-8  
Commands and Indications for IOM-2 Monitor Channel . . . . . . . . . . . 11-8  
Commands and Indications for IOM-2000 C/I Channels . . . . . . . . . . . 11-9  
Commands and Indications for HDLC Channel . . . . . . . . . . . . . . . . . 11-10  
Commands and Indications for GHDLC Channel . . . . . . . . . . . . . . . 11-10  
Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11  
Boot Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11  
Boot Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13  
Start Boot Command (0x55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13  
11.1.1  
11.1.2  
11.2  
11.2.1  
11.2.2  
11.3  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
11.3.5  
11.3.6  
11.3.7  
11.3.8  
11.3.9  
11.4  
11.4.1  
11.4.1.1  
Preliminary Data Sheet  
X
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
11.4.1.2  
11.4.1.3  
11.4.1.4  
11.4.2  
11.4.2.1  
11.4.2.2  
11.4.2.3  
11.4.2.4  
11.5  
Finish Boot Command (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13  
Write Program Memory Command (0xAn) . . . . . . . . . . . . . . . . . . 11-13  
Write Data Memory Command (0xEn) . . . . . . . . . . . . . . . . . . . . . . 11-14  
Boot Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15  
Error Indication (0b011100XX) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15  
Start Loading Program RAM Indication (0x1F) . . . . . . . . . . . . . . . 11-15  
Start Loading Data RAM Indication (0xEF) . . . . . . . . . . . . . . . . . . 11-15  
Firmware Version Indication (0x00) . . . . . . . . . . . . . . . . . . . . . . . . 11-15  
General Commands and Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16  
General Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16  
Write Register Command (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16  
Read Register Command (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17  
General Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18  
Read Register Indication (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18  
Initialization/Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19  
Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20  
IOM-2000 Reference Channel Select Command (0x05) . . . . . . . . 11-20  
IOM-2000 Delay Measurement Command (0x04) . . . . . . . . . . . . . 11-21  
IOM-2000 VIP Channel Configuration Command (0x03) . . . . . . . 11-22  
GHDLC Configuration Command (0x14) . . . . . . . . . . . . . . . . . . . . 11-22  
Finish Initialization Command (0x06) . . . . . . . . . . . . . . . . . . . . . . . 11-24  
Configuration Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24  
IOM-2000 Far-end Code Violation Indication (0x07) . . . . . . . . . . . 11-24  
IOM-2000 Delay Indication (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . 11-25  
Finish VIP Channel Configuration Indication (0x02) . . . . . . . . . . . 11-26  
IOM-2 C/I Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26  
IOM-2 C/I Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27  
Write C/I Value Command (0x23) . . . . . . . . . . . . . . . . . . . . . . . . . 11-27  
IOM-2 C/I Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27  
Change Detected Indication (0x41) . . . . . . . . . . . . . . . . . . . . . . . . 11-27  
Common Mailbox Parameter Structure . . . . . . . . . . . . . . . . . . . . . . . 11-27  
Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-28  
IOM-2 Monitor Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29  
IOM-2 Monitor Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29  
Search On Command (0x2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29  
Search Reset Command (0x2C) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30  
Monitor Reset Command (0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30  
Transmit Continuous Command (0x29) . . . . . . . . . . . . . . . . . . . . . 11-30  
Transmit Command (0x28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30  
Transmit&Receive/Receive Only Command (0x2A) . . . . . . . . . . . 11-30  
IOM-2 Monitor Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-31  
Transfer Ready Indication (0x53) . . . . . . . . . . . . . . . . . . . . . . . . . 11-31  
11.5.1  
11.5.1.1  
11.5.1.2  
11.5.2  
11.5.2.1  
11.6  
11.6.1  
11.6.1.1  
11.6.1.2  
11.6.1.3  
11.6.1.4  
11.6.1.5  
11.6.2  
11.6.2.1  
11.6.2.2  
11.6.2.3  
11.7  
11.7.1  
11.7.1.1  
11.7.2  
11.7.2.1  
11.7.3  
11.7.4  
11.8  
11.8.1  
11.8.1.1  
11.8.1.2  
11.8.1.3  
11.8.1.4  
11.8.1.5  
11.8.1.6  
11.8.2  
11.8.2.1  
Preliminary Data Sheet  
XI  
2003-08  
DELIC  
PEB 20571  
Table of Contents  
Page  
11.8.2.2  
11.8.2.3  
11.8.2.4  
11.8.2.5  
11.8.3  
11.8.4  
11.9  
11.9.1  
11.9.1.1  
11.9.2  
Receive Continuous Indication (0x52) . . . . . . . . . . . . . . . . . . . . . . 11-31  
Receive Indication (0x51) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-31  
Transmit Abort Indication (0x55) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-32  
Monitor Active Indication (0x54) . . . . . . . . . . . . . . . . . . . . . . . . . . 11-32  
Common Mailbox Parameter Structure . . . . . . . . . . . . . . . . . . . . . . . 11-32  
Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-33  
IOM-2000 C/I Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-37  
IOM-2000 C/I Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-37  
Write C/I Value Command (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . 11-38  
IOM-2000 C/I Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-38  
Change Detected Indication (0x11) . . . . . . . . . . . . . . . . . . . . . . . . 11-38  
Common Mailbox Parameter Structure . . . . . . . . . . . . . . . . . . . . . . . 11-38  
HDLC Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-39  
HDLC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-39  
Reset Command (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-40  
Transmit Command (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-41  
Transmit Continuous Command (0x1E) . . . . . . . . . . . . . . . . . . . . 11-41  
Activation/Deactivation Command (0x20) . . . . . . . . . . . . . . . . . . . 11-41  
HDLC Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-42  
Error Indication (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-42  
Transmit Ready Indication (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . 11-43  
Receive Indication (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-44  
Receive Continuous Indication (0x32) . . . . . . . . . . . . . . . . . . . . . . 11-44  
Common Mailbox Parameter Structure . . . . . . . . . . . . . . . . . . . . . . . 11-44  
Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-45  
GHDLC Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-46  
GHDLC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-46  
Reset Command (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-46  
Transmit Command (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-47  
Transmit Continuous Command (0x12) . . . . . . . . . . . . . . . . . . . . . 11-48  
GHDLC Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-48  
Error Indication (0x24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-48  
Fatal Error Indication (0x25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-48  
Transmit Ready Indication (0x23) . . . . . . . . . . . . . . . . . . . . . . . . . 11-49  
Receive Indication (0x21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-49  
Receive Continuous Indication (0x22) . . . . . . . . . . . . . . . . . . . . . . 11-49  
B-Channel Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-50  
Switching Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-50  
8-bit Connect Command (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-50  
8-bit Disconnect Command (0x18) . . . . . . . . . . . . . . . . . . . . . . . . 11-52  
11.9.2.1  
11.9.3  
11.10  
11.10.1  
11.10.1.1  
11.10.1.2  
11.10.1.3  
11.10.1.4  
11.10.2  
11.10.2.1  
11.10.2.2  
11.10.2.3  
11.10.2.4  
11.10.3  
11.10.4  
11.11  
11.11.1  
11.11.1.1  
11.11.1.2  
11.11.1.3  
11.11.2  
11.11.2.1  
11.11.2.2  
11.11.2.3  
11.11.2.4  
11.11.2.5  
11.12  
11.12.1  
11.12.1.1  
11.12.1.2  
12  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1  
Preliminary Data Sheet  
XII  
2003-08  
DELIC  
13  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1  
Preliminary Data Sheet  
-XIII  
2003-08  
DELIC  
PEB 20571  
List of Figures  
Page  
Figure 1-1  
Figure 1-2  
Figure 1-1  
Figure 1-2  
Figure 1-3  
Figure 1-4  
Figure 1-5  
Figure 2-1  
Figure 2-2  
Figure 3-1  
Figure 3-2  
Figure 3-3  
Figure 3-4  
Figure 3-5  
Figure 3-6  
Figure 3-7  
Figure 3-8  
Figure 3-9  
Block Diagram of the DELIC-LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Block Diagram of the DELIC-PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
DELIC-LC in S/T and Upn Line Cards (up to 8 S/T and 16 Upn). . . . . 1-7  
DELIC-LC in Uk0 Line Card for 16 Subscribers. . . . . . . . . . . . . . . . . . 1-8  
DELIC-PB in Analog Line Card for 16 Subscribers . . . . . . . . . . . . . . . 1-8  
DELIC-PB in Small PBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9  
Pin Configuration DELIC-LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Pin Configuration DELIC-PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Overview of IOM-2000 Interface Structure (Example with One VIP) . . 3-2  
IOM-2000 Data Sequence (1 VIP with 8 Channels) . . . . . . . . . . . . . . 3-4  
IOM-2000 Data Order (3 VIPs with 24 Channels) . . . . . . . . . . . . . . . . 3-5  
IOM-2000 CMD/STAT Handling (1 VIP with 8 Channels) . . . . . . . . . . 3-6  
IOM-2000 Command/Status Sequence (3 VIPs with 24 Channels) . . 3-6  
UPN State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
State Diagram of LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
LT-T Mode State Diagram (Conditional and Unconditional States). . 3-20  
IOM®-2 Interface in Digital Linecard Mode . . . . . . . . . . . . . . . . . . . . 3-23  
Figure 3-10 DELIC in Multiplexed and in De-multiplexed Bus Mode . . . . . . . . . . 3-25  
Figure 4-1  
Figure 4-2  
Figure 4-3  
Figure 4-4  
Figure 4-5  
Figure 4-6  
Figure 4-7  
Figure 4-8  
Figure 4-9  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
S/Q Channel Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
IOMU Integration in DELIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15  
IOM-2 Interface Timing in Single/Double Clock Mode . . . . . . . . . . . . 4-18  
IOM-2 Interface Open-Drain Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19  
IOM-2 Interface Push-Pull Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19  
DRDY Signal Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20  
DRDY Sampling Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20  
PCMU Integration in DELIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22  
Figure 4-10 IOM-2 Interface Timing in Single/Double Clock Mode . . . . . . . . . . . . 4-25  
Figure 4-11 HDLCU General Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30  
Figure 4-12 Data Processing in the GHDLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34  
Figure 4-13 GHDLC Interface Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35  
Figure 4-14 GHDLC Receive and Transmit Buffer Structure . . . . . . . . . . . . . . . . 4-37  
Figure 4-15 Statistics Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39  
Figure 4-16 DELIC Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51  
Figure 9-1  
Figure 9-2  
Figure 9-3  
Figure 9-4  
Figure 9-5  
Figure 9-6  
Figure 9-7  
Write Cycle in Motorola Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2  
Read Cycle in Motorola Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3  
Write Cycle in Intel/Infineon De-multiplexed Mode . . . . . . . . . . . . . . . 9-4  
Read Cycle in Intel/Infineon De-multiplexed Mode . . . . . . . . . . . . . . . 9-5  
Write Cycle in Intel/Infineon Multiplexed Mode . . . . . . . . . . . . . . . . . . 9-6  
Read Cycle in Intel/Infineon Multiplexed Mode . . . . . . . . . . . . . . . . . . 9-7  
Interrupt Acknowledge Cycle Timing in Motorola Mode. . . . . . . . . . . . 9-8  
Preliminary Data Sheet  
XIV  
2003-08  
DELIC  
PEB 20571  
List of Figures  
Page  
Figure 9-8  
Figure 9-9  
Interrupt Acknowledge Cycle Timing in Intel/Infineon Mode . . . . . . . . 9-8  
IREQ Deactivation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9  
Figure 9-10 DMA Write Transaction Timing in Motorola Mode . . . . . . . . . . . . . . . 9-11  
Figure 9-11 DMA Read-Transaction Timing in Motorola Mode. . . . . . . . . . . . . . . 9-12  
Figure 9-12 DMA Write Transaction Timing in Intel/Infineon Mode. . . . . . . . . . . . 9-14  
Figure 9-13 DMA Read Transaction Timing in Intel/Infineon Mode . . . . . . . . . . . 9-14  
Figure 9-14 IOM®-2 Interface Timing with Single Data Rate DCL . . . . . . . . . . . . 9-15  
Figure 9-15 Timing of the IOM®-2 Interface with Double Data Rate DCL . . . . . . 9-16  
Figure 10-1 DELIC Connection to Intel 80386EX (Demuxed Configuration) . . . . 10-1  
Figure 10-2 DELIC Connection to Siemens C165 (Demuxed Configuration) . . . . 10-2  
Figure 10-3 DELIC-LC PCM unit mode 0 ( 4 ports with 2 MBit/s) . . . . . . . . . . . . . 10-3  
Figure 10-4 Command/ Indication handshake of general mailbox . . . . . . . . . . . . 10-4  
Figure 11-1 Transmit Mailbox Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2  
Figure 11-2 Receive Mailbox Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3  
Figure 11-3 Flow Diagram: Mailbox Write Access . . . . . . . . . . . . . . . . . . . . . . . . 11-4  
Figure 11-4 Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12  
Figure 11-5 Initialization Flow Diagram: Configuration Example. . . . . . . . . . . . . 11-20  
Figure 11-6 C/I Flow Diagram: Receiving C/I Value Changes . . . . . . . . . . . . . . 11-29  
Figure 11-7 Monitor Flow Diagram: Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-33  
Figure 11-8 Monitor Flow Diagram: Transmit Continuous. . . . . . . . . . . . . . . . . . 11-34  
Figure 11-9 Monitor Flow Diagram: Search Mode . . . . . . . . . . . . . . . . . . . . . . . 11-35  
Figure 11-10 Monitor Flow Diagram: Receive Only with Receive Continuous . . . 11-36  
Figure 11-11 Monitor Flow Diagram: Transmit & Receive. . . . . . . . . . . . . . . . . . . 11-37  
Figure 11-12 HDLC Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-39  
Figure 11-13 HDLC Flow Diagram: Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-45  
Figure 11-14 HDLC Flow Diagram: Transmit Continuous. . . . . . . . . . . . . . . . . . . 11-45  
Preliminary Data Sheet  
XV  
2003-08  
DELIC  
PEB 20571  
List of Tables  
Page  
Table 2-1  
Table 2-2  
Table 2-3  
Table 2-4  
Table 2-5  
Table 2-6  
Table 2-7  
Table 2-8  
Table 2-9  
Table 2-10  
Table 2-11  
Table 2-12  
Table 2-13  
Table 2-14  
Table 2-15  
Table 2-16  
Table 2-17  
Table 2-18  
Table 2-19  
Table 3-1  
Table 3-2  
Table 3-3  
Table 3-4  
Table 3-5  
Table 3-6  
Table 3-7  
Table 4-1  
Table 4-2  
Table 4-3  
Table 4-4  
Table 4-5  
Table 4-6  
Table 4-7  
Table 4-8  
Table 4-9  
Table 4-10  
Table 4-11  
Table 4-12  
Table 4-13  
Table 4-14  
Table 4-15  
Table 5-1  
IOM®-2 Interface Pins (DELIC-LC) . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
IOM-2000 Interface / LNC Port 1 (DELIC-LC) . . . . . . . . . . . . . . . . . . 2-4  
LNC Port 0 (DELIC-LC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Microprocessor Bus Interface Pins (DELIC-LC). . . . . . . . . . . . . . . . . 2-6  
PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-LC) . . . . . . . . 2-8  
Clock Generator Pins (DELIC-LC) (additionally to IOM/PCM clocks) 2-11  
Power Supply Pins (DELIC-LC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
JTAG and Emulation Interface Pins (DELIC-LC). . . . . . . . . . . . . . . 2-13  
Test Interface Pins (DELIC-LC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
IOM®-2 Interface Pins (DELIC-PB) . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
IOM-2000 Interface / LNC Port 1 (DELIC-PB) . . . . . . . . . . . . . . . . . 2-16  
LNC Port 0 (DELIC-PB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
Microprocessor Bus Interface Pins (DELIC-PB) . . . . . . . . . . . . . . . 2-18  
PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-PB). . . . . . . 2-20  
Clock Generator Pins (DELIC-PB) (additionally to IOM/PCM clocks) 2-24  
Power Supply Pins (DELIC-PB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25  
JTAG and Emulation Interface Pins (DELIC-PB). . . . . . . . . . . . . . . 2-26  
Test Interface Pins (DELIC-PB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27  
Strap Pins (Evaluated During Reset). . . . . . . . . . . . . . . . . . . . . . . . 2-28  
Control Bits in S/T Mode on DR Line. . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Control Bits in S/T Mode on DX Line . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
INFO Structure on UPN Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
UPN State Machine Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
LT-S State Machine Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
LT-T Mode State Machine Codes (Conditional States) . . . . . . . . . . 3-18  
TAP Controller Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27  
Differences between DELIC-LC - DELIC-PB. . . . . . . . . . . . . . . . . . . 4-1  
S/T Mode Multiframe Bit Positions. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
I-Buffer Logical Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16  
D-Buffer Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16  
DCL Frequency in Different IOM-2 Modes. . . . . . . . . . . . . . . . . . . . 4-17  
I-Buffer Logical Memory Mapping of Input Buffers. . . . . . . . . . . . . . 4-23  
I-Buffer Logical Memory Mapping of Output Buffers . . . . . . . . . . . . 4-23  
DSP Access to D-Buffer Input Blocks . . . . . . . . . . . . . . . . . . . . . . . 4-23  
DSP Access to D-Buffer Output Blocks . . . . . . . . . . . . . . . . . . . . . . 4-24  
PCM TSC in 4 x 32 TS Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26  
PCM TSC in 2 x 64 TS Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27  
PCM TSC in 1 x 128 TS and 1 x 256 TS (1st Half) Mode . . . . . . . . 4-27  
PCM TSC in 1 x 256 TS (2nd Half) Mode . . . . . . . . . . . . . . . . . . . . 4-27  
Interrupt Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38  
Overview of Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50  
DSP Registers Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Preliminary Data Sheet  
XVI  
2003-08  
DELIC  
PEB 20571  
List of Tables  
Page  
Table 5-2  
Table 5-3  
Table 5-4  
Table 5-5  
Table 6-1  
Table 6-2  
Table 6-3  
Table 6-4  
Table 6-5  
Table 6-6  
Table 6-7  
Table 6-8  
Table 6-9  
Table 6-10  
Table 6-11  
Table 6-12  
Table 6-13  
Table 6-14  
Table 9-1  
Table 9-2  
Table 9-3  
Table 9-4  
Table 9-5  
Table 9-6  
Table 9-7  
Table 9-8  
Table 9-9  
Table 9-10  
13  
DSP Program address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Occupied DSP Data Address space . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
OAK memory mapped registers address space . . . . . . . . . . . . . . . . 5-3  
µP Address Space Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
TRANSIU Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
Scrambler Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
IOMU Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  
PCMU Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  
A-/µ-law Unit Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  
HDLCU Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  
GHDLC Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4  
DCU Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  
µP Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  
General Mailbox Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6  
DMA Mailbox Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  
Clock Generator Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9  
Available ISDN Modes for each VIP Channel . . . . . . . . . . . . . . . . . 6-11  
Tristate Control Assignment for IOM-2 Time Slots. . . . . . . . . . . . . . 6-24  
Timing For Write Cycle In Motorola Mode . . . . . . . . . . . . . . . . . . . . . 9-2  
Timing For Read Cycle In Motorola Mode . . . . . . . . . . . . . . . . . . . . . 9-3  
Timing For Write Cycle In Intel/Infineon Demultiplexed Mode . . . . . . 9-4  
Timing For Read Cycle In Intel/Infineon De-multiplexed Mode . . . . . 9-5  
Timing For Write Cycle In Intel/Infineon Multiplexed Mode . . . . . . . . 9-6  
Timing For Read Cycle In Intel/Infineon Multiplexed Mode . . . . . . . . 9-7  
Interrupt Acknowledge Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . 9-8  
R/W Behavior During DMA Transactions in Normal and Fly-By Mode 9-9  
DMA Transaction timing in Mototrola Mode. . . . . . . . . . . . . . . . . . . 9-10  
R/W Behavior During DMA Transactions in Normal and Fly-By Mode 9-  
Table 9-11  
Table 9-12  
Table 9-13  
Table 11-1  
Table 11-2  
Table 11-3  
Table 11-4  
Table 11-5  
Table 11-6  
Table 11-7  
Table 11-8  
Table 11-9  
DMA Transaction Timing in Intel/Infineon Mode . . . . . . . . . . . . . . . 9-13  
Timing Characteristics of the IOM®-2 . . . . . . . . . . . . . . . . . . . . . 9-15  
Timing Characteristics of the IOM®-2 . . . . . . . . . . . . . . . . . . . . . 9-16  
Boot Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5  
Boot Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6  
General Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6  
General Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6  
Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7  
Configuration Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7  
IOM-2 C/I Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8  
IOM-2 C/I Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8  
IOM-2 Monitor Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8  
Table 11-10 IOM-2 Monitor Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  
Preliminary Data Sheet  
XVII  
2003-08  
DELIC  
Table 11-11 IOM-2000 C/I Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  
Table 11-12 IOM-2000 C/I Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9  
Table 11-13 HDLC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10  
Table 11-14 HDLC Indications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10  
Table 11-15 GHDLC Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10  
Table 11-16 GHDLC Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11  
Table 11-17 Switching Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11  
Table 11-18 Time Slot Address Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-50  
Preliminary Data Sheet  
-XVIII  
2003-08  
DELIC  
Introduction  
1
Introduction  
The DELIC and VIP chipset realizes multiple ISDN S/T and Up interfaces together with  
controller functionality typically needed in PBX or Central Office systems. This  
functionality comprises voice channel handling, signaling control, layer-1 control, and  
even signal processing tasks.  
Moreover it provides a programmable master/slave clock generator with 2 PLLs, an  
universal µP interface and a DMA interface.  
The controller part, DELIC, is planned in three different versions:  
DELIC-LC (PEB 20570) is a line card controller providing voice channel switching,  
multiple HDLC and layer-1 control for up to three VIPs (24 ISDN channels). Other  
transceiver ICs (32 analog or 16 digital channels) may additionally be connected via  
IOM-2/GCI interface.  
DELIC-PB (PEB 20571) additionally provides a programmable telecom DSP  
including program and data RAM. This DSP can be used for layer-1 control, protocol  
support and signal processing. The flexibility gained by the programmability allows  
Infineon to offer different application specific solutions with the same silicon just by  
software configuration.  
A configuration tool assists the user in finding a valid system configuration. Even more  
customer specific DSP-routines can be integrated with the assistance of Infineon.  
DELIC-HD (PEB 20572) (in definition) includes up to 64 time-slot oriented HDLC  
controllers, and 2 independent serial communication controllers. Additional transfer  
and signalling protocols such as ASYNC and SS7 (PEB 3040 replacement) will be  
provided in DSP software.  
VIP PEB 20590 is the first (8 channel) ISDN transceiver that implements multiple UPN  
and S/T interfaces within one device. The user can decide by programming in which  
mode a desired channel shall work.  
A total of 8 channels are provided for layer-1 subscriber or trunk line characteristic. The  
VIP is programmed by the DELIC via the IOM-2000 interface.  
VIP’s eight channels are programmable in the following maximum partitioning between  
UPN and S/T channels:  
Max. number of UPN and S/T Channels  
UPN  
S/T  
8
0
7
1
6
2
5
3
4
4
Preliminary Data Sheet  
1-1  
2003-08  
DELIC  
Introduction  
VIP-8 PEB 20591  
Additionally to the features of the VIP, the VIP-8 allows any combination of UPN S/T  
interface (i.e. each of the 8 channels may be programmed to S/T or UPN mode)  
DELIC-LC  
Switch  
IOM-2 /  
224 x 256 TS  
PCM  
PCM  
Interface  
Interface  
IOM-2000  
Interface  
24 HDLC  
Signaling  
Controller  
Controllers  
µP Mailbox  
Clocks  
JTAG  
DMA Mailbox  
µP Interface  
DELIC-LC-PO.vsd  
Figure 1-1  
Block Diagram of the DELIC-LC  
Preliminary Data Sheet  
1-2  
2003-08  
DELIC  
Introduction  
DELIC-PB  
IOM-2 /  
PCM  
Switch  
PCM  
Interface  
Interface  
Program  
RAM  
DSP  
Data RAM  
Voice handling  
IOM-2000  
Interface  
Async/Sync  
Controller  
HDLC Controllers  
µP Mailbox  
Clocks  
JTAG  
DMA Mailbox  
DSP Emulation  
Interface  
µP Interface  
Figure 1-2  
Block Diagram of the DELIC-PB  
Preliminary Data Sheet  
1-3  
2003-08  
PEB 20570  
PEB 20571  
DSP Embedded Line and Port Interface Controller  
DELIC-LC/ DELIC-PB  
Version 2.1  
CMOS  
1.1  
DELIC-LC Key Features  
DELIC-LC is optimized for line card applications:  
• One IOM-2000 interface supporting three VIPs i.e.  
up to 24 ISDN channels  
• Two IOM-2 (GCI) ports (configurable as PCM ports)  
supporting up to 16ISDN channels or 32 analog  
subscribers  
• Four PCM ports with up to 4 x 2.048 Mbit/s  
(4 x 32 TS) or 2 x 4.096 Mbit/s or 1 x 8.192 Mbit/s  
P-TQFP-100-1  
• Switching matrix 224 x 256 TS (8-bit switching)  
• 24 HDLC controllers assignable to any D- or B-channel (at 16 kbit/s or 64 kbit/s)  
• Serial communication controller: high-speed signaling channel for 2.048 Mbit/s  
• Standard multiplexed and de-multiplexed µP interface: Siemens, Intel, Motorola  
• Programmable PLL based Master/Slave clock generator, providing all system clocks  
from a single 16.384 MHz crystal source  
• JTAG compliant test interface  
• single 3.3 V power supply, 5 V tolerant inputs  
1.2  
DELIC-PB Key Features  
Compared to the DELIC-LC, having a fixed functionality, the DELIC-PB provides a high  
degree of flexibility (in terms of selected number of ports or channels).  
Additionally it features computing power for typical DSP-oriented PBX tasks like  
conferencing, DTMF..  
A Microsoft Windows based configuration tool, the Configurator, enables to generate an  
application specific functionality. Its features are mainly determined by the firmware of  
the integrated telecom DSP.  
Type  
Package  
PEB 20570/ PEB 20571  
P-TQFP-100-1  
Preliminary Data Sheet  
1-4  
2003-08  
DELIC  
Introduction  
List of maximum available features:  
• One IOM-2000 interface supporting up to three VIPs i.e. up to 24 ISDN channels  
• Up to two IOM-2 (GCI) ports (also configurable as PCM ports) supporting up to 16  
ISDN channels or 32 analog subscribers  
• Up to four PCM ports with up to 4 x 2.048 Mbit/s (4 x 32 TS) or 2 x 4.096 Mbit/s or  
1 x 8.192 Mbit/s  
• Switching matrix 224 x 256 TS (switching of 4-/8- bit time slots)  
• Up to 32 HDLC controllers assignable to any D- or B-channel (at 16 kbit/s or 64 kbit/s)  
• Serial communication controller: high-speed signaling channel of up to 16.384 Mbit/s  
• DECT synchronization support  
• Standard multiplexed and de-multiplexed µP interface: Siemens, Intel, Motorola  
• Dedicated DMA support mailbox  
• Integrated DSP core OAK®+ (up to 60 MIPS for layer 1 control, signalling and DSP-  
algorithms)  
• 4 KW on-chip program memory  
• 2 KW on-chip data memory  
• 2 KW ROM  
• DSP work load measurement for run-time statistics, DSP alive indication  
• On chip debugging unit  
• Serial DSP program debugging interface connected via JTAG port  
• A-/µ-law conversion unit  
• Programmable PLL based Master/Slave clock generator, providing all system clocks  
from a single 16.384 MHz crystal source  
• JTAG compliant test interface  
• single 3.3 V power supply, 5 V compatible inputs  
Note: As each feature consumes system resources (DSP-performance, memory, port  
pins), the maximum available number of supported interfaces or HDLC channels  
is limited by the totally available resources. A System Configurator tool helps to  
determine a valid configuration.  
Preliminary Data Sheet  
1-5  
2003-08  
DELIC  
Introduction  
1.3  
Logic Symbol  
P-TQFP-100-1  
Power Supply  
27  
7
IOM-2  
Interfaces  
14  
5
PCM/ LNC  
Interfaces  
DELPHI-LC  
PEB20570  
5
IOM-2000/ LNC  
Interface  
DELPHI-PB  
PEB 20571  
LNC or Signaling  
Interface  
9
Clock  
P-TQFP-100  
Signals  
5
2
26  
µP Interface  
Test  
Interface  
JTAG  
DELIC-logic-DS.vsd  
Interface  
Figure 1-1  
Logic Symbol  
Preliminary Data Sheet  
1-6  
2003-08  
DELIC  
Introduction  
1.4  
Typical Applications  
The following two figures show example configurations of DELIC-PB Line card  
applications for different ISDN interface standards.  
In Figure 1-2, three VIP transceiver ICs are connected to the DELIC-PB via the new  
IOM-2000 interface, whereas in Figure 1-3 and Figure 1-4 IOM-2 (GCI) interfaces are  
used.  
up to  
4 x  
IOM-2000  
S/T  
VIP  
PEB 20590  
PCM  
4 x  
4 x 32 TS  
Upn  
DELIC  
up to  
4 x  
PEB 20570  
(PEB 20571)  
S/T  
VIP  
PEB 20590  
4 x  
Upn  
Signaling  
up to 2.048 Mbit/s  
8 x  
VIP  
Upn  
PEB 20590  
µP  
Memory  
Infineon  
C166  
Figure 1-2  
DELIC-LC in S/T and Upn Line Cards (up to 8 S/T and 16 Upn)  
Preliminary Data Sheet  
1-7  
2003-08  
DELIC  
Introduction  
IOM-2  
HYBRID  
HYBRID  
QUAD-U  
QUAD-U  
PCM  
4 x 32 TS  
HYBRID  
HYBRID  
DELIC  
16 x Uk0  
PEB 20570  
HYBRID  
HYBRID  
(PEB 20571)  
QUAD-U  
QUAD-U  
HYBRID  
HYBRID  
Signaling  
µP  
Memory  
Infineon  
C166  
Figure 1-3  
DELIC-LC in Uk0 Line Card for 16 Subscribers  
IOM-2  
HV-SLIC  
SLICOFI - 2  
HV-SLIC  
PCM  
4 x 32 TS  
HV-SLIC  
SLICOFI - 2  
HV-SLIC  
DELPHI-PB  
16 x  
t/r  
PEB 20571  
IOM-2  
HV-SLIC  
HV-SLIC  
SLICOFI - 2  
SLICOFI - 2  
HV-SLIC  
HV-SLIC  
Signaling  
µP  
Siemens  
C166  
Memory  
Figure 1-4  
DELIC-PB in Analog Line Card for 16 Subscribers  
Preliminary Data Sheet  
1-8  
2003-08  
DELIC  
Introduction  
IOM-2  
HV-SLIC  
HV-SLIC  
SLICOFI-2  
SLICOFI-2  
PCM  
up to 32 TS  
32 x t/r  
HV-SLIC  
HV-SLIC  
DELIC-PB  
PEB 20571  
4 x  
UPN  
IOM-2000  
VIP  
2 x S  
2 x T  
LNC  
PEB 20590  
Central  
Office  
2 Mbit/s  
for service  
µP  
Power  
Memory  
Infineon  
C166  
Supply  
Figure 1-5  
DELIC-PB in Small PBX  
Preliminary Data Sheet  
1-9  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
2
Pin Descriptions  
2.1  
Pin Diagram DELIC-LC  
(top view)  
P-TQFP-100-1  
7574 73 72 71 70 6968 67 66 6564 6362 6160 5958 57 56 5554 53 52 51  
RxD0/LRxD2  
TSC0/ LRTS2  
76  
SCANMO  
50  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
VSS  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
TXD0/LTxD2  
TSC1/ LRTS3  
L1_CLK  
VSS  
VDD  
DRDY  
DD1  
DD0  
DU1  
DU0  
DCL  
FSC  
A6  
TxD1/LTxD3  
TSC2  
TxD2/LCLK2  
TSC3  
VDD  
VSS  
DELIC-LC  
TxD3/LCLK3  
PFS  
PDC  
RESIND  
REFCLK  
VDD  
PEB 20570  
VSS  
VDD  
A5  
VSS  
A4  
VSSA  
A3  
CLK16-XI  
A2  
CLK16-XO  
VDDA  
A1  
A0  
VSSA  
RESET  
CLKOUT  
VSS  
VSSA  
VDDA  
VDDA  
98  
99  
100  
28  
27  
26  
VDD  
1
2 3 4 5 6 7 8 9 10 111213 14 15 16 1718 19 202122 23 2425  
Figure 2-1  
Pin Configuration DELIC-LC  
Preliminary Data Sheet  
2-1  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
2.2  
Pin Diagram DELIC-PB  
(top view)  
P-TQFP-100-1  
7574 73 72 71 70 6968 67 66 6564 6362 6160 5958 57 56 5554 53 52 51  
76  
RxD0/LRxD2  
SCANMO  
VDD  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
TSC0/ LTSC2/LRTS2  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
TXD0/LTxD2  
TSC1/ LTSC3/LRTS3  
TxD1/LTxD3  
L1_CLK  
VSS  
VDD  
TSC2  
DRDY  
DD1  
DD0  
DU1  
DU0  
DCL  
FSC  
A6  
TxD2/LCLK2  
TSC3  
VDD  
VSS  
DELIC-PB  
PEB 20571  
TxD3/LCLK3  
PFS  
PDC  
RESIND  
REFCLK  
VDD  
VSS  
VDD  
A5  
VSS  
A4/DACK  
A3  
VSSA  
CLK16-XI  
A2  
CLK16-XO  
VDDA  
A1  
A0  
VSSA  
RESET  
CLKOUT  
VSS  
VSSA  
VDDA  
98  
99  
100  
1
28  
27  
26  
VDDA  
VDD  
2 3 4 5 6 7 8 9 10 111213 14 15 16 1718 19 202122 23 2425  
Figure 2-2  
Pin Configuration DELIC-PB  
Preliminary Data Sheet  
2-2  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
2.3  
Pin Definitions and Functions for DELIC-LC  
Note: The column “During Reset” refers to the time period that starts with activation of  
RESET input and ends with the deactivation of the RESIND output. During this  
period, the DELIC’s strap pins (refer to Table 2-19) may be driven by external pull-  
down or pull-up resistors to define DELIC’s configuration. If external pull-down or  
pull-up resistors are not connected to the strap pins, the value of each strap pin  
during reset will be determined by an internal pull-up or pull-down resistor,  
according to the default strap value of each pin.  
The user must ensure that connected circuits do not influence the sampling of the  
strap pins during reset.  
The column “After Reset” describes the behavior of every pin, from the  
deactivation of the RESIND output until the DELIC’s registers are programmed.  
Table 2-1  
IOM®-2 Interface Pins (DELIC-LC)  
Pin  
No.  
Symbol In (I)  
During  
After  
Reset  
Function  
Out(O) Reset  
39  
FSC  
DCL  
O
O
O
Frame Synchronization Clock (8 kHz)  
Used for both the IOM-2 and the IOM-  
2000 interface  
40  
O
TEST-  
O
IOM-2 Data Clock 2.048 MHz or 4.096  
MHz  
Strap (3),  
(internal  
pull-up),  
refer to  
Table 2-19  
43  
44  
41  
42  
45  
DD0  
DD1  
DU0  
DU1  
DRDY  
O(OD) High Z  
High Z Data Downstream IOM-2 Interface  
Channel0  
O(OD) High Z  
High Z Data Downstream IOM-2 Interface  
Channel1  
I
I
I
I
I
I
I
I
I
Data Upstream IOM-2 Interface  
Channel 0  
Data Upstream IOM-2 Interface  
Channel 1  
D- Channel Ready  
Stop/Go information for D-channel  
control on S/T interface in LT-T.  
Affects only IOM-2 port 0.  
DRDY = 1 means GO  
DRDY = 0 means STOP  
Preliminary Data Sheet  
2-3  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-2  
IOM-2000 Interface / LNC Port 1 (DELIC-LC)  
Pin Symbol  
No.  
In (I)  
During After  
Function  
Out (O) Reset Reset  
70  
69  
68  
67  
DCL_2000 / O  
O
O
IOM-2000 Data Clock  
3.072, 6.144 or 12.288 MHz  
LRTS1  
DX /  
O
O
’request-to-send’ functionality (Async  
mode)  
High Z High Z Data Transmit  
Transmits IOM-2000 data to VIP  
LTxD1  
DR /  
O (OD)  
I
LNC Transmit Serial Data Port 1  
(Async mode).  
I
I
Data Receive  
Receives IOM-2000 data from VIP  
LRxD1  
CMD /  
I
LNC Receive Serial Data Port 1  
(Async mode).  
O
High Z High Z IOM-2000 Command  
Transmits DELIC commands to VIP.  
LCLK1  
I/O  
LNC Clock Port 1.  
When configured as output may be  
driven at the following frequencies:  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
64  
STAT /  
LCTS1  
I
I
I
I
IOM-2000 Status  
Receives status information from VIP.  
LNC1 Clear to Send  
’clear-to-send’ functionality (Async  
mode)  
Preliminary Data Sheet  
2-4  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-3  
LNC Port 0 (DELIC-LC)  
Pin Symbol In (I)  
No.  
During  
Out (O) Reset  
After  
Reset  
Function  
62  
LRxD0  
LTxD0  
I
I
I
LNC Receive Serial Data Port 0  
(HDLC and Async mode).  
61  
60  
O (OD) High Z  
High Z LNC Transmit Serial Data Port 0  
(HDLC and Async mode).  
LTSC0 / O  
LRTS0  
PLL-  
Bypass”  
strap.  
Internal  
pull-up  
refer to  
page 2-  
28  
H
LNC0 Tristate Control / Request to Send  
2 modes per S/W selectable:  
1) TxD output is valid (HDLC mode).  
Supplies a control signal for an external  
driver. (’low’ when the corresponding  
TxD-output is valid).  
2) ’request-to-send’ functionality  
(Async mode)  
59  
56  
LCxD0 / I  
LCTS0  
I
I
I
LNC0 Collision Data / Clear to Send  
2 modes per S/W selectable:  
1) Collision Data (HDLC Mode).  
2) ’clear-to-send’ functionality  
(Async mode)  
LCLK0  
I/O  
I
LNC Clock Port 0  
When configured as output may be  
driven at the following frequencies:  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
Preliminary Data Sheet  
2-5  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-4  
Microprocessor Bus Interface Pins (DELIC-LC)  
Pin Symbol In (I)  
During  
After  
Function  
No.  
Out (O) Reset  
Reset  
25  
24  
23  
22  
21  
18  
17  
16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
I/O  
Data Bus  
The direction of these pins  
depends on the value of the  
following pins:  
CS, RD/DS, WR / R/W and  
MODE  
Note: When operated in address/data  
multiplex mode, this bus is used  
as a multiplexed AD bus. The  
Address pins are externally  
connected to the AD bus.  
38  
35  
34  
33  
32  
31  
30  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
I
I
I
Address Bus (bits 6 ... 0)  
Note: When operated in address/data  
multiplex mode, this bus is used  
as a multiplexed AD bus. The  
Data  
pins  
are  
externally  
connected to the AD bus.  
11  
DREQR O  
CLOCK  
MASTER  
Strap  
(internal  
pull-down),  
refer to  
L
L
Strap pin  
Table 2-19  
10  
DREQT O  
EMUL-  
Strap pin  
ATION  
BOOT  
Strap  
(internal  
pull-down),  
refer to  
Table 2-19  
12  
CS  
I
I
I
Chip Select  
A "low" on this line selects all registers  
for read/write operations.  
Preliminary Data Sheet  
2-6  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-4  
Microprocessor Bus Interface Pins (DELIC-LC) (Continued)  
Pin Symbol In (I)  
No.  
During  
Out (O) Reset  
After  
Reset  
Function  
13  
WR/  
R/W  
I
I
I
Write (Intel/Siemens Mode)  
Indicates a write access.  
Read/Write (Motorola Mode)  
Indicates the direction of the data  
transfer  
14  
RD/  
DS  
I
I
I
Read (Intel/Siemens Mode)  
Indicates a read access.  
Data Strobe (Motorola Mode)  
During a read cycle, DS indicates that  
the DELIC should place valid data on  
the bus. During a write access, DS  
indicates that valid data is on the bus.  
15  
ALE  
I
I
I
Address Latch Enable  
Controls the on-chip address latch in  
multiplexed bus mode. While ALE is  
’high’, the latch is transparent. The  
falling edge latches the current  
address. ALE is also evaluated to  
determine  
the  
bus  
mode  
(’low’=multiplexed,  
’high’=demultiplexed)  
7
6
MODE  
IREQ  
I
I
I
Bus Mode Selection  
Selects the µP bus mode  
(’low’=Intel/Infineon, ’high’=Motorola)  
High Z Interrupt Request is programmable to  
O
(OD)  
High Z  
(OD)  
(OD)  
push/pull (active high or low) or open-  
drain. This signal is activated when the  
DELIC requests a µP interrupt. When  
operated in open drain mode, multiple  
interrupt sources may be connected.  
5
IACK  
I
I
I
Interrupt Acknowledge  
Preliminary Data Sheet  
2-7  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-4  
Microprocessor Bus Interface Pins (DELIC-LC) (Continued)  
Pin Symbol In (I)  
No.  
During  
Out (O) Reset  
After  
Reset  
Function  
29  
RESET I  
I
I
System Reset  
DELIC is forced to go into reset state.  
89  
RESIND O  
O
O
Reset Indication  
Indicates that the DELIC is executing a  
reset. The DELIC remains in reset  
state for at least 500 µs after the  
termination of the RESET pulse.  
Table 2-5  
PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-LC)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
87 PFS  
I/O  
I
I
PCM Frame Synchronization Clock.  
8 kHz/4 kHz when input or 8 kHz when  
output.  
Note: When PFS is configured as 4 kHz  
input,  
PDC  
configuration  
is  
restricted to 2.048 MHz input.  
88 PDC  
I/O  
I
I
I
I
PCM Data Clock (input or output)  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
76 RxD0 /  
LRxD2  
I
I
PCM Receive Data Port 0  
LNC Receive Serial Data Port 2  
(Async mode)  
78 TxD0 /  
LTxD2  
O
High  
Z
High  
Z
PCM Transmit Data Port 0  
O(OD)  
LNC Transmit Serial Data Port 2  
Async mode)  
Preliminary Data Sheet  
2-8  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-5  
PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-LC) (Continued)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
77 TSC0 /  
O
O
Reset  
H
PCM Tristate Control Port 0  
Counter  
Bypass”  
strap  
Internal  
pull-up  
refer to  
page 2-  
28  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD-  
output is valid).  
LRTS2  
LNC2 Tristate Control / Request To Send  
’request-to-send’ functionality  
(Async mode)  
74 RxD2 /  
LCTS2  
I
I
I
I
PCM Receive Data Port 2  
LNC2 ’clear-to-send’ functionality  
(Async mode)  
82 TxD2 /  
O
weak  
low  
weak  
low  
PCM Transmit Data Port 2  
LCLK2 I/O  
LNC External Clock Port 2  
When configured as output may be driven  
at the following frequencies:  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
81 TSC2  
O
TEST(1) H  
strap  
refer to  
page 2-  
28  
PCM Tristate Control Port 2  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD-  
output is valid).  
75 RxD1 /  
LRxD3  
I
I
I
I
PCM Receive Data Port 1  
LNC Receive Serial Data Port 3  
(Async mode)  
80 TxD1 /  
LTxD3  
O
High  
Z
High  
Z
PCM Transmit Data Port 1  
O(OD)  
LNC Transmit Serial Data Port 3  
(Async mode)  
Preliminary Data Sheet  
2-9  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-5  
PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-LC) (Continued)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
79 TSC1 /  
O
PLL  
H
PCM Tristate Control Port 1  
Power-  
Down  
strap  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD-  
output is valid).  
Internal  
pull-up  
refer to  
page 2-  
28  
LRTS3  
LNC3 Request to Send  
’request-to-send’ functionality  
(Async mode)  
71 RxD3 /  
LCTS3  
I
I
I
I
PCM Receive Data Port 3  
LNC3 ’clear-to-send’ functionality  
(Async mode)  
86 TxD3 /  
O
weak  
low  
weak  
low  
PCM Transmit Data Port 3  
LCLK3 I/O  
LNC External Clock Port 3  
When configured as output may be driven  
at the following frequencies: 2.048 MHz,  
4.096 MHz, 8.192 MHz, 16.384 MHz  
83 TSC3  
O
TEST(1) H  
strap  
refer to  
page 2-  
28  
PCM Tristate Control Port 3  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD  
output is valid).  
Preliminary Data Sheet  
2-10  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
.
Table 2-6  
Clock Generator Pins (DELIC-LC) (additionally to IOM/PCM clocks)  
Pin Symbol  
No.  
In (I)  
During After Function  
Out (O) Reset Reset  
94  
95  
1
CLK16-XI  
I
I
I
16.384 MHz External Crystal Input  
16.384 MHz External Crystal Output  
CLK16-XO O  
O
I
O
I
DCXOPD  
I
DCXO Power Down and Bypass  
Activating this input powers down the  
on-chip DCXO PLL.  
The input CLK16-XI is used directly as  
the internal 16.384 MHz clock, and the  
oscillator and the shaper are bypassed.  
Required for testing; during normal  
operation this input should be  
permanently low (‘0’).  
2
3
CLK_DSP  
DSP_FRQ  
I
I
I
I
I
I
External DSP Clock  
Provides a DSP clock other than  
61.44 MHz from an external oscillator.  
DSP Operational Frequency Selection  
(e.g. for test purpose)  
0: The DSP is clocked internally at  
61.44 MHz  
1: The DSP clock is driven by the  
CLK_DSP input pin  
48  
28  
L1_CLK  
O
O
O
O
O
O
Layer-1 Clock  
15.36 MHz or 7.68 MHz  
CLKOUT  
General Purpose Clock Output  
2.048 MHz, 4.096 MHz, 8.192 MHz,  
15.36 MHz or 16.384 MHz  
4
XCLK  
I
I
I
I
I
External Reference Clock  
Synchronization input from Layer-1 ICs  
(8 kHz, 512 kHz or 1.536 MHz)  
This pin is connected to the VIP’s  
REFCLK output at 1.536 MHz.  
90  
REFCLK  
I/O  
Reference Clock  
Input: Synchronization of DELIC clock  
system  
Output: Used to drive a fraction of  
XCLK to the system clock master  
(8 kHz or 512 kHz programmable)  
Preliminary Data Sheet  
2-11  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-7  
Power Supply Pins (DELIC-LC)  
Pin  
No.  
Symbol In (I)  
During After  
Function  
Out (O) Reset Reset  
8
VDD  
I
I
I
Power Supply 3.3 V  
19  
26  
36  
46  
57  
65  
72  
84  
91  
Used for core logic and interfaces in pure  
3.3 V environment  
9
VSS  
I
I
I
Digital Ground (0 V)  
20  
27  
37  
47  
49  
58  
66  
73  
85  
92  
96  
99  
100  
VDDA  
I
I
I
I
I
I
Power Supply 3.3 V Analog Logic  
Used for DCXO and PLL  
93  
97  
98  
VSSA  
Analog Ground  
Used for DCXO and PLL  
Preliminary Data Sheet  
2-12  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-8  
JTAG and Emulation Interface Pins (DELIC-LC)  
In (I) During After Function  
Out (O) Reset Reset  
Pin Symbol  
No.  
Used for boundary scan according to IEEE 1149.1  
54 JTCK  
I
I
I
JTAG Test Clock  
Provides the clock for JTAG test logic.  
Used also for serial emulation interface.  
53 TMS  
I
I
I
Test Mode Select  
A ’0’ to ’1’ transition on this pin is  
required to step through the TAP  
controller state machine.  
52 TDI /  
I
I
I
Test Data Input  
In the appropriate TAP controller state  
test data or a instruction is shifted in via  
this line.  
Used also for serial emulation interface.  
Note: This pin must not be driven to low  
on the board during reset and  
operation to ensure functioning of  
DELIC  
SCANEN  
SCAN Enable  
When both SCANMO and SCANEN are  
asserted, the full-scan tests of DELIC  
are activated.  
Not used during normal operation.  
51 TDO  
O
O
O
Test Data Output  
In the appropriate TAP controller state  
test data or an instruction is shifted out  
via this line.  
Used also for serial emulation interface.  
Preliminary Data Sheet  
2-13  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-8  
JTAG and Emulation Interface Pins (DELIC-LC) (Continued)  
In (I) During After Function  
Out (O) Reset Reset  
Pin Symbol  
No.  
55 TRST  
I
I
I
Test Reset  
Provides an asynchronous reset to the  
TAP controller state machine.  
63 DSP_STO O  
P
BOOT O  
Strap  
DSP Stop Pin  
Stops external logic during breakpoints.  
Activated when a stop to the DSP is  
issued.  
(intern  
al pull-  
down)  
refer to  
Table  
2-19  
Table 2-9  
Test Interface Pins (DELIC-LC)  
Pin  
No.  
Symbol  
In (I)  
Out (O) Reset  
During  
After Function  
Reset  
50  
SCANMO  
I
I
I
Scan Mode  
If driven to ’1’ during device tests,  
TDI input is used as enable for full  
scan tests of the DELIC.  
SCANMO should be tied to GND  
during normal operation.  
Preliminary Data Sheet  
2-14  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
2.4  
Pin Definitions and Functions for DELIC-PB  
Note: The column “During Reset” refers to the time period that starts with activation of  
RESET input and ends with the deactivation of the RESIND output. During this  
period, the DELIC’s strap pins (refer to Table 2-19) may be driven by external pull-  
down or pull-up resistors to define DELIC’s configuration. If external pull-down or  
pull-up resistors are not connected to the strap pins, the value of each strap pin  
during reset will be determined by an internal pull-up or pull-down resistor,  
according to the default strap value of each pin.  
The user must ensure that connected circuits do not influence the sampling of the  
strap pins during reset.  
The column “After Reset” describes the behavior of every pin, from the  
deactivation of the RESIND output until the DELIC’s registers are programmed.  
Table 2-10 IOM®-2 Interface Pins (DELIC-PB)  
Pin  
No.  
Symbol In (I)  
During  
After  
Reset  
Function  
Out(O) Reset  
39  
FSC  
DCL  
O
O
O
O
Frame Synchronization Clock (8 kHz)  
Used for both the IOM-2 and the IOM-  
2000 interface  
40  
TEST-  
O
IOM-2 Data Clock 2.048 MHz or 4.096  
MHz  
Strap (3),  
(internal  
pull-up),  
refer to  
Table 2-19  
43  
44  
41  
42  
45  
DD0  
DD1  
DU0  
DU1  
DRDY  
O(OD) High Z  
High Z Data Downstream IOM-2 Interface  
Channel0  
O(OD) High Z  
High Z Data Downstream IOM-2 Interface  
Channel1  
I
I
I
I
I
I
I
I
I
Data Upstream IOM-2 Interface  
Channel 0  
Data Upstream IOM-2 Interface  
Channel 1  
D- Channel Ready  
Stop/Go information for D-channel  
control on S/T interface in LT-T.  
Affects only IOM-2 port 0.  
DRDY = 1 means GO  
DRDY = 0 means STOP  
Preliminary Data Sheet  
2-15  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-11 IOM-2000 Interface / LNC Port 1 (DELIC-PB)  
Pin Symbol  
No.  
In (I)  
During After  
Function  
Out (O) Reset Reset  
70  
DCL_2000 / O  
O
O
IOM-2000 Data Clock  
3.072, 6.144 or 12.288 MHz  
LTSC1/  
LRTS1  
O
LNC1 Tristate Control /Request to  
Send  
2 modes per S/W selectable:  
1) TxD output is valid (HDLC mode).  
Supplies a control signal for an  
external driver. (’low’ when the  
corresponding TxD-output is valid).  
2) ’request-to-send’ functionality  
(Async mode)  
69  
68  
67  
DX /  
O
High Z High Z Data Transmit  
Transmits IOM-2000 data to VIP  
LTxD1  
DR /  
O (OD)  
I
LNC Transmit Serial Data Port 1  
(HDLC and Async mode).  
I
I
Data Receive  
Receives IOM-2000 data from VIP  
LRxD1  
CMD /  
I
LNC Receive Serial Data Port 1  
(HDLC and Async mode).  
O
High Z High Z IOM-2000 Command  
Transmits DELIC commands to VIP.  
LCLK1  
I/O  
LNC Clock Port 1.  
When configured as output may be  
driven at the following frequencies:  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
64  
STAT /  
I
I
I
I
IOM-2000 Status  
Receives status information from VIP.  
LCxD1/  
LCTS1  
LNC1 Collision Data / Clear to Send  
1) Collision Data (HDLC Mode).  
2) ’clear-to-send’ functionality (Async  
mode)  
Preliminary Data Sheet  
2-16  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-12 LNC Port 0 (DELIC-PB)  
Pin Symbol In (I)  
During  
After  
Function  
No.  
Out (O) Reset  
Reset  
62  
LRxD0  
LTxD0  
I
I
I
LNC Receive Serial Data Port 0  
(HDLC and Async mode).  
61  
60  
O (OD) High Z  
High Z LNC Transmit Serial Data Port 0  
(HDLC and Async mode).  
LTSC0 / O  
LRTS0  
PLL-  
Bypass”  
strap.  
Internal  
pull-up  
refer to  
page 2-  
28  
H
LNC0 Tristate Control / Request to Send  
2 modes per S/W selectable:  
1) TxD output is valid (HDLC mode).  
Supplies a control signal for an external  
driver. (’low’ when the corresponding  
TxD-output is valid).  
2) ’request-to-send’ functionality  
(Async mode)  
59  
56  
LCxD0 / I  
LCTS0  
I
I
I
LNC0 Collision Data / Clear to Send  
2 modes per S/W selectable:  
1) Collision Data (HDLC Mode).  
2) ’clear-to-send’ functionality  
(Async mode)  
LCLK0  
I/O  
I
LNC Clock Port 0  
When configured as output may be  
driven at the following frequencies:  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
Preliminary Data Sheet  
2-17  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-13 Microprocessor Bus Interface Pins (DELIC-PB)  
Pin Symbol In (I)  
During  
After  
Function  
No.  
Out (O) Reset  
Reset  
25  
24  
23  
22  
21  
18  
17  
16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
I/O  
Data Bus  
The direction of these pins  
depends on the value of the  
following pins:  
CS, RD/DS, WR / R/W and  
MODE  
Note: When operated in address/data  
multiplex mode, this bus is used  
as a multiplexed AD bus. The  
Address pins are externally  
connected to the AD bus.  
38  
35  
A6  
A5  
I
I
I
Address Bus (bits 6 ... 0 except bit 4)  
Note: When operated in address/data  
multiplex mode, this bus is used  
as a multiplexed AD bus. The  
33  
32  
31  
30  
A3  
A2  
A1  
A0  
Data  
pins  
are  
externally  
connected to the AD bus.  
Note: In non-DMA mode DACK/A4  
input pin should be connected to  
A4 of the µP address-bus. In  
DMA mode A4 is internally  
connected to ‘0’.  
34  
11  
A4  
DACK/  
I
I
I
DMA Acknowledge  
Bit 4 of the address bus, when the  
DELIC is configured to non-DMA mode.  
Note: In DMA mode A4 is internally  
connected to ‘0’.  
DREQR O  
CLOCK  
L
DMA Request for Receive Direction  
MASTER  
Strap  
(internal  
pull-down),  
refer to  
Note: May be configured to active high  
or active low (the default is active  
high)  
Table 2-19  
Preliminary Data Sheet  
2-18  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-13 Microprocessor Bus Interface Pins (DELIC-PB) (Continued)  
Pin Symbol In (I)  
During  
After  
Function  
No.  
Out (O) Reset  
Reset  
10  
DREQT O  
EMUL-  
L
DMA Request for Transmit Direction  
ATION  
BOOT  
Strap  
(internal  
pull-down),  
refer to  
Note: May be configured to active high  
or active low (the default is active  
high)  
Table 2-19  
12  
13  
CS  
I
I
I
I
I
Chip Select  
A "low" on this line selects all registers  
for read/write operations.  
WR/  
R/W  
I
Write (Intel/Siemens Mode)  
Indicates a write access.  
Read/Write (Motorola Mode)  
Indicates the direction of the data  
transfer  
14  
RD/  
DS  
I
I
I
Read (Intel/Siemens Mode)  
Indicates a read access.  
Data Strobe (Motorola Mode)  
During a read cycle, DS indicates that  
the DELIC should place valid data on  
the bus. During a write access, DS  
indicates that valid data is on the bus.  
15  
ALE  
I
I
I
Address Latch Enable  
Controls the on-chip address latch in  
multiplexed bus mode. While ALE is  
’high’, the latch is transparent. The  
falling edge latches the current  
address. ALE is also evaluated to  
determine  
the  
bus  
mode  
(’low’=multiplexed,  
’high’=demultiplexed)  
7
MODE  
I
I
I
Bus Mode Selection  
Selects the µP bus mode  
(’low’=Intel/Infineon, ’high’=Motorola)  
Preliminary Data Sheet  
2-19  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-13 Microprocessor Bus Interface Pins (DELIC-PB) (Continued)  
Pin Symbol In (I)  
During  
After  
Function  
No.  
Out (O) Reset  
Reset  
6
IREQ  
O
(OD)  
High Z  
(OD)  
High Z Interrupt Request is programmable to  
(OD)  
push/pull (active high or low) or open-  
drain. This signal is activated when the  
DELIC requests a µP interrupt. When  
operated in open drain mode, multiple  
interrupt sources may be connected.  
5
IACK  
I
I
I
I
I
Interrupt Acknowledge  
29  
RESET I  
System Reset  
DELIC is forced to go into reset state.  
89  
RESIND O  
O
O
Reset Indication  
Indicates that the DELIC is executing a  
reset. The DELIC remains in reset  
state for at least 500 µs after the  
termination of the RESET pulse.  
Table 2-14 PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-PB)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
87 PFS  
I/O  
I
I
PCM Frame Synchronization Clock.  
8 kHz/4 kHz when input or 8 kHz when  
output.  
Note: When PFS is configured as 4 kHz  
input,  
PDC  
configuration  
is  
restricted to 2.048 MHz input.  
88 PDC  
I/O  
I
I
I
I
PCM Data Clock (input or output)  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
76 RxD0 /  
LRxD2  
I
I
PCM Receive Data Port 0  
LNC Receive Serial Data Port 2  
(HDLC and Async mode)  
78 TxD0 /  
LTxD2  
O
High  
Z
High  
Z
PCM Transmit Data Port 0  
O(OD)  
LNC Transmit Serial Data Port 2  
(HDLC and Async mode)  
Preliminary Data Sheet  
2-20  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-14 PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-PB) (Continued)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
77 TSC0 /  
O
Reset  
H
PCM Tristate Control Port 0  
Counter  
Bypass”  
strap  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD-  
output is valid).  
Internal  
pull-up  
refer to  
page 2-  
28  
LTSC2/ O  
LRTS2  
LNC2 Tristate Control / Request To Send  
2 modes per S/W selectable:  
1) TxD output is valid (HDLC mode).  
Supplies a control signal for an external  
driver. (’low’ when the corresponding TxD-  
output is valid).  
2) ’request-to-send’ functionality  
(Async mode)  
74 RxD2 /  
I
I
I
PCM Receive Data Port 2  
LCxD2/ I  
LCTS2  
LNC2 Collision Data  
2 modes per S/W selectable:  
1) Collision Data (In HDLC Mode).  
2) ’clear-to-send’ functionality  
(Async mode)  
82 TxD2 /  
O
weak  
low  
weak  
low  
PCM Transmit Data Port 2  
LCLK2 I/O  
LNC External Clock Port 2  
When configured as output may be driven  
at the following frequencies:  
2.048 MHz, 4.096 MHz,  
8.192 MHz, 16.384 MHz  
81 TSC2  
O
TEST(1) H  
strap  
refer to  
page 2-  
28  
PCM Tristate Control Port 2  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD-  
output is valid).  
Preliminary Data Sheet  
2-21  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-14 PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-PB) (Continued)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
75 RxD1 /  
I
I
I
I
PCM Receive Data Port 1  
LRxD3  
LNC Receive Serial Data Port 3  
(HDLC and Async mode)  
80 TxD1 /  
LTxD3  
O
High  
Z
High  
Z
PCM Transmit Data Port 1  
O(OD)  
LNC Transmit Serial Data Port 3  
(HDLC and Async mode)  
79 TSC1 /  
O
PLL  
H
PCM Tristate Control Port 1  
Power-  
Down  
strap  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD-  
output is valid).  
Internal  
pull-up  
refer to  
page 2-  
28  
LTSC3/  
LRTS3  
LNC3 Tristate Control / Request to Send  
2 modes per S/W selectable:  
1) TxD output is valid (HDLC mode).  
Supplies a control signal for an external  
driver. (’low’ when the corresponding TxD-  
output is valid).  
2) ’request-to-send’ functionality  
(Async mode)  
71 RxD3 /  
I
I
I
PCM Receive Data Port 3  
LCxD3/ I  
LCTS3  
LNC3 Collision Data  
2 modes per S/W selectable:  
1) Collision Data (HDLC Mode).  
2) ’clear-to-send’ functionality  
(Async mode)  
Preliminary Data Sheet  
2-22  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-14 PCM Interface Ports 0 ... 3 / LNC Ports 2 ... 3 (DELIC-PB) (Continued)  
Pin Symbol In (I)  
During After  
Function  
No.  
Out (O) Reset Reset  
86 TxD3 /  
O
weak  
low  
weak  
low  
PCM Transmit Data Port 3  
LCLK3 I/O  
LNC External Clock Port 3  
When configured as output may be driven  
at the following frequencies: 2.048 MHz,  
4.096 MHz, 8.192 MHz, 16.384 MHz  
83 TSC3  
O
TEST(1) H  
strap  
refer to  
page 2-  
28  
PCM Tristate Control Port 3  
Supplies a control signal for an external  
driver (’low’ when the corresponding TxD  
output is valid).  
Preliminary Data Sheet  
2-23  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
.
Table 2-15 Clock Generator Pins (DELIC-PB) (additionally to IOM/PCM clocks)  
Pin Symbol  
No.  
In (I)  
During After Function  
Out (O) Reset Reset  
94  
95  
1
CLK16-XI  
I
I
I
16.384 MHz External Crystal Input  
16.384 MHz External Crystal Output  
CLK16-XO O  
O
I
O
I
DCXOPD  
I
DCXO Power Down and Bypass  
Activating this input powers down the  
on-chip DCXO PLL.  
The input CLK16-XI is used directly as  
the internal 16.384 MHz clock, and the  
oscillator and the shaper are bypassed.  
Required for testing; during normal  
operation this input should be  
permanently low (‘0’).  
2
3
CLK_DSP  
DSP_FRQ  
I
I
I
I
I
I
External DSP Clock  
Provides a DSP clock other than  
61.44 MHz from an external oscillator.  
DSP Operational Frequency Selection  
(e.g. for test purpose)  
0: The DSP is clocked internally at  
61.44 MHz  
1: The DSP clock is driven by the  
CLK_DSP input pin  
48  
28  
L1_CLK  
O
O
O
O
O
O
Layer-1 Clock  
15.36 MHz or 7.68 MHz  
CLKOUT  
General Purpose Clock Output  
2.048 MHz, 4.096 MHz, 8.192 MHz,  
15.36 MHz or 16.384 MHz  
4
XCLK  
I
I
I
I
I
External Reference Clock  
Synchronization input from Layer-1 ICs  
(8 kHz, 512 kHz or 1.536 MHz)  
This pin is connected to the VIP’s  
REFCLK output at 1.536 MHz.  
90  
REFCLK  
I/O  
Reference Clock  
Input: Synchronization of DELIC clock  
system  
Output: Used to drive a fraction of  
XCLK to the system clock master  
(8 kHz or 512 kHz programmable)  
Preliminary Data Sheet  
2-24  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-16 Power Supply Pins (DELIC-PB)  
Pin  
No.  
Symbol In (I)  
Out (O) Reset Reset  
I I I  
During After  
Function  
8
VDD  
Power Supply 3.3 V  
19  
26  
36  
46  
49  
57  
65  
72  
84  
91  
Used for core logic and interfaces in pure  
3.3 V environment  
9
VSS  
I
I
I
Digital Ground (0 V)  
20  
27  
37  
47  
58  
66  
73  
85  
92  
96  
99  
100  
VDDA  
I
I
I
I
I
I
Power Supply 3.3 V Analog Logic  
Used for DCXO and PLL  
93  
97  
98  
VSSA  
Analog Ground  
Used for DCXO and PLL  
Preliminary Data Sheet  
2-25  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-17 JTAG and Emulation Interface Pins (DELIC-PB)  
Pin Symbol  
No.  
In (I)  
During After Function  
Out (O) Reset Reset  
Used for boundary scan according to IEEE 1149.1  
54 JTCK  
I
I
I
JTAG Test Clock  
Provides the clock for JTAG test logic.  
Used also for serial emulation interface.  
53 TMS  
I
I
I
Test Mode Select  
A ’0’ to ’1’ transition on this pin is  
required to step through the TAP  
controller state machine.  
52 TDI /  
I
I
I
Test Data Input  
In the appropriate TAP controller state  
test data or a instruction is shifted in via  
this line.  
Used also for serial emulation interface.  
Note: This pin must not be driven to low  
on the board during reset and  
operation to ensure functioning of  
DELIC  
SCANEN  
SCAN Enable  
When both SCANMO and SCANEN are  
asserted, the full-scan tests of DELIC  
are activated.  
Not used during normal operation.  
51 TDO  
O
O
O
Test Data Output  
In the appropriate TAP controller state  
test data or an instruction is shifted out  
via this line.  
Used also for serial emulation interface.  
Preliminary Data Sheet  
2-26  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-17 JTAG and Emulation Interface Pins (DELIC-PB) (Continued)  
Pin Symbol  
No.  
In (I)  
During After Function  
Out (O) Reset Reset  
55 TRST  
I
I
I
Test Reset  
Provides an asynchronous reset to the  
TAP controller state machine.  
63 DSP_STO O  
P
BOOT O  
Strap  
DSP Stop Pin  
Stops external logic during breakpoints.  
Activated when a stop to the DSP is  
issued.  
(intern  
al pull-  
down)  
refer to  
Table  
2-19  
Table 2-18 Test Interface Pins (DELIC-PB)  
Pin  
No.  
Symbol  
In (I)  
Out (O) Reset  
During  
After Function  
Reset  
50  
SCANMO  
I
I
I
Scan Mode  
If driven to ’1’ during device tests,  
TDI input is used as enable for full  
scan tests of the DELIC.  
SCANMO should be tied to GND  
during normal operation.  
Preliminary Data Sheet  
2-27  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
2.5  
Strap Pin Definitions  
Table 2-19 Strap Pins (Evaluated During Reset)  
Pin No.  
Strap Name Strap Function  
DREQR  
(11)  
CLOCK  
MASTER  
0:  
Clock Slave  
(default) PDC and PFS are used as inputs.  
PDC = 2.048 MHz  
PFS = 4 kHz  
1:  
Clock Master  
PDC and PFS are used as outputs.  
PDC = 2.048 MHz  
PFS = 8 kHz  
DSP_STOP BOOT  
(63)  
0:  
The DSP starts running from address FFFEH,  
(default) and executes the µP boot routine.  
1:  
The DSP starts running directly from address  
0000H. The boot routine is not executed.  
DCL (40):  
TSC3 (83): (3:1)  
TSC2 (81)  
TEST  
111 or  
110:  
(default)  
Regular Work Mode  
101  
100  
011  
010  
001  
Test mode 1  
Test mode 2  
Test mode 3  
Test mode 4  
Test mode 5  
DREQT  
(10)  
EMULATION 0:  
After reset the boot-routine loads the program  
BOOT  
(default) RAM via the µP-interface (via the general mail-  
box).  
After reset the boot-routine loads  
1:  
0:  
the program RAM via the CDI mail-box (via the  
JTAG interface).  
LTSC  
(60)  
PLL  
BYPASS  
DSP_CLK input pin (the DSP fall-back clock) is  
used as source for the 61 MHz clock division  
chain. (Only for testing).  
1:  
The PLL output is used as the source for the  
(default) 61 MHz clock division chain.  
Preliminary Data Sheet  
2-28  
2003-08  
DELIC  
PEB 20571  
Pin Descriptions  
Table 2-19 Strap Pins (Evaluated During Reset) (Continued)  
TSC1  
(79)  
PLLPOWER 0:  
DOWN  
1:  
The PLL is powered-down. (for IDDQ tests)  
The PLL is on.  
(default)  
TSC0  
(77)  
RESET  
COUNTER  
BYPASS  
0:  
The reset-counter is bypassed, thus the internal  
reset is the filtered reset. The internal reset lasts  
1-2 16 MHz cycles after a deactivation of  
RESET.  
1:  
The internal reset lasts 4-5 8 kHz cycles (>  
(default) 500 µs) after a deactivation of RESET  
Note: When the strap pins are not driven externally during reset, they are driven by  
internal pull-ups/pull-downs. To reduce power consumption, the internal pull-up/  
pull-down resistors are connected only during activated RESET input.  
To ensure the default value of the straps, the pins must not be driven during reset.  
In case of fixed external pull-up/pull-down, a pull-up/pull-down resistance of  
10 K+/-10% is recommended.  
Preliminary Data Sheet  
2-29  
2003-08  
DELIC  
Interface Description  
3
Interface Description  
3.1  
Overview of Interfaces  
The DELIC provides the following system interfaces:  
IOM-2000 Interface  
• A new serial layer 1 interface driving up to three VIP/ VIP8 (Versatile ISDN Port, PEB  
20590/ PEB 20591). Each VIP provides eight 2B+D ISDN channels, which can be  
programmed via IOM-2000 to S/T mode or UPN mode.  
IOM-2 (GCI) Interface  
• Two standard IOM-2 (GCI) ports with eight 2B+D ISDN channels each, at a data rate  
of up to 2 x 2.048 Mbit/s. They can be combined to a 4.096 Mbit/s highway.  
PCM Interface  
• Four standard Master/Slave PCM interfaces with up to 32 time slots each, at a data  
rate of up to 4 x 2.048 Mbit/s. They can be combined to two 4.096 Mbit/s highways or  
one 8.192 Mbit/s highway. Additionally, 128 time slots of 256 time slots per 8 kHz  
frame can be transmitted at a rate of 16.384 Mbit/s.  
Serial Communication Interface (GHDLC)  
• An asynchronous serial port supporting HDLC formatted data frames at a data rate of  
up to 16.384 Mbit/s.  
Microprocessor Interface  
• A standard 8-bit multiplexed/de-multiplexed µP interface, compatible to Intel/Siemens  
(e.g. 80386EX, C166) and Motorola (e.g. 68340, 801) bus systems. It includes two  
separate mailboxes, one for normal data transfer, and one for fast DMA transfers.  
JTAG Boundary Scan Test Interface  
• DELIC provides a standard test interface according to IEEE 1149.1. The 4-bit TAP  
controller has an own reset input.  
• The JTAG pins TDI, TDO and JTCK may also be used as interface for DSP emulation.  
Preliminary Data Sheet  
3-1  
2003-08  
DELIC  
Interface Description  
3.2  
IOM-2000 Interface  
Overview  
3.2.1  
The IOM-2000 interface represents a new concept for connecting ISDN layer-1 devices  
to the DELIC. The transceiver unit (TRANSIU) and the DSP perform the layer-1 protocol,  
which enables flexible and efficient operation of the transceiver IC (VIP/ VIP8).  
VIP/ VIP8 supports two types of ISDN interfaces: 2-wire (ping-pong) UPN interfaces and  
4-wire S/T interfaces. For detailed description please refer to VIP/ VIP8 Data Sheet.  
The IOM-2000 interface consists of the following signals:  
Frame Synchronization: IOM-2000 uses the same 8 kHz FSC as the IOM-2 ports.  
Data Interface: Data is transmitted via DX line from DELIC to VIP with DCL_2000  
rising edge. Data is received via DR line from VIP to DELIC, sampled with DCL_2000  
falling edge.  
Command/Status Interface: Configuration and control information of VIP’s layer-1  
transceivers is exchanged via CMD and STAT lines.  
Data/Command Clock: Data and commands for one VIP are transmitted at  
3.072 MHz. When DELIC drives 2 or 3 VIPs, the transmission rate is increased.  
Reference Clock: In LT-T mode, the VIP provides a reference clock synchronized to  
the exchange. In LT-S or UPN mode, DELIC is always the clock master to VIP.  
bit 1 bit 0  
Data Transmit / Receive in S/T mode  
f=3.072 MHz (2 x 8 x 192 kbit/s)  
S/T:  
data  
ctrl  
DX / DR:  
bit 0  
data  
Data Transmit / Receive for UPN mode  
UPN:  
f=3.072 MHz (8 x 384 kbit/s)  
FSC  
DCL_2000  
Channel_0  
DX  
DR  
.
.
.
DELIC  
VIP  
PEB 20590  
PEB 20570  
STAT  
CMD  
Channel_7  
Figure 3-1  
Overview of IOM-2000 Interface Structure (Example with One VIP)  
Preliminary Data Sheet  
3-2  
2003-08  
DELIC  
Interface Description  
3.2.2  
IOM-2000 Frame Structure  
3.2.2.1 Data Interface  
On the ISDN line side of the VIP, data is ternary coded. Since the VIP contains logic to  
detect the level of the signal, only the data value is transferred via IOM-2000 to DELIC.  
UPN Mode  
• In UPN mode, only data is sent via the IOM-2000 data interface.  
S/T Mode  
• In S/T mode, data and control information is sent via IOM-2000 data interface. Every  
data bit has a control bit associated with it. Thus, for each S/T line signal, 2 bits are  
transferred via DX and DR. Bit0 is assigned to the user data, and bit1 carries control  
information.  
Table 3-1  
Control Bits in S/T Mode on DR Line  
ctrl (bit1) data (bit0) Function  
0
0
1
1
0
1
0
1
Logical ’0’ received on line interface  
Logical ’1’ received on line interface  
Received E-bit = inverted transmitted D-bit (E=D) (LT-T only)  
F-bit (Framing) received; indicates the start of the S frame  
Table 3-2  
Control Bits in S/T Mode on DX Line  
ctrl (bit1) data (bit0) Function  
0
0
1
1
0
1
0
1
Logical ’0’ transmitted on line interface  
Logical ’1’ transmitted on line interface  
not used  
F-bit (Framing) transmitted; indicates the start of the S frame  
Note: ’data’ is always transmitted prior to ’ctrl’ via DX/DR lines (refer to Figure 3-2).  
Preliminary Data Sheet  
3-3  
2003-08  
DELIC  
Interface Description  
125 µs  
FSC  
DCL  
3.072 MHz  
F-bit  
data ctrl  
data  
LT-S mode:  
UPN mode:  
Ch0 bit0  
Ch1 bit0 (data)  
Ch2 bit0  
Ch7 bit0 (data)  
DX/DR  
Ch0 bit1  
Ch1 bit0 (ctrl)  
Ch2 bit1  
Ch7 bit0 (ctrl)  
Ch0 bit2  
Ch1 bit1 (data)  
Ch2 bit2  
Ch1,3,5,7 in S mode (LT-S)  
Ch0,2,4,6 in UPN mode  
Ch7 bit1 (data)  
last bit of UPN frame  
last bit of LT-S frame  
Ch6 bit37  
Ch7 bit 23 (ctrl)  
Figure 3-2  
IOM-2000 Data Sequence (1 VIP with 8 Channels)  
Note: 1. Data transfer on IOM-2000 interface always starts with the MSB (related to B  
channels), whereas CMD and STAT bits transfer always starts with LSB (bit 0)  
of any register  
2. All registers follow the Intel structure (LSB=20, MSB=231)  
3. Unused bits are don’t care (’x’)  
4. The order of reception or transmission of each VIP channel is always  
channel 0 to channel 7. A freely programmable channel assignment of multiple  
VIPs on IOM-2000 (e.g., ch0 of VIP_0, ch1 of VIP_0, ch0 of VIP_1, ch2 of  
VIP_0, ...) is not possible.  
Preliminary Data Sheet  
3-4  
2003-08  
DELIC  
Interface Description  
125 µs  
FSC  
DCL  
12.288 MHz  
F-bit  
Ch0 bit0  
Ch23 bit0  
Ch24 bit0  
not used (don’t care)  
DX/DR  
Ch31 bit0  
Ch0 bit1  
Ch23 bit1  
Ch24 bit1  
not used (don’t care)  
Ch31 bit1  
Ch0 bit37  
(example for 24 channels in UPN mode)  
Ch23 bit37  
Ch24 bit37  
not used  
Ch31 bit37  
Figure 3-3  
IOM-2000 Data Order (3 VIPs with 24 Channels)  
Receive Data Channel Shift  
In receive direction (DR), data of all IOM-2000 channels (ch0...7 if one VIP is used,  
ch0 ... ch23 if three VIPs are used) is shifted by 2 channels with respect to the  
transmitted data channels (DX), assuming a start of transmission of ch0 bit0 with the  
FSC signal. DELIC is transmitting ch0, while receiving ch2 via DR the same time, etc.  
DX  
DR  
ch0  
ch2  
ch1  
ch3  
ch2  
ch4  
ch3  
ch5  
ch4  
ch6  
ch5  
ch7  
ch6  
ch0  
ch7  
ch1  
ch0  
ch2  
Preliminary Data Sheet  
3-5  
2003-08  
DELIC  
Interface Description  
3.2.2.2 Command and Status Interface  
The CMD and STAT lines are the configuration and control interface between DELIC and  
VIP. The bit streams are partitioned into 32-bit words carrying information dedicated to  
the VIPs (CMD_0 / STAT_0) followed by information dedicated to the individual  
channels of the same VIP (CMD_0_0 ... CMD_2_7 or STAT_0_0 ... STAT_2_7).  
Note: As opposed to data, command and status bits are sent channel-wise, starting with  
channel_0. The transmission clock is the same as the DR/DX data clock.  
125 µs  
FSC  
DCL  
3.072 MHz  
3x32-bit empty  
...  
C_0 C_0C0 C_0C1 C_0C2 C_0C3 C_0C4  
C_0C6  
C_0C5  
C_0C7  
31  
C_0  
CMD  
1
2
0
31  
Command bits to VIP_0  
2
0
1
Commands bits to VIP_0 channel_7  
3x32-bit empty  
...  
S_0C2  
S_0 S_0C0 S_0C1  
S_0C3 S_0C4  
31  
S_0  
S_0C5 S_0C6 S_0C7  
2
31  
STAT  
1
2
0
Status bits of VIP_0  
1
0
Status bits of VIP_0 channel_7  
C_0C0 refers to CMD_0_0, S_0C0 to STAT_0_0  
Note: C_0 refers to CMD_0, S_0 to STAT_0  
Figure 3-4  
IOM-2000 CMD/STAT Handling (1 VIP with 8 Channels)  
Note: The position of each VIP within the IOM-2000 frame is programmable by two VIP  
pins (VIP_ADR0, VIP_ADR1) to IOM-2000 channels 0..7, 8..15 or 16..23.  
FSC  
125 µs  
3 empty  
3 empty  
3 empty  
32-bit words  
32-bit words  
32-bit words  
CMD /  
STAT  
VIP_0  
VIP_1  
VIP_2  
VIP_0  
...  
VIP_2 ch0  
ch7  
VIP_1 ch0  
ch7  
VIP_0 ch0  
ch7  
reserved  
Figure 3-5  
IOM-2000 Command/Status Sequence (3 VIPs with 24 Channels)  
Preliminary Data Sheet  
3-6  
2003-08  
DELIC  
Interface Description  
Commands to VIP_n (CMD_n, n = 0 ... 2)  
Initialization and control information for each VIP is sent by DELIC in the following  
sequence every 125 µs via the IOM-2000 CMD line (32 CMD_n bits per VIP_n):  
Note: All bits are programmed in VIP Command register (VIPCMR0..2).  
31  
23  
15  
7
24  
16  
8
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
RD_n PLLPPS SH_FSC DELRE  
0
CMD_n  
DELCH(2:0)  
EXREF  
REFSEL(2:0)  
WR_n  
Commands to VIP_n, Channel_m (CMD_n_m, m = 0 ... 7)  
Initialization and control information for each VIP channel is sent by DELIC in the  
following sequence every 125 µs via the IOM-2000 CMD line (32 CMD_n_m bits per  
VIP_n Channel_m):  
Note: All bits except WR_ST, SMINI(2:0) and MSYNC are programmed in TRANSIU  
Initialization Channel Command register (TICCR);  
bits WR_ST, SMINI(2:0) and MSYNC reside in the TRANSIU Tx data RAM.  
31  
23  
15  
7
24  
CMD_n_m  
FIL  
x
SMINI(2:0)  
x
MSYNC EXLP PLLS  
PD  
16  
DHEN  
x
PDOWN LOOP TX_EN PLLINT  
8
AAC(1:0)  
BBC(1:0)  
OWIN(2:0)  
MF_EN  
0
MODE(2:0)  
MOSEL(1:0)  
WR_ST  
RD  
WR  
Preliminary Data Sheet  
3-7  
2003-08  
DELIC  
Interface Description  
Status from VIP_n (n = 0 ... 2)  
Status information is sent by each VIP in the following sequence via the STAT line  
(32 STAT_n bits per VIP_n):  
31  
23  
15  
7
24  
16  
8
STAT_n  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
DELAY(7:0)  
Note: Bits DELAY are read from VIP Status register (VIPSTR) in TRANSIU. x = unused  
Status from VIP_n, Channel_m (m = 0 ... 7)  
Status information is sent by each VIP channel in the following sequence via the STAT  
line (32 STAT_n_m bits per VIP_n Channel_m):  
31  
23  
15  
7
24  
16  
8
STAT_n_m  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
MSYNC* FCV* FSYNC* SLIP  
FECV  
RxSTA(1:0)  
Note: Marked bits (*) are not evaluated by the DELIC, only for VIP testing.  
Bits SLIP, FECV and are directly accessible in the TRANSIU receive data RAM.  
x = unused  
Preliminary Data Sheet  
3-8  
2003-08  
DELIC  
Interface Description  
3.2.3  
UPN State Machine  
3.2.3.1 INFO Structure on the UPN Interface  
Signals controlling and indicating the internal state of all UPN transceiver state machines  
are called INFOs. Four different INFOs (INFO 0, 1W, 1, 2, 3, 4) may be sent over the UPN  
interface, depending on the actual state (Synchronized, Activated, Pending Activation,  
...). When the line is deactivated, INFO 0 (=no signal on the line) is exchanged by the  
UPN transceivers at either end of the line.  
When the line is activated, INFO 3 (in upstream direction) and INFO 4 (in downstream  
direction) are continuously sent. INFO 3 and 4 contain the transmitted data (B1, B2, D,  
M). INFO 1/2 are used for activation and synchronization.  
Table 3-3  
Name  
INFO Structure on UPN Interface  
Direction  
Description  
INFO 0  
Upstream  
No signal on the line  
Downstream  
INFO 1W  
Upstream  
Asynchronous Wake Signal  
4 kHz burst rate  
F0001000100010001000101010100010111111  
Code violation in the framing bit  
INFO 1  
INFO 2  
INFO 3  
Upstream  
4 kHz burst rate  
F000100010001000100010101010001011111M DC  
Code violation in the framing bit  
1)  
Downstream 4 kHz burst rate  
F000100010001000100010101010001011111M  
1)  
Code violation in the frame bit  
Upstream  
4 kHz burst rate  
No code violation in the framing bit  
User data in B, D and M channels  
2)  
B channels scrambled, DC bit optional  
INFO 4  
Downstream 4 kHz burst rate  
No code violation in the framing bit  
User data in B, D and M channels  
2
B channels scrambled, DC bit ) optional  
1)  
Note:  
The M channel superframe contains:  
CV code violation  
S bits transparent  
T bits transparent  
DC balancing bit;  
[1 kbit/s (once in every fourth frame)]  
[1 kbit/s channel]  
[2 kbit/s channel]  
2)  
F = Framing bit  
Preliminary Data Sheet  
3-9  
2003-08  
DELIC  
Interface Description  
3.2.3.2 UPN Mode State Diagram  
RESET  
TM1  
TM2  
TIM RES  
TIM  
Reset  
Test Mode  
it1  
i0  
*
*
it2  
DR  
DR  
TIM  
DR  
TM1  
RES  
TM2  
Pend. Deact.  
DC  
i0  
i0  
i0  
DI  
DR  
ARx  
G4 Wait for DR  
i0  
i0  
DC  
DI  
DC  
Deactivated  
DR  
i0  
i0  
i1w  
DR  
DC  
AR  
ARx  
Pend. Act.  
i2  
i1w  
i1  
Note:  
TM2 = Send Continuous Pulses  
TM1 = Send Single Pulses  
it1 = test signal invoked by TM1  
it2 = test signal invoked by TM2  
ARx = AR, AR2  
DC  
ARx, AI  
UAI  
Uncond. Transitions by: RES, TM1, TM2, DR  
DR  
Synchronized  
i1  
OUT  
IN  
i1, i3  
DR  
i4  
i1  
DC  
RSY  
ARx  
i3  
µP interface  
Resynchron.  
i2 i1  
Ind.  
Cmd.  
State  
ix  
DC  
AI  
ARx, AI  
iy  
DR  
Upn interface  
i3  
Activated  
i3  
DELPHI UP SM.vsd  
i4  
Figure 3-6  
UPN State Diagram  
Preliminary Data Sheet  
3-10  
2003-08  
DELIC  
Interface Description  
The UPN state machine has unconditional and conditional states (refer to Figure 3-6):  
Unconditional States  
Reset  
This state is entered unconditionally after a low appears on the RESET pin or after the  
receipt of command RES (software reset). The analog transceiver part is disabled  
(transmission of INFO 0) and the UPN interface awake detector is inactive. Hence,  
activation from terminal (TE) is not possible.  
Test Mode  
The test signal (iti) sent to the UPN interface in this state is dependant on the command  
which originally invoked the state. TM1 causes single alternating pulses to be  
transmitted (it1); TM2 causes continuous alternating pulses to be transmitted (it2). The  
burst mode technique normally employed on the UPN interface is suspended in this state  
and the test signals are transmitted continuously.  
Pending Deactivation  
To access any of the conditional states from any of the above unconditional states, the  
pending deactivation state must be entered. This occurs after the receipt of a DR  
command. In this state the awake detector is activated and the state is left only when the  
line has settled (i.e., INFO 0 has been detected for 2 ms) or by the command DC.  
Note: Although DR is shown as a normal command, it may be seen as an unconditional  
command. No matter which state the LT is in, the reception of a DR command will  
always result in the pending deactivation state being entered.  
Conditional States  
Wait for DR  
This state is entered from the pending deactivation state once INFO 0 or DC has been  
identified. From here the line may be either activated, deactivated or a test loop may be  
entered.  
Deactivated  
This is the power down state of the physical protocol. The awake detection is active and  
the device will respond to an INFO 1w (wake signal) by initiating activation.  
Preliminary Data Sheet  
3-11  
2003-08  
DELIC  
Interface Description  
Pending Activation  
This state results from a request for activation of the line, either from the terminal  
(INFO 1w) or from the layer-2 device (AR, AR2). INFO 2 is then transmitted and the DSP  
waits for the responding INFO 1 from the remote device.  
Synchronized  
This state is reached after synchronization upon the receipt of INFO 1, i.e. after a  
maximum of 10 ms. In this state, INFO 2 is supplied to the remote terminal for  
synchronization.  
Activated  
Info 1 has a code violation in the framing bit (F-bit), whereas INFO 3 has none. Upon the  
reception of two frames without a code violation in the F bit, the activated state is entered  
and INFO 4 is transmitted. The line is now activated; INFO 4 is sent to the remote and  
INFO 3 is received from the remote.  
Re synchronization  
If the recognition of INFO 3 fails, the receiver will attempt to resynchronize. Upon  
entering this state, INFO 2 is transmitted. This is similar to the original synchronization  
procedure in the pending activation state (the indication given to layer 2 is different).  
However, as before, recognition of INFO 1 leads to the synchronized state.  
Table 3-4  
UPN State Machine Codes  
Command  
Abbr.  
Code  
Remark  
Deactivate request  
DR  
0000  
Initiates a complete deactivation from the  
exchange side by transmitting INFO 0 (x)  
Reset  
RES  
TM1  
0001  
0010  
(x)  
Test mode 1  
Transmission of pseudo-ternary pulses at  
2 kHz frequency (x)  
Test mode 2  
TM2  
AR  
0011  
1000  
1010  
Transmission of pseudo-ternary pulses at  
192 kHz frequency (x)  
Activate request  
Used to start an exchange initiated  
activation  
Activate request test AR2  
loop 2  
Transmission of INFO 2, switching of loop  
2 (at TE), T bit set to one  
Preliminary Data Sheet  
3-12  
2003-08  
DELIC  
Interface Description  
Table 3-4  
UPN State Machine Codes (Continued)  
Command  
Abbr.  
Code  
Remark  
Activate indication = AI  
"blocked"  
1100  
Transmission of INFO 4, T bit set to zero  
Deactivate  
confirmation  
DC  
1111  
Deactivation acknowledgement, quiescent  
state  
(x) unconditional commands  
Note: The UPN state machine does not support loops. So neither C/I commands nor  
Indications are provided by the mailbox protocol.  
An loop can be programmed by setting bits TICCMR:LOOP and TICCMR:EXLP  
for the respective channel.  
Indication  
Abbr.  
Code  
Remark  
Timing  
TIM  
0000  
Deactivate state, activation from the line  
not possible  
Resynchronizing  
Activate request  
RSY  
AR  
0100  
1000  
0111  
Receiver is not synchronous  
INFO 1w received  
U only activation  
indication  
UAI  
INFO 1 received, synchronous receiver  
Activate indication  
AI  
1100  
1111  
Receiver synchronous, i.e., activation  
completed  
Deactivate indication DI  
INFO 0 or DC received after deactivation  
request  
Preliminary Data Sheet  
3-13  
2003-08  
DELIC  
Interface Description  
3.2.4  
S/T State Machine  
A finite state machine in the DELIC controls the VIP S/T line activation/deactivation  
procedures and transmission of special pulse patterns. Such actions can be initiated by  
primitives (INFOs) on the S/T interface or by C/I codes sent via the mailbox.  
Depending on the application mode and the transfer direction, the S/T state machines  
support different codes in conditional and unconditional states:  
LT-S mode  
Codes:  
data downstream = Commands: reset, test mode, activate req, ..  
data upstream = Indications: not sync, code violation, timer out, ..  
deactivated, activated, pending, lost framing, test mode  
States:  
The state diagram is shown in Figure 3-7.  
LT-T mode  
Codes  
data upstream  
= Commands: reset, test, activate request,..  
data downstream = Indications: command x acknowledged,..  
Conditional states: power up, pending deactivation, synchronized, slip detected,..  
The state diagram is shown in Figure 3-8.  
Unconditional states may be entered from any conditional state and should be left with  
the command TIM: test mode, reset state,..  
The S/T layer-1 activation and deactivation procedures implemented in the DELIC are  
similar to the ones implemented in the PEB 2084, QUAT-S.  
3.2.4.1 LT-S Mode  
Table 3-5  
LT-S State Machine Codes  
Abbr. Code Remark  
Command  
Deactivate request  
DR  
0000 Initiates a complete deactivation from the  
exchange side by transmitting INFO 0 (x)  
0001 (x)  
Reset  
RES  
TM1  
Test mode 1  
0010 Transmission of pseudo-ternary pulses at  
2 kHz frequency (x)  
Test mode 2  
TM2  
0011 Transmission of pseudo-ternary pulses at  
96 kHz frequency (x)  
Preliminary Data Sheet  
3-14  
2003-08  
DELIC  
Interface Description  
Table 3-5  
LT-S State Machine Codes (Continued)  
Abbr. Code Remark  
Command  
Activate request  
AR  
1000 Used to start an exchange initiated  
activation  
Deactivate confirmation  
DC  
1111 Deactivation acknowledgement,  
quiescent state  
(x) unconditional commands  
Note: The LT-S state machine does not support loops. So neither C/I commands nor  
Indications are provided by the mailbox protocol.  
A loop can be programmed by setting bits TICCMR:LOOP and TICCMR:EXLP for  
the respective channel.  
Indication  
Abbr. Code Remark  
Timing  
TIM  
RSY  
AR  
0000  
Resynchronizing  
Activate request  
Code violation received  
0100 Receiver is not synchronous  
1000 INFO 0 received  
CVR  
1011 After each multi-frame the reception of at  
least one illegal code violation is  
indicated four times  
Activate indication  
AI  
DI  
1100 Receiver synchronous, i.e., activation  
completed  
Deactivate indication  
1111 Timer (32 ms) expired or INFO 0  
received after deactivation request  
Preliminary Data Sheet  
3-15  
2003-08  
DELIC  
Interface Description  
RESET  
SCP  
TIM  
TIM RES  
TIM  
DR  
SSP  
DR  
DR  
Reset  
G4 Pend. Deact.  
Test Mode  
it1  
*
i0  
i0  
*
i0  
it2  
ARD1)  
DC  
DC  
SCP  
i0 or 32ms  
RES  
SSP  
Any State  
Any State  
DI  
DR  
G4 Wait for DR  
ARD1)  
i0  
*
DC  
DI  
DC  
DR  
DR  
DR  
G1 Deactivated  
ARD1)  
i0  
i0  
i0  
DC  
AR  
AR  
G2 Pend. Act.  
i2  
i3  
Note:  
i3  
TM2 = Send Continuous Pulses  
TM1 = Send Single Pulses  
it1 = test signal invoked by TM1  
it2 = test signal invoked by TM2  
DC  
AR  
AR  
G3 Activated  
E=D  
i4  
i3  
OUT  
Ind.  
IN  
i3  
i3  
µP  
DC  
AR  
interface  
RSY  
Cmd.  
DR  
State  
ix  
G2 Lost Framing  
i2  
iy  
i3  
S interface  
DELPHI LT-S SM.vsd  
Figure 3-7  
State Diagram of LT-S Mode  
Preliminary Data Sheet  
3-16  
2003-08  
DELIC  
Interface Description  
LT-S Mode States  
• G1 deactivated  
The line interface is not transmitting. There is no signal detected on the S interface,  
and no activation command is received.  
• G2 pending activation  
As a result of an INFO 1 detected on the S line or an AR command, the line interface  
begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise  
reception of INFO 3 is to be implemented in software. In case of an ARL command,  
loop 2 is closed.  
• G3 activated  
Normal state where INFO 4 is transmitted to the S interface. The line interface  
remains in this state as long as neither a deactivation nor a test mode is requested,  
and the receiver does not loose synchronism. When receiver synchronism is lost,  
INFO 2 is sent automatically. After reception of INFO 3, the transmitter continues  
sending INFO 4.  
• G2 lost framing  
This state is reached when the line interface has lost synchronism in the state G3  
activated.  
• G4 pending deactivation  
This state is triggered by a deactivation request DR. It is an unstable state: status DI  
(state “G4 wait for DR”) is issued by the DELIC when either INFO 0 is received, or an  
internal timer of 32 ms expires.  
• G4 wait for DR  
Final state after a deactivation request. The line interface remains in this state until a  
response to DI (in other words DC) is issued.  
• Test mode 1  
Single alternating pulses are sent on the S interface (2 kHz repetition rate).  
• Test mode 2  
Continuous alternating pulses are sent on the S interface (96 kHz).  
Preliminary Data Sheet  
3-17  
2003-08  
DELIC  
Interface Description  
3.2.4.2 LT-T Mode  
Table 3-6  
LT-T Mode State Machine Codes (Conditional States)  
Abbr. Code Remark  
Command  
Timing Request  
TIM  
0000 Requests the line interface to change into  
power-up state  
Reset  
RES 0001 Reset of state machine. Transmission of  
Info 0. No reaction to incoming infos (x)  
Test mode 1  
TM1  
0010 Transmission of single pulses on the S/T-  
interface. The pulses are transmitted with  
alternating polarity at a frequency of  
2 kHz. (x)  
Test mode 2  
TM2  
0011 Transmission of continuous pulses on the  
S/T-interface. The pulses are sent with  
alternating polarity at a rate of 96 kHz.  
TM2 is an unconditional command (x).  
Activate request, priority 8 AR8  
1000 Activation Request with priority 8 for D-  
channel transmission. This command is  
used to start a LT-T initiated activation.  
D-channel priority 8 is the highest priority.  
It should be used to request signaling  
information transfer.  
Activate request, priority  
10  
AR10 1001 Activation request with priority 10 for D-  
channel transmission. This command is  
used to start a LT-T initiated activation.  
D-channel priority 10 is a lower priority. It  
should be used to request packet data  
transfer.  
Deactivate indication  
DI  
1111 This command forces the line interface  
into “F3 power down” mode.  
(x) unconditional commands  
Note: The LT-T state machine does not support loops. So neither C/I commands nor  
Indications are provided by the mailbox protocol.  
A loop can be programmed by setting bits TICCMR:LOOP and TICCMR:EXLP for  
the respective channel.  
Preliminary Data Sheet  
3-18  
2003-08  
DELIC  
Interface Description  
Indication  
Abbr. Code Remark  
DR 0000 Deactivation request if left from F7/F8  
RES 0001 Reset acknowledge  
Deactivate request  
Reset  
Test mode 1  
Test mode 2  
Slip detected  
TM1  
TM2  
0010 TM1 acknowledge  
0011 TM2 acknowledge  
SLIP 0011 Frame wander larger than +/- 25 µs  
Resynchronization during RSY 0100 Signal received, receiver not synchronous  
level detect  
Power up  
PU  
AR  
0111 Line interface is powered up  
1000 INFO 2 received  
Activate request  
Code violation received  
CVR 1011 After each multiframe the reception of at  
least one illegal code violation is indicated  
four times.  
Activate indication with  
priority class 8  
AI8  
1100 INFO 4 received,  
D-channel priority is 8 or 9  
AI10 1101 INFO 4 received,  
D-channel priority is 10 or 11  
DC 1111 Line interface is powered down  
Activate indication with  
priority class 10  
Deactivate confirmation  
Preliminary Data Sheet  
3-19  
2003-08  
DELIC  
Interface Description  
DI  
DC  
F3  
TIM  
i4  
Power Down  
i0  
i0  
AR i2  
DI  
DI  
AR2)  
TIM  
F3  
PU  
F4  
PU  
AR  
Pending Act.  
Power Up  
TIM  
i0  
i0  
i0  
i1  
i0  
i2  
i4  
TMI4) TMI4)  
X
RSY  
TIM  
DI  
DI  
DI  
TIM  
i4  
Test Mode i  
F5  
Unsynchronized  
RES  
RES  
it5)  
*
i0  
ix  
i2  
TMI4)  
Any State  
RES  
RES  
*
AR  
TIM  
X
RESET  
F6  
Synchronized  
i0  
i3 i2  
ix  
DI  
i4  
X
RSY  
F8  
Lost Framing  
i0  
DELPHI RESET pin  
i2  
i4  
TIM  
i0*TO1  
DI*TO2 (from F6)  
DI (from F7, F8)  
i2  
i2  
i0  
ix  
AR2)  
X
AI3)  
F7  
Activated  
i3 i4  
DR1)  
TIM*TO2 (from F6)  
TIM (from F7, F8)  
i4  
F3  
Pending Deact.  
i0*TO1  
i0 i0  
1) DR for transition from F7 or F8  
2)  
AR stands for AR8 or AR10  
3)  
AI stands for AI8 or AI10  
TO1:  
TO2:  
16 ms  
0.5 ms  
4)  
TMI stands for TM1 or TM2  
5)  
it1 = test signal invoked by it1  
it2 = test signal invoked by it2  
Figure 3-8  
LT-T Mode State Diagram (Conditional and Unconditional States)  
Preliminary Data Sheet  
3-20  
2003-08  
DELIC  
Interface Description  
LT-T Mode (Conditional States)  
• F3 power down  
This is the deactivated state of the physical protocol. The receive line awake unit is  
active.  
• F3 power up  
This state is similar to “F3 power down”. The state is invoked by a Command  
TIM = “0000” (or DI static low).  
• F3 pending deactivation  
The line interface reaches this state after receiving INFO 0 (from states F5 to F8).  
From this state an activation is only possible from the line (transition “F3 pending  
deactivation” to “F5 unsynchronized”). The power down state may be reached only  
after receiving DI.  
• F4 pending activation  
Activation has been requested from the terminal; INFO 1 is transmitted; INFO 0 is still  
received; “Power Up” is transmitted in the C/I channel. This state is stable: timer T3  
(ITU I.430) is to be implemented in software.  
• F5/8 unsynchronized  
At the reception of any signal the VIP ceases to transmit INFO 1, adapts its receiver  
circuit, and awaits identification of INFO 2 or INFO 4. This state is also reached after  
the line interface has lost synchronism in the states F6 or F7 respectively.  
• F6 synchronized  
When the VIP receives an activation signal (INFO 2), it responds with INFO 3 and  
waits for normal frames (INFO 4).  
• F7 activated  
This is the normal active state with the layer 1 protocol activated in both directions.  
From state “F6 synchronized”, state F7 is reached almost 0.5 ms after reception of  
INFO 4.  
• F7 slip detected  
When a slip is detected between the T interface clocking system and the IOM-2  
interface clocks (phase wander of more than 25 µs, data may be disturbed) the line  
interface enters this state, synchronizing again the internal buffer. After 0.5 ms this  
state is relinguished.  
Preliminary Data Sheet  
3-21  
2003-08  
DELIC  
Interface Description  
LT-T Mode (Unconditional States)  
The unconditional states should be left with the command TIM.  
• Test mode 1  
Single alternating pulses are sent on the T interface (2 kHz repetition rate).  
• Test mode 2  
Continuous alternating pulses are sent on the T interface (120 kHz).  
• Reset state  
A hardware or software reset (RES) forces the line interface to an idle state where the  
analog components are disabled (transmission of INFO 0) and the T line awake  
detector is inactive.  
Preliminary Data Sheet  
3-22  
2003-08  
DELIC  
Interface Description  
®
3.3  
IOM -2 Interface  
IOM-2 is a standardized interface for interchip communication in ISDN line cards for  
digital exchange systems developed by ALCATEL, Siemens, Plessey and ITALTEL.  
The IOM-2 interface is a four-wire interface with a bit clock, a frame clock and one data  
line per direction. It has a flexible data clock. This way, data transmission requirements  
are optimized for different applications.  
Figure 3-9  
IOM®-2 Interface in Digital Linecard Mode  
Note: In Linecard mode, 8 identical IOM-2 subchannels are provided. In analog  
Linecards, a 6-bit C/I Channel is available for signaling information. In digital  
Linecards, a dedicated 2-bit D-channel carries the signaling information.  
3.3.1  
Signals / Channels  
FSC  
DCL  
DD  
Frame Synchronization Clock, 8 kHz  
Data Clock, up to 4.096 MHz *)  
Data Downstream, up to 4.096 Mbit/s *)  
Data Upstream, up to 4.096 Mbit/s *)  
User data channels, 64 kbit/s each  
Monitor Channel  
DU  
B1, B2  
MONITOR  
D
Signaling Channel, 16 kbit/s  
C/I  
MR  
MX  
Command/Indication Channel  
Monitor Receive handshake signal  
Monitor Transmit handshake signal  
*) For detailed clock and data rates, refer to IOMU feature description in Chapter 4.3.2  
Preliminary Data Sheet  
3-23  
2003-08  
DELIC  
Interface Description  
3.4  
µP Interface  
The µP interface may be operated in different modes. This chapter describes how to  
configure the DELIC to each mode.  
3.4.1  
Intel/Siemens or Motorola Mode  
The processor mode is selected by the MODE input pin of the DELIC. "Low" level selects  
Siemens/ INTEL mode, "HIGH" level selects Motorola mode.  
3.4.2  
De-multiplexed or Multiplexed Mode  
In both modes, the A-bus and the D-bus are used in parallel. The A-bus should be  
connected to the 8 LSBs of AD-bus, coming from the µP, also in multiplexed mode. The  
mode is determined according to the ALE input pin. When ALE is permanently driven to  
‘1’, the DELIC works in de-multiplexed mode. Otherwise the DELIC works in multiplexed  
mode.  
The next figure describes the connection of the DELIC to the address and data buses in  
the different modes.  
Note: Motorola mode is used only with de-multiplexed AD bus. Intel/Infineon mode may  
be used with both, multiplexed or de-multiplexed AD bus.  
Preliminary Data Sheet  
3-24  
2003-08  
DELIC  
Interface Description  
Multiplexed Mode  
µP  
8
DELIC  
AD  
D
A
7
ALE  
ALE  
De-multiplexed Mode  
µP  
DELIC  
8
7
D
D
A
A
ALE  
‘1’  
Figure 3-10 DELIC in Multiplexed and in De-multiplexed Bus Mode  
Note: In both modes only the 7 LSBs of A-bus or AD/bus are connected to the  
Address inputs of the DELIC. In DMA mode DACK/A4 input pin is used as DACK,  
and A4 is internally driven to ‘0’. In this case A4 of the µP A/AD-bus is also not  
connected to the DELIC.  
3.4.3  
DMA or Non-DMA Mode  
The internal interface between the on-chip DSP and µP is established by two Mailboxes:  
a ’general’ Mailbox and a dedicated DMA Mailbox. The non-DMA mode provides the  
option to combine them together building a double-sized ’general’ Mailbox. The DELIC  
is configured to DMA or non-DMA mode by a dedicated bit in the µP interface  
configuration register (MCFG:DMA).  
DMA Mode  
The DMA Mailbox can be accessed only by a DMA controller. The DACK input pin  
(together with the RD and WR signals) is used to access the DMA Mailbox. Only the  
general Mailbox can be accessed directly by the µP. In DMA mode, the pin DACK/A4 is  
Preliminary Data Sheet  
3-25  
2003-08  
DELIC  
Interface Description  
used as DACK, and A4 of the A-bus or AD-bus coming from the µP must not be used as  
an address line for the DELIC. In this case A4 is driven internally to ‘0’.  
Note: In de-multiplexed mode AD4 should be connected to DELIC’s D4input pin.  
Non-DMA mode  
This is the default mode (after reset).The general Mailbox and the DMA Mailbox data  
registers are concatenated into one double-sized general Mailbox, accessible by the µP.  
This broad Mailbox consists of a dedicated µP Mailbox and a DSP Mailbox. Each of them  
contains 32 data bytes and 1 command byte. In non-DMA mode, DACK/A4 is used as  
A4, in order to include the DMA Mailbox data registers in the µP interface address space.  
3.4.4  
DELIC External Interrupts  
The DELIC contains only one source for an external interrupt - the general Mailbox. This  
interrupt source is the OCMD register of the DSP Mailbox. Releasing the interrupt is  
done by the µP resetting bit OBUSY:BUSY. Masking it may be done by resetting the  
MASK bit of the µP interface Configuration Register (MCFG:IMASK).  
The interrupt vector issued is the contents of the DSP Mailbox command register MCMD.  
In Motorola mode, the interrupt vector is issued upon the first IACK pulse, while in  
Siemens/Intel mode it is issued upon the second IACK pulse. In the latter case, the  
interrupt vector due to the first IACK pulse (if needed), should be issued by an external  
interrupt controller.  
Preliminary Data Sheet  
3-26  
2003-08  
DELIC  
Interface Description  
3.5  
JTAG Test Interface  
The DELIC provides fully IEEE Standard 1149.1 compatible boundary scan support to  
allow cost effective board testing. It consists of:  
• Complete boundary scan test  
• Test access port controller (TAP)  
• Five dedicated pins: JTCK, TMS, TDI, TDO (according to JTAG) and an additional  
TRST pin to enable asynchronous resets to the TAP controller  
• One 32-bit IDCODE register  
3.5.1  
Boundary Scan Test  
• Depending on the pin functionality one or two boundary scan cells are provided.  
Pin Type  
Input  
Number of Boundary Scan Cells  
Usage  
1
2
Input  
Output  
Output, enable  
When the TAP controller is in the appropriate mode data is shifted into/out of the  
boundary scan via the pins TDI/TDO using a clock of up to 6.25 MHz on pin JTCK.  
The sequence of the DELIC pins can be taken from the BSDL files.  
3.5.2  
TAP Controller  
The Test Access Port (TAP) controller implements the state machine defined in the  
JTAG standard IEEE 1149.1. Transitions on the pin TMS cause the TAP controller to  
perform a state change.  
The TAP controller supports a set of 5 standard instructions:  
Table 3-7  
Code  
0000  
TAP Controller Instruction Codes  
Instruction  
EXTEST  
Function  
External testing  
Internal testing  
0001  
INTEST  
0010  
SAMPLE/PRELOAD  
IDCODE  
Snap-shot testing  
Reading ID code register  
Bypass operation  
0011  
1111  
BYPASS  
EXTEST is used to verify the board interconnections.  
When the TAP controller is in the state “update DR”, all output pins are updated with the  
falling edge of JTCK. When it has entered state “capture DR” the levels of all input pins  
Preliminary Data Sheet  
3-27  
2003-08  
DELIC  
Interface Description  
are latched with the rising edge of JTCK. The in/out shifting of the scan vectors is  
typically done using the instruction SAMPLE/PRELOAD.  
INTEST supports internal chip testing.  
When the TAP controller is in the state “update DR”, all inputs are updated internally with  
the falling edge of JTCK. When it has entered state “capture DR” the levels of all outputs  
are latched with the rising edge of JTCK. The in/out shifting of the scan vectors is  
typically done using the instruction SAMPLE/PRELOAD.  
Note: 0011 (IDCODE) is the default value of the instruction register.  
SAMPLE/PRELOAD provides a snap-shot of the pin level during normal operation or is  
used to either preload (TDI) or shift out (TDO) the boundary scan test vector. Both  
activities are transparent to the system functionality.  
IDCODE  
The 32-bit identification register is serially read out via TDO. It contains the version  
number (4 bits), the device code (16 bits) and the manufacturer code (11 bits). The LSB  
is fixed to ’1’. The code for the DELIC version 1.1 is ’0001’.  
Version  
0001  
Device Code  
Manufacturer Code  
0000 1000 001  
Output  
0000 0000 0101 0111  
1
--> TDO  
Note: In the state “test logic reset” the code “0011” is loaded into the instruction code  
register.  
BYPASS, a bit entering TDI is shifted to TDO after one JTCK clock cycle, e.g. to skip  
testing of selected ICs on a printed circuit board.  
Preliminary Data Sheet  
3-28  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4
Functional Description  
As the functionality of the DELIC-PB comprises the functionality of the DELIC-LC, the  
following chapter discribes the functionality of the DELIC-PB. The Differences between  
the two chip versions can be seen below:  
Table 4-1  
Differences between DELIC-LC - DELIC-PB  
Functionality  
DELIC-LC  
Cha. 0  
DELIC-PB  
Cha. 0..3  
Cha. 0..31  
available  
GHDLC channels (maximum configuration)  
HDLC channels (maximum configuration)  
DMA interface  
Cha. 0..23  
not available  
DMA- mailbox  
not available;  
it is used to  
increment the  
general mailbox  
can be used for  
DMA operation  
or as general  
mailbox  
Pinout  
Free programmability of DSP-system  
no  
yes  
Note: As the functionality is also dependent on the firmware package, please also refer  
to the respective documentation.  
Preliminary Data Sheet  
4-1  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.1  
Functional Overview and Block Diagram  
. . .  
Figure 4-1  
Block Diagram  
Preliminary Data Sheet  
4-2  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.2  
IOM-2000 Transceiver Unit  
4.2.1  
TRANSIU Overview of Features  
• The TRANSIU controls up to 24 layer-1 channels via up to three VIP/ VIP8 connected  
on IOM-2000 interface  
• IOM-2000 interface: all channels may be programmed in the TRANSIU to:  
UPN interface  
– S/T interface in LT-S (subscriber master) or LT-T (trunk slave) mode  
Note: The number of S/T interfaces in VIP PEB 20590 is limited to 4. Therefore it is  
required to program the TRANSIU correctly to the required mode (refer to  
TRANSIU register description)  
• Data rates: 3.072 Mbit/s (1 VIP), 6.144 Mbit/s (2 VIPs) or 9.216 Mbit/s (3 VIPs)  
• Data and maintenance bit handling for S/T and UPN interface, including multiframe  
control and D-channel collision control.  
4.2.2  
TRANSIU Initialization  
Reset Status  
• All IOM-2000 channels are configured to S/T interface, LT-S mode  
• The data rate in the TRANSIU is set to 3.072 Mbit/s  
• All buffers related to the IOM-2000 are undefined  
• The Command and Status buffers have the value ‘0’  
Channel Programming  
Every IOM-2000 channel may be configured in the TRANSIU as:  
UPN mode  
• S/T channel in LT-S mode  
• S/T channel in LT-T mode  
Data Rate Programming  
The TRANSIU supports three configurations regarding the number of VIPs connected  
via IOM-2000:  
• One VIP connected at data rate of 3.072 Mbit/s: 8 IOM-2000 channels at a clock rate  
of 3.072 MHz  
• Two VIPs connected at data rate of 6.144 Mbit/s: 16 IOM-2000 channels at a clock  
rate of 6.144 MHz  
• Three VIPs connected at data rate of 9.216 Mbit/s: 24 IOM-2000 channels at a clock  
rate of 12.288 MHz. (Note the difference between clock rate and actual data rate)  
Preliminary Data Sheet  
4-3  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.2.3  
Initialization of VIP  
During startup the VIP requires 3 frames with the right FSC and DCL_2000 to  
synchronize to the DELIC. During this time the VIP is not able to detect commands or  
data from the DELIC.  
4.2.4  
S/T Mode Control and Framing Bits on IOM-2000  
4.2.4.1 Framing Bit (F-Bit)  
The framing (F) bit is recognized on the IOM-2000 interface, when both data and control  
bits are equal to ‘1’. In the transmit direction the data and control bits are inserted by the  
TRANSIU at the beginning of every transmitted frame; in the receive direction the  
framing bit is used for frame start recognition.  
4.2.4.2 Multiframing Bits  
In S/T interface, the multiframe includes 20 S/T frames. The start of a multiframe is  
indicated by the M- and Fa-bits (the M-bit is set to ‘1’ in every 20-th frame, the Fa-bit is  
set to ‘1’ in every 5-th frame).  
The S/Q channel provides the additional capability for data exchange between LT-S and  
TE or between the Central Office (CO) and the LT-T at the multiframe level. In the LT-S-  
to-TE direction the S-channel (S-bit in S/T frame) is used. In the opposite direction (TE  
to LT-S) the data is transferred on the Q-channel. The Q-bits are defined to be the bits  
in the Fa bit position of every 5-th frame. The Q-bit position is identified by Fa = ‘1’ in the  
TE to LT-S direction. A multiframe is provided for structuring the Q-bits in groups of four  
(Q1-Q4).  
The Q- and S-channel coding with respect to the frame number is shown in Table 4-2.  
S
IOM-2000  
LT-S  
VIP  
LT-T  
TE  
DELIC  
Q
S
CO  
Q
Figure 4-2  
S/Q Channel Assignment  
Preliminary Data Sheet  
4-4  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Table 4-2  
S/T Mode Multiframe Bit Positions  
Frame number LT-S to TE or LT-S to TE or LT-S to TE or TE to LT-S or  
CO to LT-T,  
Fa bit position M-bit  
CO to LT-T,  
CO to LT-T,  
S-bit  
LT-T to CO  
Fa bit position  
1
1
0
1
0
1
0
1
0
...  
1
0
0
0
0
0
0
0
...  
S11  
S21  
S12  
S22  
S13  
S23  
S14  
S24  
...  
Q1  
0
2
6
Q2  
0
7
11  
12  
16  
17  
...  
Q3  
0
Q4  
0
...  
Note: 1.Only frame positions (within the 20-frame multiframe) that carry S- or Q-channel  
information are shown here  
2.The Q- and S-bits, which are not used, are set to ‘1’.  
On the IOM-2000 interface, the S/T multiframe information is included in the DX/DR data  
stream (transparently to the VIP). The values of the multiframe are controlled by the DSP  
software in the DELIC.  
When multiframe synchronization is not achieved or lost, the VIP mirrors the received Fa  
bits. Once the multiframe synchronization is established, the DSP sends the multiframe  
synchronization command to the VIP (MSYNC bit). Upon reception of the MSYNC, the  
VIP stops mirroring the Fa -bit.  
4.2.4.3 Fa/N Bit  
In the transmit direction the Fa/N bit pair is coded in such a way that N is the binary  
opposite of the Fa. The Fa bit is equal to binary ‘0’, except every 5-th frame when it is set  
to ‘1’, which indicates the Q-bit position to the TE.  
The receive direction, the Fa bit positions represent the Q-channel.  
4.2.4.4 DC-Balancing Bit (L-Bit)  
In transmit (downstream) direction the L-bit is generated in compliance with ITU-T I.430:  
• A balance bit is ‘0’ if the number of 0’s following the previous balance bit is odd.  
• A balance bit is ‘1’ if the number of 0’s following the previous balance bit is even.  
Preliminary Data Sheet  
4-5  
2003-08  
DELIC  
PEB 20571  
Functional Description  
It is inserted by the VIP according to the Balancing Bit Control (BBC) bit sent to the VIP  
by the DELIC via the CMD line.  
In receive (upstream) direction, the DC balancing bit is received on the line, but not  
evaluated  
4.2.5  
UPN Mode Control and Framing Bits on IOM-2000  
4.2.5.1 Framing Bit (LF-Bit)  
On the UPN interface the framing (LF) bit is always logical ‘1’.  
In the transmit direction the LF-bit is inserted by the TRANSIU at the beginning of every  
transmitted UPN frame. The VIP assumes the start of the UPN frame when detecting the  
first '1' (LF-bit) in the data stream on IOM-2000 DX line together with the 8 kHz IOM-2000  
FSC pulse. This is required due to the 8 kHz clock rate of the FSC signal in comparison  
to the 4 kHz frame length in the UPN interface.  
The code violation in the LF position is generated by the VIP when INFO1 is transmitted,  
according to the DSP command bits SMINI(2:0).  
In the receive direction the first ‘1’ recognized on the line after “no signal”, which is  
represented by logic ‘0’, is treated as the LF-bit. The code violation in the LF-bit position  
is recognized by the VIP when INFO 2 is received. This information is forwarded to the  
DELIC as part of the VIP receiver status bits RxSTA(1:0).  
4.2.5.2 Multiframing Bit (M-Bit)  
On the UPN interface, multiframes are composed of four UPN frames. The multiframe is  
included at the M-bit position. Every fourth M-bit, a code violation indicates the start of a  
new multiframe.  
In transmit direction, the VIP extracts the multiframe bits out of the IOM-2000 data  
coming from DELIC and inserts them in the UPN frame at the line side.  
In receive direction, the VIP extracts the multiframe bits out of the data coming from the  
U
PN line and inserts them in the IOM-2000 frame to the DELIC.  
A multiframe counter in the VIP guarantees the timing of the multiframe. It is  
synchronized (reset) every 20th UPN frame (=every 40th IOM-2000 frame) by the  
command bit ’SH_FSC’ issued by the DELIC.  
Note: The SH_FSC bit performs the functionality of the short FSC pulse in OCTAT-P  
and QUAT-S.  
T-bit  
The T-bit received on the UPN line is inserted by the VIP in the IOM-2000 data receive  
(DR) line at the multiframe (M-bit) position in every frame; i.e. not only at the usual T-bit  
position every third frame, but also at the S-bit position and the code violation (CV)  
Preliminary Data Sheet  
4-6  
2003-08  
DELIC  
PEB 20571  
Functional Description  
position. The DELIC DSP software may evaluate the received T-bit to provide the user  
with an additional data channel (under consideration). Note that this is an additional  
feature to the OCTAT-P.  
In transmit direction, the T-bit value is sent in the data stream from the DELIC to the VIP,  
and passed on transparently to the UPN terminal. The T-bit value may be programmed in  
DELIC’s data RAM. It is required e.g. for DECT synchronization.  
S-bit  
The S-bit received on the UPN line interface is extracted by the VIP out of the data  
stream, and is logical OR’ ed with the detected far-end code violation. The result is sent  
to the DELIC as status bit ’FECV’.  
In transmit direction, the S-bit value is sent in the data stream from the DELIC to the VIP,  
and passed on transparently to the UPN terminal. The S-bit value may be programmed  
in DELIC’s data RAM. It is required e.g. for switching a digital loop in the terminal.  
CV-bit  
The code violation bit received on the line is not transmitted to the DELIC.  
4.2.5.3 DC-Balancing Bit  
A DC-balancing bit is inserted by the VIP according to the Balancing Bit Control (BBC)  
bit transmitted to the VIP on the command line.  
In receive direction, the DC balancing bit is received, but not evaluated.  
4.2.6  
IOM-2000 Command and Status Interface  
All Command/Status bits used for VIP channel programming are divided into one group  
used only during initialization, and one group used during normal operation.  
Initialization Mode Command Bits  
The bits of this group are used for VIP initialization or in operation modes where an  
immediate reaction is not required. The initialization group includes command bits and  
the channel address, stored in register TICCMR. Note that the usage of this group of bits  
is limited in a way that only one channel may be accessed in each frame.  
In test mode, the command word to VIP_n (CMD_n) and to Channel_m of VIP_n  
(CMD_n_m) may be read by the DELIC in the next frame after issuing bits ’RD_n’ or  
’RD’. The VIP mirrors the command word exactly as it was received, despite the bits  
’WR’, ’WR_ST’, ’RD’. The VIP status is saved in the TRANSIU initialization status  
(TICSTR) register, which includes status bits and the channel address.  
Note: The commands must not be read during normal operation, since in this case the  
reporting of the VIP status to the DELIC would not be possible.  
Preliminary Data Sheet  
4-7  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Operational Mode Command/Status Bits  
The bits of this group are used during normal operation, hence they are evaluated in  
every frame. They include all VIP receiver status bits and some of the command bits.  
The operational mode command/status bits are buffered in the Data RAM.  
The VIP receiver status bits do not reflect a status change, but the status itself, i.e. the  
current value of the line interface INFOs, until the values change.  
The FECV is only reported to the DELIC upon changes.  
Command/Status Transmission  
The command/status bits are transmitted/received by the TRANSIU at the same rate as  
data transmission rate, starting with the 8 kHz FSC.  
Transmit Direction  
• The command information per VIP is prepared by the DSP in the VIPCMR0-2  
registers  
• The command bits from initialization command group are prepared by the DSP in the  
ICCMR register for one of the channels  
• TRANSIU operation mode command format in the Data RAM:  
7
6
5
4
3
2
1
0
data byte 1  
data byte 2  
data byte 3  
SMINI(2:0)  
x
x
x
MSYNC WR_ST  
WR_ST  
Write Command to TST1 Bits (S/T, UPN)  
0 = Data sent in these bits is invalid  
1 = SMINI(2:0) and MSYNC contain valid data  
Preliminary Data Sheet  
4-8  
2003-08  
DELIC  
PEB 20571  
Functional Description  
MSYNC  
Multiframe Synchronization (LT-T)  
0 = VIP mirrors the FA-bit  
1 = VIP stops the FA-bit mirroring (for multiframe synchronization)  
SMINI(2:0)  
State Machine Initialization (S/T, UPN)  
Command to VIP from the DELIC layer-1 state machine. Depending  
on the state, the VIP may transmit data on the UPN or S/T interface.  
The VIP responds by sending the receiver status bits  
STAT_n_m.RxSTA(1:0) to the DELIC.  
000 = INFO 0 in S/T or UPN  
001 = INFO 1w in UPN  
010 = INFO 1 in LT-T, INFO 2 in LT-S or UPN  
011 = INFO 3 in LT-T, INFO 4 in LT-S or UPN  
100 = Test mode ’Send Continuous Pulses SCP’:  
’1s’ transmitted at 96 kHz (UPN) and at 192 kHz S/T)  
101 = Test mode ’Send Single Pulses SSP’ (at 2 kHz burst rate)  
Note: all other states are reserved  
Receive Direction  
• The received status per VIP is stored in the VIPSTR0-2 registers  
• If the “read_status” command was transmitted in the previous frame for one of the  
channels, the received status from this channel is saved in the TICSTR register  
together with the 5-bit channel address  
• TRANSIU operation mode status format in the Data RAM:  
7
6
5
4
3
2
1
0
data byte 1  
data byte 2  
data byte 3  
x
MSYNC FCV FSYNC SLIP FECV RxSTA(1:0)  
Preliminary Data Sheet  
4-9  
2003-08  
DELIC  
Functional Description  
RxSTA(1:0)  
Receiver Status Change (S/T, UPN)  
00 = Receiver is not synchronized to the line; no signal on line  
(INFO 0)  
01 = Level detected on line (any signal) (INF 1 in LT-S mode)  
10 = Receiver is synchronized to the line, but not activated  
(INFO 2 in LT-T mode)  
11 = Receiver is synchronized and activated (INFO 4 for LT-T mode  
INFO 3 for LT-S and UPN)  
FECV  
SLIP  
Far-end Code Violation (S/T, UPN)  
0 = Normal operation  
1 = Illegal code: FECV according to ANSI T1.605 detected (S/T)  
Frame Slip Detected (LT-T)  
0 = No frame slip detected  
1 = A frame slip of more than 25 µs (tbd) was detected on the LT-T  
channel  
FSYNC *  
FCV *  
MSYNC / LD *  
F-Bit Synchronous (S/T + UPN test mode only!!)  
Code Violation in F-Bit detected (UPN test mode only!!)  
Multiframe Synchronous (UPN), Level Detected (S/T), test mode!!  
Note: with * marked bits are not evaluated by the DELIC, only for VIP testing.  
Bits SLIP, FECV and are directly available to the DSP software in the TRANSIU  
receive data RAM.  
Preliminary Data Sheet  
4-10  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.2.7  
IOM-2000 Data Interface  
Data processing and frame handling in the TRANSIU is fully DSP controlled. Serial data  
received and transmitted on the IOM-2000 Interface is arranged in the Shift Receive  
RAM and Shift Transmit RAM.  
The DSP processed bytes are stored in the TRANSIU Current Buffer. Every 8 kHz frame  
the TRANSIU and DSP Current Buffers are switched.  
4.2.7.1 UPN Mode  
The data is received and transmitted at a nominal bit rate of 384 kbit/s. In the first half of  
the 4 kHz UPN frame data is transmitted and ‘zeros’ are received, in the second half of  
the frame ‘zeros’ are transmitted and data is received.  
Scrambling and de-scrambling of the B-channel data is done automatically. The received  
and transmitted data is stored in the Data RAM in the following format:  
U
PN Mode Receive / Transmit Data Format  
7
6
5
4
3
2
x
1
x
0
x
B1-channel data  
B2-channel data  
D-channel  
M-bit  
x
x
Operation Mode Command/Status bits  
In transmit direction, depending on the multiframe position, the M-bit contains either the  
T-bit or the S-bit with the following functionality:  
• T-bit: a) D-channel available info to the terminal  
b) DECT synchronization signal  
• S-bit: switches remote loop in terminal device  
4.2.7.2 UPN Scrambler/Descrambler  
B-channel data on all UPN channels of the IOM-2000 interface is scrambled to give a flat  
continuous power density spectrum on the line.  
Scrambling is done according to ITU-T V.27 with the generator polynomial 1 + x6 + x7  
Initialization via History RAM (HRAM)  
The scrambler is activated/de-activated for each UPN channel separately by a DSP write  
to the history RAM address.  
Preliminary Data Sheet  
4-11  
2003-08  
DELIC  
Functional Description  
During initialization the DSP writes a value with '0' in its LSB (other bits are of no  
importance) to every History RAM address associated to an UPN channel that is not to  
be scrambled, and a value with '1' in its LSB for every UPN channel that must be  
scrambled. The same values must be written to the descrambler history RAM.  
The HRAM addresses are:  
• 0x9000 - 0x9017 (scrambler UPN channel 0..23)  
• 0x9020 - 0x9037 (descrambler UPN channel 0..23)  
For example, in order to activate scrambling and descrambling for channel number 3, the  
DSP must execute two write operations as follows:  
• Write "xxxxxxxxxxxxxxx1" to address 0x9002  
• Write "xxxxxxxxxxxxxxx1" to address 0x9022  
These writes are executed only when the scrambler is in idle mode, i.e. value 0x0003  
was written by the OAK to address 0xD010.  
4.2.7.3 S/T Mode  
Data is received/transmitted at a nominal rate of 192 kbit/s. Each S/T data bit is  
translated into two bits on IOM_2000: data (bit0) and control (bit1).  
LT-S Mode Transmit Data Format  
7
6
5
4
3
2
1
x
0
x
B1-channel data  
B2-channel data  
D-channel  
x
Fa  
M
S
Operation Mode Command/Status bits  
LT-S Mode Receive Data Format  
7
6
5
4
3
2
x
1
x
0
x
B1 - channel data  
B2 - channel data  
D-channel  
Fa  
x
x
Operation Mode Command/Status bits  
Preliminary Data Sheet  
4-12  
2003-08  
DELIC  
PEB 20571  
Functional Description  
LT-T Mode Receive Data Format  
7
6
5
4
3
2
1
0
B1-channel data  
B2-channel data  
D-channel  
x
Fa  
M
S
CBN  
CDI  
Operation Mode Command/Status bits  
CBN  
CDI  
Collision Detection Bit Number  
0 = Collision was detected in the first D-bit of the frame  
1 = Collision was detected in the second D-bit of the frame  
Collision Detection Indication  
0 = No collision in D-channel  
1 = Collision in D-channel detected  
LT-T Mode Transmit Data Format  
7
6
5
4
3
2
x
1
x
0
x
B1-channel data  
B2-channel data  
D-channel  
Fa  
x
x
Operation Mode Command/Status bits  
Preliminary Data Sheet  
4-13  
2003-08  
DELIC  
Functional Description  
4.3  
IOM-2 Unit  
4.3.1  
IOMU Overview of Features  
The IOMU provides the DSP access to incoming time slots from the IOM-2 interface. The  
DSP may switch the timeslots to the other DELIC system interfaces.  
Features  
• DSP access for switching of B1 and B2 data to the PCMU and the TRANSIU  
(providing a constant switching delay of two 8 kHz frames)  
• DSP access for extracting of D-channel information  
• DSP access for control of IOM-2 Command/Indication (C/I) and Monitor channel  
information  
Interface Configuration  
• Two IOM-2 ports providing up to 16 IOM-2 channels (up to 16 ISDN or 32 analog  
subscribers)  
• Available data rate modes:  
– Two ports of 384 kbit/s each (2 x 6 time slots per frame)  
– Two ports of 768 kbit/s each (2 x 12 time slots per frame)  
– Two ports of 2.048 Mbit/s each (2 x 32 time slots per frame)  
– One port of 4.096 Mbit/s (1 x 64 time slots per frame)  
• Single or double data rate clock selectable in each data rate mode  
• Programmable tri-state control for each port and channel (=4 time slots)  
• Push-pull or open-drain configuration  
• DRDY signal for D-channel control when connected to QUAT-S PEB 2084  
Preliminary Data Sheet  
4-14  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.3.2  
IOMU Functional and Operational Description  
IOM-2 Interface  
DELIC  
PCM  
Interface  
FSC  
DCL  
CLOCKS  
PCMU  
DD0  
DU0  
DD1  
DU1  
SWITCHING  
B1 B2  
D.C/I  
M
D,C/I  
M
B2 B1  
IOMU  
B1 B2  
D.C/I  
M D,C/I  
M
B2 B1  
DRDY  
HDLCU  
IOM-2000  
Interface  
TRANSIU  
DSP  
Figure 4-3  
IOMU Integration in DELIC  
4.3.2.1 Frame-Wise Buffer Swapping  
The main task of the IOMU is the serial-to-parallel conversion of incoming IOM-2 data to  
a parallel data format which is directly read by the DSP. This access is required for the  
DSP to perform switching of B-channels, extraction of D-channels, and layer-1 control  
via the IOM-2 C/I and Monitor channels.  
The data conversion in the IOMU is done by frame-wise swapping based on a circular  
buffer structure. During each 8 kHz frame, one buffer is assigned to the IOMU (I-buffer),  
and the other one to the DSP (D-buffer). At the end of every frame, the buffers are  
swapped.  
4.3.2.2 I-buffer Logical Structure  
The logical partitioning of each frame buffer into input and output blocks is determined  
according to the requested data rate as shown in the table below.  
The address of each data byte in the I-buffer output blocks by the DSP must be selected  
according to the IOM port and time slot index, in which it should be transmitted.  
Preliminary Data Sheet  
4-15  
2003-08  
DELIC  
Functional Description  
Table 4-3  
Data Rate  
I-Buffer Logical Memory Mapping  
Input Blocks  
Output Blocks  
in0  
in1  
out0  
out1  
2 x 2.048 Mbit/s  
2 x 384 kbit/s  
2 x 768 kbit/s  
00H - 1FH  
20H - 3FH  
40H - 5FH  
60H - 7FH  
1 x 4.096 Mbit/s  
00H - 3FH  
--  
40H - 7FH  
--  
Note: In 2 x 384 / 768 kbit/s mode, only the first 6 / 12 bytes of each block are used.  
4.3.2.3 DSP Access to the D-Buffer  
The D-buffer is mapped to a fixed DSP address space. Every DSP access to the D-buffer  
space is directed automatically to the appropriate sub-buffer.  
.
Table 4-4  
D-Buffer Address Space  
Data-Rate  
Mode  
D-Buffer  
out0  
in0  
in1  
out1  
2 x 6/12/32  
8000H -  
8020H -  
803FH  
8040H -  
805FH  
8060H -  
807FH  
time slots/frame 801FH  
1 x 64 8000H -  
time slots/frame 803FH  
-
8040H -  
807FH  
-
4.3.2.4 IOM-2 Interface Data Rate Modes  
The IOMU may support different serial data rates of the IOM-2 interface:  
• 384 kbit/s (6 time slots per frame)  
• 768 kbit/s (12 time slots per frame)  
• 2.048 Mbit/s (32 time slots per frame = 8 IOM-2 channels per frame)  
• 4.096 Mbit/s (64 time slots per frame = 16 IOM-2 channels per frame)  
The IOMU circular buffer may handle up to 64 time slots per frame. Thus, when in 4.096  
Mbit/s mode, only IOM-2 port 0 is used. In this case IOM-2 port 1 remains in IDLE mode,  
i.e. the DD1 output pin is tri-stated.  
Note that when using any of the two lower data rates, both IOM-2 ports are used.  
In all data rate modes, single rate Data Clock (DCL) or double rate Data Clock may be  
selected.  
Preliminary Data Sheet  
4-16  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Table 4-5  
DCL Frequency in Different IOM-2 Modes  
Single/Double  
Rate DCL Mode  
IOM-2 Mode  
2x768 kbit/s 2x2.048 Mbit/s 1x4.096 Mbit/s  
2x384 kbit/s  
384 kHz  
Single  
768 kHz  
2.048 MHz  
4.096 MHz  
4.096 MHz  
8.192 MHz  
Double  
768 kHz  
1536 kHz  
The IOMU meets the IOM-2 interface timing specifications as described below.  
Single Data Rate DCL Mode  
• Serial transmission via DD0/DD1 with every DCL rising edge  
• Sampling of the incoming serial data (DU0/DU1) with every DCL falling edge  
• Sampling FSC with every DCL falling edge. Sampling of FSC = 1 after sampling of  
FSC = 0 is considered to be the start of a frame.  
Double Data Rate DCL Mode  
• Two DCL cycles per bit (the bits are aligned to the frame start)  
• Serial transmission via DU0/1 with every second DCL rising edge.  
• Sampling of incoming serial data (DD0/1) with the second DCL falling edge of each bit.  
• Sampling of FSC every DCL falling edge. Sampling of FSC = 1 after sampling of  
FSC = 0, is considered to be the start of a new frame.  
Figure 4-4 shows the IOM-2 interface timing with single and double rate DCL. For more  
details refer to the general IOM-2 interface description.  
Preliminary Data Sheet  
4-17  
2003-08  
DELIC  
Functional Description  
Single Data Rate DCL  
FSC  
DCL  
Frame Start  
TS31  
bit0  
TS0  
bit7  
TS0  
TS0  
bit5  
TS0  
bit4  
TS0  
bit3  
TS0  
bit2  
TS0  
bit1  
TS0  
bit0  
TS1  
bit1  
DD0/1  
DU0/1  
bit6  
TS31  
bit0  
TS0  
bit7  
TS0  
bit6  
TS0  
bit5  
TS0  
bit4  
TS0  
bit3  
TS0  
bit2  
TS0  
bit1  
TS0  
bit0  
TS1  
bit7  
Double Data Rate DCL  
FSC  
DCL  
Frame Start  
TS0  
bit7  
TS0  
bit6  
TS0  
bit5  
TS0  
bit4  
TS31  
bit0  
DD0/1  
DU0/1  
TS31  
bit0  
TS0  
bit7  
TS0  
bit6  
TS0  
bit5  
TS0  
bit4  
= FSC Sampling  
= Upstream Sampling  
Figure 4-4  
IOM-2 Interface Timing in Single/Double Clock Mode  
4.3.2.5 IOMU Serial Data Processing  
The IOMU serial data processing is according to the IOM-2 specifications. Incoming  
serial data is converted into parallel bytes, and stored in the I-buffer input blocks. The  
sequence for every time slot received is from MSB (bit 7) to LSB (bit 0). Transmission is  
performed in the opposite direction, from MSB (bit 7) to LSB (bit 0).  
4.3.2.6 IOMU Parallel Data Processing  
The data read from the IOMU frame buffers by the DSP always reside in the low byte of  
the 16-bit word. The high byte of the read word is driven by the 8-bit IOMU Data Prefix  
Register (IDPR). The data prefix is used to accelerate the A-/µ-law to linear conversions  
(refer to Chapter 4.5).  
Note: Any octet written by the DSP to any location in the IOMU frame buffers should  
reside in the low byte (8 LSB). The high byte of the written word is “don’t care”.  
Preliminary Data Sheet  
4-18  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.3.2.7 IOM-2 Push-Pull and Open-Drain Modes  
The IOM-2 ports can be configured to Push-Pull or Open-Drain modes by a dedicated  
bit in the IOMU Control Register. When programmed to Open-Drain, DD0/DD1 is tri-  
stated when a ‘1’ is supposed to be transmitted, or during a time slot quadruplet with the  
associated Tri-State Register bit set.  
In both cases the external pull-up resistor, which is used when working in open-drain  
mode, will “pull” the value to ‘1’.  
Note: When the IOMU is programmed to 1x 64 time slots per frame mode, DD1 is tri-  
stated, independently of the IOM-2 interface push-pull or open-drain mode.  
DELIC  
ITSR  
IOMU  
DD0  
downstream0  
data  
DD1  
downstream1  
data  
Figure 4-5  
IOM-2 Interface Open-Drain Mode  
DELIC  
IOMU  
ITSR  
DD0  
downstream0  
data  
DD1  
downstream1  
data  
Figure 4-6  
IOM-2 Interface Push-Pull Mode  
Preliminary Data Sheet  
4-19  
2003-08  
DELIC  
Functional Description  
4.3.2.8 Support of DRDY Signal from QUAT-S  
The DRDY input is used when connecting a Siemens QUAT-S transceiver to the DELIC  
via the IOM-2 interface. It is driven by the QUAT-S to inform the DELIC when a D-  
channel is occupied by another S-interface device.  
The IOMU supports the synchronous DRDY mode, i.e. the QUAT-S is operated in LT-T  
mode. In this mode, the DRDY signal is valid only during the D-channels.  
DRDY = ‘0’ means STOP (ABORT HDLC message), and DRDY = ‘1’ means GO.  
FSC  
IOM-2 ch 7  
IOM-2 ch 0  
IOM-2 ch 1  
IOM-2 ch 2  
IOM-2 ch 3  
MON D  
MON D  
MON D  
MON D  
MON D  
DU0  
B1 B2  
B1 B2  
B1 B2  
B1 B2  
B1 B2  
go  
go  
DRDY  
stop  
stop  
stop  
= not valid  
Figure 4-7  
DRDY Signal Behavior  
IOMU DRDY support features:  
• Sampling DRDY only once every D-channel, at the first bit.  
• Sampling with the first DCL falling edge (in single data-rate DCL mode), or with the  
second falling DCL edge (in double data-rate DCL mode), refer to Figure 4-8.  
• DRDY support via IOM-2 port 0 only (with a constant delay of one 8 kHz frame)  
• The status of the DRDY line can be read from register IDRDYR  
First bit of  
a D-channel  
second bit of  
a D-channel  
D0  
D1  
DU0  
valid  
DRDY  
Sample point of DRDY  
in single data-rate DCL mode  
Single  
Data-Rate DCL  
Sample point of DRDY  
in double data-rate DCL mode  
Double  
Data-Rate DCL  
Figure 4-8  
DRDY Sampling Timing  
Preliminary Data Sheet  
4-20  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.4  
PCM Unit  
PCM Interface Features  
The PCMU enables the DSP to control the 4 PCM ports. The DSP accesses the  
incoming PCM time slots, and prepares the outgoing PCM time slots. In general, the  
PCMU enables the DSP to switch time slots from and to the PCM ports.  
The basic structure and programming model of the PCMU is similar to the IOMU. Note  
that the PCMU provides the double capacity of the IOMU. Thus it may handle up to  
4 PCM ports and an overall of 128 time slots per frame in the receive direction and 128  
time slots per frame in the transmit direction.  
The following PCMU data rate modes are available:  
• Four streams of 2.048 Mbit/s each (single and double clock)  
• Two streams of 4.096 Mbit/s each (single and double clock)  
• One stream of 8.192 Mbit/s (single and double clock)  
• One stream of 16.384 Mbit/s (single clock). It is programmable, whether the first or the  
second 128 time slots of the 8 kHz frame are handled in the PCMU.  
Tristate control is performed via pins TSCn, programmable per time slot and port.  
Preliminary Data Sheet  
4-21  
2003-08  
DELIC  
Functional Description  
4.4.1  
PCMU Functional and Operational Description  
PCM interface  
PDC, PFS  
TSC2  
TSC3  
PCM Unit  
RXD0, TXD0, TSC0  
IOM Unit  
RXD1, TXD1, TSC1  
MUX  
RXD2, TXD2  
RXD3, TXD3  
HDLC  
Unit  
GHDLC  
Unit  
DSP OAK+  
Memory  
TRANSIU  
Figure 4-9  
PCMU Integration in DELIC  
The PCM-unit signals share port pins with the GHDLC-unit. A multiplexer controlled by  
register MUXCTRL allows to define the required functionality.  
4.4.1.1 Frame-Wise Buffer Swapping  
The main task of the PCMU is the serial-to-parallel conversion of incoming data to a  
parallel data format (and vice versa) which is directly read by the DSP. This access is  
required for the DSP to perform switching of B-channels.  
The data conversion in the PCMU is done by frame-wise swapping based on a circular  
buffer structure. During each 8 kHz frame, one buffer is assigned to the PCMU (I-buffer),  
and the other one to the DSP (D-buffer). At the end of every frame, the buffers are  
swapped.  
4.4.1.2 DSP Inaccessible Buffer (I-buffer)  
The logical partitioning of each frame buffer into input and output blocks is determined  
according to the requested data rate as shown in the table below.  
The address of each data byte in the I-buffer output blocks by the DSP must be selected  
according to the PCM port and time slot index, in which it should be transmitted.  
Preliminary Data Sheet  
4-22  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Table 4-6  
Data Rate  
I-Buffer Logical Memory Mapping of Input Buffers  
Input Blocks  
in0  
in1  
in2  
RXD2  
in3  
related port  
RXD0  
RXD1  
RXD3  
4 x 2.048 Mbit/s  
2 x 4.096 Mbit/s  
1 x 8.192 Mbit/s  
1 x 16.384 Mbit/s  
00H - 1FH 20H - 3FH 40H - 5FH 60H - 7FH  
00H - 3FH 40H - 7FH  
00H - 7FH  
00H - 7FH  
Table 4-7  
Data Rate  
I-Buffer Logical Memory Mapping of Output Buffers  
Output Buffer Blocks  
out0  
out1  
out2  
out3  
related port  
TXD0  
TXD1  
TXD2  
TXD3  
4 x 2.048 Mbit/s  
2 x 4.096 Mbit/s  
1 x 8.192 Mbit/s  
1 x 16.384 Mbit/s  
80H - 9FH A0H - BFH C0H - DFH E0H - FFH  
80H - BFH C0H - FFH  
80H - FFH  
80H -FFH  
Note: In 1 x 16.384 Mbit/s only the first half of the frame is saved in the buffer  
4.4.1.3 DSP Accessible Buffer (D-Buffer)  
The D-buffer is mapped to a fixed DSP address space. Every DSP access to the D-buffer  
space is directed automatically to the appropriate sub-buffer.  
Table 4-8  
Data Rate  
DSP Access to D-Buffer Input Blocks  
Input Buffer Blocks  
in0  
in1  
in2  
in3  
related port  
RXD0  
RXD1  
RXD2  
RXD3  
4 x 2.048 Mbit/s A000H - A01FH A020H - A03FH A040H - A05FH A060H - A07FH  
2 x 4.096 Mbit/s A000H - A03FH A040H - A07FH  
1 x 8.192 Mbit/s A000H - A07FH  
1 x 16.384 Mbit/s A000H - A07FH  
Preliminary Data Sheet  
4-23  
2003-08  
DELIC  
Functional Description  
Table 4-9  
Data Rate  
DSP Access to D-Buffer Output Blocks  
Output Buffer Blocks  
out0  
out1  
out2  
out3  
related port  
TXD0  
TXD1  
TXD2  
TXD3  
4 x 2.048 Mbit/s A080H - A09FH A0A0H - A0BFH A0C0H - A0DFH A0E0H - A0FFH  
2 x 4.096 Mbit/s A080H - A0BFH A0C0H - A0FFH  
1 x 8.192 Mbit/s A080H - A0FFH  
1 x 16.384 Mbit/s A080H - A0FFH  
Note: In 1 x 16.384 Mbit/s only the first half of the frame is saved in the buffer  
4.4.1.4 PCMU Interface Data Rate Modes  
The PCMU may support different serial data rates:  
• up to 4 ports with 2048 Mbit/s (32 time slots per frame)  
• up to 2 ports with 4.096 Mbit/s (64 time slots per frame)  
• 1 port with 8.196 Mbit/s (128 time slots per frame)  
• 1 port with 16.384 Mbit/s (only 128 time slots of the frame are supported)  
The PCMU circular buffer may handle up to 128 time slots per frame. Thus, when e.g.  
configured in 4.096 Mbit/s mode, only PCM port 0 and 2 are used. In this case PCM  
port 1 and 3 remain in IDLE mode, i.e. the TXD1, TXD3 output pins are tri-stated.  
For the data rate modes up to 8.192 MBit/s, single rate Data Clock (PDC) or double rate  
Data Clock may be selected. For 16.384 MHz mode only single clock is supported.  
Single Data Rate PDC Mode  
• Serial transmission via TXDn with every DCL rising edge  
• Sampling of the incoming serial data (RXDn) with every PDC falling edge  
• Sampling PFS with every PDC falling edge. Sampling of PFS = 1 after sampling of  
PFS = 0 is considered to be the start of a frame.  
Double Data Rate PDC Mode  
• Two PDC cycles per bit (the bits are aligned to the frame start)  
• Serial transmission via TXDn with every second PDC rising edge.  
• Sampling of incoming serial data (RXDn) with the second PDC falling edge of each bit.  
• Sampling of PFS every PDC falling edge. Sampling of PFS = 1 after sampling of  
PFS = 0, is considered to be the start of a new frame.  
Preliminary Data Sheet  
4-24  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Figure 4-4 shows the PCM interface timing with single and double rate PDC.  
Single Data Rate PDC  
PFS  
PDC  
Frame Start  
TS31  
bit0  
TS0  
bit7  
TS0  
TS0  
bit5  
TS0  
bit4  
TS0  
bit3  
TS0  
bit2  
TS0  
bit1  
TS0  
bit0  
TS1  
bit1  
TXD  
RXD  
bit6  
TS31  
bit0  
TS0  
bit7  
TS0  
bit6  
TS0  
bit5  
TS0  
bit4  
TS0  
bit3  
TS0  
bit2  
TS0  
bit1  
TS0  
bit0  
TS1  
bit7  
Double Data Rate PDC  
PFS  
PDC  
Frame Start  
TS0  
bit7  
TS0  
bit6  
TS0  
bit5  
TS0  
bit4  
TS31  
bit0  
TXD  
RXD  
TS31  
bit0  
TS0  
bit7  
TS0  
bit6  
TS0  
bit5  
TS0  
bit4  
= PFS Sampling  
= data Sampling  
Figure 4-10 IOM-2 Interface Timing in Single/Double Clock Mode  
4.4.1.5 PCMU Serial Data Processing  
The incoming serial data is converted into parallel bytes, and stored in the I-buffer input  
blocks. The sequence for every time slot received is from MSB (bit 7) to LSB (bit 0).  
Transmission is performed from MSB (bit 7) to LSB (bit 0).  
4.4.1.6 PCMU Parallel Data Processing  
The data read from the PCMU frame buffers by the DSP always reside in the low byte of  
the 16-bit word. The high byte of the read word is driven by the 8-bit PCMU Data Prefix  
Register (PDPR). The data prefix is used to accelerate the A-/µ-law to linear conversions  
(refer to Chapter 4.5).  
Preliminary Data Sheet  
4-25  
2003-08  
DELIC  
Functional Description  
Any octet written by the DSP to any location in the PCMU frame buffers should reside in  
the low byte (8 LSB). The high byte of the written word is “don’t care”.  
4.4.1.7 PCMU Tri-state Control Logic  
There are eight 16-bit tri-state control registers in the PCMU. Each bit determines  
whether its associated time slot is valid or invalid.  
• '0' = the controlled time slot is invalid  
• '1' = the controlled time slot is valid  
The tri-state bits control the data transmit pins TXD0 - TXD3.  
A special set/reset write method is used for updating the tri-state control registers. Every  
tri-state control register is mapped to 2 addresses: the first is used for set operation, the  
second for reset operation. Both addresses may be used for read operation.  
• Set operation: This operation is executed during DSP write access to the set address  
of one of the TSC registers. The bits in the TSC register are set to '1' according to the  
bits in the written word. The other bits maintain their value.  
• Reset operation: This operation is executed during DSP write access to the reset  
address of one of the TSC registers. The bits in the TSC register are reset to '0'  
according to the bits in the written word. The other bits maintain their value.  
The Tristate Control Registers (PTSR0-7) can be accessed by the DSP. Every bit of  
them controls the TSC signal of one of the 4 PCM ports, for one time slot. The time slot  
and the port controlled by every bit depend on the data rate mode. In 1x256 TS/frame, it  
depends also on the selected half of the frame. Each TSC signals controls directly its  
respective TxD port, and is also driven outward via the corresponding TSCn output pin.  
For the 4 x 32 time slot per frame mode, the next table depicts which port is controlled  
by each TSC register, and during which time slot. Bit 0 of each TSC register controls the  
first time slot of the listed time slot range, bit 1 controls the second one etc.  
Table 4-10 PCM TSC in 4 x 32 TS Mode  
Time Slots  
0..15  
TSC0  
PTSC0  
PTSC1  
TSC1  
PTSC2  
PTSC3  
TSC2  
PTSC4  
PTSC5  
TSC3  
PTSC6  
PTSC7  
16..31  
In 2 x 64 time slot per frame mode, only PCM ports 0 and 2 are used. TSC1 and TSC3  
are permanently '0' (all time slots are invalid).  
Preliminary Data Sheet  
4-26  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Table 4-11 PCM TSC in 2 x 64 TS Mode  
Time Slots  
0..15  
TSC0  
PTSC0  
TSC1  
inactive  
TSC2  
PTSC4  
TSC3  
inactive  
inactive  
inactive  
inactive  
16..31  
PTSC1  
PTSC2  
PTSC3  
inactive  
inactive  
inactive  
PTSC5  
PTSC6  
PTSC7  
32..47  
48..63  
In 1 x 128 time slot per frame mode, only PCM port 0 is used. TSC1, TSC2 and TSC3  
are permanently '0' (all time slots are invalid). In 1 x 256 time slot per frame mode, only  
one half of the frame is used. All TSC pins are permanently '0' during the other half of  
the frame.  
Table 4-12 PCM TSC in 1 x 128 TS and 1 x 256 TS (1st Half) Mode  
Time Slots  
0..15  
TSC0  
PTSC0  
TSC1  
inactive  
TSC2  
inactive  
TSC3  
inactive  
16..31  
PTSC1  
PTSC2  
PTSC3  
PTSC4  
PTSC5  
PTSC6  
PTSC7  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
32..47  
48..63  
64..79  
80..95  
96..111  
112..127  
Note: The same structure applies to the 256 TS per frame (first frame half) mode, except  
that all time slots (0..127) are transmitted in the first half of the 8 kHz frame.  
Table 4-13 PCM TSC in 1 x 256 TS (2nd Half) Mode  
Time Slots  
0..127  
TSC0  
inactive  
TSC1  
inactive  
TSC2  
inactive  
TSC3  
inactive  
128..143  
144..159  
160..175  
176..191  
192..207  
PTSC0  
PTSC1  
PTSC2  
PTSC3  
PTSC4  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
Preliminary Data Sheet  
4-27  
2003-08  
DELIC  
Functional Description  
Table 4-13 PCM TSC in 1 x 256 TS (2nd Half) Mode  
Time Slots  
208..223  
224..239  
240..255  
TSC0  
PTSC5  
TSC1  
inactive  
TSC2  
inactive  
TSC3  
inactive  
PTSC6  
PTSC7  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
Preliminary Data Sheet  
4-28  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.5  
A-law/µ-law Conversion Unit  
The A-/µ-law Unit performs a bi-directional conversion between a linear representation  
of voice data and its companded representation (according to A-law or µ-law). The  
conversion is possible for all B-channels transceived via IOM-2, IOM-2000 or PCM.  
A-/µ-law to Linear Conversion  
The conversion is done via a 512 x 16 ROM table. The low 256 bytes translate the A-law  
value into linear, while the high 256 words translate the µ-law to linear.  
The DSP issues a read cycle, in which the 8 MSBs of the 16-bit address represent the  
ROM table address, and the 8 LSBs are the actual value which is to be converted. The  
converted linear value is the contents read from the ROM. Note that no wait states are  
required for this direction of conversion.  
A-law values in the ROM are stored in the 13 MSBs. The 3 LSBs are always '0'. The µ-  
law values in the ROM are stored in the 14 MSBs. The 2 LSBs are always '0'.  
Linear to A-/µ-law Conversion  
The conversion is done by dedicated hardware. The DSP programs the control register  
to perform either A-law or µ-law conversion. The linear value is written into the Input  
register (AMIR), and the A-law or µ-law value is read from the Output register (AMOR).  
Note that this is only possible one cycle later.  
Preliminary Data Sheet  
4-29  
2003-08  
DELIC  
Functional Description  
4.6  
HDLC Unit  
4.6.1  
HDLCU Unit Overview  
The HDLCU decodes and encodes HDLC messages to and from the DSP. It may  
process up to 32 full-duplex HDLC channels in parallel. It is controlled by the DSP  
through software and is thus very flexible.  
The HDLCU includes a Receive Input Buffer, a Receive Output Buffer, a Transmit Input  
Buffer and a Transmit Output Buffer, some HDLC protocol processing logic and a  
command RAM.  
DSP D-Buffer*  
DSP D-Buffer*  
* Frame-buffers of the IOMU,  
PCMU or TRANSIU that belong to  
the DSP during the present frame  
32x8  
32x16  
Transmit Output Buffer  
32 channels  
Receive Input Buffer  
32 channels  
Internal  
encoded  
decoded  
Internal  
Processing  
Processing  
command  
RAM  
32x8  
32x8  
32x8  
Receive Output Buffer  
32 channels  
Transmit Input Buffer  
32 channels  
DSP data double buffer  
DSP Control  
DSP Data Double Buffer  
Figure 4-11 HDLCU General Block Diagram  
Figure 4-11 shows the HDLCU structure. Each buffer, except the Transmit Output  
Buffer, is a 32 x 8 RAM, hence one byte is assigned to each HDLC time slot channel.  
Preliminary Data Sheet  
4-30  
2003-08  
DELIC  
PEB 20571  
Functional Description  
The Transmit Output Buffer is a 32 x 15 RAM because, in addition to each HDLC  
channel, there is also a 7 bit status vector assigned to each channel stored in this buffer.  
The DSP assigns each time slot used for transceiving an HDLC message to a different  
address in the Receive/Transmit Input Buffers. The HDLCU decodes/encodes the time  
slots into the corresponding addresses in the Receive/Transmit Output Buffers.  
During every frame, two HDLCU activities are performed:  
1. DSP access to the HDLCU  
2. HDLCU encoding/decoding  
At the beginning of a frame the DSP checks if the HDLCU is busy (HHOLD = ’0’). Note  
that the DSP may only access the buffers and command RAM when DSPCTRL = ‘1’.  
In the receive direction the DSP places HDLC message time slots to be processed from  
the D-buffers into the Receive Input Buffer. Processed message time slot octets may be  
read by the DSP from the Receive Output Buffer.  
In the transmit direction the DSP places HDLC message time slots to be processed in  
the Transmit Input Buffer. Processed time slots may be read from the Transmit Output  
Buffer and placed into the D-Buffer of the IOMU, PCMU or TRANSIU from which they  
will be transmitted during the next frame.  
4.6.2  
DSP Operation of the HDLCU  
4.6.2.1 Initialization of the HDLCU  
The first frame is used to reset the receive and transmit mechanisms of each channels.  
1. The DSP asks for the HDLCU setup from the External Controller.  
2. The DSP sets the bit DSPCTRL to ‘1’.  
3. The DSP resets the receive mechanism and transmit mechanism of a channel by  
setting the RECRES flag of its command vector to ‘1’ and inserting an abort command.  
The DSP also writes the setup of the HDLCU.  
4. The DSP sets DSPCTRL to ‘0’.  
5. When the HDLCU finishes processing (HHOLD = ’1’), the HDLCU is initialized and is  
ready for use.  
4.6.2.2 Transmitting a Message  
In order to transmit a message the DSP must place a Start transmission command in the  
appropriate address in the command RAM.  
If CRC encoding is required, then the DSP must set bit 1 to ‘1’ in the command vector.  
In the unshared flag mode, during the first frame a flag is transmitted over the channel.  
After the flag has been transmitted, the HDLCU starts to transmit the message. In the  
Preliminary Data Sheet  
4-31  
2003-08  
DELIC  
Functional Description  
shared flag mode the HDLCU starts transmitting the message in the frame adjacent to  
the reception of the Start transmission command.  
Note: Messages with zero byte data content are not supported.  
4.6.2.3 Ending a Transmission  
When placing the last octet of the message into the Transmit Input Buffer, the DSP  
should place an End transmission command in place of the Start transmission command  
without changing the CRC bit.  
If CRC encoding is required, the CRC vector will be transmitted bit by bit after the octet  
of the message, and then a flag will be transmitted. If CRC encoding is not required, a  
flag will be transmitted directly after the last octet of the message. Note that in unshared  
flag mode, if no adjacent frame exists, ’ones’ will be transmitted after the flag.  
4.6.2.4 Aborting a Transmission  
In order to abort transmission of a message over a dedicated channel, the DSP places  
an abort command in the appropriate address in the command RAM. The message  
being transmitted over the channel is aborted and ’ones’ are transmitted over the  
channel instead (even in the shared flag mode).  
4.6.2.5 DSP Access to the HDLCU Buffers  
Reading a channel from the Receive Output Buffer and writing to a channel in the  
Transmit Input Buffer is done according to the channel status vector and according to the  
Empty and Full procedures as shown below:  
Empty procedure  
• If the EMPTY flag of a channel is set by the HDLCU to ‘1’, then move a new time slot  
to be transmitted from the pipe to the Transmit Input Buffer.  
• If the pipe is empty change the pipe page and ask for the next 16 bytes of data from  
the external controller by means of DMA or interrupt.  
Note: The B-channel buffer may be emptied within a single frame, while it takes at least  
4 frames to empty a D-channel buffer.  
Full procedure  
• If the FULL flag of a channel is set by the HDLCU to ‘1’ then the DSP moves the time  
slot from the Receive Output Buffer into the double buffer.  
• If the pipe is full change the pipe page and transfer the next 16 bytes of data to the  
External Controller by means of DMA or interrupt.  
Note: The B-channel buffer may be filled within a single frame, while a D-channel buffer  
will take at least 4 frames to fill.  
Preliminary Data Sheet  
4-32  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Reading Data from the Receive Output Buffers  
When the DSP reads a time slot from an even address in the Receive Output Buffer, the  
HDLCU will place it on the LSB byte of the data bus and ‘0’ on the MSB byte. When the  
DSP reads a time slot from an odd address, the HDLCU will place it on the MSB byte of  
the data bus and ‘0’ on the LSB byte.  
Writing Data to the Transmit Input Buffers  
When the DSP writes to an even address in the Transmit Input Buffer, the HDLCU will  
write the LSB of the data bus. When the DSP writes to an odd address, the HDLCU will  
write the MSB byte of the data bus.  
Preliminary Data Sheet  
4-33  
2003-08  
DELIC  
Functional Description  
4.7  
GHDLC Unit  
4.7.1  
GHDLC Overview  
The GHDLC (General HDLC) controls the dedicated serial communication interface of  
the DELIC. The purpose of the GHDLC is to decode incoming HDLC messages and to  
encode outgoing messages according to the HDLC protocol. The GHDLC transceives  
HDLC data streams with up to 16.384 Mbit/s. A received message is collected bit by bit  
from the line and stored as octets in the Receive buffer and read by the DSP. A  
transmitted message which is placed by the DSP as octets in the Transmit buffer, is  
transmitted bit by bit over the line.  
.
status and interrupt vector  
data in from line  
DSP  
Double  
Buffer  
Receive  
Processing  
bit by bit  
LRxD  
Receive Buffer  
data out to line  
bit by bit  
DSP  
Double  
Buffer  
Transmit  
Processing  
Transmit Buffer  
LTxD  
set-up vectors  
command vector  
Figure 4-12 Data Processing in the GHDLC  
4.7.2  
GHDLC Channel External Configurations  
The GHDLC line interface may be connected to other ICs in three different ways:  
• Point-to-point  
• Point-to-multi-point  
• Multi-slave  
4.7.3  
GHDLC General Modes  
The GHDLC provides three main modes of operation:  
HDLC Mode: In this mode flag recognition/insertion, zero deletion/insertion and CRC  
decoding/encoding are performed.  
Asynchronous Mode: This mode is used with request-to-send / clear-to-send  
handshaking. In this mode data is transmitted at a very slow rate of up to 300 baud  
and controlled directly by the DSP.  
Preliminary Data Sheet  
4-34  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.7.4  
GHDLC Protocol Features  
The following GHDLC features related to the HDLC protocol may be selected in HDLC  
mode:  
• Collision Detection: May be active or inactive (relates only to the transmit direction)  
• Flags / Ones Interframe: Flags or Ones are transmitted between each frame (relates  
to both the transmit and receive direction)  
Note that transmitted messages always use unshared flags.  
• Shared / Unshared Flag: In shared flag mode only one flag separates adjacent  
messages (relates only to the receive direction)  
• CRC Mode: Three possible settings: 16-bit CRC / 32-bit CRC / No CRC (relates to  
both the transmit and receive directions, and only when operating in the HDLC mode).  
• Push-Pull / Open drain: In push pull mode a pin may be driven to ‘1’ or ‘0’. When in  
open drain mode a pin may be driven to ‘0’ or high z.  
4.7.5  
External Configuration and Handshaking in Bus Mode  
The GHDLC is connected to the following DELIC interface lines:  
/ RTS  
LTSC  
LTxD  
LRxD  
GHDLC  
LCxD / CTS  
LCLK  
Figure 4-13 GHDLC Interface Lines  
Serial data is transceived over the LRxD/LTxD lines. The line clock can be driven by an  
external GHDLC device or can be generated internally by the PCM clocking path. The  
selected internal clock is also driven outward via LCLK.  
4.7.5.1 External Tri-State in Point-to-Multi-Point Mode  
LTSC is the external tri-state control line. When LTSC is high LTxD is disabled and in  
high impedance state. When LTSC is low, LTxD may take on values 0 or 1 when in push  
pull mode, 0 or high impedance when in open drain mode.  
Preliminary Data Sheet  
4-35  
2003-08  
DELIC  
Functional Description  
4.7.5.2 Arbitration of GHDLCs on a Collision Bus  
Several GHDLC channels (in a point to multi-point configuration) may be connected to  
an external signaling backplane. Arbitration between them may be done in two ways:  
Polling or Collision Detection.  
In Polling mode the GHDLC master (in a point to multi-point configuration) is  
responsible to prevent collisions on the line.  
In this case a DELIC-slave has to be polled by the GHDLC-master with a special  
requesting frame. The DELIC GHDLC-unit simply receives this frame and passes it to  
the µP (like any other frame).  
Now it’s the task of the µP to handle the message and provide a corresponding answer  
message.  
When using Collision Detection many GHDLCs may start transmitting at the same  
time. If the GHDLC detects a difference between the transmitted bit (LTxD) and the  
collision bit (LCxD), the transmission is aborted. The GHDLC will try to send the  
message again after the bus was detected idle for a specified time, according to its  
priority class (refer to ITU-T I.430, section 6.1.4).  
4.7.6  
GHDLC Memory Allocation  
The memory in the GHDLC is build by a 128x8 bit RAM equally divided between the  
GHDLC and the DSP. The GHDLC has a receive buffer and a transmit buffer, divided  
into two blocks. One block is allocated to the GHDLC channel in the receive direction,  
the other block is read by the DSP. Similarly in the transmit buffer, one block is allocated  
to the GHDLC channel in the transmit direction, the other block is written to by the DSP  
as shown in Figure 4-14. Note that the GHDLC has higher priority for the buffer access,  
whereas the DSP is able to read and write the RAM at a much higher frequency.  
In the receive direction blocks are swapped in two cases:  
• The receive buffer is full. The swap is issued immediately after the buffer has become  
full.  
• An end of a frame indication was detected at the beginning of a FSC-frame. To avoid  
a loss of data in case of a buffer full indication followed by an end of frame indication,  
this condition becomes only true if additionally there was no FULL interrupt during the  
previous frame.  
In the transmit direction blocks are swapped each time a start transmission command is  
issued in the command register.  
Preliminary Data Sheet  
4-36  
2003-08  
DELIC  
PEB 20571  
Functional Description  
GHDLC receive  
Receive Buffer  
Block  
Block  
DSP read  
GHDLC transmit  
Block  
Block  
Transmit Buffer  
DSP write  
Figure 4-14 GHDLC Receive and Transmit Buffer Structure  
The GHDLC unit and DSP always read and write to different areas in the RAM. Memory  
is equally allocated to each of the receive and transmit buffer blocks (32 bytes each).  
The DSP always writes to the block addresses. The switching between blocks is done  
internally and does not concern the DSP.  
4.7.7  
GHDLC Interrupts  
Full Interrupt: A full interrupt is generated if:  
• The receive buffer is full. The interrupt is issued immediately after the buffer has  
become full.  
• An end of a frame indication was detected at the beginning of a FSC frame. To avoid  
a loss of data in case of a buffer full indication followed by an end of frame indication,  
this condition becomes only true if additionally there was no FULL interrupt during the  
previous frame.  
Empty Interrupt: An empty interrupt is generated every time a transmit buffer was  
emptied by the GHDLC.  
Note: Messages with zero byte data content are not supported.  
Preliminary Data Sheet  
4-37  
2003-08  
DELIC  
Functional Description  
4.8  
DSP Control Unit  
General  
4.8.1  
The DCU controls the DSP access to DELIC’s blocks. It performs the following tasks:  
• DSP program and data address decoding  
• Interrupt handling  
• Data Bus and Program Bus arbitration  
• DSP run time statistics  
• Boot support  
• Emulation support  
4.8.2  
DSP Address Decoding  
The DCU decodes the DSP data address bus (DXAP) and the DSP program address  
bus (PPAP) for performing the following tasks:  
• Generating the DSP memory mapped register controls, based on decoding of the  
8 MSB lines of the data address bus  
• Generating the GHDLC, TRANSIU, HDLCU, IOMU and PCMU RAM controls  
• Generating program and data RAM controls upon detection of their address  
• Generating the read signal for the program ROM  
4.8.3  
Interrupt Handling  
The following events are reported by the various telecom peripheral blocks to the DSP:  
• GHDLC  
• DMA mailbox  
• µP mailbox  
• IOM interface Frame synchronization (FSC) interrupt  
• PCM interface Frame synchronization (PFS) interrupt  
The GHDLC, DMA Mailbox and Microprocessor Mailbox interrupt sources are assigned  
to the DSP interrupts (INT0, INT1 and INT2) as shown in Table 4-14. The FSC and PFS  
are reported as status bits (require DSP polling) in the Status Event Register (STEVE).  
Table 4-14 Interrupt Map  
Interrupt  
INT0  
Source  
µP DMA Mailbox  
µP General Mailbox  
FSC & PFS  
GHDLC  
INT1  
INT2  
NMI  
Preliminary Data Sheet  
4-38  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Note: The NMI interrupt maybe enabled/disabled in the INTMASK register.  
4.8.4  
DSP Run Time Statistics  
The DSP run time statistics is used for the DSP work load estimation. By using this HW,  
the maximum time spent by the DSP from the FSC until the tasks ends may be found.  
The DSP statistics include an eight bit counter STATC which is counting up every 1µs.  
Reset by FSC of the frame n+1, only if  
the DSP has read the counter already  
Maximum Value Register  
Counter (in Frame n)  
1 µs  
STATI  
STATC  
DSP  
DSP  
Figure 4-15 Statistics Registers  
STATC is reset upon FSC rising edge. When the DSP finishes a task, it reads STATC.  
The time between two consecutive FSC is always 125 µs, therefore, if the DSP is  
working properly, the counter value should always be less then 125 µs.  
If the DSP failed to read the counter value and a new FSC rising edge has arrived, the  
counter is not reset. Therefore, the DSP reads a value greater then 125. It means that  
the DSP failed to finish it’s tasks within the time frame of 125 µs.  
The STATI register is added for helping the user to perform the statistics. STATI is a  
general purpose 8-bit read/write register.  
The user program should perform statistics in the following way:  
– The STATC is reset upon detection of FSC rising edge.  
– The DSP finishes its activities and reads the value of STATC and STATI. The DSP  
compares STATC to the previous maximum value saved in STATI.  
– If the new value is larger, it is written to STATI.  
The system programmer can get the counter value via µP Mailbox and thus can change  
the DSP program.  
Preliminary Data Sheet  
4-39  
2003-08  
DELIC  
Functional Description  
4.8.5  
Data Bus and Program Bus Arbitration  
The internal data bus (GEXDBP) and program data bus (GIP) are tristate buses. Since  
these buses must never float, the DCU keeps track of the bus activities. If during a  
dedicated cycle no driver is on the bus, the DCU puts a default value on the bus.  
4.8.6  
Boot Support  
The µP boot is the process which loads the external µP program RAM via the µP Mailbox  
into the on-chip DSP program RAM. The boot is controlled by a boot routine residing in  
the internal DSP program ROM. This routine is started upon DELIC reset according to  
the BOOT strap pin status.  
The second boot option is the emulation boot, which loads the monitor (BI routine) to the  
program RAM. This routine enables the PC emulator to control the DSP.  
At system start-up the program code for the DSP is transferred into the internal RAM  
from the external uP. The contents for the program and data boot is delivered in a so  
called HEX file.  
The code format of the HEX file is the following:  
Code,:,16 bit address, 16 bit opcode  
C:0000 4180  
C:0001 0018  
C:0004 4180  
C:0005 00BA  
C:0006 4180  
C:0007 00BD  
C:000E 4180  
C:000F 00BE ...  
The program boot starts with the "Start Loading Program RAM" command which is  
coming from the DELIC boot routine.  
OCMD = 0x1F  
This command must be polled from the uP because the interrupt is still not activated.  
The uP confirms this with the "Start Boot" command.  
MCMD = 0x55  
The program code is now transferred in pieces of maximum 15 words by use of the  
"Write Program Memory Command".  
MDT0 = 0xDESTINATION_ADDRESS  
MDTn = 0xOPCODE_WORDn  
MCMD = 0xAn  
[n=1..15 number of code words to write to address++]  
Preliminary Data Sheet  
4-40  
2003-08  
DELIC  
PEB 20571  
Functional Description  
Before writing this command, the uP must check that the mailbox is free. This is done by  
reading the MBUSY bit (bit 7 of address 0x41). The uP must wait until this bit is reset  
before sending the next command.  
Missing addresses in the HEX file must not be loaded. The "Write Program Memory  
Command" must be repeated until the program code is fully loaded. The end of the code  
segment inside the HEX file is the change from C: (code) to D: (data). This is the start of  
the data segment, which is needed for the Data Boot, described in the next step.  
After all the code has been loaded, the "Finish Boot" command must be sent:  
MCMD = 0x1F  
4.8.7  
Reset Execution and Boot Strap Pin Setting  
The reset is executed via low signals on the DELIC RESET pin (29) and the VIP RESET  
pin (44). It is recommended to connect the VIP RESET inputs to the DELIC RESIND  
output pin (89). The RESIND signal is a delayed reset signal and stays at least 500 us  
after termination of the DELIC RESET input. This mechanism ensures that all output  
clocks of the DELIC have become stable even after a short reset was applied.  
Connecting the VIP reset to this RESIND signal ensures stable VIP clocking after reset  
(Layer1 clock, DCL2000, FSC).  
Together with applying the reset signal to the DELIC, the strap pin signals must be  
defined. There are 9 pins at the DELIC device which have a special functionality. These  
so called strap pins are used as inputs while reset is active and determine different  
modes like master/ slave mode of the PCM interface, test modes, boot mode,... Please  
refer to page 2-28 for detailed information about the strap pin options.  
The settings of the strap signals are sampled with the rising edge of the DELIC RESET  
input signal. For a uP- boot, the default settings of strap 4 (emulation boot) and strap 6  
(boot strap) are needed.  
After a correct reset execution and strap pin setting, the DELIC sends the command  
"Start Loading Program RAM" to the uP: OCMD = 0x1F  
Preliminary Data Sheet  
4-41  
2003-08  
DELIC  
Functional Description  
4.9  
General Mailbox  
Overview  
4.9.1  
The µP and the DSP communicate via a bidirectional Mailbox according to the mailbox  
protocol described in Chapter 11. The DELIC provides two dedicated Mailboxes that  
may be used in two operational modes:  
DMA mode in which the two Mailboxes operate independently, one serves as a  
general purpose Mailbox and the other serves as a DMA Mailbox.  
Expanded Mailbox mode in which the two Mailboxes are regarded as a enlarged  
general purpose Mailbox, providing a double number of registers.  
The general purpose Mailbox includes two separate parts:  
µP Mailbox - enables transfers from the µP to the OAK.  
OAK DSP Mailbox - enables transfers from the OAK to the µP.  
Both parts include a command register, 9 x (16-bit) registers (17 registers in expanded  
mode) and a busy bit. One of the data registers in every part has a special addressing  
mode, i.e. the OAK may access either a certain byte of a word or the whole word which  
is temporarily stored in the Mailbox. This requires to use 3 different addresses in OAK’s  
direction.  
Note: The Mailbox protocol commands structure is described in Chapter 11.  
4.9.2  
µP Mailbox  
The µP Mailbox includes:  
• Eight 16-bit data registers (MDTn)  
• A16-bit general register (MGEN)  
• An 8-bit command register (MCMD)  
• A 1-bit busy register (MBUSY)  
Registers MDTn, MGEN and MCMD may be written by the µP and read by the OAK. The  
MBUSY register may be written by the DSP and read by the µP.  
A write of the µP to the MCMD-register of the µP-mailbox generates an interrupt to the  
OAK. Thus, the user has to provide all mailbox data prior to writing to register MCMD.  
The MBUSY bit which may be read by the µP (register MBUSY) is set automatically after  
a write to the µP command register (MCMD) and reset automatically by a direct OAK  
write operation to it.  
Note: The command Opcodes are defined in Chapter 11.  
Data Transfer from the µP to the OAK  
• The µP reads the busy bit and checks whether the Mailbox is available (MBUSY=’0’)  
Preliminary Data Sheet  
4-42  
2003-08  
DELIC  
PEB 20571  
Functional Description  
• The µP writes to the Data registers MDTn(optional)  
• The µP writes to the µP Command register (MCMD), this write must be performed and  
sets automatically the µP Mailbox busy bit (MBUSY).  
• An OAK interrupt (INT2) is activated due to the write to the Command register  
(MCMD).  
• The OAK INT2 routine reads MCMD and performs the command (the read of the  
command register resets the INT2 activation signal).  
• When finished, the INT2 routine resets MBUSY for enabling the µP to send the next  
command.  
Note: The µP may perform consecutive writes to the µP Mailbox, and the user must  
guarantee that the data has been transferred to the OAK correctly (the busy bit has  
been reset) before writing new data to the µP Mailbox.  
4.9.3  
OAK Mailbox  
The OAK Mailbox includes:  
• Eight 16-bit data registers (ODTx)  
• A 16-bit general register (OGEN)  
• An 8-bit command register (OCMD)  
• A 1-bit busy register (OBUSY)  
Registers ODTx, OGEN and OCMD may be written by the OAK and read by the µP. The  
OBUSY bit may be written by the µP and read by the OAK. In addition, the µP can read  
this bit (because the µP could poll this bit).  
A write of the OAK to register OCMD of the OAK mailbox generates an interrupt to the  
µP. Thus the OAK firmware provides all mailbox data prior to writing to register OCMD.  
The OBUSY- bit which can be read by the OAK, is set automatically after a write of the  
OAK to register OCMD and is reset by a direct µP write to it (when the µP has finished  
reading the OAK Mailbox contents).  
Note: The Opcodes indications are defined in Chapter 11.  
Data Transfer from the OAK to the µP  
• The OAK reads the busy bit and checks whether the MB is available (OBUSY=’0’)  
• The OAK writes to the data registers ODTn (optional)  
• The OAK writes to the command register (OCMD). This write must be performed and  
automatically sets the OAK Mailbox busy bit (OBUSY)  
• A µP interrupt is activated due to the write operation to the register OCMD.  
• The µP reads the command register and performs the command.  
• When finished, the µP resets OBUSY for enabling the OAK to send the next  
command.  
Preliminary Data Sheet  
4-43  
2003-08  
DELIC  
Functional Description  
Note: The OAK may perform consecutive writes to the OAK Mailbox and the OAK  
firmware guarantees that the data has been transferred to the µP correctly  
(OBUSY has been reset) before writing new data to the OAK Mailbox.  
Preliminary Data Sheet  
4-44  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.10  
DMA Mailbox  
Overview  
4.10.1  
This Mailbox is used for DMA transfers of data in “memory-to-memory” or “flyby” modes.  
In a special mode, it may be used as an extension to the General Purpose Mailbox.  
The transfer is done similarly to the general Mailbox, with some differences:  
1. There are 2 configurations: DMA, and secondary Mailbox.  
2. The master of the transfer in DMA mode is always the OAK.  
The DMA Mailbox includes two separate parts:  
Transmit (µP) Mailbox for fast transfers from the DMA (µP) to the GHDLC (OAK).  
Receive (OAK) Mailbox for fast transfers from the GHDLC (OAK) to the DMA (µP).  
In transactions between µP and OAK the later indicates when it is ready for transmit /  
receive operation by driving DREQT/DREQR high, and µP replies by driving DACK low.  
DACK acts like a Chip Select signal and remains low during the whole transaction. By  
driving DACK high the DMA may stop the transaction on any stage, even if the data  
transfer has not finished yet.  
There are two possible modes in DMA transfers: Memory-to-memory and Flyby.  
Selecting these modes is done by writing “1” or “0” to the Configuration Register.  
The mode of DMA’s operation depends on the µP that initiates a DMA transfer (Intel/  
Siemens or Motorola). This mode information is provided via the MODE input pin of the  
DELIC.  
The number of bytes (words) to be transferred is written to TX_CREG and copied to  
TX_COUNT.  
After finishing a transaction, INT1 is issued to the DSP in order to indicate that the  
Mailbox is empty and available for the next operation.  
4.10.2  
Intel/Siemens Mode and Motorola Mode (Memory-to-Memory)  
In Intel/Siemens mode the control lines are DACK, RD, WR . Driving RD low when DACK  
is low causes a ‘Read’ from the Mailbox. Driving WR low when DACK is low causes a  
‘Write’ to the Mailbox.  
In Motorola mode the control lines are DACK, R/W, DS. Driving R/W high when DACK  
and DS are low causes a ‘Read’ from the Mailbox. Driving R/W low when DACK and DS  
are low causes a ‘Write’ to the Mailbox.  
4.10.3  
Fly-By Mode  
In Fly-By mode DMA transfer is done in one bus transaction. The DMA should provide a  
‘Read’ command to the Mailbox and, at the same time, a ‘Write’ command to the system  
memory (or a ‘Write’ to the Mailbox and a ‘Read’ to the memory). The system memory  
Preliminary Data Sheet  
4-45  
2003-08  
DELIC  
Functional Description  
must always get a ‘Write’ command for a write operation or a ‘Read’ for a read operation.  
The Mailbox, however, reacts in the opposite way: it writes (puts data into a register)  
upon receiving a ‘Read’ command and reads (drives data on the bus) upon receiving a  
‘Write’ command.  
4.10.4  
PEC Mode  
The additional mode which is possible in work with some Siemens µPs is PEC mode. In  
this case DMA controller is edge sensitive, so edges are provided on DREQ lines in order  
to initiate every DMA transfer.  
4.10.5  
Transmit Mailbox  
The Transmit Mailbox includes:  
• 18-byte FIFO which is accessed by the OAK (for Read) as 9 “regular” addressed 16-  
bit-wide registers and by the DMA (for Write) like a FIFO. One of the nine registers is  
a “special” register like in the General Mailbox and has 3 addresses associated with it.  
• 5-bit counter for the general number of transactions in current transfer (TX_CREG)  
• 5-bit counter for the number of transactions that remains in the transfer (TX_CNT).  
• 1-bit status register (TX_STAT).  
The OAK is always the master of this transfer, i.e. the transfer is initiated b the OAK, but  
the functions of control and arbitration during the transfer are done by the DMA.  
For DMA request, the OAK requests transfer of data to the high-speed GHDLC channel.  
It writes the number of bytes needed to the TX_CREG register which sets TX_BSY bit,  
and causes the assertion of DREQT (“DMA Request Transmit”) pin.  
For DMA acknowledge, the DMA grants the bus to OAK by driving DACK low, and  
begins toggling the control lines. In Intel/Siemens (Mem-to-Mem) mode it drives the WR  
line low when it writes to the Mailbox, and high when it reads from the memory on the  
second side. RD line stays high during the complete transfer, because there are no  
‘Read’ operations from here. DACK is low all the time. In Motorola (Mem-to-Mem) mode  
it drives R/W line low for ‘Write’ operations when DACK and DS are low; when DMA  
refers to the external memory, it drives DS high.  
Note that in Fly-by mode the meaning of ‘Read’ and ‘Write’ commands is opposite for the  
Mailbox. After every ‘Write’ operation the counter (TX_CNT) is decremented by one. If  
the DMA stops the transaction before finishing, it has to drive DACK high. The OAK  
continues driving DREQT high, stops decrementing TX_CNT and waits until DACK  
becomes low.  
After a write of TX_CREG bytes by the DMA to the Transmit Mailbox, the TX_CNT  
becomes ‘0’. Then TX_BSY bit is reset to ’0’, and DREQT is deasserted. A reset of  
TX_BSY bit may be programmed to generate an interrupt (INT1) to the OAK.  
The OAK will then read TX_CREG bytes from the Mailbox to the GHDLC, the first byte  
being the LSB of the least significant word of the FIFO. Note that in case of an odd  
Preliminary Data Sheet  
4-46  
2003-08  
DELIC  
PEB 20571  
Functional Description  
number of bytes to be transferred the last byte is available on the least significant byte  
of the last word in FIFO.  
Note: TX_BSY is not an indication for the transaction partners. It may be used for  
internal software needs of the OAK.  
Data Transfer via the Transmit Mailbox  
• The OAK writes to TX_CREG.  
• DREQT is asserted (’high’), and TX_BSY bit is set (’1’).  
• The DMA asserts DACK = 0 and issues TX_CREG write transactions to the Mailbox.  
• DREQT is deasserted (’low’), and TX_BSY bit is reset (’0’).  
• If TX_MASK bit is reset (’0’): an OAK interrupt (INT1) is activated.  
• The OAK reads the TX_REG bytes in the Mailbox and transfers them to the GHDLC.  
Note: 1. The OAK must not write to the TX_CREG reg before TX_BSY is reset.  
2. Writing’0’ to TX_CREG is not allowed.  
4.10.6  
Receive Mailbox  
The Receive Mailbox includes:  
• 18-byte FIFO which is accessed by the OAK (for write) as 9 “regular” addressed 16-  
bit wide registers, and by the DMA (for read) like a FIFO. One of the nine registers is  
a “special” register like in the General Mailbox and has 3 addresses associated with it.  
• 5-bit counter for the general number of transactions in current transfer (RX_CREG).  
• 5-bit counter for number of transactions that remains in the transfer (RX_CNT).  
• 1-bit status register (RX_STAT).  
Like in the Transmit Mailbox, the OAK is always the master of this transfer, i.e. the  
transfer is initiated by the OAK, but controlled by DMA.  
When the OAK requests a transfer of data from the high-speed GHDLC channel, it writes  
this data to the Receive Mailbox, the first byte to the least significant byte of the least  
significant word. Note that in case of odd number of bytes, the most significant byte of  
the last word is don’t care.  
Then, the OAK writes the number of bytes needed to the RX_CREG register which sets  
RX_BSY bit, and causes the assertion of DREQR (“DMA Request Receive”) pin.  
If DMA grants the bus to OAK, it drives DACK low and begins toggling the control lines.  
In Intel/Siemens (Mem-to-Mem) mode it drives RD line low when it reads from the  
Mailbox and high when it writes to the memory. WR line stays high during the complete  
transfer, because there are no ‘Write’ operations from here. DACK is low all the time. In  
Motorola (Mem-to-Mem) mode it drives R/W line high for ‘Read’ operations when DACK  
and DS are low; when DMA refers to the external memory, it drives DS high.  
Note that in Fly-by mode the meaning of ‘Read’ and ‘Write’ commands is opposite for the  
Mailbox. After each ‘Read’ operation the counter (RX_CNT) is decremented by one. If  
Preliminary Data Sheet  
4-47  
2003-08  
DELIC  
Functional Description  
the DMA stops the transaction before finishing, it has to drive DACK high. The OAK  
continues driving DREQR high, stops decrementing RX_CNT and waits until DACK  
becomes low.  
After a read of RX_CREG bytes by the DMA from the Receive Mailbox, the RX_CNT  
becomes ‘0’. Then RX_BSY bit is reset to ’0’, and DREQR is deasserted . Reset of  
RX_BSY bit may be programmed to cause an interrupt (INT1) to the OAK.  
Note: RX_BSY is not an indication for the transaction partners. It may be used for  
internal software needs of the OAK .  
Data Transfer via the Receive Mailbox  
• The OAK writes RX_CREG bytes to Receive Mailbox.  
• The OAK writes to RX_CREG.  
• DREQR is asserted (’high’), and RX_BSY bit is set (’1’).  
• The DMA asserts DACK and issues RX_CREG read transactions to the Mailbox.  
• DREQR is deasserted (’low’), and RX_BSY bit is reset (’0’).  
• If RX_MASK bit is reset (’0’): an OAK interrupt (INT2) is activated.  
Note: 1. The OAK must not write to the RX_CREG reg before RX_BSY is reset.  
2. Writing ’0’ to RX_CREG is not allowed.  
4.10.7  
Access to the DMA FIFOs  
The size of the FIFOs is 18 bytes (9 words) for each Tx and Rx. On the OAK side, each  
FIFO contains 9 registers (TDT0-8 and RDT0-8) which may be accessed separately. On  
the DMA side, only the current top of the FIFO is available.  
The transfer is divided to bulks, the size of the current bulk is determined in the  
RX_CREG/TX_CREG.  
Transmit FIFO  
This FIFO is written by the DMA. The first write in a bulk will be to TDT0 least significant  
byte, the second to TDT0 most significant byte, etc., until the size of the current bulk was  
reached. Then the OAK will read the data from the relevant TDTn registers.  
Receive FIFO  
This FIFO is written by the OAK. The OAK fills RDT0 to RDTn. The DMA will then read  
consecutive bytes from the FIFO, where the first byte will be RDT0 least significant byte,  
the 2nd RDT0 most significant byte, etc. until the size of the current bulk was reached.  
Note: This Rx FIFO and Tx FIFO functionality is only provided when the Mailbox is in  
DMA mode (CFG:DMA = ‘1’). In case of non DMA mode (CFG:DMA = ‘0’), the  
FIFOs are used as secondary (extension) to the General Purpose Mailbox, which  
means that the General Purpose Mailbox will have 18 words for each direction  
(OAK and µP), instead of 9.  
Preliminary Data Sheet  
4-48  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.11  
DSP Core OAK+  
The DELIC integrates an OAK+ DSP core, an enhanced version of the OAK. It is clocked  
using an on-chip PLL at a frequency of 61.44 MHz. It may also be driven by lower clock  
rates provided by an external oscillator.  
The OAK+ is a high performance fixed-point DSP with a 16-bit data and program bus.  
Due to an optimized cost-performance rate, it is widely used not only in Line Cards and  
PBX applications, but also in cellular phones, fast modems, advanced fax machines, and  
answering machines.  
The core’s main block is a high performance central processing unit, including a full-  
featured bit manipulation unit, RAM and ROM addressing units, and Program control  
logic. All other application specific peripheral blocks, are defined as part of the user on-  
chip logic.  
The OAK+ provides an advanced set of DSP and generic microprocessor functions for  
straightforward generation of efficient and compact code.  
For more details on OAK architecture please refer to “DOC DSP Programmer’s  
Reference Manual, 11.97”.  
Preliminary Data Sheet  
4-49  
2003-08  
DELIC  
Functional Description  
4.12  
Clock Generator  
Overview  
4.12.1  
The DELIC clock generator provides all necessary clock signals for the DELIC and  
connected clock slave devices. The internal clocks are generated by two on-chip PLLs:  
1. A digital controlled oscillator (DCXO) generates a 16.384 MHz clock from an external  
crystal.  
2. A PLL multiplies the 16.384 MHz clock to a 61.44 MHz clock.  
An overview of the clock signals and a block diagram is shown below.  
Table 4-15 Overview of Clock Signals  
Pin  
Function  
I/O During Reset  
CLK16-XI 16.384 MHz External Crystal Input  
CLK16-XO 16.384 MHz External Crystal Output  
I
I
O
I
O
XCLK  
External Reference Clock from layer-1 IC  
(2.048 MHz, 1.536 MHz or 8 kHz)  
I
(1.536 MHz)  
REFCLK  
PFS  
PCM Reference Clock (8 kHz or 512 kHz)  
I/O tristate  
PCM Frame Synchronization 8 kHz (I/O) or 4 kHz (I) I/O I (Slave)  
O (Master)  
PDC  
PCM Data Clock (2.048, 4.096, 8.192 or 16.384 MHz) I/O I (Slave)  
O (Master)  
(2.048 MHz)  
CLKOUT  
Auxiliary Clock  
O
O
(2.048, 4.096, 8.192, 16.384, or 15.36 MHz)  
(2.048 MHz)  
DCL_2000 IOM-2000 Data Clock (3.072, 6.144 or 12.288 MHz) O  
O
(3.072 MHz)  
DCL  
IOM-2 Data Clock  
O
O
(384 kHz, 768 kHz, 2.048 MHz or 4.096 MHz)  
(384 kHz)  
FSC  
IOM-2 and IOM-2000 Frame Synchronization 8 kHz. O  
O
L1_CLK  
Layer-1 Clock 15.36 or 7.68 MHz  
(e.g. OCTAT-P / QUAT-S)  
O
O
(7.68 MHz)  
DSP_CLK DSP Test Clock.  
(to run the DSP at clock rates other than 61.44 MHz)  
I
I
Preliminary Data Sheet  
4-50  
2003-08  
DELIC  
PEB 20571  
Functional Description  
XCLK  
REFCLK  
(reference clock  
PCM)  
512 kHz / 8 kHz  
(reference clock from  
16.384 MHz  
L1 device,  
1.536 MHz or  
2.048 MHz or  
8 KHz)  
CLK16-XO  
Filter  
CLK16-XI  
DELIC  
REFS  
PD  
DCXO  
SHP  
:1  
:3  
:4  
:192  
:256  
16.384 MHz  
PLL  
61.44  
MHz  
3.072 MHz  
6.144 MHz  
12.288 MHz  
:64  
:1  
:20  
:10  
:5  
:192  
:256  
:1  
DCL_2000  
8
KHz  
8
KHz  
DSP_CLK  
(Fallback)  
8 kHz  
MUX  
MUX  
DSP CLK  
8
KHz  
8
KHz  
PFS  
:15  
:8  
:256  
M/S(strap  
option)  
:30  
:80  
2.048  
:1  
:160  
MHz  
:2  
15.36 MHz  
7.68 MHz  
L1_CLK  
:2  
PDC  
2.048 MHz  
4.096 MHz  
8.192 MHz  
16.384 MHz  
4.096  
MHz  
M/S  
:2  
:2  
384 kHz  
768 kHz  
8.192  
MHz  
1.536 MHz  
CLKOUT  
LCLK  
2.048 MHz  
4.096 MHz  
DCL  
:48  
::96  
:256  
:512  
16.384 MHz  
15.36 MHz  
8 kHz  
FSC  
Short  
FSC  
MUX  
GHDLC  
Figure 4-16 DELIC Clock Generator  
Preliminary Data Sheet  
4-51  
2003-08  
DELIC  
Functional Description  
4.12.2  
DSP Clock Selection  
The default DSP clock is the internal 61.44 MHz generated by the PLL. For test purpose,  
a different frequency may be provided via DSP_CLK input pin. The selection between  
the internal 61.44 MHz or external clock source is done by the DSP_FRQ input pin.  
4.12.3  
PCM Master/Slave Mode Clocks Selection  
In PCM Master mode, the PFS and PDC are derived from the internal 16.384 MHz  
signal, and driven to the PCM interface via the PFS pin (output) and PDC pin (output).  
In PCM Slave mode, the PFS and PDC are generated from an external signal, and input  
to the DELIC via the PFS pin and the PDC pin.  
Note: During reset, a strap pin determines whether the DELIC operates in clock Master  
or Slave mode.  
4.12.4  
DELIC Clock System Synchronization  
The PCM clock division chain is synchronized to an external reference clock, used as  
one of the inputs to a phase comparator, after being divided into 8 KHz. The other phase  
comparator input is the 8 KHz clock, derived from the 16.384 MHz clock. The phase  
comparator output is used as control input of the DCXO, after being filtered by a low-pass  
filter. The reference clock can be driven by one of the following input pins:  
• XCLK - 2.048 MHz, 1.536 MHz or 8 KHz:  
Can be driven by a layer-1 transceiver (e.g. VIP, QUAT-S) connected to the Central  
Office. Only a clock master DELIC can be synchronized directly according to this  
input. In other cases (clock slave DELIC), this input signal may be divided to 8 KHz or  
512 KHz, and driven out via REFCLK, in purpose to be used for the synchronization  
of the clock-master DELIC.  
• REFCLK - 512 KHz or 8 KHz:  
Used for synchronization of the clock master DELIC, when not synchronized by XCLK.  
Usually this signal is driven by a clock slave DELIC, or another PBX in the system. In  
a clock slave DELIC this pin is used as output.  
• PFS - 8 KHz:  
Driven by the system clock master. May be used for synchronization of the clock slave  
DELICs. In a clock master DELIC this pin is used as output.  
4.12.5  
IOM-2 Clock Selection  
The IOM-2 interface clocks FSC and DCL are always output.  
The FSC output signal is usually generated with 50% duty cycle. A short FSC pulse is  
required for multiframe start indication (one DCL cycle long). One cycle after the short  
FSC pulse, the normal FSC is generated again with 50% duty cycle.  
Preliminary Data Sheet  
4-52  
2003-08  
DELIC  
PEB 20571  
Functional Description  
4.12.6  
IOM-2000 Clock Selection  
The IOM-2000 interface uses the same FSC like IOM-2, whereas the data clock  
DCL2000 is a dedicated pin (always output).  
4.12.7  
REFCLK Configuration  
REFCLK is an I/O pin for synchronizing the PCM interface (to 8 kHz or 512 kHz).  
The clock master DELIC may synchronize the internal clocks to REFCLK by selecting  
REFCLK as the reference clock source.  
A clock slave DELIC may use REFCLK as output, when REFCLK is driven by the XCLK  
input pin. The slave DELIC may transfer the XCLK signal to the clock master DELIC, and  
enable the clock master to synchronize to a layer-1 device, which is connected to  
another DELIC in the system.  
4.12.8  
GHDLC Clock Selection  
Any of the next signals may be provided to the GHDLC channel as input clock:  
1. LCLK Input Pin  
This option is possible only when a LNC interface is assigned to the GHDLC unit.  
2. 2.048 MHz, 4.096 MHz, or 8.192 MHz  
These clock signals are generated internally by the PCM clocking path. The selected  
internal clock is also driven outward via LCLK.  
Note that one of these signals must be selected as the clock of the GHDLC channel  
when the DELIC is the clock master of this channel.  
Preliminary Data Sheet  
4-53  
2003-08  
DELIC  
DELIC Memory Structure  
5
DELIC Memory Structure  
The following tables provide the DELIC memory map for the DSP and the µP.  
5.1  
DSP Address Space  
5.1.1  
DSP Register Address Space  
T
Table 5-1  
Address  
DSP Registers Address Space  
Description  
D000 - D01F  
D020 - D03F  
D040 - D05F  
D060 - D07F  
D080 - D09F  
D0A0 - D0BF  
D0C0 - D0DF  
D100 - D17F  
D180 - D1FF  
D1A0 - DFFF  
DCU registers  
A/µ-law registers  
IOMU registers  
PCMU registers  
Clocks registers  
TRANSIU registers  
GHDLC registers  
µP Mailbox and DMA Mailbox registers  
HDLCU registers  
not used  
5.1.2  
DSP Program Address Space  
Table 5-2  
DSP Program address space  
Address  
Size  
4Kw  
58Kw  
2Kw  
Description  
Program RAM  
Not used  
0000 - 0FFF  
1000 - F7FF  
F800 - FFFF  
Program ROM  
Preliminary Data Sheet  
5-1  
2003-08  
DELIC  
DELIC Memory Structure  
5.1.3  
DSP Data Address Space  
A1  
Table 5-3  
Occupied DSP Data Address space  
Address  
Size  
1Kw  
64w  
Description  
0000 - 03FF  
2000 - 203F  
2040 - 207F  
4000 - 401F  
4020 - 403F  
4040 - 405F  
4060 - 407F  
4080 - 409F  
40A0 - 40BF  
6000 - 605F  
6080 - 60DF  
6100 - 61BF  
6200 - 6248  
6280 - 62C8  
8000 - 803F  
8040 - 807F  
8080 - 80FF  
9000 - 9017  
9020 - 9037  
A000 - A07F  
A080 - A0FF  
A100 - A1FF  
D000 - DFFF  
E000 - E1FF  
F400 - F7EE  
F7F0 - F7FF  
FC00 - FFFF  
Internal XRAM  
GHDLC data buffer  
reserved for testt (**)  
64w  
32w  
HDLCU receive output buffer  
HDLCU transmit input buffer  
HDLCU command RAM  
HDLCU receive input buffer  
HDLCU transmit output buffer  
HDLCU status buffer  
32w  
32w  
32w  
32w  
32w  
96w  
TRANSIU receive data buffer  
TRANSIU transmit data buffer  
reserved for test (**)  
96w  
192w  
72w  
reserved for test (**)  
72w  
reserved for test (**)  
64w  
IOMU receive data buffer  
IOMU transmit data buffer  
reserved for test (**)  
64w  
128w  
24w  
HRAM for U PN scrambler  
HRAM for U PN descrambler  
PCMU receive data buffer  
PCMU transmit data buffer  
reserved for testt (**)  
24w  
128w  
128w  
256w  
4Kw  
0.5Kw  
1Kw-16w  
16w  
OAK memory mapped registers(*)  
A/µ-Law ROM  
Emulation mail box (on SCDI)  
OCEM® Registers  
1Kw  
Internal YRAM  
Preliminary Data Sheet  
5-2  
2003-08  
DELIC  
DELIC Memory Structure  
Note: (*) The OAK memory mapped registers address space is described in the  
following table:  
(**) Accessing these addresses may cause unpredictable results  
Table 5-4  
OAK memory mapped registers address space  
Address  
Description  
D000 - D01F  
D020 - D03F  
D040 - D05F  
D060 - D07F  
D080 - D09F  
D0A0 - D0BF  
D0C0 - D0DF  
D100 - D17F  
D180 - D1FF  
D1A0 - DFFF  
DCU registers  
A/m-law registers  
IOMU registers  
PCMU registers  
Clocks registers  
TRANSIU registers  
HDLCU registers  
CPU+DMA mailbox registers  
GHDLC registers  
not used  
5.2  
µP Address Space  
The µP address space consists of the general mail-box registers, the DMA mail-box  
registers (only in non-DMA mode), the µP-interface control register, and the µP-interface  
status register (MISR)  
.
Table 5-5  
Address  
µP Address Space Table  
Description  
00H - 43H  
60H - 62H  
µP- mail box registers  
48H, 68H, 6AH  
6BH - 7FH  
µP-configuration registers  
Reserved. Accessing these addresses may  
cause unpredictable results  
Preliminary Data Sheet  
5-3  
2003-08  
DELIC  
Register Description  
6
Register Description  
6.1  
Register Map  
Table 6-1  
TRANSIU Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
TICR  
RD/WR D0A0H  
RD/WR D0A1H  
RD/WR D0A2H  
RD/WR D0A3H  
0000H IOM-2000 global configuration  
FFFFH Channel 7..0 configuration  
FFFFH Channel 15..8 configuration  
FFFFH Channel 23..16 configuration  
0000H VIP_0 command registers  
0000H VIP_1 command registers  
0000H VIP_2 command registers  
0000H VIP_0 status register  
6-10  
6-11  
6-11  
6-11  
6-12  
6-12  
6-12  
6-14  
6-14  
6-14  
TCCR0  
TCCR1  
TCCR2  
VIPCMR0  
VIPCMR1  
VIPCMR2  
VIPSTR0  
VIPSTR1  
VIPSTR2  
TICCMR  
WR  
WR  
WR  
RD  
RD  
RD  
WR  
D0A8H  
D0A9H  
D0AAH  
D0AC  
D0ADH  
D0AEH  
0000H VIP_1 status register  
0000H VIP_2 status register  
D0B0H  
0000H Channel initialization command 6-15  
(LS-word)  
D0B1H  
0000H  
(MS-word)  
TICSTR  
RD  
D0B2H  
(LS-word)  
D0B3H  
0000H Channel initialization status  
0000H  
6-20  
(MS-word)  
Table 6-2  
Scrambler Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
SCMOD  
SCSTA  
RD/WR D010H  
RD/WR D011H  
0003H Scrambler mode  
undef. Scrambler status  
6-21  
6-21  
Preliminary Data Sheet  
6-1  
2003-08  
DELIC  
Register Description  
Table 6-3  
IOMU Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
ICR  
R/W  
R
D040H  
D041H  
0002H IOMU Control  
undef. IOMU Status  
6-22  
6-23  
ISR  
ITSCR  
Set (W) D042H  
0000H IOMU Tri-State Control  
6-24  
Reset  
(W)  
D043H  
R
D044H  
D045H  
D046H  
IDRDYR  
IDPR  
R
undef. IOMU DRDY  
6-25  
6-26  
R/W  
00E0H IOMU Data Prefix  
Table 6-4  
PCMU Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
PCR  
RD/WR D060H  
RD D061H  
RD/WR D062H  
(read/set)  
00H  
PCMU Control  
6-27  
6-28  
6-29  
PSR  
undef. PCMU Status  
PTSC0  
00H  
00H  
00H  
00H  
PCMU Tristate control 0  
D063H  
(read/reset)  
PTSC1  
PTSC2  
PTSC3  
RD/WR D064H  
PCMU Tristate control 1  
PCMU Tristate control 2  
PCMU Tristate control 3  
6-29  
6-29  
6-29  
(read/set)  
D065H  
(read/reset)  
RD/WR D066H  
(read/set)  
D067H  
(read/reset)  
RD/WR D068H  
(read/set)  
D069H  
(read/reset)  
Preliminary Data Sheet  
6-2  
2003-08  
DELIC  
Register Description  
Table 6-4  
PCMU Register Map (Continued)  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
PTSC4  
PTSC5  
PTSC6  
PTSC7  
PDPR  
RD/WR D06AH  
(read/set)  
00H  
PCMU Tristate control 4  
6-29  
6-29  
6-29  
6-29  
6-30  
D06BH  
(read/reset)  
RD/WR D06CH  
00H  
00H  
00H  
E0H  
PCMU Tristate control 5  
(read/set)  
D06DH  
(read/reset)  
RD/WR D06EH  
PCMU Tristate control 6  
PCMU Tristate control 7  
PCMU Data Prefix  
(read/set)  
D06FH  
(read/reset)  
RD/WR D070H  
(read/set)  
D071H  
(read/reset)  
RD/WR D072H  
.
Table 6-5  
A-/µ-law Unit Register Map  
Reset Comment  
Reg Name Access Address  
Page  
No.  
Value  
AMCR  
AMIR  
R/W  
W
D020H  
D021H  
00H  
A/µ-law Unit Control  
6-31  
6-31  
undefin A/µ-law Unit Input  
ed  
AMOR  
R
D022H  
undefin A/µ-law Output  
ed  
6-32  
Table 6-6  
HDLCU Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
HCR  
W
R
D180H  
D180H  
0001H HDLC Control  
0001H HDLC Status  
6-33  
6-34  
HSTA  
Preliminary Data Sheet  
6-3  
2003-08  
DELIC  
Register Description  
Table 6-6  
HDLCU Register Map (Continued)  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
HCCV  
HCSV  
R/W  
R
4040H-405FH undefin Channel Command Vector  
ed  
6-35  
40A0H-40BFH undefin Channel Status Vector  
ed  
6-36  
Table 6-7  
GHDLC Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
GTEST  
GCHM  
W
W
R
D0C0H  
D0C1H  
D0D4H  
D0D3H  
D0C2H  
D0C3H  
D0C4H  
D0C5H  
0001H GHDLC Test/ Normal Mode  
0000H GHDLC Channel Mode  
6-38  
6-38  
6-39  
6-39  
6-40  
6-40  
6-40  
6-40  
6-41  
GINT  
0000H GHDLC Interrupt  
GFINT  
R/W  
R
0000H GHDLC Frame Interrupt  
001FH GHDLC Receive Status cha. 0  
001FH GHDLC Receive Status cha. 1  
001FH GHDLC Receive Status cha. 2  
001FH GHDLC Receive Status cha. 3  
0000H Receive data and status  
GRSTA0  
GRSTA1  
GRSTA2  
GRSTA3  
RXDAT  
R
R
R
RD  
2000H-  
203FH  
GMOD0  
GMOD1  
GMOD2  
GMOD3  
GTCMD0  
GTCMD1  
GTCMD2  
GTCMD3  
GASYNC  
GLCLK0  
GLCLK1  
GLCLK2  
W
D0C6H  
D0C7H  
D0C8H  
D0C9H  
D0CAH  
D0CCH  
D0CEH  
D0D0H  
D0D2H  
D08AH  
D08BH  
D08CH  
0140H GHDLC Mode cha. 0  
6-42  
6-42  
6-42  
6-42  
6-43  
6-43  
6-43  
6-43  
6-44  
6-45  
6-46  
6-47  
W
0140H GHDLC Mode cha. 1  
W
0140H GHDLC Mode cha. 2  
W
0140H GHDLC Mode cha. 3  
W
0000H GHDLC TX Command cha. 0  
0000H GHDLC TX Command cha. 1  
0000H GHDLC TX Command cha. 2  
0000H GHDLC TX Command cha. 3  
0000H ASYNC Control/ Status  
0000H LCLK0 Control Register  
0000H LCLK1 Control Register  
0000H LCLK2 Control Register  
W
W
W
R/W  
R/W  
R/W  
R/W  
Preliminary Data Sheet  
6-4  
2003-08  
DELIC  
Register Description  
Table 6-7  
GHDLC Register Map (Continued)  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
GLCLK3  
R/W  
D08DH  
D14AH  
0000H LCLK3 Control Register  
0000H Multiplexer Control  
6-48  
6-49  
MUXCTRL R/W  
Table 6-8  
DCU Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
IMASK  
STEVE  
STATC  
STATI  
R/W  
R
D002H  
D003H  
D004H  
D005H  
0000H Interrupt Mask  
0000H Status Event  
unchan. Statistics Counter  
0000H Statistics  
6-50  
6-50  
6-51  
6-52  
R
R
Table 6-9  
µP Configuration Register Map  
Regist.  
(16 bit)  
Des-  
cription Value  
Reset  
Bit DSP  
Word  
µP  
Byte  
µP-  
µP-  
DSP  
Page  
Addr. Addr. Addr. No.  
Access Access MSB LSB  
of of  
Word Word  
MCFG  
VDEV  
IVEC  
configur 0H  
ation  
6
R
R/W  
R
none 48H  
D148H 6-52  
none 6-54  
D168H 6-54  
device  
hardwired 8  
none  
R/W  
none 6AH  
none 68H  
version  
int  
un-  
8
R
vector  
reg  
changed  
Preliminary Data Sheet  
6-5  
2003-08  
DELIC  
Register Description  
Table 6-10 General Mailbox Register Map  
Register  
(16 bit)  
Descrip-  
tion  
Reset  
Value  
Bit DSP  
Word  
µP  
µP-  
µP-  
DSP  
Page  
Byte Addr. Addr. Addr. No.  
Access Acc. MSB  
of  
LSB  
of  
Word Word  
MCMD  
µP  
command  
00H  
8
1
R
W
none  
40H  
D140H 6-55  
MBUSY  
MGEN  
µP MB busy 0H  
W
R
41H  
43H  
none D141H 6-55  
µP generic  
data reg.  
unchanged 16 R  
W
42H  
D142H 6-56  
(LSB)  
D143H  
(MSB)  
D144H  
(All)  
MDT0  
MDT1  
MDT2  
MDT3  
MDT4  
MDT5  
MDT6  
MDT7  
OCMD  
µP data reg0 unchanged 16 R  
µP data reg1 unchanged 16 R  
µP data reg2 unchanged 16 R  
µP data reg3 unchanged 16 R  
µP data reg4 unchanged 16 R  
µP data reg5 unchanged 16 R  
µP data reg6 unchanged 16 R  
µP data reg7 unchanged 16 R  
W
W
W
W
W
W
W
W
R
01H  
03H  
05H  
07H  
09H  
0BH  
0DH  
0FH  
none  
00H  
02H  
04H  
06H  
08H  
0AH  
0CH  
0EH  
60H  
D100H 6-57  
D102H 6-57  
D104H 6-57  
D106H 6-57  
D108H 6-57  
D10AH 6-57  
D10CH 6-57  
D10EH 6-57  
D160H 6-57  
DSP  
00H  
8
W
command  
OBUSY  
OGEN  
DSP MB  
busy  
0H  
1
R
R/W 61H  
none D161H 6-58  
DSP generic unchanged 16 W  
data reg  
R
63H  
62H  
D162H 6-59  
(LSB)  
D163H  
(MSB)  
D164H  
(All)  
ODT0  
DSP data  
reg0  
unchanged 16 W  
R
21H  
20H  
D120H 6-59  
Preliminary Data Sheet  
6-6  
2003-08  
DELIC  
Register Description  
Table 6-10 General Mailbox Register Map (Continued)  
Register  
(16 bit)  
Descrip-  
tion  
Reset  
Value  
Bit DSP  
Word  
µP  
µP-  
µP-  
DSP  
Page  
Byte Addr. Addr. Addr. No.  
Access Acc. MSB  
of  
LSB  
of  
Word Word  
ODT1  
ODT2  
ODT3  
ODT4  
ODT5  
ODT6  
ODT7  
DSP data  
reg1  
unchanged 16 W  
unchanged 16 W  
unchanged 16 W  
unchanged 16 W  
unchanged 16 W  
unchanged 16 W  
unchanged 16 W  
R
R
R
R
R
R
R
23H  
25H  
27H  
29H  
2BH  
2DH  
2FH  
22H  
24H  
26H  
28H  
2AH  
2CH  
2EH  
D122H 6-59  
D124H 6-59  
D126H 6-59  
D128H 6-59  
D12AH 6-59  
D12CH 6-59  
D12EH 6-59  
DSP data  
reg2  
DSP data  
reg3  
DSP data  
reg4  
DSP data  
reg5  
DSP data  
reg6  
DSP data  
reg7  
Note: MDT8..15 and ODT8..15 are accessible only in non-DMA mode, when the DMA  
Mailbox data registers are used for doubling the size of General Mailbox.  
Table 6-11 DMA Mailbox Register Map  
Register  
Description  
Reset  
Value  
Bit DSP  
DMA µP  
µP  
DSP Page  
Addr. No.  
Access / µP MSB LSB  
Acc. Addr. Addr.  
DTXCNT  
DINSTA  
Tx counter  
0H  
4
4
R/W  
R
none none none D150 6-60  
H
DMA Int status 0H  
none none none D152 6-61  
H
TDT0/  
MDT8  
Tx data reg0/ un-  
µP data reg8 changed  
16 R  
16 R  
16 R  
W
W
W
11H  
13H  
15H  
10H  
12H  
14H  
D110 6-57  
H
TDT1/  
MDT9  
Tx data reg1/ un-  
µP data reg9 changed  
D112 6-57  
H
TDT2/  
Tx data reg2/ un-  
D114 6-57  
MDT10  
µP data reg10 changed  
H
Preliminary Data Sheet  
6-7  
2003-08  
DELIC  
Register Description  
Table 6-11 DMA Mailbox Register Map (Continued)  
Register  
Description  
Reset  
Value  
Bit DSP  
DMA µP  
µP  
DSP Page  
Addr. No.  
Access / µP MSB LSB  
Acc. Addr. Addr.  
TDT3/  
Tx data reg3/ un-  
µP data reg11 changed  
16 R  
16 R  
16 R  
16 R  
16 R  
W
W
W
W
W
17H  
19H  
1BH  
1DH  
1FH  
16H  
18H  
1AH  
1CH  
1EH  
D116 6-57  
MDT11  
H
TDT4/  
Tx data reg4/ un-  
µP data reg12 changed  
D118 6-57  
MDT12  
H
TDT5/  
Tx data reg5/ un-  
µP data reg13 changed  
D11A 6-57  
MDT13  
H
TDT6/  
Tx data reg6/ un-  
µP data reg14 changed  
D11C 6-57  
MDT14  
H
TDT7/  
Tx data reg7/ un-  
D11E 6-57  
MDT15  
µP data reg15 changed  
H
DRXCNT  
Rx counter  
0H  
4
R/W  
none none none D170 6-60  
H
RDT0/  
ODT8  
Rx data reg0/ un-  
DSP data reg8 changed  
16 W  
16 W  
16 W  
R
R
R
31H  
33H  
35H  
30H  
32H  
34H  
D130 6-59  
H
RDT1/  
ODT9  
Rx data reg1/ un-  
DSP data reg9 changed  
D132 6-59  
H
RDT2/  
Rx data reg2/ un-  
D134 6-59  
ODT10  
DSP data  
reg10  
changed  
H
RDT3/  
Rx data reg3/ un-  
16 W  
16 W  
16 W  
16 W  
16 W  
R
R
R
R
R
37H  
39H  
3BH  
3DH  
3FH  
36H  
38H  
3AH  
3CH  
3EH  
D136 6-59  
ODT11  
DSP data  
reg11  
changed  
H
RDT4/  
Rx data reg4/ un-  
D138 6-59  
ODT12  
DSP data  
reg12  
changed  
H
RDT5/  
Rx data reg5/ un-  
D13A 6-59  
ODT13  
DSP data  
reg13  
changed  
H
RDT6/  
Rx data reg6/ un-  
D13C 6-59  
ODT14  
DSP data  
reg14  
changed  
H
RDT7/  
Rx data reg7/ un-  
D13E 6-59  
ODT15  
DSP data  
reg15  
changed  
H
Preliminary Data Sheet  
6-8  
2003-08  
DELIC  
Register Description  
Note: MDT8..15 and ODT8..15 are accessible only in non-DMA mode, when the DMA  
Mailbox data registers are used for doubling the size of General Mailbox.  
..  
Table 6-12  
Clock Generator Register Map  
Reg Name Access Address  
Reset Comment  
Value  
Page  
No.  
CPDC  
R/W  
R/W  
R/W  
R/W  
D080H  
D081H  
D082H  
D083H  
0000H PDC Control  
0001H PFS Control  
0008H CLKOUT Control  
6-62  
6-62  
6-63  
6-64  
CPFS  
CLKOUT  
CREFSEL  
0000H DCXO Reference Clock  
Selection  
CREFCLK  
CDCL2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
D084H  
D085H  
D086H  
D087H  
D088H  
D089H  
D08EH  
D08FH  
0003H REFCLK Control  
0004H DCL_2000 Control  
000BH DCL Control  
6-65  
6-65  
6-66  
6-67  
6-68  
6-69  
6-69  
6-70  
CDCL  
CFSC  
0002H FSC Control  
CL1CLK  
CPFSSY  
CRTCNT  
CSTRAP  
0000H L1_CLK Control  
0000H PFS Synchronization Mode  
0000H Real-time Counter  
R/W  
xxxx  
xxxx  
xxxx  
xx10B  
Strap Status Register  
Preliminary Data Sheet  
6-9  
2003-08  
DELIC  
Register Description  
6.2  
Detailed Register Description  
TRANSIU Register Description  
6.2.1  
6.2.1.1 TRANSIU IOM-2000 Configuration Register  
TICR Register  
read/write  
Address: D0A0H  
Reset value: 0000H  
Note: The reset value of bit 4KFSC is undefined, since this read-only bit is toggled every  
250 µs.  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
3
2
1
0
4KFSC CMDEN DXEN  
DR1  
DR0  
DR1..0  
DXEN  
IOM-2000 Data Rate and Channel Number  
00 =  
01 =  
10 =  
11 =  
3.072 Mbit/s data rate; 8 IOM-2000 channels are supported  
6.144 Mbit/s data rate; 16 IOM-2000 channels are supported  
12.288 Mbit/s data rate; 24 IOM-2000 channels are supported  
Reserved  
DX Line Enable  
0 =  
1 =  
IOM-2000 DX line to the VIP is in tri-state  
IOM-2000 DX line to the VIP is enabled (starting with the next 4 kHz  
frame)  
CMDEN CMD Line Enable  
0 =  
1 =  
IOM-2000 CMD line to the VIP is in tri-state  
IOM-2000 CMD line to the VIP is enabled  
4KFSC  
4 kHz FSC (read only)  
0 =  
In the TRANSIU, the current 8 kHz IOM-2000 frame starts in the  
second half of the current 4 kHz Upn of S/T frame  
1 =  
In the TRANSIU, the current 8 kHz IOM-2000 frame starts in the  
first half of the current 4 kHz Upn of S/T frame  
Preliminary Data Sheet  
6-10  
2003-08  
DELIC  
Register Description  
Note: ’x’ = unused (read as ’0’)  
6.2.1.2 TRANSIU Channel Configuration Registers  
The Channel registers are used for IOM-2000 channel disabling and mode  
programming. Each IOM-2000 channel may be programmed to Upn, LT-S, or LT-T  
mode, or completely disabled.  
Important  
Only four channels out of eight channels are programmable to Upn and S/T modes in  
VIP PEB 20590, the remaining four channels may be operated as Upn transceiver only.  
It is the user’s responsiblity to ensure that the IOM-2000 channels in the TRANSIU are  
correctly configurated in order to match with the line configuration of the VIP (see below:  
Table 6-13 Available ISDN Modes for each VIP Channel  
VIP_0,1,2  
channel  
0
1
2
3
4
5
6
7
TRANSIU  
channel  
0
8
16  
1
9
17  
2
10  
18  
3
11  
19  
4
12  
20  
5
13  
21  
6
14  
22  
7
15  
23  
Available  
VIP Mode  
Upn  
Upn  
S/T  
Upn  
Upn  
S/T  
Upn  
Upn  
S/T  
Upn  
Upn  
S/T  
Available  
VIP8 Mode  
Upn  
S/T  
Upn  
S/T  
Upn  
S/T  
Upn  
S/T  
Upn  
S/T  
Upn  
S/T  
Upn  
S/T  
Upn  
S/T  
Registers TCCR0 - 3  
read/write  
Address:  
TCCR0: D0A1H  
TCCR1: D0A2H  
TCCR2: D0A3H  
Reset values:  
15  
FFFFH  
14  
13  
12  
11  
10  
9
1
8
C7M(1:0)  
C6M(1:0)  
C5M(1:0)  
C4M(1:0)  
7
6
5
4
3
2
0
C3M(1:0)  
C2M(1:0)  
C1M(1:0)  
C0M(1:0)  
Preliminary Data Sheet  
6-11  
2003-08  
DELIC  
Register Description  
C7..0M(1:0) Operational Mode of IOM-2000 Channel7..0  
00 =  
01 =  
10 =  
11 =  
Channel is configured to S mode (LT-S)  
Channel is configured to S mode (LT-T)  
Channel is configured to Upn mode  
Channel is disabled, ’0’s are sent on the DX line  
Note: TCCR0 (channel 7..0), TCCR1 (channel 15..8) and TCCR2 (channel 23..16) have  
the same structure, only TCRR1 is shown here.  
6.2.1.3 VIP Command Registers (VIPCMR0, VIPCMR1, VIPCMR2)  
The VIPCMR0-2 registers contain command information dedicated to the VIP 0, 1, 2  
(only the VIPCMR0 is shown here, VIPCMR1 and VIPCMR2 have the same structure).  
VIPCMR Register  
write  
Address:  
VIPCMR0: D0A8H  
VIPCMR1: D0A9H  
VIPCMR2H: D0AAH  
Reset value: 0000H  
15  
x
14  
13  
x
12  
11  
10  
9
8
x
x
RD_n PLLPPS SH_FSC DELRE  
7
6
5
4
3
2
1
0
DELCH(2:0)  
EXREF  
REFSEL (2:0)  
WR_n  
WR_n  
Write Command to VIP_n (S/T, UPN)  
0 =  
Data sent to VIP_n is invalid  
1 =  
Data sent to VIP_n is valid  
REFSEL(2:0) Reference Clock Channel Select (LT-T)  
Preliminary Data Sheet  
6-12  
2003-08  
DELIC  
Register Description  
The reference clock signal for the DELIC oscillator is generated from  
the internal VIP_n Channel_m coded in these 3 bits and passed on via  
pin REFCLK to the next cascaded VIP or directly to the DELIC  
000 = Reference clock provided by Channel_0  
001 = Reference clock provided by Channel_1  
...  
007 = Reference clock provided by Channel_7  
External Reference Clock Selection (LT-T)  
EXREF  
0 =  
No external reference clock source. Reference clock is  
generated from internal VIP_n channel specified in  
REFCLK(2:0) and passed on via REFCLK pin to VIP_n-1 or  
directly to DELIC.  
1 =  
Reference clock is generated from external source via pin  
INCLK and passed on via REFCLK pin to VIP_n-1 or directly to  
DELIC. The internal reference clock generation logic is  
disabled.  
Note that VIP_0 has the highest priority in terms of clock  
selection  
DELCH(2:0)  
DELRE  
Delay Measurement Channel Selection (UPN)  
Selects one of the eight Upn line interface channels of each VIP where  
the delay is to be measured.  
000 = Delay is measured in Upn Channel_0  
001 = Delay is measured in Upn Channel_1  
...  
111 = Delay is measured in Upn Channel_7  
Delay Counter Resolution (UPN)  
Resolution of the delay counter.  
0 =  
Resolution of 65 ns (15.36 MHz period)  
Resolution of 130 ns (7.68 MHz period)  
1 =  
Note: Using a resolution of 65 ns, the maximum delay of  
20.8 µs is not covered (refer to DELAY(7:0) bits)  
SH_FSC  
Short FSC Pulse  
0 =  
The next FSC frame is no superframe  
1 =  
The next FSC is assumed as superframe  
PLLPPS  
PLL Positive Pulse Sensing  
Preliminary Data Sheet  
6-13  
2003-08  
DELIC  
Register Description  
0 =  
1 =  
Normal operation  
The clock recovering PLLs of all VIP channels operate on  
positive line pulses only  
RD_n  
Read Request to VIP Status Register S_n (S/T, UPN)  
0 =  
No register read  
1 =  
The DSP reads the VIP register (during initialization,  
debugging or error conditions). The register value is available  
for the read operation in the consecutive frame (after the next  
FSC).  
Note: To avoid blocking, the DSP must not issue this bit during  
normal operation.  
Note: Unused bits (x) read as ‘0’. The registers are reset upon every 8 kHz frame sync  
to avoid multiple data transmit/receive to/from the VIP.  
6.2.1.4 VIP Status Registers  
The VIPSTR0-2 registers contain the status bits received from the dedicated VIP for  
VIPs 0, 1, 2 respectively (all three registers have the same structure).  
VIPSTR Register  
read  
Address:  
VIPSTR0: D0ACH,  
VIPSTR1: D0ADH,  
VIPSTR2: D0AEH  
Reset value: 0000H  
15  
x
14  
x
13  
12  
x
11  
10  
x
9
x
8
x
x
x
7
6
5
4
3
2
1
0
DELAY(7:0)  
Preliminary Data Sheet  
6-14  
2003-08  
DELIC  
Register Description  
DELAY(7:0)  
Line Delay Value (UPN)  
Returns the value of the measured line delay (in µs) between the Upn  
transmit and receive frame with a resolution of 65 ns or 130 ns  
(programmable in VIPCMR.DELRE bits).  
The value indicates the delay between the transmitted M-bit and the  
received LF-bit (minus the UPN guard time of 2 bits). The delay for one  
direction equals to the measured delay divided by two.  
The channel address for the delay measurement is coded in  
VIPCMR.DELCH(2:0) bits.  
The VIP provides 2 values in one UPN frame (one every 125 µs) from  
which the bigger one is the valid.  
Note: The transceiver delays of the VIP are included in the delay  
measurement.  
Note: Unused bits (x) read as ‘0’.  
6.2.1.5 TRANSIU Initialization Channel Command Register  
The Initialization Channel Command Register contains the Command bits for VIP_n,  
Channel_m together with 5 bits of the VIP channel address.  
The VIP only acts upon the command bits if they were declared valid by the DELIC  
issuing a write command. Bit WR is dedicated to the command bits of groups CONF1,  
CONF2 and TST2, whereas WR_ST informs the VIP about changes in the layer 1 state  
machine of the DELIC (SMINI(2:0) and MSYNC bits).  
The DELIC may also explicitly read the VIP’s status information by issueing bit RD.  
The reset value of each bit is ’0’ except bits MODE(2:0) which are set to ’011’  
Note: A read command to the VIP must not be issued during normal operation to avoid  
a loss of information when the VIP is reporting status information at the same time.  
Preliminary Data Sheet  
6-15  
2003-08  
DELIC  
Register Description  
TICCMR Register  
write  
LS-word: D0B0H,  
Address:  
MS-word: D0B1H  
Reset value: 0000H  
31  
x
30  
29  
28  
27  
26  
18  
25  
24  
VIPADR(1:0)  
CHADR(2:0)  
FIL  
EXLP  
23  
22  
21  
20  
x
19  
x
17  
16  
PLLS  
PD  
DHEN  
PDOWN LOOP  
TX_EN  
15  
14  
13  
12  
11  
10  
9
8
PLLINT  
AAC(1:0)  
BBC(1:0)  
OWIN(2:0)  
7
6
5
4
3
2
1
0
MF_EN  
MODE(2:0)  
MOSEL(1:0)  
RD  
WR  
WR  
RD  
Write Command (S/T, UPN)  
0 =  
Data sent in these bits is invalid  
1 =  
All configuration bits contain valid data  
Note: Does not apply to SMINI(2:0) and MSYNC bits  
Read Request to VIP Command Bits (S/T, UPN)  
0 =  
1 =  
Normal operation  
DELIC read request of the TICCMR register which was sent to  
the VIP. It includes initialization and configuration commands  
and the channel addresses. The VIP returns these values  
(instead of sending the actual VIP status information) within  
the IOM-2000 STAT_n_m bit stream. The values are available  
in the next frame (after next FSC) in DELIC TICSTR register.  
Note: To avoid blocking, the DELIC must not issue this bit  
during normal operation.  
MOSEL(1:0) Interface Mode Selection (S/T, UPN)  
00 =  
01 =  
10 =  
Channel programmed to S/T mode  
Channel programmed to UPN mode  
reserved  
Preliminary Data Sheet  
6-16  
2003-08  
DELIC  
Register Description  
11 =  
reserved  
MODE(2:0)  
Mode Configuration (S/T, UPN)  
001 = Channel programmed to LT-T mode  
011 = Channel programmed to LT-S mode (point-to-point or  
extended passive bus configuration) or UPN mode  
111 = Channel programmed to LT-S mode (short passive bus mode)  
Note: All other states are reserved. The reset value is 011, e.g.  
the default mode of VIP is LT-S  
MF_EN  
Multiframe Enable (S/T)  
0 =  
Multiframes are disabled  
1 =  
Multiframes are enabled  
OWIN(2:0)  
Oversampling Window Size (S/T, UPN)  
Specifies the width of the oversampling window in bit samples. The  
window is centered about the middle of the bit. For example, a size of  
16 means that, upon detection of (16/2) = 8 times logical ’1’, the  
received bit is detected as ’1’. The window size is programmed in steps  
of two as shown below:  
000 =  
001 =  
010 =  
...  
2
4
6
111 = 16  
BBC(1:0)  
AAC(1:0)  
Balancing Bit Control (UPN)  
0x =  
Adaptive generation of balancing bit (depending on line delay).  
upon reception of INFO3 or INFO4  
10 =  
11 =  
Balancing bit control is disabled, and no balancing bit is added  
Balancing bit control is disabled, and balancing bit is added  
after each code violation in the M-bit (INFO3 or INFO4)  
Adaptive Amplifier Control (S/T, UPN)  
0x =  
Adaptive amplifier control in VIP is enabled. The amplifier and  
the equalizer are switched on/off depending on the level of the  
received line signal with respect to the comparator threshold.  
10 =  
Adaptive amplifier control is disabled. The amplifier and the  
equalizer are switched off permanently.  
Preliminary Data Sheet  
6-17  
2003-08  
DELIC  
Register Description  
11 =  
Adaptive amplifier control is disabled. The amplifier and the  
equalizer are switched on permanently  
PLLINT  
TX_EN  
LOOP  
Receive PLL Integrator (UPN)  
0 =  
Programmable deviation disabled  
1 =  
Programmable deviation enabled, i.e., the RxPLL reacts only  
after a certain number of consequent deviations from the PLL  
controlling range.  
Transmitter Enable (S/T, UPN)  
0 =  
Transmitter (analog line driver) is disabled (e.g. for non-  
transparent analog loops in LT-T)  
1 =  
Transmitter is enabled (e.g. for switching of transparent analog  
loops in LT-S)  
Loop-back Mode in VIP Enable (S/T, UPN)  
0 =  
Loops disabled  
1 =  
Loop-back enabled. Channel_m transmit data is looped back  
to the receive data path (either transparent or non-transparent  
according to state of bit TX_EN). Depending on bit EXLP the  
loop is closed internally or externally.  
PDOWN  
DHEN  
Power Down Mode (S/T, UPN)  
0 =  
Operational mode  
1 =  
Channel_m in power-down mode (only the level detector in the  
VIP receiver is in operational mode)  
D-channel Handling Enable (LT-T)  
0 =  
D-channel transmitted transparently, without any condition  
1 =  
D-channel transmitted transparently if no collision is detected  
(E=D), if collision is detected (E D) ’1s’ are transmitted in D-  
channel  
PD  
Phase Deviation Selection (LT-T)  
0 =  
Phase deviation = (2 bits - 2 oscillator periods + analog delay)  
1 =  
Phase deviation = (2 bits - 4 oscillator periods + analog delay)  
PLLS  
EXLP  
Receive PLL Adjustment (S/T, UPN)  
0 =  
tracking step equals 0.5 oscillator period  
tracking step equals 1.0 oscillator period  
1 =  
External Loop (S/T, UPN)  
Preliminary Data Sheet  
6-18  
2003-08  
DELIC  
Register Description  
0 =  
1 =  
No external analog loop. If bit LOOP=1 the loop is closed  
internally  
External analog loop. If bit LOOP=1 the loop is closed  
externally  
FIL  
Filter Enable (UPN only)  
0 =  
Filter of equalizer inside the VIP receiver disabled  
Filter of equalizer inside the VIP receiver enabled  
1 =  
CHADR(2:0) Channel_m Address for Commands  
000 = Command word is dedicated to VIP_n Channel_0  
001 = Command word is dedicated to VIP_n Channel_1  
010 = Command word is dedicated to VIP_n Channel_2  
011 = Command word is dedicated to VIP_n Channel_3  
100 = Command word is dedicated to VIP_n Channel_4  
101 = Command word is dedicated to VIP_n Channel_5  
110 = Command word is dedicated to VIP_n Channel_6  
111 = Command word is dedicated to VIP_n Channel_7  
VIPADR(2:0) VIP_n Address for Commands  
00 = Command word is dedicated to VIP_0  
01 =  
10 =  
11 =  
Command word is dedicated to VIP_1  
Command word is dedicated to VIP_2  
Reserved  
Note: Unused bits (x) read as ‘0’.  
Preliminary Data Sheet  
6-19  
2003-08  
DELIC  
Register Description  
6.2.1.6 TRANSIU Initialization Channel Status Register (TICSTR)  
The Initialization Channel Status Register contains the Command bits to VIP_n,  
Channel_m mirrored by the VIP in response to a read command issued by the DELIC in  
the previous frame.  
Note: The actual Status information from the VIP channels is stored in the data RAM to  
make it accessible for the DELIC layer-1 state machine software in the DSP.  
TICSTR Register  
read  
Address:  
LS-word: D0B2H, MS-word: D0B3H  
Reset value: 0000H  
31  
x
30  
29  
28  
27  
26  
18  
25  
24  
VIPADR(1:0)  
CHADR(2:0)  
FIL  
EXLP  
23  
22  
21  
20  
x
19  
x
17  
16  
PLLS  
PD  
DHEN  
PDOWN LOOP  
TX_EN  
15  
14  
13  
12  
11  
10  
9
8
PLLINT  
AAC(1:0)  
BBC(1:0)  
OWIN(2:0)  
7
6
5
4
3
2
1
0
MF_EN  
MODE(2:0)  
MOSEL(1:0)  
RD  
WR  
Preliminary Data Sheet  
6-20  
2003-08  
DELIC  
Register Description  
6.2.1.7 Scrambler Mode Register  
SCMOD Register  
read/write  
Address: D010H  
Reset value: 0003H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
x
1
0
SCMOD1..0  
SCMOD1..0 Scrambling Mode of the Upn Line Interface  
00 = Scrambling according to ITU-T V.27  
01 = Scrambling compatible to OCTAT-P PEB 2096  
10 = Reserved  
11 = No scrambling  
6.2.1.8 Scrambler Status Register  
SCSTA Register  
read/write  
Address: D011H  
Reset value: undefined  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
SCSTA  
SCSTA  
Scrambler Status  
0 =  
Write access: start of scrambling algorithm for all channels enabled  
in the HRAM  
read access: scrambler is processing data  
Preliminary Data Sheet  
6-21  
2003-08  
DELIC  
Register Description  
1 =  
Write access: start of scrambling algorithm for all channels enabled  
in the HRAM  
read access: scrambling has finished  
Note: Both values ’0’ or ’1’ written to SCSTA will start the scrambling  
6.2.2  
IOMU Register Description  
6.2.2.1 IOMU Control Register  
ICR Register  
read/write  
Address: D040H  
Reset value: 02H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
4
3
2
1
0
ICDB  
A
OD  
DC  
DR(1:0)  
ICDB  
A
Idle Current D-Buffer ( for test purpose; only if IOMU is in idle mode: ICR:A  
= ’0’)  
0 =  
1 =  
Make frame buffer 0 accessible to the DSP  
Make frame buffer 1 accessible to the DSP  
IOMU Activation  
0 =  
The IOMU is Idle. The state machine of the IOMU is idle, and no  
accesses to the I-buffer are executed by the IOMU.  
1 =  
The IOMU is active, and works according to the programming of the  
other Control Register bits.  
OD  
DC  
DD0 and DD1 Output Mode  
0 =  
1 =  
Push-Pull mode.  
Open-Drain mode  
Double Data Rate Clock  
0 = Single clock (DCL frequency is identical to the IOM-2 data rate)  
Preliminary Data Sheet  
6-22  
2003-08  
DELIC  
Register Description  
1 =  
Double clock (DCL frequency is double the IOM-2 data rate)  
DR(1:0)  
IOM-2 Data Rate  
00 =  
01 =  
10 =  
IOM-2 data rate of 1 x 384 kbit/s (1 x 6 time slots/frame)  
IOM-2 data rate of 1 x 768 kbit/s (1 x 12 time slots/frame)  
IOM-2 data rate of 2 x 2.048 Mbit/s (2 x 32 time slots/frame)  
(default)  
11 =  
IOM-2 data rate of 1 x 4.096 Mbit/s (1 x 64 time slots/frame)  
6.2.2.2 IOMU Status Register  
ISR Register  
read/write  
Address: D041H  
Reset value: undefined  
15  
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
IBUFF  
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
IBUFF  
I-Buffer Index  
Note: Used for testing. May also be used in double data rate mode of the  
IOMU to determine if the IOMU buffers have been swapped already  
0 =  
1 =  
Buffer 0 is currently used as I-buffer, buffer 1 is used as D-buffer  
Buffer 1 is currently used as I-buffer, buffer 0 is used as D-buffer  
Note: (x) unused bits read as ’0’  
Preliminary Data Sheet  
6-23  
2003-08  
DELIC  
Register Description  
6.2.2.3 IOMU Tri-State Control Register  
ITSCR Register  
read/write  
Address:  
Set Address: D042H  
Reset Address: D043H  
Read Address: D044H  
Reset Value: 00H  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
TS(15:8)  
7
4
3
TS(7:0)  
TS(15:0)  
Every bit determines whether DD0/1 output is in tri-state during the time slot  
sequence. The time slot sequence length, indices and port controlled by  
each TS-bit is defined according the IOMU data rate mode (ICR.DR(1:0))  
0 =  
1 =  
DD0/1 is in tri-state during the related time slot sequence  
DD0/1 is driven by the IOMU during the related time slot sequence  
Table 6-14 Tristate Control Assignment for IOM-2 Time Slots  
ITSCR 1 x 6 TS/frame  
Bit  
1 x 12 TS/frame 2 x 32 TS/frame 1 x 64 TS/frame  
DD0  
TS  
DD0  
DD0  
TS  
DD0/1  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD1  
TS  
0-3  
DD0/1  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
TS  
0-3  
TS0  
TS1  
TS2  
TS3  
TS4  
TS5  
TS6  
TS7  
TS8  
DD0  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
4-7  
4-7  
DD0  
8-11  
8-11  
DD0  
12-15  
16-19  
20-23  
24-27  
28-31  
0-3  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
DD0  
DD0  
not used  
not used  
not used  
Preliminary Data Sheet  
6-24  
2003-08  
DELIC  
Register Description  
Table 6-14 Tristate Control Assignment for IOM-2 Time Slots (Continued)  
ITSCR 1 x 6 TS/frame  
Bit  
1 x 12 TS/frame 2 x 32 TS/frame 1 x 64 TS/frame  
DD0  
TS  
DD0  
DD0  
TS  
DD0/1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
TS  
4-7  
DD0/1  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
DD0  
TS  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
TS9  
not used  
9
TS10 not used  
TS11 not used  
TS12 not used  
TS13 not used  
TS14 not used  
TS15 not used  
DD0  
10  
11  
8-11  
DD0  
12-15  
16-19  
20-23  
24-27  
28-31  
not used  
not used  
not used  
not used  
6.2.2.4 IOMU DRDY Register  
IDRDYR Register  
read  
Address: D045H  
Reset value: undefined  
15  
0
14  
0
13  
0
12  
11  
0
10  
0
9
0
8
0
0
7
6
5
4
3
2
1
0
DS(7:0)  
bit  
DRDY Sample  
DSx indicates the availability of the D-channels of the previous frame.  
0 = STOP (D-channel blocked due to collision), 1 = GO  
e.g. DS1 was sampled during the D-channel of IOM-2 channel 1, etc.  
DS0  
DS1  
DS2  
DS3  
DS4  
DS5  
DS6  
DS7  
corresponds to D-channel of IOM-2 port 0 cha 0  
corresponds to D-channel of IOM-2 port 0 cha 1  
corresponds to D-channel of IOM-2 port 0 cha 2  
corresponds to D-channel of IOM-2 port 0 cha 3  
corresponds to D-channel of IOM-2 port 0 cha 4  
corresponds to D-channel of IOM-2 port 0 cha 5  
corresponds to D-channel of IOM-2 port 0 cha 6  
corresponds to D-channel of IOM-2 port 0 cha 7  
Preliminary Data Sheet  
6-25  
2003-08  
DELIC  
Register Description  
Note: In 1 x 4.096 Mbit/s mode (i.e.16 IOM-2 channels/frame), DRDY is sampled only  
during the D-channels of the first eight IOM-2 channels of every frame.  
6.2.2.5 IOMU Data Prefix Register  
IDPR Register  
read/write  
Address: D046H  
Reset value: E0H  
15  
14  
13  
12  
11  
10  
9
8
IDP(7:0)  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
IDP(7:0) IOMU Data Prefix  
Determines the high byte of every word being read from the IOM circular-  
buffer (I-buffer or D-buffer). The low byte is the data being read from the  
circular buffer.  
After reset this register contains the MSB of the base address of the A-law-  
to-linear ROM table: E0H.  
Note: (x) unused bits read as ’0’  
Preliminary Data Sheet  
6-26  
2003-08  
DELIC  
Register Description  
6.2.3  
PCMU Register Description  
6.2.3.1 PCMU Command Register  
PCR Register  
read/write  
Address: D060H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
4
3
2
1
0
SFH  
ICDB  
PA  
PDCL  
PDR(1:0)  
PDR(1:0) PCM Data Rate  
00 =  
01 =  
10 =  
11 =  
4 x 2.048 Mbit/s (4 x 32 time slots per frame)  
2 x 4.096 Mbit/s (2 x 64 time slots per frame)  
1 x 8.092 Mbit/s (1 x 128 time slots per frame)  
1 x 16.384 Mbit/s (1 x 256 time slots per frame, if only first or  
second half of 8 kHz frame is handled)  
PDCL  
PA  
PCM Double Data Rate Clock  
0 =  
1 =  
Single Data Rate Clock  
Double Data Rate Clock  
PCMU Activation  
0 =  
1 =  
The PCMU is in idle mode  
The PCMU is in active mode  
ICDB  
Idle Current D-Buffer  
Used only for testing of PCMU in IDLE mode (PCR:PA = '0') to determine  
which buffer is being accessed by the DSP  
0 =  
1 =  
Frame buffer 0 is accessed by the DSP  
Frame buffer 1 is accessed by the DSP  
SFH  
Second Frame Half  
Used only in 1 x 256 time slots per frame data rate mode  
0 =  
The first 128 time slots of each frame are handled by the PCMU  
Preliminary Data Sheet  
6-27  
2003-08  
DELIC  
Register Description  
1 =  
The second 128 time slots of each frame are handled by the PCMU  
Note: ’x’ = unused (read as ’0’)  
6.2.3.2 PCMU Status Register  
PSR Register  
read/write  
Address: D061H  
Reset value: undefined  
15  
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
PBUFF  
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
PBUFF  
P-Buffer Index  
Note: Used for testing. May also be used in double data rate mode of the  
PCMU to determine if the PCMU buffers have been swapped already  
0 =  
1 =  
Buffer 0 is currently used as P-buffer, buffer 1 is used as D-buffer  
Buffer 1 is currently used as P-buffer, buffer 0 is used as D-buffer  
Note: (x) unused bits read as ’0’  
Preliminary Data Sheet  
6-28  
2003-08  
DELIC  
Register Description  
6.2.3.3 PCMU Tri-state Control Registers  
PTSC0 Register  
PTSC1 Register  
PTSC2 Register  
PTSC3 Register  
PTSC4 Register  
PTSC5 Register  
PTSC6 Register  
PTSC7 Register  
read/write  
(set/reset)  
read Address: D062-63H  
set Address: D062H  
reset Address: D063H  
read/write  
(set/reset)  
read Address: D064-65H  
set Address: D064H  
reset Address: D065H  
read/write  
(set/reset)  
read Address: D066-67H  
set Address: D066H  
reset Address: D067H  
read/write  
(set/reset)  
read Address: D068-69H  
set Address: D068H  
reset Address: D069H  
read/write  
(set/reset)  
read Address: D06A-6BH  
set Address: D06AH  
reset Address: D06BH  
read/write  
(set/reset)  
read Address: D06C-6DH  
set Address: D06CH  
reset Address: D06DH  
read/write  
(set/reset)  
read Address: D06E-6FH  
set Address: D06EH  
reset Address: D06FH  
read/write  
(set/reset)  
read Address: D070-71H  
set Address: D070H  
reset Address: D071H  
Reset values (PTSC0..7): 0000H  
15  
14  
13  
12  
11  
10  
9
8
PTSCn(15:8)  
Preliminary Data Sheet  
6-29  
2003-08  
DELIC  
Register Description  
7
6
5
4
3
2
1
0
PTSCn(7:0)  
PTSCn  
(15..0)  
Tristate Control for each PCM Time Slot  
0 =  
1 =  
The controlled time slot is invalid  
The controlled time slot is valid  
6.2.3.4 PCMU Data Prefix Register  
PDPR Register  
read/write  
Address: D072H  
Reset value: E0H  
15  
14  
13  
12  
11  
10  
9
8
PDP(7:0)  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
PDP(7:0) PCMU Data Prefix  
The data written to this register is read as the most significant byte of every  
time slot read by the DSP from the PCMU frame buffers. Can be used for  
quick access to the a/µ-law ROM, for conversion of compressed data  
(received via the PCM interface) into linear value.  
After reset this register contains the MSB of the base address of the a-law-  
to-linear ROM table: E0H. To enable quick conversion from µ-law to linear,  
the PCMU Data Prefix Register should be programmed to E1H.  
Note: (x) unused bits read as ’0’  
Preliminary Data Sheet  
6-30  
2003-08  
DELIC  
Register Description  
6.2.4  
A-/µ-law Unit Register Description  
A/µ-law Unit Control Register  
6.2.4.1  
A/µ-law Unit Control Register (AMCR) read/write  
Address: D020H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
MODE  
Note: ’x’ = unused bits  
This register controls the conversion mode of the A/µ-law unit  
MODE  
A/µ-law Mode Programming  
0 =  
1 =  
Conversion from linear value to A-law value (default)  
Conversion from linear value to µ-law value  
6.2.4.2  
A/µ-law Input Register  
A/µ-law Unit Input Register (AMIR)  
write  
Address: D021H  
Reset value: undefined  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
IND(15:8)  
7
6
4
3
IND(7:0)  
Note: - In µ-law mode, only the 14 MSBs are processed.  
- In A-law mode, only the 13 MSBs are processed.  
IND(15:0)  
Linear Input Data  
Preliminary Data Sheet  
6-31  
2003-08  
DELIC  
Register Description  
Provides the linear input data that is to be converted into logarithmic  
data format according to A-law or µ-law algorithm.  
6.2.4.3  
A/µ-law Output Register  
A/µ-law Unit Output Register (AMOR) read  
Address: D022H  
Reset value: undefined  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
6
5
4
3
2
1
0
OUTD(7:0)  
Note: ’x’ = unused bits, driven to ’0’  
OUTD(7:0)  
Logarithmic Output Data  
Provides the logarithmic output data generated by the A/-µ-law unit out  
of the linear input data. The data format (A-law or µ-law) depends on the  
the selected conversion algorithm.  
Preliminary Data Sheet  
6-32  
2003-08  
DELIC  
Register Description  
6.2.5  
HDLCU Registers Description  
6.2.5.1 HDLCU Control Register  
In order to enable DSP access all the buffers and RAMS, DSPCTRL bit must be set to ‘1’.  
HCR Register  
write  
Address: D180H  
Reset value: 0001H  
15  
x
14  
13  
x
12  
11  
x
10  
x
9
x
8
x
x
x
7
x
6
5
4
3
2
1
0
HPRS(5:0)  
DSPCTRL  
HPRS(5:0)  
DSPCTRL  
HDLCU Channel Preset  
The number of HDLC channels to be processed by the HDLCU  
DSP Access Control to the HDLCU  
0 =  
1 =  
The DSP must not access the HDLCU buffers and RAMs  
The DSP may access the HDLCU buffers  
Note: Each time DSPCTRL is set, HPRS is also set.  
Preliminary Data Sheet  
6-33  
2003-08  
DELIC  
Register Description  
6.2.5.2 HDLCU Status Register  
HSTA Register  
read  
Address: D180H  
Reset value: 0001H  
15  
14  
13  
x
12  
4
11  
3
10  
9
1
8
HHOLD  
BITOR  
CHCNT(5:1)  
7
6
5
2
0
CHCNT(0)  
HPRS(5:0)  
DSPCTRL  
DSPCTRL  
DSP Access Control to the HDLCU  
0 =  
1 =  
The HDLCU is currently processing the channel  
The DSP is currently accessing the HDLCU  
HPRS(5:0)  
HDLC Channel Preset  
Number of HDLC channels handled by the HDLCU (max. 32)  
CHCNT(5:0) Channel Count  
Number of channels that have already been processed in the  
current frame  
Bitorder  
BITOR  
Determines the order of bits inside an HDLC data byte going to (coming  
from) the IOMU, PCMU or TRANSIU.  
0 =  
1 =  
HDLC data is transmitted with MSB first  
HDLC data is transmitted with LSB first  
HHOLD  
HDLCU Busy Indicator  
0 =  
HDLCU is processing the current frame  
1 =  
HDLCU has finished processing the current frame  
Preliminary Data Sheet  
6-34  
2003-08  
DELIC  
Register Description  
6.2.5.3 Channel Command Vector  
HCCV Registers  
read/ write  
Addresses: 4040H - 405FH  
Each of the 32 HDLC channels has a 7-bit command vector that resides in the  
corresponding address of the command RAM. The structure of a command vector is as  
follows:  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
5
4
3
2
1
0
DBSEL RECRES  
TXCMD(2:0)  
CRC  
IDLE  
Note: Accesses to these registers are possible only if register bit HCR:DSPCTRL = 1  
’x’ = unused  
DBSEL  
D- or B-Channel Select  
0 =  
Indication for a B-channel. HDLC protocol is performed on all 8  
data bits  
1 =  
Indication for a D-channel. HDLC protocol is performed only on  
the 2 MSB data bit in the Receive Input Buffer and Transmit  
Output Buffer  
RECRES  
Receiver Reset  
0 =  
1 =  
Normal operation  
Reset the HDLC receiver  
TXCMD(2:0) Transmit Command  
000= End transmition  
001= Start transmission at the first bit of the D-channel  
010= Start transmission at the second bit of the D-channel  
011= Start transmitting a flag (beginning with the fifth bit of the flag,  
since ’0111’ is automatically inserted)  
100= Abort transmission  
Note: other combinations are reserved  
CRC Enable  
CRC  
0 =  
CRC checking algorithm off  
Preliminary Data Sheet  
6-35  
2003-08  
DELIC  
Register Description  
1 =  
CRC checking algorithm on  
IDLE  
IDLE Mode  
0 =  
1 =  
Transmit ’ones’ over an idle channel - the unshared flag mode  
Transmit ’flags’ over an idle channel - the shared flag mode  
Note: In the receive direction, the only function of the command vector is to indicate  
whether the channel is a D-channel or a B-channel, and whether to use CRC  
decoding or not.  
The main function of the command vector is to control the flow of time slots in the  
transmit direction.  
6.2.5.4 Channel Status Vector  
HCSV Registers  
read  
Addresses: 40A0H - 40BFH  
Reading a channel from the Receive Output Buffer and Writing to a channel in the  
Transmit Input Buffer is done according to the channel’s status vector in the Transmit  
Output Buffer. This vector contains 7 flags:  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
5
4
3
2
1
0
FLAG  
EMPTY  
FULL  
ABORT STOP  
CRC  
NO  
Note: Accesses to these registers are possible only if register bit HCR:DSPCTRL = 1  
’x’ = not used  
NO  
Not Octet  
0 =  
1 =  
Normal operation  
The last bits of a message have not filled an octet (8 bits)  
CRC  
STOP  
CRC Error  
0 =  
1 =  
No CRC error in received message  
CRC error was detected in the received message  
Stop Indication  
0 = Normal operation  
Preliminary Data Sheet  
6-36  
2003-08  
DELIC  
Register Description  
1 =  
HDLCU has detected an end of message flag in the receive  
direction. The DSP must read the octet in the Receive Output  
Buffer before the next message start flag is detected  
ABORT  
Abort Indication  
0 =  
1 =  
Normal operation  
The DSP has detected an incoming abort message (7  
consecutive ’1s’). The STOP flag is also set to 1. This means  
that the DSP should ignore the current message being  
transmitted over the channel in question and report to the  
external microcontoller  
FULL  
Receive Buffer Full Indication  
0 =  
1 =  
Normal operation  
Indicates that the Receive Output Buffer has a newly processed  
octet in it. The DSP must read this octet before starting the next  
processing session, otherwise it might be lost.  
EMPTY  
Transmit Buffer Empty  
0 =  
1 =  
The transmit buffer is full.  
The transmit buffer is empty. The current time slot in the  
Transmit Input Buffer has been fully processed by the HDLCU.  
The Transmit Input buffer is ready to receive the next octet of  
the message by the DSP.  
Note: The DSP must put a new octet into the buffer before  
starting the next processing session, otherwise the same  
octet will be read again.  
FLAG  
Status Vector Flag  
0 =  
1 =  
Ignore the status vector and do not read or write on this channel  
Read the channel’s status vector and process accordingly  
Note: FLAG will go to ‘1’ as soon as EMPTY or FULL go to ‘1’.  
Preliminary Data Sheet  
6-37  
2003-08  
DELIC  
Register Description  
6.2.6  
GHDLC Register Description  
6.2.6.1 GHDLC Test/ Normal Mode Register  
GTEST Register  
write  
Address: D0C0H  
Reset value: 0001H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
TEST  
CHMOD1..0 Channel Mode  
0 =  
Normal operation mode  
1 =  
Test mode  
Note: As GTEST has a reset value of 01H this register has to set to 0 to enable the  
GHDLCU  
6.2.6.2 GHDLC Channel Mode Register  
GCHM Register  
write  
Address: D0C1H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
x
1
0
CHMOD(1..0)  
CHMOD1..0 Channel Mode  
00 = Channel 0 used up to 16.384 MHz  
Preliminary Data Sheet  
6-38  
2003-08  
DELIC  
Register Description  
01 = 2 channels (ch 0+3) used up to 8.192 MHz  
10 = 4 channels (ch 0..3) used up to 4.096 MHz  
11 = Reserved  
6.2.6.3 GHDLC Interrupt Register  
GINT Register  
read  
Address: D0D4H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
2
1
0
INT3  
INT2  
INT1  
INT0  
INTn bits  
Interrupt Indication for GHDLC Channel n (= 0..3)  
0 =  
1 =  
Normal operation  
GHDLC interrupt has occurred  
6.2.6.4 GHDLC FSC Interrupt Control Register  
GFINT Register  
read  
Address: D0D3H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
2
1
0
FINT3  
FINT2  
FINT1  
FINT0  
FINTn  
FSC Interrupt Control GHDLC Channel n (= 0..3)  
Preliminary Data Sheet  
6-39  
2003-08  
DELIC  
Register Description  
0 =  
1 =  
FSC rising edge causes a receiver interrupt only if a full interrupt  
has not occurred during the previous frame  
FSC rising edge causes a receiver interrupt regardless whether  
or not a full interrupt occurred during the previous frame  
6.2.6.5 GHDLC Receive Channel Status Registers 0..3  
GRSTA Register 0  
GRSTA Register 1  
GRSTA Register 2  
GRSTA Register 3  
read  
read  
read  
read  
Address: D0C2H  
Address: D0C3H  
Address: D0C4H  
Address: D0C5H  
Reset value: 001FH  
15  
x
14  
13  
x
12  
11  
x
10  
x
9
8
x
x
COLLD UNDER  
7
6
5
4
3
2
1
0
EMPTY OVER  
FULL  
RBFILL(4:0)  
RBFILL(4:0) Receive Buffer Fill  
Indicates to the DSP the currently available number of bytes - 1 in the  
receive buffer  
FULL  
Receive Buffer Full  
0 =  
1 =  
No receive buffer full indication  
Receive buffer block of the GHDLC is full. The blocks have been  
switched.  
OVER  
EMPTY  
Buffer Overrun  
0 =  
1 =  
No buffer overrun indication  
Two consecutive full interrupts were received without a GHDLC  
access to the status register in between, i.e. a buffer was missed.  
Transmit Buffer Empty  
0 =  
1 =  
No transmit buffer empty indication  
The transmit buffer block currently being transmitted over the  
GHDLC channel has been emptied  
Preliminary Data Sheet  
6-40  
2003-08  
DELIC  
Register Description  
UNDER  
Buffer Underrun  
0 =  
1 =  
No buffer underrun indication  
A buffer containing an uncomplete message has been emptied  
without a continuation of the message in the other buffer  
COLLD  
Collision Detected  
0 =  
1 =  
No collision detection indication  
Collision detected during transmission. The message needs to be  
re-sent.  
Note: Only relevant in HDLC-Mode, if one device does not  
operate conform to the HDLC protocol definition  
Note: Reading the register GRSTA resets its bits to the default value.  
6.2.6.6 GHDLC Receive Data and Status  
To each data byte in the receive buffer 4 flag bits are appended  
RXDAT Registers  
read  
Address: 2000H -203FH  
.
15  
14  
13  
12  
11  
x
10  
x
9
x
8
x
ABORT  
END  
CRC  
NO  
7
6
5
4
3
2
1
0
RDAT7..0  
NO  
Not Octet  
0 =  
1 =  
Received message is a multiple of eight bits  
Received message is not a multiple of eight bits  
CRC  
CRC Error Flag  
0 =  
1 =  
Received byte contains no CRC error flag.  
Received byte contains a CRC error flag.  
A CRC error was detected in the received frame.  
END  
END Flag  
0 =  
1 =  
Received byte contains no END flag  
Received byte contains an END flag  
Preliminary Data Sheet  
6-41  
2003-08  
DELIC  
Register Description  
ABORT  
RD7..0  
ABORT Flag  
0 =  
1 =  
Received byte contains no ABORT flag  
Received byte contains an ABORT flag  
Received data byte  
6.2.6.7 GHDLC Mode Registers  
GMOD Register 0  
GMOD Register 1  
GMOD Register 2  
GMOD Register 3  
write  
write  
write  
write  
Address: D0C6H  
Address: D0C7H  
Address: D0C8H  
Address: D0C9H  
Reset value: 0140H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
8
x
EDGE  
TE  
7
6
5
4
3
2
1
0
CLASS COLLD PPOD  
IFTF  
OPMOD(1:0)  
CRCMOD(1:0)  
CRCMOD(1:0)  
CRC Mode  
00 = CRC algorithm disabled  
01 = 16-bit CRC algorithm (X16+X12+X5+1)  
10 = 32-bit CRC algorithm  
(X31+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1)  
11 = reserved  
OPMOD(1:0) Operational Mode  
Programs the mode of the GHDLC channel  
00 = HDLC mode  
01 = reserved  
10 = Asynchronous mode (enables accesses to register GASYNC)  
11 = reserved  
IFTF  
Interframe Time Fill  
0 =  
Sequence of ’1s’ is used as interframe time fill characters  
Preliminary Data Sheet  
6-42  
2003-08  
DELIC  
Register Description  
1 =  
Flags (7EH) are used as interframe time fill characters  
PPOD  
Push-Pull / Open-Drain Configuration  
0 =  
1 =  
Open-drain  
Push-pull  
COLLD  
Collision Detection  
0 =  
Collision detection disabled  
1 =  
Arbitration between several GHDLC on a bus is done using  
collision detection  
CLASS  
TE  
Priority Class Assignment  
0 =  
1 =  
Channel has priority class 8  
Channel has priority class 10  
Transmit Enable  
0 =  
Transmit line is only enabled during the transmission of a  
message including opening and closing flags  
1 =  
Transmit line is always enabled  
EDGE  
Edge Programming for Receive Data Sampling  
0 =  
Receiver samples data on rising edge of the line clock  
1 =  
Receiver samples data on falling edge of the line clock  
6.2.6.8 GHDLC Channel Transmit Command Registers  
GTCMD Register 0  
GTCMD Register 1  
GTCMD Register 2  
GTCMD Register 3  
write  
write  
write  
write  
Address: D0CAH  
Address: D0CCH  
Address: D0CEH  
Address: D0D0H  
Reset value: 0000H  
15  
x
14  
13  
x
12  
11  
x
10  
x
9
x
8
x
x
x
7
x
6
5
4
3
2
1
0
STOP TXCMD  
TBFILL(4:0)  
Preliminary Data Sheet  
6-43  
2003-08  
DELIC  
Register Description  
TBFILL(4:0) Transmit Buffer Fill  
Indicates to the GHDLC unit the currently available number of bytes - 1  
in the transmit buffer.  
TXCMD  
STOP  
Transmission Command  
0 =  
1 =  
Transmission is not started  
Start transmission  
Stop Command  
0 =  
Message continues in the next buffer  
1 =  
End of the message is in this buffer  
6.2.6.9 ASYNC Control Register  
GASYNC Register  
read/ write  
Address: D0D2H  
Reset value: 0000  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
6
5
4
3
2
1
0
IOPORT(7..0)  
Accesses to register GASYNC:  
IOPORT Writing a "1" to the bit position  
Reading from the bit position indicates the  
current state of the port pin below  
bits  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
sets the port pin below  
LTXD0  
LRXD0  
LRXD1  
LRXD2  
LRXD3  
LCTS0  
LCTS1  
LCTS2  
LCTS3  
LTXD1  
LTXD2  
LTXD3  
LRTS0  
LRTS1  
LRTS2  
LRTS3  
Accesses to the different bits of this register are only possible in ASYNC mode of the  
corresponding GHDLC channel (See “GHDLC Mode Registers” on page 42.).  
Preliminary Data Sheet  
6-44  
2003-08  
DELIC  
Register Description  
Note: GHDLC channels 3..1 are only accessible, if respective bits in register MUXCTRL  
are set.  
6.2.6.10 LCLK0 Control Register  
LCLK0 Control Register (GLCLK0)  
read/write  
Address: D08AH  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
x
2
1
0
LCLK0EN  
LCLK0(1:0)  
Note: ’x’ = unused bits, read as 0.  
LCLK0EN LCLK0 Output Enable  
0 =  
1 =  
LCLK0 is input (default)  
LCLK0 is driven outward via LCLK0 pin  
LCLK0(1:0) LCLK0 Output Clock Rate  
Note: This option is valid only when LCLK0 is output. When LCLK0 is  
input the frequency is determined externally.  
00 =  
01 =  
10 =  
11 =  
2.048 MHz (default)  
4.096 MHz  
8.192 MHz  
16.384 MHz  
Preliminary Data Sheet  
6-45  
2003-08  
DELIC  
Register Description  
6.2.6.11 LCLK1 Control Register  
LCLK1 Control Register (GLCLK1)  
Reset value: 0000H  
read/write  
Address: D08BH  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
x
2
1
0
LCLK1EN  
LCLK1(1:0)  
Note: ’x’ = unused bits, read as 0.  
LCLK1EN LCLK1 Output Enable  
0 =  
1 =  
LCLK1 is input (default)  
LCLK1 is driven outward via LCLK1 pin  
LCLK1(1:0) LCLK1 Output Clock Rate  
Note: This option is valid only when LCLK1 is output. When LCLK1 is  
input the frequency is determined externally.  
00 =  
01 =  
10 =  
11 =  
2.048 MHz (default)  
4.096 MHz  
8.192 MHz  
16.384 MHz  
Preliminary Data Sheet  
6-46  
2003-08  
DELIC  
Register Description  
6.2.6.12 LCLK2 Control Register  
LCLK2 Control Register (GLCLK2)  
Reset value: 0000H  
read/write  
Address: D08CH  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
x
2
1
0
LCLK2EN  
LCLK2(1:0)  
Note: ’x’ = unused bits, read as 0.  
LCLK2EN LCLK2 Output Enable  
0 =  
1 =  
LCLK2 is input (default)  
LCLK2 is driven outward via LCLK2 pin  
LCLK2(1:0) LCLK2 Output Clock Rate  
Note: This option is valid only when LCLK2 is output. When LCLK2 is  
input the frequency is determined externally.  
00 =  
01 =  
10 =  
11 =  
2.048 MHz (default)  
4.096 MHz  
8.192 MHz  
16.384 MHz  
Preliminary Data Sheet  
6-47  
2003-08  
DELIC  
Register Description  
6.2.6.13 LCLK3 Control Register  
LCLK3 Control Register (GLCLK3)  
Reset value: 0000H  
read/write  
Address: D08DH  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
x
2
1
0
LCLK3EN  
LCLK3(1:0)  
Note: ’x’ = unused bits, read as 0.  
LCLK3EN LCLK3 Output Enable  
0 =  
1 =  
LCLK3 is input (default)  
LCLK3 is driven outward via LCLK3 pin  
LCLK3(1:0) LCLK3 Output Clock Rate  
Note: This option is valid only when LCLK3 is output. When LCLK3 is  
input the frequency is determined externally.  
00 =  
01 =  
10 =  
11 =  
2.048 MHz (default)  
4.096 MHz  
8.192 MHz  
16.384 MHz  
Preliminary Data Sheet  
6-48  
2003-08  
DELIC  
Register Description  
6.2.6.14 Muxes Control Register  
MUXCTRL Register  
OAK: read/write  
Address: D14AH  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
1
0
PMUX1 PMUX0  
IMUX  
IMUX  
0 =  
1 =  
IOM-2000 pins are used for the IOM-2000 interface  
IOM-2000 pins are used for the GHDLC cha. 1  
PMUX0  
PMUX1  
0 =  
1 =  
PCM ports 0 & 2 pins are used for PCM  
PCM ports 0 & 2 pins are used for GHDLC cha. 2  
0 =  
1 =  
PCM ports 1 & 3 pins are used for PCM  
PCM ports 1 & 3 pins are used for GHDLC cha. 3  
Preliminary Data Sheet  
6-49  
2003-08  
DELIC  
Register Description  
6.2.7  
DCU Register Description  
6.2.7.1 Interrupt Mask Register  
IMASK Register  
read/write  
Address: D002H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
IMASK  
IMASK  
GHDLC Interrupt Mask  
0 =  
1 =  
GHDLC interrupt disabled  
GHDLC interrupt enabled  
Note: The unused bits (x) are read as ‘0’.  
6.2.7.2 Status Event Register  
STEVE Register  
read  
Address: D003H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
1
0
PFS  
FSC  
FP  
PFS  
PFS Status Bit  
0 =  
1 =  
normal operation  
PFS rising edge has occurred (reset by DSP read access)  
Preliminary Data Sheet  
6-50  
2003-08  
DELIC  
Register Description  
FSC  
FP  
FSC Status Bit  
0 =  
1 =  
normal operation  
FSC rising edge has occurred (reset by DSP read access)  
FSC & PFS Status Bit  
0 =  
1 =  
normal operation  
Both FSC and PFS rising edges have occurred, i.e. bits PFS and  
FSC are set (reset by DSP read access)  
Note: Unused bits (’x’) are read as ‘0’.  
6.2.7.3 Statistics Counter Register  
STATC Register  
read/write  
Address: D004H  
Reset value: unchanged  
Reset value: unchanged upon chip reset, but reset upon FSC detection if STATC was  
read by the DSP since last occurence of FSC.  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
6
5
4
3
2
1
0
STATC(7:0)  
STATC  
(7:0)  
Statistics Counter Value  
Note: The unused bits (x) are read as ‘0’.  
Preliminary Data Sheet  
6-51  
2003-08  
DELIC  
Register Description  
6.2.7.4 Statistics Register  
STATI Register  
read/write  
Address: D005H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
6
5
4
3
2
1
0
MSC(7:0)  
MSC(7:0) Max. Statistics Count  
Note: The unused bits (x) are read as ‘0’.  
6.2.8  
µP Configuration Registers  
6.2.8.1 µP Interface Configuration Register  
MCFG Register  
DSP: read  
µP: read/write  
DSP Address: D148H  
µP high address: none  
µP low address: 48H  
Reset value: 00H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
MODE  
7
6
5
4
3
2
1
0
DRQLV IRQLV IRQMO IMASK  
IACK  
PEC  
FB  
DMA  
DMA  
DMA Mode Enabled  
0 =  
No DMA  
Preliminary Data Sheet  
6-52  
2003-08  
DELIC  
Register Description  
1 =  
DMA enabled  
FB  
Fly-by Mode  
0 =  
1 =  
Memory-to-memory mode used for DMA transfers  
Fly-by mode used for DMA transfers  
PEC  
PEC Transfers Enable  
0 =  
1 =  
No PEC Transfers  
PEC transfers are supported (for connection of C16x µP)  
IACK  
Interrupt Acknowledge Mode  
0 =  
1 =  
Interrupt vector is provided to CPU after 1st IACK pulse.  
Interrupt vector is provided to CPU after 2nd IACK pulse.  
IMASK  
IRQMO  
IRQLV  
DRQLV  
MODE  
Interrupt Mask  
0 =  
1 =  
IREQ pin is disabled  
IREQ pin is enabled  
IREQ Pin Mode  
0 =  
1 =  
Open-drain mode  
Push-pull mode  
IREQ Pin Level  
0 =  
1 =  
Low active  
High active  
DREQR/DREQT Pins Level  
0 =  
1 =  
High active  
Low active  
µP Interface Mode  
Contains the value of MODE input pin sampled by rising edge of RESET  
Note: This signal is hardwired.  
0 =  
1 =  
Intel/Siemens mode  
Motorola mode  
Preliminary Data Sheet  
6-53  
2003-08  
DELIC  
Register Description  
6.2.8.2 Device Version Register  
VDEV Register  
µP: read  
4
µP address: 6AH  
Reset value: none (hardwired)  
7
6
5
3
2
1
0
VDEV(7:0)  
VDEV  
Device Version  
Contains the information about the device status.  
1H  
2H  
DELIC Version 1.1  
DELIC Version 2.1  
6.2.8.3 Interrupt Vector Register  
IVEC Register  
DSP: read/ write  
µP: read  
DSP Address: D168H  
µP high address: none  
µP low address: 68H  
Reset value: unchanged  
7
6
5
4
3
2
1
0
IVEC(7:0)  
IVEC7..0 Interrupt vector  
Contains the interrupt vector address that is output during an INTA cycle of  
the µP  
Preliminary Data Sheet  
6-54  
2003-08  
DELIC  
Register Description  
6.2.9  
µP Mailbox Registers Description  
6.2.9.1 µP Command Register  
MCMD Register  
DSP: read  
µP: write  
DSP address: D140H  
µP address: 40H  
Reset value: 00H  
7
6
5
4
3
2
1
0
MCMD  
MCMD  
µP Command  
Contains the µP command (8-bit opcode) to the DELIC.  
6.2.9.2 µP Mailbox Busy Register  
MBUSY Register  
DSP: write  
µP: read  
DSP Address: D141H  
µP high address: 41H  
µP low address: none  
Reset value: 00H  
15  
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
MBUSY  
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
MBUSY µP Mailbox Busy Bit  
0 =  
Mailbox is available for the external µP. The µP may write a  
command to MCMD.  
Preliminary Data Sheet  
6-55  
2003-08  
DELIC  
Register Description  
1 =  
Mailbox is blocked for the external µP. The µP may not write a  
command to MCMD.  
Note: MBUSY is automatically set each time a command is written  
to MCMD by the µP.  
MBUSY is reset automatically by a direct OAK write  
operation to the MBUSY register.  
6.2.9.3 µP Mailbox Generic Data Register  
MGEN Register  
DSP: read  
µP: write  
DSP Address: D144H  
DSP high: D143H  
DSP low: D142H  
µP high: 43H  
µP low: 42H  
Reset value: unchanged  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
MGEN(15..8)  
7
6
4
3
MGEN(7..0)  
MGEN  
(15..0)  
µP Mailbox Generic Data (16 bits)  
Preliminary Data Sheet  
6-56  
2003-08  
DELIC  
Register Description  
6.2.9.4 µP Mailbox (General and DMA Mailbox) Data Registers  
MDTn Register (n=0..7)  
TDTn/ MDTn+8 Register (n=0..7)  
DSP: read  
µP: write  
Addr. see table on page 6-6  
Reset value: unchanged  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
MDTn(15..8)  
7
6
4
3
MDTn(7..0)  
MDTn  
(15..0)  
µP Mailbox Data (each byte is addressed seperately by the external µP)  
Note: The 16 data registers (MDT1..7, TDT0/MDT8..TDT7/MDT15) have the same  
structure. The addresses are displayed in the register map (page 6-6, page 6-7).  
6.2.9.5 DSP Command Register  
OCMD Register  
DSP: write  
µP: read  
DSP address: D160H  
µP address: 60H  
Reset value: 00H  
7
6
5
4
3
2
1
0
OCMD  
OCMD  
DSP Command  
Contains the DSP command/ indication (8-bit opcode) to the  
DELIC.  
Preliminary Data Sheet  
6-57  
2003-08  
DELIC  
Register Description  
6.2.9.6 DSP Mailbox Busy Register  
OBUSY Register  
DSP: read  
µP: read/ write  
DSP Address: D161H  
µP high address: 61H  
µP low address: none  
Reset value: 00H  
15  
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
OBUSY  
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
OBUSY  
DSP Mailbox Busy Bit  
0 =  
Mailbox is available for the DSP. The DSP may write a command/  
indicationto OCMD.  
1 =  
Mailbox is blocked for the DSP. The DSP may not write a  
command/ indication to OCMD.  
Note: OBUSY is automatically set each time a command/  
indication is written to OCMD by the DSP.  
OBUSY is reset automatically by a direct µP write operation  
to the OBUSY register  
Preliminary Data Sheet  
6-58  
2003-08  
DELIC  
Register Description  
6.2.9.7 DSP Mailbox Generic Data Register  
OGEN Register  
DSP: write  
µP: read  
DSP address: D164H  
DSP high: D163H  
DSP low: D162H  
µP high: 63H  
µP low: 62H  
Reset value: unchanged  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
OGEN(15..8)  
7
6
4
3
OGEN(7..0)  
OGEN  
15..0  
DSP Mailbox Generic Data (16 bits)  
6.2.9.8 DSP Mailbox (General and DMA Mailbox) Data Registers  
ODTn Register (n= 0..15)  
DSP: write  
Addr. see table on page 6-7  
RDTn/ ODTn+8 Register (n=0..7) µP: read  
Reset value: unchanged  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
ODTn(15..8)  
7
6
4
3
ODTn(7..0)  
(
ODTn  
(15..0)  
DSP Mailbox Data (each byte is addressed seperately by the external µP)  
Note: The 16 data registers (ODT1..7, RDT0/ODT8..RDT7/ODT15) have the same  
structure. The addresses are displayed in the register map (page 6-6, page 6-7).  
Preliminary Data Sheet  
6-59  
2003-08  
DELIC  
Register Description  
6.2.10  
DMA Mailbox Registers Description  
6.2.10.1 DMA Mailbox Transmit Counter Register  
DTXCNT Register  
DSP: read/write  
Address: D150H  
Reset value: 0000H  
15  
x
14  
13  
x
12  
11  
x
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
2
1
0
TXCNT(3:0)  
Note: Writing to TXCNT initiates a DMA transfer of TXCNT bytes to the DMA Tx Mailbox.  
This register value does not change during the current transfer.  
6.2.10.2 DMA Mailbox Receive Counter Register  
DRXCNT Register  
DSP: read/write  
Address: D170H  
Reset value: 0000H  
15  
x
14  
13  
x
12  
11  
x
10  
9
x
8
x
x
x
x
7
x
6
x
5
x
4
x
3
2
1
0
RXCNT(3:0)  
Note: Writing to RXCNT initiates a DMA transfer of RXCNT bytes to the DMA Rx  
Mailbox. This register value does not change during the current transfer.  
Preliminary Data Sheet  
6-60  
2003-08  
DELIC  
Register Description  
6.2.10.3 DMA Mailbox Interrupt Status Register  
DINSTA Register  
DSP: read  
Address: D152H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
2
1
0
INSTA(3:0)  
Contains the status of the DMA Mailbox.  
Preliminary Data Sheet  
6-61  
2003-08  
DELIC  
Register Description  
6.2.11  
Clock Generator Register Description  
6.2.11.1 PDC Control Register  
PDC Control Register (CPDC)  
Reset value: 0000H  
read/write  
Address: D080H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
x
2
x
1
0
PDC(1:0)  
Note: ’x’ = unused bits, read as 0.  
PDC(1:0) PDC Frequency Selection (Only in Master Mode when PDC is output)  
00 =  
01 =  
10 =  
11 =  
PDC = 2.048 MHz (default)  
PDC = 4.096 MHz  
PDC = 8.192 MHz  
PDC = 16.384 MHz  
6.2.11.2 PFS Control Register  
PFS Control Register (CPFS)  
Reset value: 0001H  
read/write  
Address: D081H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
PFS  
Note: ’x’ = unused bits, read as 0.  
PFS PFS Frequency Selection  
(Selectable in Slave mode when PFS is input; in Master mode PFS = 8 kHz)  
0 = PFS = 4 kHz  
Preliminary Data Sheet  
6-62  
2003-08  
DELIC  
Register Description  
1 =  
PFS = 8 kHz (default)  
Note: When the PFS is output, its frequency is always 8 kHz, therefore this bit should be  
left in its reset-value ('1') and not to be changed.  
The direction of PFS and PDC: input (slave) or output (master) is determined by  
the Master/Slave strap (DREQR pin) during reset.  
6.2.11.3 CLKOUT Control Register  
CLKOUT Control Register (CLKOUT) read/write  
Address: D082H  
Reset value: 0008H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
2
1
0
CLKOUTEN  
CLKOUT  
Note: ’x’ = unused bits, read as 0.  
CLKOUTEN CLKOUT Pin Enable  
0 =  
1 =  
CLKOUT pin is in tri-state.  
CLKOUT pin is active. (default)  
CLKOUT  
CLKOUT Pin Frequency  
000 = 2.048 MHz (default)  
001 = 4.096 MHz  
010 = 8.192 MHz  
011 = 15.36 MHz  
100 = 16.384 MHz  
Preliminary Data Sheet  
6-63  
2003-08  
DELIC  
Register Description  
6.2.11.4 DCXO Reference Clock Select Register  
REFSEL Register (CREFSEL)  
read/write  
Address: D083H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
2
1
0
REFSEL  
EN  
REFSEL(2:0)  
Note: ’x’ = unused bits, read as 0  
This register controls the selection of the source of the DCXO 8kHz reference clock  
REFSELEN DCXO Reference Clock Enable  
0 =  
1 =  
The reference clock is disabled (default)  
The reference clock is enabled  
REFSEL(2:0) DCXO Reference Clock Select  
000 = DXCLK/192 (default)  
001 = XCLK/256  
010 = XCLK  
011 = REFCLK (when input)  
100 = REFCLK (when input)/64  
101 = PFS (when input)  
Preliminary Data Sheet  
6-64  
2003-08  
DELIC  
Register Description  
6.2.11.5 REFCLK Control Register  
REFCLK Control Register (CREFCLK)read/write  
Reset value: 0003H  
Address: D084H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
2
1
0
REFCLKEN  
REFDIV(2:0)  
Note: ’x’ = unused bits, read as 0.  
REFCLK may be configured as an input or as an output. When configured as an input,  
it may be used as a source for the on-chip DCXO 8kHz reference clock. This option is  
handled by the DCXO Reference Clock Select Register (CREFSEL).  
When configured as an output it is derived from XCLK input pin. In order to drive  
REFCLK, XCLK may be divided by 256, 192, 4, 3 or 1.  
REFCLKEN REFCLK Pin Output Enable  
0 =  
1 =  
REFCLK is input, the pad is not output enabled  
REFCLK is output  
REFDIV(2:0) REFCLK Pin Output Divider Selection  
This determines the value by which the XCLK maximum clock of 2.048  
MHz is divided internally.  
000 = Division by 256  
001 = Division by 192  
010 = Division by 4  
011 = Division by 3 (default)  
100 = Division by 1  
Preliminary Data Sheet  
6-65  
2003-08  
DELIC  
Register Description  
6.2.11.6 DCL_2000 Control Register  
DCL_2000 Control Register (CDCL2) read/write  
Reset value: 0004H  
Address: D085H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
1
0
DCL2EN  
DCL2(1:0)  
Note: ’x’ = unused bits, read as 0.  
DLC2EN DCL_2000 Clock Enable  
0 =  
1 =  
DCL_2000 clock is disabled  
DCL_2000 clock is enabled (default)  
DCL2(1:0) DCL_2000 Clock Rate  
00 =  
01 =  
10 =  
3.072 MHz (default)  
6.144 MHz  
12.288 MHz  
6.2.11.7 DCL Control Register  
DCL Control Register (CDCL)  
Reset value: 000BH  
read/write  
Address: D086H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
2
1
0
DCLEN  
DCL(2:0)  
Note: ’x’ = unused bits, read as 0.  
DCLEN DCL Clock Enable  
0 = DCL is disabled  
Preliminary Data Sheet  
6-66  
2003-08  
DELIC  
Register Description  
1 =  
DCL is enabled (default)  
DCL(2:0) DCL Clock Rate  
000 = 384 kHz  
001 = 768 kHz  
010 = 1536 kHz  
011 = 2048 kHz (default)  
100 = 4096 kHz  
6.2.11.8 FSC Control Register  
FSC Control Register (CFSC)  
Reset value: 0002H  
read/write  
Address: D087H  
15  
x
14  
x
13  
x
12  
11  
10  
x
9
x
8
x
x
x
7
x
6
x
5
x
4
x
3
2
1
0
IFSCD  
EFSC FSCEN FSCSH  
Note: ’x’ = unused bits, read as 0.  
FSCEN  
FSCSH  
EFSCD  
FSC Clock Enable  
0 =  
1 =  
FSC is disabled (stuck at '0')  
FSC is enabled (default)  
Short FSC Pulse  
0 =  
1 =  
The next FSC pulse will be longer than 2 DCL cycles (default)  
The next FSC pulse will be shorter than 2 DCL cycles (short FSC)  
External FSC Delay  
0 =  
1 =  
no delay between FSC and DCL rising edge  
FSC rising edge is delayed by one CLK61 clock (16 ns) relative to  
DCL/ DCL2000  
IFSCD  
Internal FSC Delay (only valid of CSTRAP: bit0 = 1)  
0 = no delay between FSC and DCL rising edge  
Preliminary Data Sheet  
6-67  
2003-08  
DELIC  
Register Description  
1 =  
FSC rising edge is delayed by one CLK61 clock (16 ns) relative to  
DCL/ DCL2000  
Note: If only one short FSC pulse is needed, this bit should be reset to '0' by the DELIC  
software, after the next FSC rising edge detection (after the begining of the next  
frame). It is not executed automatically by the hardware.  
6.2.11.9 L1_CLK Control Register  
L1_CLK Control Register (CL1CLK) read/write  
Address: D088H  
Reset value: 0000H  
15  
x
14  
x
13  
x
12  
x
11  
x
10  
x
9
x
8
x
7
x
6
x
5
x
4
x
3
x
2
x
1
0
L1CLKDIS L1CLK  
Note: ’x’ = unused bits, read as 0.  
L1CLKEN L1_CLK Disable  
0 =  
1 =  
L1_CLK is enabled (default)  
L1_CLK is disabled  
L1CLK  
L1_CLK Clock Rate  
0 =  
1 =  
7.68 MHz (default)  
15.36 MHz  
Preliminary Data Sheet  
6-68  
2003-08  
DELIC  
Register Description  
6.2.11.10 PFS Sync Register  
PFS Sync Register (CPFSSY)  
Reset value: 0000H  
read/write  
Address: D089H  
15  
x
14  
x
13  
x
12  
11  
x
10  
x
9
x
8
x
x
7
x
6
x
5
x
4
x
3
2
1
0
PFSSYNC(1:0)  
Note: ’x’ = unused bits, read as 0.  
During read cycle the 2 LSBs are driven by the the PFS-sync state-machine's state bits.  
This is needed only for testing.  
The PFS-sync Signal actually resets the 61.44 MHz-Clock-division-Chain. The PFS-  
sync signal activated with the PFS-rising edge detection, but only when the internal-reset  
is activated or after a "PFS-sync" instruction was carried out by the OAK. The goal of  
reseting the 61.44MHz-Clock-division-Chain by PFS-sync, is to lead to a situation in  
which FSC rises with PFS. After the initial reset by the PFS-sync a small- and flexible  
phase difference is maintained by the DCXO-PLL. A write access to PFS-Sync Register,  
resets the 61MHz clock-division chain, including FSC, by the next PFS rising-edge  
detection. This is true only if the write access was carried-out before the falling edge of  
PFS. If the write-access comes after the falling edge of PFS, the acctuall sync operation  
will not be carried out by the next PFS rising-edge, but with one that will come after it.  
The written value does not make any difference.  
6.2.11.11 Realtime Counter Register  
RT Counter Register (CRTCNT)  
read  
Address: D08EH  
Reset value: 0000H  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RTCOUNT(15:8)  
4
3
RTCOUNT(7:0)  
This 18-bit counter counts 8 kHz cycles. It is used by the software to time the handling  
of required tasks. One period of the counter (counting from 0000H to FFFFH and back  
Preliminary Data Sheet  
6-69  
2003-08  
DELIC  
Register Description  
to 0000H) is 32.768 sec. Only the 16 MSBs of the counter may be read by the OAK,  
therefore the actuall resolution is 0.5 ms. .  
RTCOUNT(15:0)  
The 16 MSBs of the realtime counter  
6.2.11.12 Strap Status Register  
Strap Status Register (CSTRAP)  
Reset value: xxxx xxxx xxxx xx10B  
read/ write  
Address: D08FH  
15  
x
14  
x
13  
x
12  
11  
x
10  
2
9
8
0
x
STRAP(10:8)  
7
6
5
4
3
1
STRAP(7:0)  
Note: ’x’ = unused bits, read as 0.  
STRAP  
(10:0)  
This register enables the OAK to read the straps values, as sampled  
during reset  
bit 10  
PCM Clock Master Strap  
bit 9:7 Test Mode Strap  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
Emulation Boot Strap  
PLL Bypass Strap  
DSP PLL Power-Down Strap  
Boot Strap  
Reset counter Bypass Strap  
DCXO Fast-Synchronization Enable  
0 =  
1 =  
Linear (slow) synchronization (for DECT applications)  
Fast synchronization (default)  
bit 0  
Internal Source Clock Strap  
0 =  
PFS, PDC, DCL, FSC, DCL2000 are delayed by some  
ns (default)  
1 =  
PFS, PDC, DCL, FSC, DCL2000 are not delayed  
Preliminary Data Sheet  
6-70  
2003-08  
DELIC  
Package Outlines  
7
Package Outlines  
P-TQFP-100-1  
(Plastic Thin Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
2003-08  
SMD = Surface Mounted Device  
Preliminary Data Sheet  
7-1  
DELIC  
PEB 20571  
Electrical Characteristics  
8
Electrical Characteristics  
8.1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Tstg  
Limit Values  
– 65 to 150  
Unit  
°C  
V
Storage temperature  
IC supply voltage  
VDD  
VI  
– 0.3 to 4.6  
DC input voltage (except I/Os)  
– 0.3 to 6.0  
V
DC output voltage (including I/Os);  
output in high or low state  
VO  
– 0.3 to VDD + 0.3  
V
DC output voltage (including I/Os);  
output in tri-state  
ESD robustness1)  
VI, VO  
– 0.3 to 6.0  
V
V
VESD,HBM 1000  
HBM: 1.5 k, 100 pF  
1)  
According to MIL-Std 883D, method 3015.7 and ESD Ass. Standard EOS/ESD-5.1-1993.  
The Pins (TBD) are not protected against voltage stress > (TDB) V (versus VS or GND). The (TBD)  
performance prohibits the use of adequate protective structures.  
Note: Stresses above those listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible  
damage to the integrated circuit.  
8.2  
Operating Range  
Parameter  
Symbol  
Limit Values  
min. max.  
3.47 V  
Unit  
Power Supply Voltage  
Ground  
VDD  
VSS  
VIN  
3.13  
0
0 V  
Voltage applied to input pins  
0
5.5 V  
Voltage applied to output or I/O pins  
outputs enabled  
0
0
V
V
VDD  
5.5  
VOUT  
VOUT  
outputs high-Z  
Operating temperature  
PEB TA  
PEF TA  
t/v  
0
-40  
70 °C  
85 °C  
Input transition rise or fall time  
0
10 ns/V  
Note: In the operating range, the functions given in the circuit description are performed.  
Preliminary Data Sheet  
8-1  
2003-08  
DELIC  
PEB 20571  
Electrical Characteristics  
8.3  
DC Characteristics  
Parameter  
Symbol  
Limit Values  
min. max.  
VDD + 0.3 V  
Unit Test Condition  
High-Level Input Voltage VIH  
Low-Level Input Voltage  
2.0  
VOUT >= VOH (min)  
VOUT <= VOL (max)  
VDD = min,  
VIL  
– 0.3  
2.4  
0.8  
V
V
High-Level Output voltage VOH  
(all pins except DD0, DD1,  
DX, LTxD0, TxD0, TxD1)  
IOH = – 2 mA  
Low-Level Output voltage VOL  
(all pins except DD0, DD1,  
DX, LTxD0, TxD0, TxD1)  
0.4  
V
VDD = min,  
IOL = 2 mA  
High-Level Output voltage VOH  
(pins DD0, DD1, DX,  
2.4  
V
VDD = min,  
IOH = – 7 mA  
LTxD0, TxD0, TxD1)  
Low-Level Output voltage VOL  
(pins DD0, DD1, DX,  
LTxD0, TxD0, TxD1)  
0.4  
1
V
VDD = min,  
IOL = 7 mA  
Input leakage current  
IIL  
µA  
VDD = 3.3 V,  
GND = 0 V; all  
other pins are  
floating; VIN = 0 V  
Output leakage current  
IOZ  
1
µA  
VDD = 3.3 V,  
GND = 0 V;  
VOUT = 0 V  
Avg. power  
supply current  
ICC (AV)  
TBD  
mA VDD = 3.3 V,  
TA = 25 ° C:  
PDC = 8 MHz  
DSP @ 61.44 MHz  
Note: The listed characteristics are ensured over the operating range of the integrated  
circuit. Typical characteristics specify mean values expected over the production  
spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and  
the given supply voltage.  
Preliminary Data Sheet  
8-2  
2003-08  
DELIC  
PEB 20571  
Electrical Characteristics  
8.4  
Capacitances  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
Input Capacitance  
I/O Capacitance  
CIN  
CI/O  
7
7
pF  
pF  
fC = 1 MHz,  
The pins, which  
are not under test,  
are connected to  
GND  
Output Capacitance  
COUT  
10  
pF  
Crystal input capacitance CXIN  
(pin CLK16-XI)  
3.3 (TBD) pF  
Crystal output capacitance CXOUT  
3.3 (TBD) pF  
(pin CLK16-XO)  
8.5  
Recommended 16.384 MHz Crystal Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test Condition  
Motional Capacitance  
Shunt Capacitance  
C1  
C0  
25  
fF  
7
pF  
pF  
External Load Capacitance CL  
15  
30  
150  
Resonance Resistance  
Rr  
Frequency Calibration  
Tolerance  
ppm  
Preliminary Data Sheet  
8-3  
2003-08  
DELIC  
Timing Diagrams  
9
Timing Diagrams  
9.1  
General  
For TTL and CMOS voltage levels refer to the relevant JEDEC specifications, e.g. to  
JEDEC8-A for 3V/3.3V devices which are 5V compatible.  
Note: The complete AC characteristics will be provided after the electrical  
characterization of the device.  
All timing shown are preliminary.  
9.2  
µP Access Timing  
µP accesses of the DELIC are performed by an activation of the address and CS.  
• By driving the MODE pin ‘high’ the user selects Motorola mode, by driving it ‘low’ -  
Intel/Infineon mode. The pin is sampled during the rising edge of RESET.  
• In Intel/Infineon mode, a distinction is needed between working in multiplexed  
address/data bus mode and de-multiplexed address and data bus mode. In Motorola  
Mode, only de-multiplexed buses are used. The selection between multiplexed and  
de-multiplexed bus configurations is done by using the ALE pin.  
9.2.1  
µP Access Timing in Motorola mode  
In this mode R/W distinguishes between Read and Write interactions, and DS is used for  
timing.  
Preliminary Data Sheet  
9-1  
2003-08  
DELIC  
Timing Diagrams  
Table 9-1  
Timing For Write Cycle In Motorola Mode  
Symbol Limit Values Unit Test  
Parameter  
Condition  
min.  
max.  
R/W setup time before DS x CS rising tSRWS  
edge  
15  
ns  
Output load  
capacity of  
50 pF  
R/W hold time after DS x CS rising  
edge  
tHRWS  
5
ns  
ns  
ns  
ns  
ns  
ns  
A-bus setup time before DS x CS  
rising edge  
tSAS  
15  
5
A-bus hold time after DS x CS rising tHAS  
edge  
D-bus setup time before DS x CS  
rising edge  
tSDS  
12  
10  
15  
D-bus hold time after DS x CS rising tHDS  
edge  
DS X CS pulse width  
tWS  
Note: DS X CS is active (low) when both, DS and CS, are active (low)  
tSRWS  
tHRWS  
tHAS  
tSDS tHDS  
tWS  
R/W  
A
tSAS  
D
DS x CS  
Figure 9-1  
Write Cycle in Motorola Mode  
Preliminary Data Sheet  
9-2  
2003-08  
DELIC  
Timing Diagrams  
Table 9-2  
Timing For Read Cycle In Motorola Mode  
Parameter  
Symbol  
Limit Values Unit Test  
Condition  
min.  
max.  
R/W setup time before DS X CS  
falling edge  
tSRWS  
tHRWS  
0
ns  
Output load  
capacity of  
50 pF  
R/W hold time after DS X CS rising  
edge  
5
ns  
A-bus valid to D-bus valid  
tDAD  
tDSD  
0
0
0
20  
20  
15  
ns  
ns  
ns  
DS X CS falling edge to D-bus  
D-bus float after DS X CS rising edge tDSDH  
Note: DS X CS is active (low) when both, DS and CS are active (low)  
A
tSRWS  
tHSRW  
R/W  
DSxCS  
tDAD  
tDSD  
tDSDH  
D
Figure 9-2  
Read Cycle in Motorola Mode  
9.2.2  
µP Access Timing in Intel/Infineon Mode  
In this mode driving RD ‘low’ causes a read access, driving WR ‘low’ causes a write  
access.  
Timing for Demultiplexed Bus  
In de-multiplexed bus configuration, ALE must be driven ‘high’.  
Preliminary Data Sheet  
9-3  
2003-08  
DELIC  
Timing Diagrams  
Table 9-3  
Timing For Write Cycle In Intel/Infineon Demultiplexed Mode  
Parameter  
Symbol  
Limit Values Unit Test  
Condition  
min.  
max.  
A-bus setup time before WR rising  
edge  
tSAW  
12  
ns  
Output load  
capacity of  
50 pF  
A-bus hold time after WR rising edge tHAW  
CS setup time before WR rising edge tSCW  
5
ns  
ns  
ns  
ns  
12  
5
CS hold time after WR rising edge  
tHCW  
tSDW  
D-bus setup time before WR rising  
edge  
12  
D-bus hold time after WR rising edge tHDW  
10  
15  
ns  
ns  
WR pulse width  
tWW  
tWW  
tSCW  
tSAW  
tHCW  
tHAW  
tHDW  
tSDW  
WR  
A
CS  
D
Figure 9-3  
Write Cycle in Intel/Infineon De-multiplexed Mode  
Preliminary Data Sheet  
9-4  
2003-08  
DELIC  
Timing Diagrams  
Table 9-4  
Timing For Read Cycle In Intel/Infineon De-multiplexed Mode  
Parameter  
Symbol  
Limit Values Unit Test  
Condition  
min.  
max.  
20  
A-bus valid to D-bus valid  
tDAD  
tDRD  
0
0
0
ns  
ns  
ns  
Output load  
capacity of  
50 pF  
RD X CS falling edge to D-bus  
20  
D-bus float after RD X CS rising edge tDRDH  
15  
Note: RD X CS is active (low) when both RD and CS are active (low)  
A
RDxCS  
tDAD  
tDRD  
tDRDH  
D
Figure 9-4  
Read Cycle in Intel/Infineon De-multiplexed Mode  
Preliminary Data Sheet  
9-5  
2003-08  
DELIC  
Timing Diagrams  
Timing for Multiplexed Bus  
In this mode the ALE pin is used to lock the address send via the multiplexed A/D bus.  
Table 9-5  
Timing For Write Cycle In Intel/Infineon Multiplexed Mode  
Parameter  
Symbol  
Limit Values Unit Test  
Condition  
min.  
max.  
A-bus setup time before ALE falling  
edge  
tSAL  
12  
ns  
Output load  
capacity of  
50 pF  
A-bus hold time after ALE falling edge tHAL  
ALE pulse width tWL  
CS setup time before WR rising edge tSCW  
5
ns  
ns  
ns  
ns  
ns  
10  
12  
5
CS hold time after WR rising edge  
tHCW  
tSDW  
D-bus setup time before WR rising  
edge  
12  
D-bus hold time after WR rising edge tHDW  
10  
5
ns  
ns  
ns  
ALE hold time after WR rising edge  
WR pulse width  
tHLW  
tWW  
15  
tWW  
WR  
tSCW  
tHCW  
CS  
tSAL  
tHAL  
tHDW  
tHLW  
tSDW  
Address  
Data  
AD  
tWL  
ALE  
Figure 9-5  
Write Cycle in Intel/Infineon Multiplexed Mode  
Preliminary Data Sheet  
9-6  
2003-08  
DELIC  
Timing Diagrams  
Table 9-6  
Timing For Read Cycle In Intel/Infineon Multiplexed Mode  
Symbol Limit Values Unit Test  
Parameter  
Condition  
min.  
max.  
ALE low before RD X CS falling edge tHRL  
5
5
ns  
ns  
Output load  
capacity of  
50 pF  
ALE hold time after RD X CS rising  
edge  
tHLR  
ALE pulse width  
tWL  
10  
12  
ns  
ns  
A-bus setup time before ALE falling  
edge  
tSAL  
A-bus hold time after ALE falling edge tHAL  
RD X CS falling edge to D-bus valid tDRD  
D-bus float after RD X CS rising edge tDRDH  
5
0
0
ns  
ns  
ns  
20  
15  
tHRL  
RDxCS  
tWL  
tHLR  
tDRDH  
ALE  
tHAL  
tDRD  
Data  
tSAL  
Address  
AD  
Figure 9-6  
Read Cycle in Intel/Infineon Multiplexed Mode  
9.3  
Interrupt Acknowledge Cycle Timing  
The IREQ (Interrupt REQuest) output signal of the DELIC is activated upon a DSP write  
operation to the OCMD register (OAK Mailbox command register). This operation sets  
the OAK Mailbox busy bit (OBUSY), which drives directly the IREQ output signal. The  
IREQ signal may be masked, by programming the MASK bit within the µP interface  
Control Register (UPCR).  
The microprocessor may force the DELIC to drive the interrupt vector over the data bus  
by activation of the interrupt acknowledge input signal (IACK).  
Preliminary Data Sheet  
9-7  
2003-08  
DELIC  
Timing Diagrams  
In Motorola mode, an interrupt acknowledge cycle consists of one IACK pulse, during  
which the interrupt vector is issued by the DELIC. In Intel/Infineon mode, an interrupt  
acknowledge cycle consists of two IACK pulses. Note that the interrupt vector is issued  
as a response to the second pulse. The source of the vector is the OAK Mailbox interupt  
vector register (IVEC). The DSP determines the value stored in this register by a write  
operation.  
IREQ is not deactivated by the IACK pulses directly, but by a µP write access to OBUSY.  
Table 9-7  
Interrupt Acknowledge Cycle Timing  
Parameter  
Symbol  
Limit Values Unit Test  
Condition  
min.  
0
max.  
20  
D-bus valid after IACK falling edge  
D-bus float after IACK rising edge  
IACK pulse width  
tDADV  
tDADT  
tWA  
ns  
ns  
ns  
ns  
Output load  
capacity of  
50 pF  
0
15  
25  
101)  
Interval between two ACK pulses  
tHA  
1)  
Valid only for Intel/Infineon mode.  
IACK  
tDADT  
tDADV  
D
vector  
Figure 9-7  
Interrupt Acknowledge Cycle Timing in Motorola Mode  
tWA  
tHA  
tWA  
IACK  
tDADT  
tDADV  
vector  
D
Figure 9-8  
Interrupt Acknowledge Cycle Timing in Intel/Infineon Mode  
Preliminary Data Sheet  
9-8  
2003-08  
DELIC  
Timing Diagrams  
DSxCS  
WR  
tDWI  
IREQ  
Figure 9-9  
IREQ Deactivation Timing  
Note: IREQ is deactivated due to µP write operation to OBUSY register. In Motorola  
mode DS and CS together time the write access. In Intel mode WR alone times  
the write access. For more details regarding the timing required during write  
access to the DELIC, refer to section 9.2. The other signals required for a write  
operation to OBUSY in each mode, are assumed to be driven.  
9.4  
DMA Access Timing  
The exact behavior required from the µP interface signals during a DMA access depends  
on the following modes:  
• Motorola or Intel Mode: Determined by the MODE input pin.  
• Normal or ’fly-by’ Mode: Programmable in the control register of the µP interface.  
In any mode, the DACK input is used to indicate that this is a DMA transaction, and to  
select the DMA Mailbox. An activation via the CS signal is not required in such cases.  
9.4.1  
DMA Access Timing In Motorola Mode  
In this mode DS is used for timing the access, while R/W is used to distinguish between  
DMA read transactions and DMA write transactions. The R/W input signal is used  
differently in normal mode and in fly-by mode. The next table shows how R/W should be  
used in each mode during DMA transactions:  
Table 9-8  
R/W Behavior During DMA Transactions in Normal and Fly-By Mode  
Mode  
R/W = ‘0’  
R/W = ‘1’  
Normal (Non-Fly-By)  
Write DMA transaction.  
(A response to DMA  
transmitter request)  
Read DMA transaction.  
(A response to DMA receiver  
request)  
Fly-By  
Read DMA transaction.  
(A response to DMA  
receiver request)  
Write DMA transaction.  
(A response to DMA transmitter  
request)  
Preliminary Data Sheet  
9-9  
2003-08  
DELIC  
Timing Diagrams  
In fly-by mode R/W is used inverted to the normal mode, since the same signal, R/W, is  
required for concurrent accesses of an external memory device.  
Table 9-9  
DMA Transaction timing in Mototrola Mode  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test  
Conditions  
min.  
DACK setup time to DS  
falling edge  
tSAS  
tHSA  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output load  
capacity of  
50 pF  
DACK hold time after DS  
rising edge  
5
D-bus setup time to DS rising tSDS  
edge  
5
D-bus hold time after DS  
rising edge  
tHSD  
10  
0
DREQT/DREQR delay after tDSR  
DS falling edge  
36  
R/W setup time to DS falling tSRWS  
edge  
7
R/W hold time after DS rising tHSRW  
edge  
5
DS pulse width and interval tWS  
between DS pulses  
30  
0
D-bus valid after DS falling  
edge  
tDSDV  
22  
15  
D-bus float (high impedance) tDSDT  
after DS rising edge  
0
Preliminary Data Sheet  
9-10  
2003-08  
DELIC  
Timing Diagrams  
tWS  
tWS  
tSRWS  
tSAS  
tSDS  
tHSA  
DS  
DACK  
R/W  
D
tHSRW  
tHSD  
last byte  
tDSR  
DREQT  
Figure 9-10 DMA Write Transaction Timing in Motorola Mode  
Note: R/W is shown for normal mode. In Fly-by mode, R/W should be high during DMA  
write transactions.  
Preliminary Data Sheet  
9-11  
2003-08  
DELIC  
Timing Diagrams  
tWS  
tSRWS  
tSAS  
tWS  
tHSA  
DS  
DACK  
tHSRW  
R/W  
tDSDT  
tDSDV  
last byte  
D
tDSR  
DREQR  
Figure 9-11 DMA Read-Transaction Timing in Motorola Mode  
Note: R/W is shown for normal mode. In Fly-by mode, R/W should be low during DMA  
read transactions.  
9.4.2  
DMA Access Timing in Intel/Infineon Mode  
In this mode, R and W are used for timing the access and to determine whether a DMA  
read cycle or DMA write cycle has occured. R and W input signals are used in opposite  
ways in normal mode and in fly-by mode.  
The next table shows how R and W should be used in each mode during DMA  
transactions:  
Preliminary Data Sheet  
9-12  
2003-08  
DELIC  
Timing Diagrams  
Table 9-10 R/W Behavior During DMA Transactions in Normal and Fly-By Mode  
Mode  
R = ‘1’, W = ‘0’  
R = ‘0’, W = ‘1’  
Normal (Non-Fly-By)  
Write DMA transaction.  
(A response to DMA  
transmitter request)  
Read DMA transaction.  
(A response to DMA receiver  
request)  
Fly-By  
Read DMA transaction.  
(A response to DMA  
receiver request)  
Write DMA transaction.  
(A response to DMA transmitter  
request)  
In Fly-By mode R and W are used inverted to the normal mode, because these signals  
are required also for concurrent accesses of an external memory device.  
Table 9-11 DMA Transaction Timing in Intel/Infineon Mode  
Parameter  
Symbol  
Limit Values Unit Test  
Conditions  
min.  
max.  
DACK setup time to W or R falling  
edge  
tSAW tSAR  
7
ns  
ns  
Output load  
capacity of  
50 pF  
DACK hold time after W or R rising  
edge  
tHWA  
tHRA  
tSDW  
tHWD  
tDWR  
tDRR  
5
D-bus setup time to W rising edge  
D-bus hold time after W rising edge  
5
ns  
ns  
ns  
10  
0
DREQT/DREQR delay after W or R  
falling edge  
36  
W pulse width and interval between W tWW  
pulses  
30  
30  
ns  
ns  
R pulse width and interval between R tWR  
pulses  
D-bus valid after R falling edge  
tDRDV  
0
0
22  
15  
D-bus float (high impedance) after R tDRDT  
rising edge  
Preliminary Data Sheet  
9-13  
2003-08  
DELIC  
Timing Diagrams  
tWW  
tWW  
tSDW  
tSAW  
WR(RD)  
tHWA  
DACK  
tHWD  
last byte  
D
tDWR  
DREQT  
Figure 9-12 DMA Write Transaction Timing in Intel/Infineon Mode  
Note: The figure shows a transaction in normal mode. In Fly-by mode, RD is used during  
DMA write transactions, instead of WR  
tWR  
tSAR  
tWR  
tHRA  
RD(WR)  
DACK  
tDRDT  
tDRDV  
last byte  
D
tDRR  
DREQR  
Figure 9-13 DMA Read Transaction Timing in Intel/Infineon Mode  
Note: The figure shows a transaction in normal mode. In Fly-by mode, WR is used during  
DMA read-transactions, instead of RD.  
Preliminary Data Sheet  
9-14  
2003-08  
DELIC  
Timing Diagrams  
®
9.5  
IOM -2 Interface Timing  
®
Figure 9-14 IOM -2 Interface Timing with Single Data Rate DCL  
®
Table 9-12 Timing Characteristics of the IOM -2  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
min. typ.  
max.  
Frame sync. hold  
Frame sync. setup  
Frame sync. high  
Frame sync. low  
Data delay to clock  
Data delay to frame  
Data setup  
tFH  
30  
ns  
ns  
ns  
tFS  
70  
tFWH  
tFWL  
tDDC  
tDDF  
tDS  
130  
tDCL  
100  
150  
ns  
ns  
ns  
ns  
1)  
20  
50  
Data hold  
tDH  
Note: 1) tDDF = 0.5 tDCL + tDDC tFH  
Preliminary Data Sheet  
9-15  
2003-08  
DELIC  
Timing Diagrams  
®
Figure 9-15 Timing of the IOM -2 Interface with Double Data Rate DCL  
®
Table 9-13 Timing Characteristics of the IOM -2  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
min. typ.  
max.  
Frame sync hold  
Frame sync setup  
Frame sync high  
Frame sync low  
Data delay to clock  
Data delay to frame  
Data setup  
tFH  
30  
ns  
ns  
ns  
tFS  
70  
tFWH  
tFWL  
tDDC  
tDDF  
tDS  
130  
tDCL  
100  
150  
ns  
ns  
ns  
ns  
1)  
20  
50  
Data hold  
tDH  
1)  
Note: tDDF = 0.5 tDCL + tDDC tFH  
Preliminary Data Sheet  
9-16  
2003-08  
DELIC  
Application Hints  
10  
Application Hints  
10.1  
DELIC Connection to External Microprocessors  
ALE  
CS  
WR  
CSn  
WR  
RD  
INTR  
RD  
IREQ  
DRQ0  
DRQ1  
DACK0  
DREQR  
DREQT  
DACK  
DACK1  
A0  
BLE  
A(5..1)  
A(5..1)  
AD(7..0)  
DELPHI  
D(7..0)  
80386EX  
Vcc 2.7V-3.6V,25MHz  
80386EX.vsd  
Figure 10-1 DELIC Connection to Intel 80386EX (Demuxed Configuration)  
Preliminary Data Sheet  
10-1  
2003-08  
DELIC  
Application Hints  
DMA Controller  
DREQR  
DREQT  
HOLD  
HLDA  
DRQ0  
DRQ1  
HOLD  
8237  
DACK0  
DACK1  
DACK  
HLDA  
ALE  
CS  
CSn  
WR  
WR  
RD  
RD  
IREQ  
INTn  
A(5..0)  
A(5..0)  
D(7..0)  
AD(7..0)  
Infineon C165  
Vcc 5V, 20MHz  
DELIC  
C165.vsd  
Figure 10-2 DELIC Connection to Siemens C165 (Demuxed Configuration)  
Preliminary Data Sheet  
10-2  
2003-08  
DELIC  
Application Hints  
10.2  
DELIC Worksheets  
Figure 10-3 DELIC-LC PCM unit mode 0 ( 4 ports with 2 MBit/s)  
Preliminary Data Sheet  
10-3  
2003-08  
DELIC  
Application Hints  
Figure 10-4 Command/ Indication handshake of general mailbox  
Preliminary Data Sheet  
10-4  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11  
Mailbox Protocol Description  
The following chapters describe the way of communication between DELIC and an  
external µP via the mailbox. If no DMA is used the general mailbox contains 32 data  
registers. If DMA is used there are actually two different mailboxes. In this case the DMA  
mailbox consists of 16 data registers and the general mailbox also contains 16 data  
registers.  
For more details especially initialization of the different units refer to the provided  
application notes.  
Note: As a reference, ELIC registers with similar functionality are appended in brackets.  
11.1  
Mailbox Access  
11.1.1  
Mailbox Access Transmit Direction (µP->DELIC)  
The general mailbox for transmit direction (Figure 11-1) consists of 20 (36) registers.  
One register (MCMD) contains the command to be processed by the DELIC. Another  
register (MBUSY) just consists of a Busy Bit indicating whether the mailbox is free to be  
written to or not. Two other registers (MGEN Low and MGEN High) serve for general  
parameters. A block of 16 (32) parameter registers contains data. Writing to the  
command register sets the Busy Bit and thereby an interrupt in the DELIC. If the DELIC  
has processed the command it clears the Busy Bit to release the mailbox.  
11.1.2  
Mailbox Access Receive Direction (DELIC->µP)  
The mailbox for receive direction (Figure 11-2) consists of 20 (36) registers. One register  
(OCMD) contains the indication to be processed by the µP. Another register (OBUSY)  
just consists of a Busy Bit which has to be cleared by the µP after processing the  
indication in order to release the mailbox. Two other registers (OGEN Low and OGEN  
High) serve as general parameters. A block of 16 (32) parameter registers contains data  
associated with the indication.  
Preliminary Data Sheet  
11-1  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
7
6
5
4
3
2
1
0
µP  
DELIC  
MCMD  
LSB  
Command  
0x40  
0x41  
0x42  
0x43  
0x00  
MBUSY  
bsy  
0
0
0
0
0
0
0
MGEN Low  
General Parameter 1  
MGEN High  
General Parameter 2  
MDT0 Low  
Parameter 1  
MDT7 High  
Parameter 16  
0x0F  
0x10  
MDT8/TDT0 Low  
Parameter 17  
MDT15/TDT7 High  
Parameter 32  
0x1F  
deli_552.emf  
Figure 11-1 Transmit Mailbox Structure  
Preliminary Data Sheet  
11-2  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
7
6
5
4
3
2
1
0
µP  
OCMD  
LSB  
DELIC  
Indication  
0x60  
0x61  
0x62  
0x63  
0x20  
OBUSY  
bsy  
0
0
0
0
0
0
0
OGEN Low  
General Parameter 1  
OGEN High  
General Parameter 2  
ODT0 Low  
Parameter 1  
ODT7 High  
Parameter 16  
0x2F  
0x30  
ODT8/RDT0 Low  
Parameter 17  
ODT15/RDT7 High  
Parameter 32  
0x3F  
deli_551.emf  
Figure 11-2 Receive Mailbox Structure  
Both sides, µP and DELIC, use the same procedure to perform write accesses to the  
mailbox. If one side wants to put a message into the mailbox it has to check whether the  
mailbox is free. If the mailbox is free the parameters have to be written first than the  
command (Figure 11-3).  
Preliminary Data Sheet  
11-3  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
No  
Is mailbox free (test  
OBUSY)?  
Yes  
write parameters to mailbox  
(MDTx, MGEN)  
write command to mailbox  
(MCMD)  
deli_553.emf  
Figure 11-3 Flow Diagram: Mailbox Write Access  
11.2  
Subscriber Address (SAD) Interpretation  
In this chapter SAD is used commonly for the subscriber address. There are two  
possibilities to interpret SAD  
11.2.1  
SAD as IOM-2 Port and Channel Number  
The DELIC has two IOM-2 ports. The subscriber address has to be interpreted as  
follows.  
bit  
7
6
5
4
3
2
1
0
SAD3  
SAD2  
SAD1  
SAD0  
SAD3  
IOM-2 port number (2.048 Mbit/s)  
0 = IOM-2 port 0 is addressed  
1 = IOM-2 port 1 is addressed  
SAD2..0 IOM-2 channel number (range: 0..7) (2.048 Mbit/s)  
SAD3..0 IOM-2 channel number (range: 0..15) (4.096 Mbit/s)  
Preliminary Data Sheet  
11-4  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.2.2  
SAD as IOM-2000 VIP and Channel Number  
It is possible to connect up to 3 VIPs to the DELIC via the IOM-2000 interface. Each VIP  
contains up to 8 channels. The subscriber address has to be interpreted as follows.  
bit  
7
6
5
4
3
2
1
0
SAD4  
SAD3  
SAD2  
SAD1  
SAD0  
SAD4..3 VIP number  
00 = VIP 0 is addressed  
01 = VIP 1 is addressed  
10 = VIP 2 is addressed  
11 = reserved  
SAD2..0 IOM-2000 channel number (range: 0..7)  
11.3  
Overview of Commands and Indications  
The following tables give an overview of all commands and indications according name,  
code value, parameters and the referring page where the detailed description can be  
found.  
11.3.1  
Commands and Indications for Boot Sequence  
Table 11-1 Boot Commands  
Name  
MCMD  
0x55  
MDT0  
MDT1..15  
Page  
11-13  
11-13  
Start Boot  
Write Program Memory  
0xAn  
Start Address  
Start Address  
Data  
Data  
n = Amount  
Write Data Memory  
Finish Boot  
0xEn  
11-14  
11-13  
n = Amount  
0x1F  
Preliminary Data Sheet  
11-5  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Table 11-2 Boot Indications  
Name  
OCMD  
0x1F  
ODT0  
Page  
11-15  
11-15  
11-15  
Start Loading Program RAM  
Start Loading Data RAM  
Error  
0xEF  
0b011100XX  
XXX=Error Code  
Firmware Version Indication  
0x00  
Version Number  
11-15  
11.3.2  
General Commands and Indications  
Table 11-3 General Commands  
Name  
OCMD OGEN Low OGEN  
High  
ODTx  
Page  
11-16  
11-17  
Write Register  
Read Register  
0x01  
Size  
MDT0: Destination address  
MDTx: Register value(s)  
0x02  
Size  
MDT0: Start address for read  
Table 11-4 General Indications  
Name  
OCMD OGEN Low OGEN  
High  
ODTx  
Page  
Read Register  
0x01  
Size  
Value(s) read from register  
11-18  
Preliminary Data Sheet  
11-6  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.3.3  
Commands and Indications for Configuration  
Table 11-5 Configuration Commands  
Name  
MCMD MGEN Low MGEN  
High  
MDTx  
Page  
IOM-2000  
Reference  
Channel Select  
0x05  
0x04  
0x03  
IOM-2000  
VIP and  
channel no.  
11-20  
IOM-2000 Delay  
Measurement  
IOM-2000  
VIP and  
channel no.  
11-21  
11-22  
IOM-2000 VIP  
Channel  
Configuration  
MDT0 H= TICCMR[31..24]  
MDT0 L= TICCMR[23..16]  
MDT1 H= TICCMR[15..8]  
MDT1 L= TICCMR[7..0]  
GHDLC  
Configuration  
0x14 GHDLC no.  
0x06  
MDT0 L = Mode Information 11-22  
MDT1 = Normal Address  
MDT2 = Broadcast Address  
Finish  
11-24  
Initialization  
Table 11-6 Configuration Indications  
Name  
OCMD OGEN Low OGEN  
High  
ODTx  
Page  
IOM-2000 Far- 0x07  
end Code  
Size IOM-2000 VIP and channel no. 11-24  
FECV  
Violation  
IOM-2000  
Delay  
0x04 Delay Value  
0x02 Delay Value  
11-25  
Finish VIP  
Channel  
ODT0 H= TICSTR[31..24]  
ODT0 L= TICSTR[23..16]  
ODT1 H= TICSTR[15..8]  
ODT1 L= TICSTR[7..0]  
11-26  
Configuration1)  
1)  
this indication is only sent if the read bit of TICCMR has been set in IOM-2000 VIP  
Channel Configuration Command  
Preliminary Data Sheet  
11-7  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.3.4  
Commands and Indications for IOM-2 C/I Channels  
Table 11-7 IOM-2 C/I Command  
Name  
MCMD MGEN High  
0x23 Size  
MDTx  
Page  
Write C/I Value  
IOM-2 port and channel no.  
C/I value  
11-27  
Table 11-8 IOM-2 C/I Indication  
Name  
OCMD OGEN High  
0x41 Size  
ODTx  
Page  
Change Detected  
IOM-2 port and channel no.  
new C/I value  
11-27  
11.3.5  
Commands and Indications for IOM-2 Monitor Channel  
Table 11-9 IOM-2 Monitor Commands  
Name  
MCMD  
MGEN Low  
MGEN MDTx Page  
High  
Search On  
0x2B  
0x2C  
0x2D  
0x29  
0x28  
11-29  
11-30  
11-30  
Search Reset  
Monitor Reset  
Transmit Continuous  
Transmit  
IOM-2 port and channel no.  
IOM-2 port and channel no.  
Size  
Size  
Size  
Data 11-30  
Data 11-30  
Data 11-30  
Transmit&Receive/  
Receive Only  
0x2A IOM-2 port and channel no.  
Preliminary Data Sheet  
11-8  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Table 11-10 IOM-2 Monitor Indications  
Name  
OCMD  
OGEN Low  
OGEN ODTx Page  
High  
Transfer Ready  
Receive Continuous  
Receive  
0x53  
0x52  
0x51  
0x55  
0x54  
11-31  
Size  
Size  
Data 11-31  
Data 11-31  
11-32  
Transmit Abort  
Monitor Active  
IOM-2 port and channel no.  
11-32  
11.3.6  
Commands and Indications for IOM-2000 C/I Channels  
Table 11-11 IOM-2000 C/I Command  
Name  
MCMD MGEN High  
0x0B Size  
MDTx  
Page  
Write C/I Value  
IOM-2000 VIP and channel no.  
C/I value  
11-38  
Table 11-12 IOM-2000 C/I Indication  
Name  
OCMD OGEN High  
0x11 Size  
ODTx  
Page  
Change Detected  
IOM-2000 VIP and channel no.  
new C/I value  
11-38  
Preliminary Data Sheet  
11-9  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.3.7  
Commands and Indications for HDLC Channel  
Table 11-13 HDLC Commands  
Name MCMD MGEN Low MGEN  
MDTx  
Page  
High  
Reset  
0x1F  
Size HDLC No.  
11-40  
Receiver or Transmitter or both  
Transmit  
0x1D HDLC No.  
0x1E HDLC No.  
Size  
Size  
Data  
Data  
11-41  
11-41  
Transmit  
Continuous  
Activation/  
Deactivation  
0x20  
Size HDLC No. and activation  
information  
11-41  
Table 11-14 HDLC Indications  
Name OCMD OGEN Low OGEN High  
ODTx  
Page  
Error  
0x34  
0x33  
0x31  
HDLC No.  
HDLC No.  
HDLC No.  
HDLC No.  
0x01  
ODT0 L: Error Code 11-42  
11-43  
Transmit Ready  
Receive  
Size  
Size  
Data  
Data  
11-44  
11-44  
Receive Continuous 0x32  
11.3.8  
Commands and Indications for GHDLC Channel  
Table 11-15 GHDLC Commands  
Name MCMD MGEN Low MGEN  
MDTx  
Page  
High  
Reset  
0x15  
Size  
GHDLC No.  
Data  
11-46  
11-47  
11-48  
Transmit  
0x11 GHDLC No. Size  
0x12 GHDLC No. Size  
Transmit  
Data  
Continuous  
Preliminary Data Sheet  
11-10  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Table 11-16 GHDLC Indications  
Name OCMD OGEN Low OGEN High  
ODTx  
Page  
Error  
0x24 GHDLC No.  
0x25 GHDLC No.  
0x23 GHDLC No.  
0x21 GHDLC No.  
0x01  
0x02  
ODT0 L: Error Code 11-48  
ODT0: Status Word 11-48  
11-49  
Fatal Error  
Transmit Ready  
Receive  
Size  
Size  
Data  
Data  
11-49  
11-49  
Receive Continuous 0x22 GHDLC No.  
11.3.9  
Switching  
Table 11-17 Switching Commands  
Name MCMD MGEN High  
Connect  
MDTx  
Connection Identifier  
Source/Destination Interface Type  
Source Time Slot No.  
Page  
0x17  
0x18  
Size  
11-50  
Destination Time Slot No.  
Disconnect  
Size  
Connection Identifier  
11-52  
11.4  
Boot Procedure  
After reset the DELIC jumps into the boot routine and waits for downloading a program  
via the µP-Mailbox. Figure 11-4 shows the handshake.  
Preliminary Data Sheet  
11-11  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
Start Loading Program RAM  
Start Boot  
Write Program Memory [Amount, Address, Data]  
Write Program Memory [Amount, Address, Data]  
Write Program Memory [Amount, Address, Data]  
Finish Boot  
Start Loading Data RAM  
Start Boot  
Write Data Memory [Amount, Address, Data]  
Write Data Memory [Amount, Address, Data]  
Write Data Memory [Amount, Address, Data]  
Finish Boot  
Firmware Version  
deli_554.emf  
Figure 11-4 Boot Sequence  
The range for Amount must be between 1 and 15. In case of an verification failure or if  
an amount of zero has been used the Start Boot Command has to be issued again before  
continuing the download. After issuing Start Boot any invalid command is ignored.  
Preliminary Data Sheet  
11-12  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.4.1  
Boot Commands  
After reset the DELIC waits for downloading a program from the processor via the  
mailbox indicated by the Start Loading Program RAM Indication (0x1F) (Figure 11-4).  
11.4.1.1 Start Boot Command (0x55)  
This command has to be issued before using the Write Program Memory Command  
(0xAn) and Write Data Memory Command (0xEn) directly after receiving the Start  
Loading Program RAM Indication (0x1F) or the Start Loading Data RAM Indication  
(0xEF).  
Mailbox Register (MCMD)  
µP-write  
Address:  
40H  
bit  
7
0
6
1
5
0
4
3
0
2
1
1
0
0
1
1
11.4.1.2 Finish Boot Command (0x1F)  
First usage of this command finishes filling of the program memory. The second usage  
finishes filling of the data memory and let the DELIC wait for initialization commands.  
Mailbox Register (MCMD)  
µP-write  
Address:  
40H  
bit  
7
0
6
0
5
0
4
3
1
2
1
1
1
0
1
1
11.4.1.3 Write Program Memory Command (0xAn)  
After issuing the Start Boot Command (0x55) the first time the program memory can be  
filled with this command. The filling has to be finished with the Finish Boot Command  
(0x1F).  
Mailbox Register (MCMD)  
µP-write  
Address:  
40H  
bit  
7
1
6
0
5
1
4
3
2
1
0
0
N3  
N2  
N1  
N0  
N3..0  
Amount of 16-bit data words within MDT1 to MDT15 (range: 1..15)  
Preliminary Data Sheet  
11-13  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MDT0)  
µP-write  
Address: 00+01H  
bit  
7
6
5
5
4
3
2
2
1
1
0
0
High  
AD(15:8)  
bit  
7
6
4
3
Low  
AD(7:0)  
AD15..0  
Start Address (DELIC Address Space)  
11.4.1.4 Write Data Memory Command (0xEn)  
After issuing the Start Boot Command (0x55) the second time the data memory can be  
filled with this command. The filling has to be finished with the Finish Boot Command  
(0x1F).  
Mailbox Register (MCMD)  
µP-write  
Address:  
40H  
bit  
7
1
6
1
5
1
4
3
2
1
0
0
N3  
N2  
N1  
N0  
N3..0  
Amount of 16-bit data words within MDT1 to MDT15 (range: 1..15)  
µP-write Address: 00+01H  
Mailbox Register (MDT0)  
bit  
7
6
5
4
3
2
1
0
High  
AD(15:8)  
bit  
7
6
5
4
3
2
1
0
Low  
AD(7:0)  
AD15..0  
Start Address (DELIC Address Space)  
Preliminary Data Sheet  
11-14  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.4.2  
Boot Indications  
11.4.2.1 Error Indication (0b011100XX)  
Mailbox Register (OCMD)  
µP-read  
Address:  
60H  
bit  
7
0
6
1
5
1
4
3
0
2
0
1
0
1
EN1  
EN0  
EN1..0  
Error Code  
00 =  
01 =  
10 =  
Wrong command error  
Data verification failure  
Incorrect amount of data (zero size)  
Note: After an zero size error and after a verification failure the  
Start Boot Command (0x55) has to be issued again.  
11.4.2.2 Start Loading Program RAM Indication (0x1F)  
This indication is issued after reset to inform the processor that program download can  
begin.  
Mailbox Register (OCMD)  
µP-read  
Address:  
60H  
bit  
7
0
6
0
5
0
4
3
1
2
1
1
1
0
1
1
11.4.2.3 Start Loading Data RAM Indication (0xEF)  
This indication is issued after issuing the Finish Boot Command (0x1F) the first time to  
inform the processor that data download can begin.  
Mailbox Register (OCMD)  
µP-read  
Address:  
60H  
bit  
7
1
6
1
5
1
4
3
1
2
1
1
1
0
1
0
11.4.2.4 Firmware Version Indication (0x00)  
This indication is sent after the last Finish Boot Command (0x1F) to confirm the correct  
program and daa boot.  
Preliminary Data Sheet  
11-15  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (ODT0)  
µP-read  
Address: 20+21H  
bit  
7
6
5
5
4
3
2
2
1
1
0
0
High  
FVNO(15:8)  
bit  
7
6
4
3
Low  
FVNO(7:0)  
FVNO15..0 Firmware Version Number  
11.5  
General Commands and Indications  
The following commands and indications are used during initialization and during normal  
operation.  
11.5.1  
General Commands  
11.5.1.1 Write Register Command (0x01)  
The command writes any 16-bit value(s) to DELIC’s register(s), starting from the  
specified destination address (and continuing to the consecutive address(es)).  
Parameter:  
– Number of values to be written  
– Destination address for write  
– Register value(s) to be written  
Mailbox Register (MGEN Low)  
bit  
µP-write  
Address:  
42H  
7
6
5
4
3
2
1
0
(SIZE3) SIZE2  
SIZE1  
SIZE0  
SIZE3..0 Number of valid 16-bit values within MDT1..7(15) (range: 1..7(15))  
Preliminary Data Sheet  
11-16  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MDT0)  
µP-write  
Address: 00+01H  
bit  
7
6
5
5
4
3
2
2
1
1
0
0
High  
DAD(15:8)  
bit  
7
6
4
3
Low  
DAD(7:0)  
DAD15..0 Destination Address (DELIC Address Space)  
Mailbox Register (MDT1..7(15)) µP-write  
bit  
7
6
5
4
3
2
2
1
1
0
0
High  
WRV(15:8)  
bit  
7
6
5
4
3
Low  
WRV(7:0)  
WRV15..0 MDT1: Write Value to Destination Address DAD  
MDT2: Write Value to Destination Address DAD+1  
..  
MDT7(15): Write Value to Destination Address DAD+6(14)  
11.5.1.2 Read Register Command (0x02)  
The command initiates read access(es) to DELIC’s register(s), starting from the  
specified base address (and continuing to the consecutive address(es)).  
Preliminary Data Sheet  
11-17  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Parameter:  
– Number of values to be read  
– Base address for read  
Mailbox Register (MGEN Low)  
µP-write  
Address:  
42H  
bit  
7
6
5
4
3
2
1
0
(SIZE4) SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE4..0 Amount of 16-bit values to be read from the base address (range: 1..8(16))  
Mailbox Register (MDT0) µP-write Address: 00+01H  
bit  
7
6
5
4
3
2
1
0
High  
BAD(15:8)  
bit  
7
6
5
4
3
2
1
0
Low  
BAD(7:0)  
BAD15..0 Base address from which register value is to be read  
11.5.2  
General Indication  
11.5.2.1 Read Register Indication (0x01)  
The indication returns the values read from DELIC’s register(s) as specified in the Read  
Register Command (0x02).  
Preliminary Data Sheet  
11-18  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Parameter:  
– Number of read values  
– Read register values  
Mailbox Register (OGEN Low)  
µP-read  
12  
(SIZE4) SIZE3  
Address:  
62H  
bit  
15  
14  
13  
11  
10  
9
8
SIZE2  
SIZE1  
SIZE0  
SIZE4..0 Number of valid 16-bit values that have been read (range: 1..8(16))  
Mailbox Register (ODT0..7(14)) µP-read  
bit  
7
6
5
4
3
2
1
0
0
High  
RRV(15:8)  
bit  
7
6
5
4
3
2
1
Low  
RRV(7:0)  
RRV15..0 ODT0: Read Register Value from Base Address BAD  
ODT1: Read Register Value from Base Address BAD+1  
..  
ODT7(15): Read Register Value from Base Address BAD+7(15)  
11.6  
Initialization/Configuration  
After issuing the last Finish Boot Command (0x1F) the DELIC waits for the Finish  
Initialization Command (0x06) before it starts all tasks. Here the device can be  
configured according the application requirements.  
Preliminary Data Sheet  
11-19  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
Finish Boot  
Any configuration command  
Any configuration command  
Write Register [Amount, Address, Data]  
Read Register [Amount, Address]  
Read Register [Amount, Data]  
IOM-2000 VIP Channel Configuration  
Finish VIP Channel Configuration  
Finish Initialization  
deli_550.emf  
Figure 11-5 Initialization Flow Diagram: Configuration Example  
11.6.1  
Configuration Commands  
11.6.1.1 IOM-2000 Reference Channel Select Command (0x05)  
The command selects the VIP channel which provides the reference clock.  
Parameter:  
– IOM-2000 VIP and channel number  
– External reference source  
Preliminary Data Sheet  
11-20  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MGEN Low)  
µP-write  
Address:  
42H  
bit  
7
6
5
4
3
2
1
0
EXREF  
SAD4  
SAD3  
SAD2  
SAD1  
SAD0  
SAD4..0 Subscriber Address i.e. IOM-2000 VIP and channel number  
EXREF External Reference Clock Selection (LT-T)  
0 = No external reference clock source. Reference clock is generated from  
internal VIP_n channel specified in REFCLK(2:0) and passed on via  
REFCLK pin to VIP_n-1 or directly to DELIC.  
1 = Reference clock is generated from external source via pin INCLK and  
passed on via REFCLK pin to VIP_n-1 or directly to DELIC. The internal  
reference clock generation logic is disabled.  
Note: VIP_0 has the highest priority in terms of clock selection  
Note: This command is only applicable for channels in LT-T Mode  
11.6.1.2 IOM-2000 Delay Measurement Command (0x04)  
This command selects the VIP channel in which the line delay is to be measured. The  
delay is reported with the IOM-2000 Delay Indication (0x04).  
Parameter:  
– IOM-2000 VIP and channel number  
Mailbox Register (MGEN Low)  
bit  
µP-write  
Address:  
42H  
7
6
5
4
3
2
1
0
SAD4  
SAD3  
SAD2  
SAD1  
SAD0  
SAD4..0 Subscriber Address i.e. IOM-2000 VIP and channel number  
Note: This command is only applicable for channels in UPN Mode  
Preliminary Data Sheet  
11-21  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.6.1.3 IOM-2000 VIP Channel Configuration Command (0x03)  
The command initializes or re configures the channel register in the TRANSIU for the  
specified VIP channel.  
Parameter:  
– Initialization values of VIP Channel Command Register TICCR (4 bytes including VIP  
and channel number)  
Mailbox Register (MDT0 High)  
µP-write  
12  
Address:  
01H  
bit  
15  
x
14  
13  
11  
10  
9
8
VIPADR(1:0)  
CHADR(2:0)  
FIL  
EXLP  
Mailbox Register (MDT0 Low)  
µP-write  
Address:  
1
00H  
bit  
7
6
5
4
x
3
x
2
0
PLLS  
PD  
DHEN  
PDOWN LOOP  
TX_EN  
Mailbox Register (MDT1 High)  
µP-write  
Address:  
03H  
bit  
15  
14  
13  
12  
11  
10  
2
9
8
PLLINT  
AAC(1:0)  
BBC(1:0)  
OWIN(2:0)  
Mailbox Register (MDT1 Low)  
µP-write  
Address:  
02H  
bit  
7
6
5
4
3
1
0
MF_EN  
MODE(2:0)  
MOSEL(1:0)  
RD  
WR  
Note: For the meaning of the bits, refer to "TRANSIU Initialization Channel Command  
Register" on page 6-15. ’x’=unused  
11.6.1.4 GHDLC Configuration Command (0x14)  
Mailbox Register (MGEN Low)  
bit  
µP-write  
Address:  
42H  
7
6
5
4
3
2
1
0
GCA1  
GCA0  
GCA1..0 GHDLC Channel Address  
00 = GHDLC Channel 0 (all other combinations are reserved)  
Preliminary Data Sheet  
11-22  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MDT0 Low)  
µP-write  
Address:  
00H  
bit  
7
6
5
4
3
2
1
0
ADM  
AUTO  
AUTO  
ADM  
Auto Mode Enable  
0 = Disable Auto Mode  
1 = Enable Auto Mode  
Address Mode  
0 = 8-bit address mode  
1 = 16-bit address mode  
Mailbox Register (MDT1)  
µP-write  
Address: 02+03H  
bit  
7
6
5
5
4
3
2
2
1
0
High  
AAD(15:8)  
bit  
7
6
4
3
1
0
Low  
AAD(7:0)  
AAD15..0 Address for address recognition (ELIC reg. RAL1 and RAH1)  
Note: If ADM is set to 0 (8-bit address) only the low part is considered  
Preliminary Data Sheet  
11-23  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MDT2)  
µP-write  
Address: 04+05H  
bit  
7
6
5
5
4
3
2
2
1
1
0
0
High  
BAD(15:8)  
bit  
7
6
4
3
Low  
BAD(7:0)  
BAD15..0 Broadcast address (ELIC reg. RAL2 and RAH2)  
Note: If ADM is set to 0 (8-bit address) only the low part is considered  
11.6.1.5 Finish Initialization Command (0x06)  
This command has to be issued after downloading program and data and configuring the  
DELIC correctly. It forces the DELIC to start with all tasks.  
Mailbox Register (MCMD)  
µP-write  
Address:  
40H  
bit  
7
0
6
0
5
0
4
3
0
2
1
1
1
0
0
0
11.6.2  
Configuration Indications  
11.6.2.1 IOM-2000 Far-end Code Violation Indication (0x07)  
This indication reports a far-end code violation (FECV) in the specified VIP channel.  
Parameter:  
– IOM-2000 VIP and channel number  
Mailbox Register (OGEN High)  
bit  
µP-read  
Address:  
63H  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of entries in ODT0..7(15) (range: 1..16(32))  
Preliminary Data Sheet  
11-24  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
For every entry (one byte per entry):  
Mailbox Register (ODT0..7(15))  
µP-read  
bit  
7
6
5
4
3
2
1
0
FECV  
SAD4  
SAD3  
SAD2  
SAD1  
SAD0  
SAD4..0 Subscriber Address i.e. IOM-2000 VIP and channel number  
FECV  
Far-end Code Violation  
0 = No far-end code violation detected  
1 = Far-end code violation (bit error) detected  
11.6.2.2 IOM-2000 Delay Indication (0x04)  
This indication returns the measured line delay value of an UPN channel. This indication  
is the answer to the IOM-2000 Delay Measurement Command (0x04).  
Parameter:  
– IOM-2000 VIP and channel number  
– Delay Value  
Mailbox Register (OGEN High)  
bit 15 14 13  
µP-read  
12  
SAD4  
Address:  
63H  
11  
10  
9
8
SAD3  
SAD2  
SAD1  
SAD0  
SAD4..0 Subscriber Address i.e. IOM-2000 VIP and channel number  
Mailbox Register (OGEN Low)  
µP-read  
Address:  
62H  
bit  
7
6
5
4
3
2
1
0
DV7  
DV6  
DV5  
DV4  
DV3  
DV2  
DV1  
DV0  
DV7..0  
Delay Value  
Note: This command is only applicable for channels in UPN Mode  
Preliminary Data Sheet  
11-25  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.6.2.3 Finish VIP Channel Configuration Indication (0x02)  
After issuing the IOM-2000 VIP Channel Configuration Command (0x03) with set read  
bit the DELIC confirms the command by this indication.  
Mailbox Register (ODT0 High)  
µP-read  
12  
Address:  
21H  
bit  
15  
x
14  
13  
11  
10  
9
8
VIPADR(1:0)  
CHADR(2:0)  
FIL  
EXLP  
Mailbox Register (ODT0 Low)  
µP-read  
Address:  
1
20H  
bit  
7
6
5
4
x
3
x
2
0
PLLS  
PD  
DHEN  
PDOWN LOOP  
TX_EN  
Mailbox Register (ODT1 High)  
µP-read  
Address:  
23H  
bit  
15  
14  
13  
12  
11  
10  
2
9
8
PLLINT  
AAC(1:0)  
BBC(1:0)  
OWIN(2:0)  
Mailbox Register (ODT1 Low)  
µP-read  
Address:  
22H  
bit  
7
6
5
4
3
1
0
MF_EN  
MODE(2:0)  
MOSEL(1:0)  
RD  
WR  
Note: For the meaning of the bits, refer to "TRANSIU Initialization Channel Status  
Register (TICSTR)" on page 6-20. ’x’=unused  
11.7  
IOM-2 C/I Handling  
Purpose of the C/I handler is to transmit C/I values and to receive C/I value changes on  
the C/I channels. The C/I values itself are not interpreted.  
A new C/I value will be considered if it is detected for at least two consecutive frames  
(double last look).  
The DELIC considers all channels affected by at least one C/I value change. After  
detecting the first change the DELIC reports it to the µP. As soon as the mailbox is free  
the DELIC sends the current C/I values of the affected channels, together with their  
addresses, to the µP. If the µP is fast enough to serve the interrupts every change will  
be reported. But if the µP is not as fast preceding changes according to the same  
channel will be lost (Figure 11-6).  
Preliminary Data Sheet  
11-26  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.7.1  
IOM-2 C/I Command  
The following command is sent from the µP to the DELIC.  
11.7.1.1 Write C/I Value Command (0x23)  
(ELIC Reg.: MACR, MADR, MAAR)  
This command provides the DELIC with new C/I values to be sent on the specified  
channels. It can be issued any time.  
Parameter:  
– Amount of following entries  
For every entry:  
– IOM-2 port and channel number  
– C/I value  
See "Common Mailbox Parameter Structure" on page 11-27  
11.7.2  
IOM-2 C/I Indication  
The following indication is sent from the DELIC to the µP.  
11.7.2.1 Change Detected Indication (0x41)  
If at least one change is detected this indication will be issued. The amount of entries  
depends on the mailbox size and the amount of used IOM-2 channels. Maximum values  
of 8 entries (if DMA is used) or 16 (if DMA is not used) are possible.  
Parameter:  
– Amount of following entries  
For every entry:  
– IOM-2 port and channel number  
– C/I value  
See "Common Mailbox Parameter Structure" on page 11-27  
11.7.3  
Common Mailbox Parameter Structure  
Both command and indication have the same structure.  
Preliminary Data Sheet  
11-27  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MGEN High)  
Mailbox Register (OGEN High)  
µP-write  
µP-read  
Address:  
Address:  
43H  
63H  
bit  
7
6
5
4
3
2
1
0
(SIZE4) SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE4..0 Amount of valid entries in MDT0..7(15) or ODT0..7(15) (range: 1..8(16))  
For every entry (two bytes per entry):  
Mailbox Register (MDT0..7(15) Low) µP-write  
Mailbox Register (ODT0..7(15) Low) µP-read  
bit  
7
6
5
4
3
2
1
0
SAD3  
SAD2  
SAD1  
SAD0  
SAD3..0 Subscriber Address i.e. IOM-2 port and channel number  
Mailbox Register (MDT0..7(15) High) µP-write  
Mailbox Register (ODT0..7(15) High) µP-read  
bit  
7
6
5
4
3
2
1
0
CI5  
CI4  
CI3  
CI2  
CI1  
CI0  
CI5..0  
CI3..0  
6-bit C/I value  
4-bit C/I value  
11.7.4  
Flow Diagram  
The following diagram describes the way of handling C/I value changes. It is assumed  
that the mailbox is not free as the first change was detected. After releasing the mailbox  
by the µP the DELIC sends the C/I values and their IOM-2 channel addresses. The  
preceding change on channel 6 will not be reported.  
Preliminary Data Sheet  
11-28  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
IOM-2  
1st C/I Value Change [ch3]  
2nd C/I Value Change [ch6]  
(N-1)th C/I Value Change [ch2]  
Nth C/I Value Change [ch6]  
Release Mailbox  
Change Detected Indication  
[N, channel + value..]  
deli_555.emf  
Figure 11-6 C/I Flow Diagram: Receiving C/I Value Changes  
11.8  
IOM-2 Monitor Handling  
According to the monitor channels the DELIC has to manage the data exchange  
between IOMU and mailbox. Only one of all possible channels is served at the same  
time. The main task of the DELIC is to transform an acknowledged block stream from  
and to the mailbox to an acknowledged byte stream from and to the IOMU. If the µP  
issues a command it has to wait for the related indication before the next command can  
be issued.  
11.8.1  
IOM-2 Monitor Commands  
The following commands are sent from the µP to the DELIC:  
11.8.1.1 Search On Command (0x2B)  
(ELIC bit: MFSO)  
By this command the DELIC is instructed to search for an active monitor channel. After  
finding an active channel the search mechanism is stopped and the event is reported  
with Monitor Active Indication. This command can be issued any time. If there is a  
transmission command in progress the Search Mode is started after transmission was  
terminated.  
Preliminary Data Sheet  
11-29  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.8.1.2 Search Reset Command (0x2C)  
(ELIC bit: OMSO)  
By this command the Search Mode is stopped. This command can be issued any time.  
It will not stop a running transmission.  
11.8.1.3 Monitor Reset Command (0x2D)  
(ELIC bit: MFFR)  
By this command the execution of the current transfer command is stopped immediately.  
11.8.1.4 Transmit Continuous Command (0x29)  
(ELIC bits: MFT1..0)  
This command starts transmission of one of more blocks. The Search Mode is  
suspended until transmission was terminated. After acknowledging the last sent byte  
Transfer Ready is issued to ask for a new block. The size of the blocks is variable. The  
last block is sent with Transmit or Transmit & Receive. Only with the first appearance of  
this command the first parameter will be considered.  
Parameter:  
– IOM-2 port and channel number  
– Size of data block  
– Data block  
See "Common Mailbox Parameter Structure" on page 11-32  
11.8.1.5 Transmit Command (0x28)  
(ELIC bits: MFT1..0)  
This command starts transmission of a single/last block. The Search Mode is suspended  
until transmission was terminated. After transmission was completed (rising edge of MR)  
Transfer Ready is issued. If this command follows after Transmit Continuous the first  
parameter will be ignored.  
Parameter:  
– IOM-2 port and channel number  
– Size of data block  
– Data block  
See "Common Mailbox Parameter Structure" on page 11-32  
11.8.1.6 Transmit&Receive/Receive Only Command (0x2A)  
(ELIC bits: MFT1..0)  
This command starts transmission of a single/last block and waits for reception on the  
same channel. The Search Mode is suspended during transmission and reception. If this  
Preliminary Data Sheet  
11-30  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
command follows after Transmit Continuous the first parameter will be ignored.  
Received blocks are reported with Receive and/or Receive Continuous. If size of data is  
zero the command has the meaning of Receive Only i.e. reception on the specified  
channel is activated.  
Parameter:  
– IOM-2 port and channel number  
– Size of data block  
– Data block  
See "Common Mailbox Parameter Structure" on page 11-32  
11.8.2  
IOM-2 Monitor Indications  
The following indications are sent from the DELIC to the µP.  
11.8.2.1 Transfer Ready Indication (0x53)  
(ELIC bit: MFFI)  
Indicates end of Transmit or end of Transmit Broadcast or asks for a new block after  
Transmit Continuous.  
11.8.2.2 Receive Continuous Indication (0x52)  
(ELIC bit: MFFI)  
This indication reports one of more received blocks to the µP. The reception has not  
been terminated yet.  
Parameter:  
– Size of data block  
– Data block  
Mailbox Register (OGEN High)  
bit  
µP-read  
Address:  
63H  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of following data bytes within ODT0..7(15) (range: 1..16(32))  
11.8.2.3 Receive Indication (0x51)  
(ELIC bits: MFFI, MFFE)  
The only/last received block is reported to the µP.  
Preliminary Data Sheet  
11-31  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Parameter:  
– Size of data block  
– Data block  
Mailbox Register (OGEN High)  
µP-read  
Address:  
63H  
bit  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of following data bytes within ODT0..7(15) (range: 1..16(32))  
11.8.2.4 Transmit Abort Indication (0x55)  
(ELIC bit: MFAB)  
The remote receiver aborted reception of a locally issued Transmit Command.  
11.8.2.5 Monitor Active Indication (0x54)  
(ELIC bit: MAC)  
Informs the µP that an active monitor channel has been found. The µP may issues  
Receive Only to activate the receiver.  
Parameter:  
– IOM-2 port and channel number  
Mailbox Register (OGEN Low)  
µP-read  
Address:  
62H  
Reset value: unchanged  
bit  
7
6
5
4
3
2
1
0
SAD3  
SAD2  
SAD1  
SAD0  
SAD3..0 Subscriber Address i.e. IOM-2 port and channel number (up to 16 channels)  
11.8.3  
Common Mailbox Parameter Structure  
This structure is valid for Transmit Continuous Command (0x29), Transmit Command  
(0x28), Transmit&Receive/Receive Only Command (0x2A).  
Preliminary Data Sheet  
11-32  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MGEN Low)  
bit  
µP-write  
Address:  
42H  
7
6
5
4
3
2
1
0
SAD3  
SAD2  
SAD1  
SAD0  
SAD3..0 Subscriber Address i.e. IOM-2 port and channel number (up to 16 channels)  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of following data bytes within MDT0..7(15) (range: 1..16(32))  
11.8.4  
Flow Diagrams  
The following flow diagrams describe the way the DELIC transforms the protocols. N and  
M are always less or equal the mailbox size and less or equal the buffer size.  
µP  
DELIC  
IOM-2 [ch]  
Transmit [ch, N Bytes]  
1st Byte  
Ack  
N th Byte  
Ack  
EOM  
EOM Ack  
Transfer Ready  
deli_559.emf  
Figure 11-7 Monitor Flow Diagram: Transmit  
Preliminary Data Sheet  
11-33  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
IOM-2 [ch]  
Transmit Continuous [ch, N Bytes]  
1st Byte 1st Block  
Ack  
N th Byte 1st Block  
Ack  
Transfer Ready  
Transmit [M Bytes]  
1st Byte Last Block  
Ack  
M th Byte Last Block  
Ack  
EOM  
EOM Ack  
Transfer Ready  
deli_560.emf  
Figure 11-8 Monitor Flow Diagram: Transmit Continuous  
Preliminary Data Sheet  
11-34  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
IOM-2 [ch]  
Search On  
1st Byte  
Monitor Active [ch]  
Receive Only [ch]  
1st Byte  
Ack  
N th Byte  
Ack  
EOM  
EOM Ack  
Receive [N Bytes]  
deli_563.emf  
Figure 11-9 Monitor Flow Diagram: Search Mode  
Preliminary Data Sheet  
11-35  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
IOM-2 [ch]  
Receive Only [ch]  
1st Byte  
Ack  
16 th (32 th) Byte  
Ack  
17 th (33 th) Byte  
Receive Continuous [16 (32) Bytes]  
17 th (33 th) Byte  
Ack  
Last Byte  
Ack  
EOM  
EOM Ack  
Receive [Last Bytes]  
deli_562.emf  
Figure 11-10 Monitor Flow Diagram: Receive Only with Receive Continuous  
Preliminary Data Sheet  
11-36  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
µP  
DELIC  
IOM-2 [ch]  
Transmit & Receive [ch, N Bytes]  
1st Byte  
Ack  
N th Byte  
Ack  
EOM  
EOM Ack  
1st Byte  
Ack  
M th Byte  
Ack  
EOM  
EOM Ack  
Receive [M Bytes]  
deli_561.emf  
Figure 11-11 Monitor Flow Diagram: Transmit & Receive  
11.9  
IOM-2000 C/I Handling  
The layer 1 state machine is accessed the same way as the C/I channels.  
11.9.1  
IOM-2000 C/I Command  
The following command is sent from the µP to the DELIC:  
Preliminary Data Sheet  
11-37  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.9.1.1 Write C/I Value Command (0x0B)  
This command provides the DELIC with new C/I values to be sent on the specified  
channels. It can be issued any time.  
Parameter:  
– Amount of following entries  
For every entry:  
– IOM-2000 VIP and channel number  
– C/I value  
See "Common Mailbox Parameter Structure" on page 11-38  
11.9.2  
IOM-2000 C/I Indication  
The following indication is sent from the DELIC to the µP.  
11.9.2.1 Change Detected Indication (0x11)  
If at least one change is detected this indication will be issued. The amount of entries  
depends on the mailbox size and the amount of used IOM-2000 channels. Maximum  
values of 8 entries (if DMA is used) or 16 (if DMA is not used) are possible.  
Parameter:  
– Amount of following entries  
For every entry:  
– IOM-2000 VIP and channel number  
– C/I value  
See "Common Mailbox Parameter Structure" on page 11-38  
11.9.3  
Common Mailbox Parameter Structure  
Both command and indication use the same structure.  
Mailbox Register (MGEN High)  
Mailbox Register (OGEN High)  
µP-write  
µP-read  
Address:  
Address:  
43H  
63H  
bit  
7
6
5
4
3
2
1
0
(SIZE4) SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE4..0 Amount of valid entries in MDT0..7(15) or ODT0..7(15) (range: 1..8(16))  
Preliminary Data Sheet  
11-38  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
For every entry (two bytes per entry):  
Mailbox Register (MDT0..7(15) Low) µP-write  
Mailbox Register (ODT0..7(15) Low) µP-read  
bit  
7
6
5
4
3
2
1
0
SAD4  
SAD3  
SAD2  
SAD1  
SAD0  
SAD4..0 Subscriber Address i.e. IOM-2000 VIP and channel number  
Mailbox Register (MDT0..7(15) High) µP-write  
Mailbox Register (ODT0..7(15) High) µP-read  
bit  
7
6
5
4
3
2
1
0
CI3  
CI2  
CI1  
CI0  
CI3..0  
11.10  
C/I value  
HDLC Handling  
Flag  
Address  
Control  
I-  
Field  
CRC  
Flag  
Auto Mode  
Non-Auto Mode  
Transparent Mode 1  
Transparent Mode 0  
Extended Transparent Mode  
Device  
User  
deli_556.emf  
Figure 11-12 HDLC Frame Structure  
11.10.1 HDLC Commands  
The following commands are sent from the µP to the DELIC.  
Preliminary Data Sheet  
11-39  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.10.1.1 Reset Command (0x1F)  
This command resets the specified HDLC controllers.  
Parameter:  
– Amount of following entries  
For every entry:  
– HDLC channel address  
– Receiver or transmitter or both  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
(SIZE4) SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE4..0 Amount of following entries within MDT0..7(15) (range: 1..8(12))  
For every entry (two bytes per entry):  
Mailbox Register (MDT0..7(15) Low) µP-write  
bit  
7
6
5
4
3
2
1
0
HCA4  
HCA3  
HCA2  
HCA1  
HCA0  
HCA4..0 HDLC Channel Address  
Mailbox Register (MDT0..7(15) High) µP-write  
bit  
7
6
5
4
3
2
1
0
RX  
TX  
TX  
RX  
Transmitter will be reset (ELIC bit XRES)  
0 = No action  
1 = Reset  
Receiver will be reset (ELIC bit RHR)  
0 = No action  
1 = Reset  
Preliminary Data Sheet  
11-40  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.10.1.2 Transmit Command (0x1D)  
(ELIC bits: XTF, XME)  
This command initiates sending of a single message or the last block of a long message.  
After transmission Transmit Ready will be issued.  
Parameter:  
– HDLC channel address  
– Amount of data bytes  
– Data bytes  
See "Common Mailbox Parameter Structure" on page 11-44  
11.10.1.3 Transmit Continuous Command (0x1E)  
(ELIC bit: XTF)  
This command allows sending of one of more blocks. The last block has to be sent with  
the Transmit Command. The next block is requested by Transmit Ready Indication.  
Parameter:  
– HDLC channel address  
– Amount of data bytes  
– Data bytes  
See "Common Mailbox Parameter Structure" on page 11-44  
11.10.1.4 Activation/Deactivation Command (0x20)  
(ELIC bit: RAC)  
The command activates or deactivates the specified HDLC channel.  
Parameter:  
– Amount of following entries  
For every entry:  
– HDLC channel address  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of following bytes within MDT0..7(15) (range: 1..16(32))  
Preliminary Data Sheet  
11-41  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
For every entry (one byte per entry):  
Mailbox Register (MDT0..7(15))  
µP-write  
bit  
7
6
5
4
3
2
1
0
D
HCA4  
HCA3  
HCA2  
HCA1  
HCA0  
HCA4..0 HDLC Channel Address  
Activation/Deactivation bit  
D
0 = Activate HDLC channel  
1 = Deactivate HDLC channel  
Note: Both receiver and transmitter are activated/deactivated  
11.10.2 HDLC Indications  
The following indications are sent from the DELIC to the µP.  
11.10.2.1 Error Indication (0x34)  
This indication reports HDLC errors to the µP.  
Parameter:  
– HDLC channel address  
– Error code  
According to the receiver following errors can occur: Abort, CRC-Check failure, byte not  
complete, address recognition error, receive buffer overflow, extended HDLC frame (i.e.  
neither a RR nor an I frame in Auto Mode).  
According to the transmitter following errors can occur: underflow of the transmit buffer,  
repeat request according to long messages (long frame polled twice, collision after first  
block).  
Mailbox Register (OGEN Low)  
bit  
µP-read  
Address:  
62H  
7
6
5
4
3
2
1
0
HCA4  
HCA3  
HCA2  
HCA1  
HCA0  
HCA4..0 HDLC Channel Address  
Preliminary Data Sheet  
11-42  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (ODT0 Low)  
µP-read  
Address:  
20H  
bit  
7
6
5
4
3
2
1
0
TXE2  
TXE1  
TXE0  
RXE2  
RXE1  
RXE0  
RXE2..0 Receiver Error Codes  
001 = Abort (ELIC bits VFR, RAB)  
010 = CRC check failure (ELIC bit CRC)  
011 = Non octet (ELIC bit VFR)  
100 = Address recognition error (ELIC bits HA1..0)  
101 = Frame too short (ELIC bit VFR)  
110 = Receive buffer overflow (ELIC bits RFO, RDO)  
111 = Extended HDLC frame (Auto Mode: neither RR nor I frame) (ELIC  
bit EHC)  
TXE2..0 Transmitter Error Codes  
001 = Transmit buffer underflow (ELIC bits XDU, EXE)  
010 = Repeat Request (ELIC bit XMR)  
011 = Transmit buffer overflow  
100 = Collision Detected  
11.10.2.2 Transmit Ready Indication (0x33)  
(ELIC bit XPR)  
This indication informs the µP which HDLC controller finished the last transmit  
command.  
Parameter:  
– HDLC channel address  
Mailbox Register (OGEN Low)  
bit  
µP-read  
Address:  
62H  
7
6
5
4
3
2
1
0
HCA4  
HCA3  
HCA2  
HCA1  
HCA0  
HCA4..0 HDLC Channel Address  
Preliminary Data Sheet  
11-43  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.10.2.3 Receive Indication (0x31)  
(ELIC bit RME)  
This indication reports a single or the last received block to the µP.  
Parameter:  
– HDLC channel address  
– Amount of data bytes  
– Data bytes  
See "Common Mailbox Parameter Structure" on page 11-44  
11.10.2.4 Receive Continuous Indication (0x32)  
(ELIC bit RPF)  
This indication sends a received block to the µP. More data follows. The last block will  
be sent with Receive Indication.  
Parameter:  
– HDLC channel address  
– Amount of data bytes  
– Data bytes  
See "Common Mailbox Parameter Structure" on page 11-44  
11.10.3 Common Mailbox Parameter Structure  
The following structure is valid for following commands or indications respectively:  
Transmit Command (0x1D), Transmit Continuous Command (0x1E), Receive Indication  
(0x31), Receive Continuous Indication (0x32).  
Mailbox Register (MGEN Low)  
Mailbox Register (OGEN Low)  
µP-write  
µP-read  
Address:  
Address:  
42H  
62H  
bit  
7
6
5
4
3
2
1
0
HCA4  
HCA3  
HCA2  
HCA1  
HCA0  
HCA4..0 HDLC Channel Address  
Preliminary Data Sheet  
11-44  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MGEN High)  
Mailbox Register (OGEN High)  
µP-write  
µP-read  
Address:  
Address:  
43H  
63H  
bit  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of following data bytes within MDT0..7(15) or ODT0..7(15)  
Note: A SIZE value of ’0’ stands for a byte count of zero data bytes. Thus  
the width of SIZE is 5 bits to include a mailbox transfer of 16 data  
bytes, or 6 bits to include a mailbox transfer of 32 data bytes.  
11.10.4 Flow Diagrams  
µP  
DELIC  
B/D [ch]  
Transmit [ch, N Bytes]  
Transfer Ready [ch]  
deli_557.emf  
Figure 11-13 HDLC Flow Diagram: Transmit  
µP  
DELIC  
B/D [ch]  
Transmit Continuous [ch, N Bytes]  
Transfer Ready [ch]  
Transmit Continuous [ch, N Bytes]  
Transfer Ready [ch]  
Transmit [ch, M Bytes]  
Transfer Ready [ch]  
deli_558.emf  
Figure 11-14 HDLC Flow Diagram: Transmit Continuous  
Preliminary Data Sheet  
11-45  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.11  
GHDLC Handling  
According to the commands and indications the same parameter structure as in HDLC  
handling is used. The only difference is that HCA4..0 (HDLC channel address) is called  
GCA1..0 (GHDLC channel address).  
11.11.1 GHDLC Commands  
11.11.1.1 Reset Command (0x15)  
This command resets the specified GHDLC channel.  
Parameter:  
– Amount of following entries  
For every entry:  
– GHDLC channel address  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
SIZE1  
SIZE0  
SIZE1..0 Amount of following bytes within MDT0..7(15)  
For every entry (one byte per entry):  
Mailbox Register (MDT0 and MDT1) µP-write  
bit  
7
6
5
4
3
2
1
0
GCA1  
GCA0  
GCA1..0 GHDLC Channel Address  
Preliminary Data Sheet  
11-46  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.11.1.2 Transmit Command (0x11)  
Parameter:  
– GHDLC channel address  
– Transmit prepared or direct data  
– Enable/Disable auto repeat  
– Amount of data bytes  
– Data bytes  
Mailbox Register (MGEN Low)  
µP-write  
Address:  
42H  
bit  
7
6
5
4
3
2
1
0
XPD/  
XDD  
AREP  
GCA1  
GCA0  
XPD/XDD Transmit prepared or direct data (Auto Mode only)  
0 = Transmit direct data  
1 = Transmit prepared data  
AREP  
Auto Repeat Enable  
0 = Disable Auto Repeat  
1 = Enable Auto Repeat  
GCA1..0 GHDLC Channel Address  
00= GHDLC Channel 0 (all other combinations are reserved)  
Mailbox Register (MGEN High)  
µP-write  
Address:  
43H  
bit  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of data bytes within MDT0..7(15) (range: 1..16(32))  
Preliminary Data Sheet  
11-47  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.11.1.3 Transmit Continuous Command (0x12)  
Parameter:  
– GHDLC channel address  
– Amount of data bytes  
– Data bytes  
Mailbox Register (MGEN Low)  
µP-write  
Address:  
42H  
bit  
7
6
5
4
3
2
1
0
GCA1  
GCA0  
GCA1..0 GHDLC Channel Address  
00= GHDLC Channel 0 (all other combinations are reserved)  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of data bytes within MDT0..7(15) (range: 1..16(32))  
11.11.2 GHDLC Indications  
11.11.2.1 Error Indication (0x24)  
For the structure see "Error Indication (0x34)" on page 11-42 and replace HCA4..0  
(HDLC channel address) with GCA1..0 (GHDLC channel address).  
11.11.2.2 Fatal Error Indication (0x25)  
This indication reports the status of the GHDLC unit to the µP in case of an error.  
Parameter:  
– GHDLC channel address  
– Status of GHDLC channel  
Preliminary Data Sheet  
11-48  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (OGEN Low)  
bit  
µP-read  
Address:  
62H  
7
6
5
4
3
2
1
0
GCA1  
GCA0  
GCA2..0 GHDLC Channel Address  
Mailbox Register (ODT0 High)  
µP-read  
Address:  
1
21H  
bit  
7
x
6
x
5
x
4
3
x
2
x
0
x
COLLD UNDER  
Mailbox Register (ODT0 Low)  
µP-read  
Address:  
1
20H  
bit  
7
6
5
4
3
2
0
EMPTY OVER  
FULL  
RBFILL(4:0)  
Note: For the meaning of the bits, refer to "GHDLC Receive Channel Status Registers  
0..3" on page 6-40  
11.11.2.3 Transmit Ready Indication (0x23)  
For the structure see "Transmit Ready Indication (0x33)" on page 11-43 and replace  
HCA4..0 (HDLC channel address) with GCA1..0 (GHDLC channel address).  
11.11.2.4 Receive Indication (0x21)  
For the structure see "Receive Indication (0x31)" on page 11-44 and replace HCA4..0  
(HDLC channel address) with GCA1..0 (GHDLC channel address).  
11.11.2.5 Receive Continuous Indication (0x22)  
For the structure see "Receive Continuous Indication (0x32)" on page 11-44 and replace  
HCA4..0 (HDLC channel address) with GCA1..0 (GHDLC channel address).  
Preliminary Data Sheet  
11-49  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
11.12  
B-Channel Switching  
(ELIC registers MAAR, MADR, MACR)  
Purpose of the switching task is to manage connections between time slots i.e. to  
transfer data between memory locations. To every connection an identification is  
assigned in order to make fast disconnection possible and to avoid hole handling within  
the used connection table.  
The connection information can be read back with the "Read Register Command (0x02)"  
on page 11-17. The internal connection table (base address t.b.d.) contains consecutive  
entries consisting of two consecutive 16-bit values each determining the source (first  
word) and destination (second word) time slot address. The actual time slot can be  
recalculated with the following table.  
Table 11-18 Time Slot Address Ranges  
Unit  
Direction  
Address Range  
Time Slot Range  
IOM-2  
Receive  
Transmit  
0x8000..0x803F  
0x8040..0x807F  
0..63  
0..63  
IOM-2000  
PCM  
Receive  
Transmit  
0x6000..0x607F  
0x6080..0x80FF  
0..127  
0..127  
Receive  
Transmit  
0xA000..0xA07F  
0xA080..0xA0FF  
0..127  
0..127  
11.12.1 Switching Commands  
The following commands are sent from the µP to the DELIC:  
11.12.1.1 8-bit Connect Command (0x17)  
This command creates or overwrites a connection between two time slots.  
Parameter:  
– Amount of following entries  
For every entry:  
– Connection Identifier  
– Source unit  
– Source TS  
– Destination unit  
– Destination TS  
Preliminary Data Sheet  
11-50  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
(SIZE3) SIZE2  
SIZE1  
SIZE0  
SIZE3..0 Amount of following entries within MDT0..7(15) (range: 1..4(8))  
For every entry (four bytes per entry):  
Mailbox Register (MDT[x] Low)  
µP-write  
bit  
7
6
5
4
3
2
1
0
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
ID7..0  
Connection Identification  
Mailbox Register (MDT[x] High)  
µP-write  
bit  
7
6
5
4
3
2
1
0
DIT2  
DIT1  
DIT0  
SIT2  
SIT1  
SIT0  
SIT2..0  
Source Interface Type  
001 = IOM-2  
010 = IOM-2000  
100 = PCM  
DIT2..0  
Destination Interface Type  
001 = IOM-2  
010 = IOM-2000  
100 = PCM  
Preliminary Data Sheet  
11-51  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
Mailbox Register (MDT[x+1] Low)  
bit  
µP-write  
7
6
5
4
3
2
1
0
STSN7 STSN6 STSN5 STSN4 STSN3 STSN2 STSN1 STSN0  
STSN7..0 Source Time Slot Number  
Mailbox Register (MDT[x+1] High)  
µP-write  
bit  
7
6
5
4
3
2
1
0
DTSN7 DTSN6 DTSN5 DTSN4 DTSN3 DTSN2 DTSN1 DTSN0  
DTSN7..0 Destination Time Slot Number  
Note: Values for x are 0, 2, 4, 6, (8, 10, 12, 14)  
11.12.1.2 8-bit Disconnect Command (0x18)  
This command deactivates a connection between two time slots.  
Parameter:  
– Amount of following entries  
For every entry:  
– Connection Identifier  
Mailbox Register (MGEN High)  
bit  
µP-write  
Address:  
43H  
7
6
5
4
3
2
1
0
(SIZE5) SIZE4  
SIZE3  
SIZE2  
SIZE1  
SIZE0  
SIZE5..0 Amount of following bytes within MDT0..7(15) (range: 1..16(32))  
Preliminary Data Sheet  
11-52  
2003-08  
DELIC  
PEB 20571  
Mailbox Protocol Description  
For every entry (one byte per entry):  
Mailbox Register (MDT0..7(15))  
µP-write  
bit  
7
6
5
4
3
2
1
0
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
ID7..0  
Connection Identification  
Preliminary Data Sheet  
11-53  
2003-08  
DELIC  
Index  
Write Program Memory Com-  
mand 11-13  
Write Register Command 11-16  
12  
A
Index  
Applications 1-7  
D
Differences DELIC-LC - DELIC-PB 4-1  
B
Block Diagram 4-2  
Block Diagram of the DELIC-LC 1-2  
Boot Strap Pin Setting 4-41  
F
Features  
DELIC-LC 1-4  
DELIC-PB 1-4  
C
Commands  
I
8-bit Connect Command 11-50  
8-bit Disconnect Command 11-  
52  
Indications  
Change Detected Indication 11-  
27, 11-38  
Error Indication  
11-48  
Fatal Error Indication 11-48  
Finish VIP Channel Configuration  
Indication 11-26  
Firmware Version Indication 11-  
15  
IOM-2000 Delay Indication 11-  
25  
IOM-2000 Far-end Code Viola-  
tion Indication 11-24  
Monitor Active Indication 11-32  
Read Register Indication 11-18  
Receive Continuous Indication  
11-31, 11-44, 11-49  
Receive Indication  
44, 11-49  
Start Loading Data RAM Indica-  
tion 11-15  
Start Loading Program RAM Indi-  
cation 11-15  
Transfer Ready Indication  
31  
Transmit Abort Indication 11-32  
Transmit Ready Indication 11-  
43, 11-49  
Activation/Deactivation  
mand 11-41  
Com-  
11-15, 11-42,  
Finish Boot Command 11-13  
Finish Initialization Command  
11-24  
GHDLC Configuration Command  
11-22  
IOM-2000 Delay Measurement  
Command 11-21  
IOM-2000 VIP Channel Configu-  
ration Command 11-22  
Monitor Reset Command 11-30  
Read Register Command 11-17  
Reset Command 11-40, 11-46  
Search On Command 11-29  
Search Reset Command 11-30  
Start Boot Command 11-13  
Transmit Command 11-30, 11-  
41, 11-47  
11-31, 11-  
Transmit  
Continuous  
Com-  
mand 11-30, 11-41, 11-48  
Transmit&Receive/Receive Only  
Command 11-30  
Write C/I Value Command 11-  
27, 11-38  
11-  
Write Data Memory Command  
11-14  
Interfaces  
Preliminary Data Sheet  
I-1  
2003-08  
DELIC  
Index  
µP Interface 3-24  
IOM®-2 Interface 3-23  
IOM-2000 3-2  
Overview 3-1  
Interrupts 3-26  
Introduction 1-1  
IOM-2000  
Command and Status Interface 4-7  
Data Interface 4-11  
Framing Bits 4-6  
IOM-2000 Frame Structure 3-3  
IOMU  
Overview of Features 4-14  
J
JTAG Test Interface 3-27  
L
Logic Symbol 1-6  
P
Pin Definitions 2-3, 2-15  
Pin Diagram 2-1, 2-2  
Principle Block Diagram of the DELIC-PB 1-3  
S
S/T State Machine 3-14  
Strap Pin Definitions 2-28  
Subscriber Address 11-4  
T
TRANSIU  
Initialization 4-3  
Overview of Features 4-3  
U
UPN State Machine 3-9  
V
VIP  
Initialization 4-4  
Preliminary Data Sheet  
12-2  
2003-08  
DELIC  
Glossary  
13  
Glossary  
AHV-SLIC  
PEB 4165  
High voltage part of SLIC  
CMOS  
CO  
Complementary Metal Oxide Semiconductor  
Central Office  
CODEC  
DC  
Coder Decoder  
Direct Current  
DECT  
DELIC  
Digital European Cordless Telecommunication  
DSP Embedded Line and Port Interface Controller  
(PEB 20570, PEB 20571)  
DSL  
Digital Subscriber Line  
DSP  
Digital signal processor  
HDLC  
IEEE  
INFO  
I/O  
High-level Data Link Control  
Institute of Electrical and Electronic Engineers  
U- and S-interface signal as specified by ANSI/ETSI  
Input/Output  
IOM-2  
IOM-2000  
ISDN  
ITU  
ISDN-Oriented Modular 2nd generation  
Proprietary ISDN inferface for S/T and UP  
Integrated services Digital Network  
International Telecommunications Union  
MDSL transceiver  
MUBIC  
PEB22521  
MuPP  
16-channel CODEC digital front end part  
PEB 31665  
µP  
Micro Processor  
OCTAT-P  
LT-S  
LT-T  
PLL  
OCTAl Transceiver for UPN-Interfaces (PEB 2096)  
Line Termination-Subscriber  
Line Termination-Trunk  
Phase-Locked Loop  
PBX  
Private Branch Exchange  
4-channel U-transceiver  
QUAD-U  
PEB 2491  
Preliminary Data Sheet  
13-1  
2003-08  
DELIC  
Glossary  
QAP  
Equivalent 4-channel analog front end part for MuPP  
PEB 3465  
QUAT-S  
QUAdrupleTransceiver for S/T-Interface (PEB 2084)  
Dual channel CODEC + low voltage part of SLIC  
SLICOFI-2  
PEB 3265  
S/T  
Two-wire pair ISDN interface  
Test Access Port  
TAP  
TBD  
To Be Defined  
Preliminary Data Sheet  
13-2  
2003-08  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY