PEB2084H [INFINEON]

Quadruple Transceiver for S/T Interface QUAT-S; 四收发器,用于S / T接口QUAT -S
PEB2084H
型号: PEB2084H
厂家: Infineon    Infineon
描述:

Quadruple Transceiver for S/T Interface QUAT-S
四收发器,用于S / T接口QUAT -S

电信集成电路
文件: 总72页 (文件大小:1259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
Quadruple Transceiver for S/T Interface  
QUAT-S  
PEB 2084 Version 1.2  
Data Sheet 07.95  
T2084-V12-D1-7600  
Ausgabe 07.95  
Herausgegeben von Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
© Siemens AG 1995.  
Alle Rechte vorbehalten.  
Wichtige Hinweise!  
Gewähr für die Freiheit von Rechten Dritter  
leisten wir nur für Bauelemente selbst, nicht  
für Anwendungen, Verfahren und für die in  
Bauelementen oder Baugruppen realisierten  
Schaltungen.  
Mit den Angaben werden die Bauelemente  
spezifiziert, nicht Eigenschaften zugesichert.  
Liefermöglichkeiten und technische Änderun-  
gen vorbehalten.  
Fragen über Technik, Preise und Liefermög-  
lichkeiten richten Sie bitte an den Ihnen  
nächstgelegenen Vertrieb Halbleiter in  
Deutschland oder an unsere Landesgesell-  
schaften im Ausland.  
Bauelemente können aufgrund technischer  
Erfordernisse Gefahrstoffe enthalten. Aus-  
künfte darüber bitten wir unter Angabe des  
betreffenden Typs ebenfalls über den Vertrieb  
Halbleiter einzuholen.  
Die Siemens AG ist ein Hersteller von CECC-  
qualifizierten Produkten.  
Verpackung  
Bitte benutzen Sie die Ihnen bekannten Ver-  
werter. Wir helfen Ihnen auch weiter – wen-  
den Sie sich an Ihren für Sie zuständigen Ver-  
trieb Halbleiter. Nach Rücksprache nehmen  
wir Verpackungsmaterial sortiert zurück. Die  
Transportkosten müssen Sie tragen.  
Für Verpackungsmaterial, das unsortiert an  
uns zurückgeliefert wird oder für das wir keine  
Rücknahmepflicht haben, müssen wir Ihnen  
die anfallenden Kosten in Rechnung stellen.  
Bausteine in lebenserhaltenden Geräten  
oder Systemen müssen ausdrücklich da-  
für zugelassen sein!  
1
Kritische Bauelemente des Bereichs Halblei-  
ter der Siemens AG dürfen nur mit ausdrückli-  
cher schriftlicher Genehmigung des Bereichs  
Halbleiter der Siemens AG in lebenserhalten-  
2
den Geräten oder Systemen eingesetzt wer-  
den.  
1 Ein kritisches Bauelement ist ein in einem  
lebenserhaltenden Gerät oder System ein-  
gesetztes Bauelement, bei dessen Ausfall  
berechtigter Grund zur Annahme besteht,  
daß das lebenserhaltende Gerät oder Sy-  
stem ausfällt bzw. dessen Sicherheit oder  
Wirksamkeit beeinträchtigt wird.  
2 Lebenserhaltende Geräte und Systeme  
sind (a) zur chirurgischen Einpflanzung in  
den menschlichen Körper gedacht, oder  
(b) unterstützen bzw. erhalten das  
menschliche Leben. Sollten sie ausfallen,  
besteht berechtigter Grund zur Annahme,  
daß die Gesundheit des Anwenders ge-  
fährdet werden kann.  
PEB 2084  
Revision History:  
Current Version: Data Sheet 07.95  
Preliminary Technical Manual 2.94  
Previous Releases:  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in current  
Version)  
Version)  
10  
11  
9
Figure 1, IDO = Output and Input  
Pin 40, IDO, resistor definition  
Boundary scan, sequence of test pins (new)  
Push-pull sensing  
12  
20  
29  
43  
55  
56  
22  
33  
44  
State diagram (DI F3)  
60  
Maximum voltage on any pin  
Power supply current  
63  
PEB 2084  
Page  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.1  
1.2  
1.3  
1.4  
2
2.1  
2.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
S/T Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
IOM®-2 System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
JTAG Boundary Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Individual Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Transceiver, Analog Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Timing Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Receive Signal Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Activation / Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
S/T Interface Frame Structures Synchronization . . . . . . . . . . . . . . . . . . . . . .29  
2.2.1  
2.2.2  
2.2.3  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.5.1 Multi-Frame Generation with a short FSC . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.3.5.2 Super-Frame (M-bit) Generation using SSYNC (for DECT) . . . . . . . . . . . . .31  
3
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.5  
Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Push – Pull Sensing on Pin IDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
ISDN Channels Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
D-Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Command/Indicate Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Activation and Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Example of Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Diagnostic Functions, Test Loop-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
S and Q Channel Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Default-Use of Pin CEB/SSYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
3.6  
3.7  
4
Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Loopback Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Other Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
4.1  
4.2  
4.3  
4.4  
4.5  
Semiconductor Group  
4
PEB 2084  
Page  
Table of Contents  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Recommended Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
IOM®-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Timing of Boundary Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6
7
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
IOM®, IOM®-1, IOM®-2, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC, SLICOFI®, ARCOFI® , ARCOFI®-BA,  
ARCOFI®-SP, EPIC®-1, EPIC®-S, ELIC®, IPAT®-2, ITAC®, ISAC®-S, ISAC®-S TE, ISAC®-P, ISAC®-P TE, IDEC®,  
SICAT®, OCTAT®-P, QUAT®-S are registered trademarks of Siemens AG.  
MUSAC-A, FALC54, IWE, SARE, UTPT, ASM, ASPare trademarks of Siemens AG.  
Purchase of Siemens I2C components conveys a license under the Philips’ I2C patent to use the components in  
the I2C-system provided the system conforms to the I2C specifications defined by Philips. Copyright Philips 1983.  
Semiconductor Group  
5
General Information  
1
Overview  
The PEB 2084, Quadruple Transceiver for S/T Interfaces (QUAT-S), implements four-  
wire S/T interfaces used to link voice/data digital terminals to PBX subscriber lines and  
PBX trunk lines to the public ISDN. The QUAT-S is an optimized device for PBX  
applications but can also be used in Hubs and Multiplexers. It can handle up to four  
S/T interfaces simultaneously. While each channel is independently useable as S or  
T interface.  
The PEB 2084, QUAT-S, provides electrical and functional link between the analog  
S/T interface and the ISDN-Oriented Modular (IOM-2) interface. It handles the  
S/T interfaces fully according to CCITT I.430, ETSI 300.012, and ANSI T1.605  
standards.  
The PEB 2084, QUAT-S, is a CMOS device offered in a P-MQFP-44 package. It  
operates from a single 5 V power supply.  
Other Siemens’ integrated circuits for PBX applications are:  
PEB 20550 Extended Line Card Interface Controller (ELIC)  
PEB 2465  
PEB 2096  
PEB 2075  
Signal-processing Codec Filter with 4 Channels (SICOFI-4)  
Octal Transceiver for UPN Interfaces (OCTAT-P)  
ISDN D-Channel Controller (IDEC)  
Semiconductor Group  
6
General Information  
IOM R -2  
2048 kbit/s  
CFI  
0
PCM  
0
TE 0  
PCM  
QUAT-S  
PEB 2084  
8 x S  
S
0
TE 7  
TE 0  
R
ELIC  
PEB 20550  
OCTAT R -P  
PEB 2096  
8 x UPN  
UPN  
1
TE 7  
D Arbiter  
SACCO-A  
SACCO-B  
2
3
TE 1  
SLIC  
r/t  
SICOFI R -4  
PEB 2465  
16 x t/r  
TE 16  
SLIC  
Signaling  
8 x T  
TSS  
0
IOM R -2  
QUAT-S  
CO  
Memory  
PEB 2084  
7
µP Interface  
IOM R -2  
4 x D Cannel  
R
µP  
IDEC  
PEB 2075  
ITB05392  
Example for an Integrated Analog / Digital PBX Application  
Semiconductor Group  
7
Quadruple Transceiver for S/T Interface  
(QUAT-S)  
PEB 2084  
CMOS  
1.1  
Features  
• Four full duplex (B1 + B2 + D) S/T interface  
transceivers, each equipped with the following  
functions:  
– Analog S/T interfaces fully according to the  
CCITT I.430, ETSI 300.012 and ANSI T1.605  
standards.  
– 192 kbit/s transmission rate  
– Receive timing recovery  
P-MQFP-44-2  
– Conversion between pseudo-ternary  
and binary codes  
– Conversion between S/T and IOM-2 frame structures  
– Activation / deactivation procedures, triggered by primitives received over the  
IOM-2 interface or by info received from the line (e.g. detection of INFO1)  
– Access to S and Q bits of S/T interface  
– Execution of test loops  
– Loop length up to 1.5 km (point-to-point)  
– Frame alignment in trunk applications with maximum wander of ± 50 µs  
– Logical S/T interface functions identical to PEB 2081, SBCX, for line card  
applications.  
– Analog S/T line transceivers identical to PEB 2081, SBCX.  
• IOM-2 interface  
• D-channel access control  
• Support for JTAG boundary scan test  
• 1µ CMOS technology with low power consumption  
• + 5 V power supply  
• P-MQFP-44 package  
Type  
Ordering Code  
Package  
PEB 2084 H  
Q6701-H6481  
P-MQFP-44-2 (SMD)  
Semiconductor Group  
8
07.95  
PEB 2084  
1.2  
Logic Symbol  
Figure 1  
QUAT-S Logic Symbol  
Semiconductor Group  
9
PEB 2084  
1.3  
Pin Configuration  
(top view)  
P-MQFP-44-2  
Semiconductor Group  
10  
PEB 2084  
1.4  
Pin No. Symbol Input (I)  
Output (O)  
Pin Description  
Function  
S/T Interface a: positive, b: negative  
No. 0: differential input  
No. 0: differential output  
No. 1: differential input  
No. 1: differential output  
No. 2: differential input  
No. 2: differential output  
No. 3: differential input  
No. 3: differential output  
29, 30 SR0a,b  
32, 33 SX0a,b  
27, 26 SR1a,b  
24, 23 SX1a,b  
I
O
I
O
I
O
I
5, 4  
2, 1  
7, 8  
SR2a,b  
SX2a,b  
SR3a,b  
10, 11 SX3a,b  
O
IOM®-2 Interface  
43  
42  
41  
FSC  
DCL  
IDI  
I
I
I
Frame Synchronization Clock (8 kHz)  
Data Clock  
IOM Interface Data Input: Data Downstream in LT-S  
Data Upstream in LT-T  
40  
39  
IDO  
ICS  
O/I  
IOM Interface Data Output: Data Upstream in LT-S  
Data Downstream in LT-T  
Output  
open-drain: resistor to VDD  
push-pull: resistor to VSS  
resistor = 100 kto 1 MΩ  
refer to push-pull sensing, chapter 3.2  
IOM Interface Channel Select (pin-strapping)  
0: channels 0 though 3 selected  
1: channels 4 through 7 selected  
I
JTAG Boundary Scan Test Interface  
Test Mode Select  
Test Clock 6.25 MHz  
Test Data Input  
16  
15  
14  
13  
TMS  
TCK  
TDI  
I
I
I
O
TDO  
Test Data Output  
20  
21  
XTAL1  
XTAL2  
I
O
Oscillator or 7.68 MHz clock input  
Oscillator output  
Semiconductor Group  
11  
PEB 2084  
1.4  
Pin No. Symbol Input (I)  
Output (O)  
O/I  
Pin Description (cont’d)  
Function  
36  
CLK1/  
IDS  
CLK1: Clock output 1.536 MHz synchronized to  
the trunk line (after reset in high impedance  
state, only activated by programming  
configuration register)  
IDS:  
IOM-Interface Data Rate Select during HW  
reset (pin-strapping)  
0: double DCL (normal IOM-2 interface)  
1: single DCL  
The value of the input is sampled by the  
falling edge of RST. Afterwards the pin may  
be used for CLK1 functions.  
35  
38  
17  
CLK2  
RST  
O
I
7.68 MHz clock output  
Reset, active high  
CEB /  
SSYNC  
I/O /  
I
CEB:  
Common echo bit for collision resolution in  
logical subscriber LT-S bus configurations  
(open drain output, external pull-up resistor  
required.)  
SSYNC: Superframe synchronization input  
18  
DRDY  
O
D-channel Ready signal to control HDLC hardware in  
LT-T mode  
(open-drain or push-pull operation identical to pin  
IDO)  
6, 12,  
22, 28,  
34, 44  
3, 9, 19, VSS  
25, 31,  
37  
VDD  
I
I
+ 5 V power supply  
Reference ground  
Semiconductor Group  
12  
PEB 2084  
2
Functional Description  
The PEB 2084, QUAT-S, performs the layer-1 functions of the ISDN basic access for  
four S/T interfaces.  
2.1  
Device Architecture  
The QUAT-S contains the following functional blocks: Refer to figure 2  
• Four line transceivers with analog S/T interfaces  
• One digital IOM-2 interface  
• Frame structure converter between the IOM-2 interface and the S/T interfaces  
• JTAG boundary scan test interface  
• Clocking, reset and initialization block  
Figure 2  
QUAT-S Device Architecture  
Semiconductor Group  
13  
 
PEB 2084  
2.2  
Interfaces  
PEB 2084, QUAT-S, provides four independent S/T interfaces, one IOM-2 interface and  
one JTAG boundary scan test interface.  
2.2.1  
S/T Interface  
Frame Structure  
One frame consists of 48 bits, at a nominal bit rate of 192 kbit/s. Thus each frame carries  
two octets of B1, two octets of B2 and 4 bits of D-channel, according to the B1+B2+D  
structure defined for the ISDN basic access (the total user data rate is 144 kbit/s). The  
beginning of the frame is marked with a F-bit using a code violation (no Mark inversion).  
The frame structures for data downstream (from network to subscriber) and for data  
upstream (from subscriber to network) are shown in figure 3.  
48 Bits in 250 µs  
DL. FL.  
B1  
E D A FA N  
B2  
E D M  
B1  
E D S  
B2  
E D L. F L.  
0
1
0
NT  
TE  
2 Bits Offset  
DL. FL.  
B1  
L.D L.FA L.  
B2  
L.D L.  
B1  
L.D L.  
B2  
L.D L. F L.  
0
1
0
TE  
NT  
t
F = Framing Bit  
L = DC Balancing Bit  
D = D-Channel Bit  
E = D-Echo-Channel Bit  
FA = Auxiliary Framing Bit or Q-Bit  
N = Bit set to a Binary Value N= FA  
B1 = Bit within B Channel 1  
B2 = Bit within B Channel 2  
A = Bit used for Activation  
S = Subchannel SC1 through SC5 bit position  
M = Multiframing Bit  
ITD02330  
Figure 3  
Frame Structure at Reference Points S and T (CCITT I.430)  
The E-bit (= Echo bit to the D-channel bit) can be controlled via C/I channel and may be  
used to carry the “available” / “blocked” information sent by ELIC, PEB 20550. Refer to  
chapter 3.3.3.  
Semiconductor Group  
14  
 
PEB 2084  
Coding  
The QUAT-S uses a pseudo-ternary coding technique on the S/T interface (with a 100%  
pulse width) according to CCITT I.430 recommendation. A binary ‘1’ corresponds to a  
neutral level (space = no current) on the S/T line, binary ‘0’s are coded as alternating  
positive and negative pulses (= marks), figure 4.  
Code violation (CV) is caused by two successive pulses with the same polarity (= no  
mark inversion).  
Figure 4  
S/T Interface Line Code  
For details refer to Technical Manual PEB 2081, SBCX.  
Semiconductor Group  
15  
 
PEB 2084  
Interface Configurations  
The QUAT-S provides four S/T interfaces for different applications, see figure 5:  
• Subscriber’s connection to PBX (LT-S Mode) for different line configurations:  
– Point-to-point  
– Short passive bus  
– Extended passive bus  
• PBX connection to CO trunk (LT-T Mode)  
Figure 5  
S/T Interface Configurations  
The T interface is physically identical to the S interface.  
Semiconductor Group  
16  
 
PEB 2084  
2.2.2  
IOM®-2 System Interface  
The PEB 2084, QUAT-S, is equipped with a digital ISDN Oriented Modular (IOM-2)  
interface, for interconnection with other telecommunication ICs, such as IDEC  
(PEB 2075), EPIC (PEB 2055) and ELIC (PEB 20550). EPIC and ELIC represent the  
first switching stage towards the exchange system.  
Figure 6  
System Integration, IOM®-2 Interface  
Interface Signals  
The IOM-2 interface is a four-wire serial interface which comprises two data lines and  
two clock lines for synchronization. Refer to figure 6.  
Data is carried over Data Upstream (DU) and Data Downstream (DD) lines. The  
downstream and upstream directions are always seen with respect to the exchange.  
Downstream refers to the information flow from the central exchange via PBX to the  
subscriber and upstream vice versa.  
Semiconductor Group  
17  
 
 
PEB 2084  
Thus, depending on the programmable QUAT-S mode, the data lines IDI and IDO get  
different meanings: IDI (IOM interface Data Input)  
= Data Downstream in LT-S  
= Data Upstream  
IDO (IOM-2 interface Data Output) = Data Upstream  
in LT-T  
in LT-S  
= Data Downstream in LT-T  
The data is clocked by Data Clock (DCL) that operates at single or double data rate. The  
selection is done by pinstrapping (CLK1/IDS). The IOM frames are delimited by an 8 kHz  
Frame Synchronization Clock (FSC). The FSC rising edge indicates the start of an  
IOM-2 frame.  
The IOM-2 interface specification describes open drain data lines with external pull-up  
resistors. However, if operation is logically point-to-point, tristate operation is possible as  
well.  
Frame Structure  
One IOM-2 frame typically contains 8 IOM channels (sub-frames). The ISDN user data  
rate is 144 kbit/s (B1 + B2 + D). The data is transmitted transparently synchronously and  
in phase in both directions over the IOM-2 interface using time division multiplexing  
within the 125 µs IOM-2 interface frame.  
Refer to figure 7.  
QUAT-S requires IOM-2 frame consisting of n complete ISDN channels (with 32 bits per  
channel); n = 4, 5, 6, … 16.  
Nominal bit rate of data (IDI and IDO)  
Nominal frequency of DCL  
Selectable frequency of DCL  
Nominal frequency of FSC  
1024 kbit/s  
2048 kHz  
1024 kHz  
8 kHz  
… 4096 kbit/s  
… 8192 kHz  
… 4096 kHz  
Semiconductor Group  
18  
PEB 2084  
125 µs  
FSC  
DCL  
DU  
IOM R CH0  
IOM R CH0  
CH1  
CH1  
CH2  
CH2  
CH3  
CH3  
CH4  
CH4  
CH5  
CH5  
CH6  
CH6  
CH7  
CH7  
CH0  
CH0  
DD  
M M  
R X  
B1  
B2  
MONITOR  
D
C/I  
ITD04319  
Figure 7  
Multiplexed Frame Structure of the IOM-2 Interface in LT Mode with 2048 kbit/s  
Data Rate  
Each IOM ISDN channel consists of a total of 32 bits, or four octets:  
B1 (8 bits) + B2 (8 bits) + D (2 bits) plus 14 bits for intercommunication.  
• Two 8-bit B1 and B2 channels for voice and data communication with a data rate of  
64 kbit/s each,  
• One 8-bit monitor channel for transferring maintenance information,  
• One 2-bit D-channel for data transfer (e.g. signalling) with a data rate of 16 kbit/s  
• Four command/indication (C/I) bits for controlling layer-1 functions.  
• Two bits for handling the monitor channel: MR an MX (hand shake control).  
8 bits  
8 bits  
8 bits  
2
4 bits  
1
1
B1 channel  
B2 channel  
Monitor channel D ch. Command/ MR MX  
Indication  
The user data rate is 144 kbit/s (B1 + B2 + D).  
Monitor Channels  
The monitor channel is used to convey message oriented local functions such as  
software programming or access to internal registers via a layer-2 controller (ICC,  
ELIC,…). There is a defined handshake procedure between the monitor channel  
transmitter and the receiver in order to ensure a safe data transfer over the IOM-2  
interface.  
Semiconductor Group  
19  
PEB 2084  
The monitor channel operates on an asynchronous basis. While data transfer on the bus  
takes place synchronized to the frame, the data flow is controlled by a handshake  
procedure using the monitor channel receive bit (MR) and the monitor channel transmit  
bit (MX). For example: data is placed onto the monitor channel and the MX bit is  
activated (active low). This data will be transmitted repeatedly once per 8 kHz frame until  
the transfer is acknowledged via the MR bit.  
The monitor channel is in an idle condition when the MX bit is inactive in two or more  
consecutive frames (indication of End Of Message EOM).  
The monitor channel is also used to convey S and Q maintenance bits information (S/Q  
channel).  
The PEB 2084, QUAT-S, handles four monitor channels allocated to its four S/T  
interfaces. The implemented monitor protocol is according to the IOM Interface  
Specification, Rev. 2. For more details and an example refer to chapter 3.3.2.  
D-Channels  
The D-channels are switched transparently between the S/T interfaces and the IOM-2  
interface. Depending on the data load on a line card, different PBX architectures can be  
implemented for D-channel handling in LT-S applications:  
For decentral signalling, up to 32 subscribers can be served with only one special HDLC  
controller which is integrated in the PEB 20550, ELIC (SACCO-A).  
For intensive data packet handling in LT-S mode (e.g. in PC networks) or in LT-T  
applications, additional HDLC controllers such as HSCX, IDEC, ESCC 2 or 8 or  
MUNICH 32 may be connected to the IOM-2 interface. If a D-channel collision resolution  
according to CCITT I.430 is required, the QUAT-S offers a strobe signal to control the  
connected HDLC (LAPD) controller.  
For operational description refer to chapter 3.3.3.  
C/I-Channels  
A C/I-channel is used for communication between the PEB 2084, QUAT-S, and a  
processor via a layer-2 device, to control and monitor layer-1 functions  
(activation/deactivation and additional control functions). The layer-2 device monitors  
the layer-1 indication continuously and indicates a change if a new code is found to be  
valid in two consecutive IOM frames (double last look criterion).  
The codes originated by layer-2 devices are called “Commands”, those originated by the  
PEB 2084, QUAT-S, are called “Indications”.  
The PEB 2084, QUAT-S, handles four C/I-channels; one for each S/T transceiver.  
For a list of the C/I codes and their use refer to chapter 3.6.  
Semiconductor Group  
20  
PEB 2084  
2.2.3  
JTAG Boundary Scan Test Interface  
The QUAT-S provides a boundary scan support for a cost effective board testing. It  
consists of:  
– Complete boundary scan for 11 signals (pins) according to IEEE Std. 1149.1  
specification  
– Test access port controller (TAP)  
– Four dedicated pins (TCK, TMS, TDI, TDO)  
– One 32-bit IDCODE register  
– Specific functions for SXna,b  
Boundary Scan  
The following QUAT-S pins are included in the boundary scan:  
FSC, DCL, IDI, IDO, RST, ICS, CEB, DRDY, CLK1, CLK2 and XTAL1.  
Depending on the pin functionality one or two boundary scan cells are provided.  
Pin Type  
Input  
Number of Boundary Scan Cells  
Usage  
1
2
Input  
Output  
Output, enable  
When the TAP controller is in the appropriate mode data is shifted into/ out of the  
boundary scan via the pins TDI/TDO using the 6.25 MHz clock on pin TCK.  
The QUAT-S pins are included in the boundary scan in the following sequence:  
Boundary Scan Number Pin Number  
TDI ––>  
Pin Name  
Type  
Number of  
Scan Cells  
1
43  
42  
41  
40  
39  
38  
36  
35  
20  
18  
17  
FSC  
I
1
2
DCL  
I
1
3
IDI  
I
1
4
IDO  
O
I
2+1  
5
ICS  
1
6
RST  
I
1
7
CLK1/IDS  
CLK2  
XTAL1  
DRDY  
O/I  
O
I
2 + 1  
8
2
9
1
10  
11  
O
2
CEB/SSYNC I/O  
1 + 2  
Semiconductor Group  
21  
PEB 2084  
TAP Controller  
The Test Access Port (TAP) controller implements the state machine defined in the  
JTAG standard IEEE Std. 1149.1. Transitions on the pin TMS cause the TAP controller  
to perform a state change.  
Following the standard definition five instructions are executable.  
TAP controller instructions:  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
11XX  
Instruction  
EXTEST  
Function  
External testing  
INTEST  
Internal testing  
SAMPLE/PRELOAD  
IDCODE  
Snap-shot testing  
Reading ID code  
Test Mode TM1  
Test Mode TM2  
BYPASS  
Single pulses (2 kHz) on SXna,b  
Continuous pulses (96 kHz) on SXna,b  
Bypass operation  
Note: The instructions TM1 and TM2 require 7.68 MHz at XTAL1.  
EXTEST is used to examine the board interconnections.  
When the TAP controller is in the state “update DR”, all output pins are updated with the  
falling edge of TCK. When it has entered state “capture DR” the levels of all input pins  
are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically  
done using the instruction SAMPLE/PRELOAD.  
INTEST supports internal chip testing.  
When the TAP controller is in the state “update DR”, all inputs are updated internally with  
the falling edge of TCK. When it has entered state “capture DR” the levels of all outputs  
are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically  
done using the instruction SAMPLE/PRELOAD.  
0001 (INTEST) is the default value of the instruction register.  
SAMPLE / PRELOAD provides a snap-shot of the pin level during normal operation or  
is used to preload (TDI) / shift out (TDO) the boundary scan with a test vector. Both  
activities are transparent to the system functionality.  
Note: The input pin XTAL1 should not be evaluated.  
The input frequency (7.68 MHz) is not synchronous to TCK (6.25 MHz) which may  
cause not predictable snap-shots on the pin XTAL1.  
Semiconductor Group  
22  
PEB 2084  
IDCODE Register  
The 32-bit identification register is serially read out via TDO. It contains the version  
number (4 bits), the device code (16 bits) and the manufacture code (11 bits). The LSB  
is fixed to “1”.  
Version  
0001  
Device Code  
Manufacture Code  
0000 1000 001  
Output  
0000 0000 0010 0000  
1
TDO  
Note: In the state “test logic reset” the code “0011” is loaded into the instruction code  
register.  
Test Modes TM1 and TM2  
Two different pulse types at the line interface SXna,b are selectable: 2 kHz single pulses  
or 96 kHz continuous pulses, figure 8.  
Figure 8  
Test Pulse Wave Forms  
BYPASS, a bit entering TDI is shifted to TDO after one TCK clock cycle, e.g. to skip  
testing of selected ICs on a printed circuit board.  
Semiconductor Group  
23  
 
PEB 2084  
2.3  
Individual Functions  
2.3.1  
Transceiver, Analog Connections  
The receiver input stages consist of a differential amplifier, followed by a peak detector  
and a set of comparators. Additional noise immunity is achieved by digital oversampling  
after the comparators, meaning that the sampling of the received bit is controlled digitally  
and dependent on the mode (CONFIGURATION Register).  
The peak detector requires at most 2 µs to reach the peak value while storing the peak  
level for at least 250 µs. The data detection thresholds are chosen to 35 % of the peak  
voltage to increase the performance in extended passive bus configurations. However  
they are never lower than 85 mV. The level detector monitors the line input signals to  
detect whether an information is present. In LT-S analog loop-back mode the level  
detector monitors its own loop signal and an incoming signal is not recognized.  
Figure 9  
Receiver Functional Blocks  
The transmitter stage consists of two identical current limited voltage sources, one for  
each polarity of output pulses, in order to achieve a ternary pulse shaping. A voltage of  
2.1 V is delivered between SXna and SXnb, which yields a current of 7.5 mA over 280.  
Semiconductor Group  
24  
PEB 2084  
.
Figure 10  
Transmitter Functional Block  
External transformers of the ratio 2:1 are needed in receive and transmit directions to  
provide for isolation and transform voltage levels according to CCITT recommendations  
I.430. The QUAT-S also needs external circuitry for impedance matching, overvoltage  
protection and electromagnetic compatibility (EMC) for its connection to the 4-wire S/T  
interface.  
Figure 11  
QUAT-S External Circuitry  
Semiconductor Group  
25  
PEB 2084  
Note: The actual values of the external resistors depend on the selected transformer.  
The resistor values are optimal for an ideal transformer (RCu = 0).  
Line termination (RT) is applied to the last TE on the S bus only.  
The transmitter of the QUAT-S is identical to that of SBCX, hence the line interface  
circuitry should be the same. The external resistors (20 … 40 ) are required in order to  
adjust the output voltage to the pulse mask (nominal 750 mV according to CCITT I.430)  
on the one hand and in order to meet the output impedance of a minimum of 20 Ω  
(transmission of a binary one according to CCITT I.430) on the other hand.  
The QUAT-S has a symmetrical receiver.  
Useful hints on how to design the external interface circuitry are contained in the  
application note “S/T interface circuitry using the PEB 2080, SBC, or PEB 2085,  
ISAC-S” from 12.89.  
2.3.2  
Timing Recovery  
LT-S Mode (Configuration Register: Mode = 0)  
In the LT-S mode the QUAT-S is the clock master to all connected TEs.  
The transmit PLL (XPLL) synchronizes the 192 kHz transmit bit clock to the IOM-2 clock  
FSC (8 kHz) derived from the oscillator clock. When the oscillator clock is synchronous  
to FSC (fixed divider ratio of 960 from 7.68 MHz clock) the XPLL will not perform any  
tracking after having locked the phase, i.e. the input jitter on clocks XTAL and FSC will  
not be increased, see figure 12.  
Figure 12  
Block Diagram of XPLL  
Semiconductor Group  
26  
 
PEB 2084  
In the receive direction two cases have to be distinguished depending on the bus  
configuration:  
Short passive bus configuration (Configuration Register: C/W = 1)  
The 192 kHz receive bit clock is identical to the transmit bit clock. The sampling instant  
for the receive bits is shifted by 4.6 µs with respect to the transmit bit clock. According to  
CCITT I.430 the receive frame shall be shifted (delayed) by two bits with respect to the  
transmit frame.  
Point-to-point or extended passive bus configurations  
(Configuration Register: C/W = 0)  
The 192 kHz receive bit clock is recovered (via PLL) from the receive data stream on the  
S interface. According to CCITT I.430 the receive frame can be shifted by 2 to 8 bits with  
respect to the transmit frame. However other shifts are allowed by the QUAT-S as well;  
including 0.  
LT-T Mode (Configuration Register: Mode = 1)  
In LT-T applications the QUAT-S is a clock slave to the central office clock, which is  
always the master. Thus a PBX clock system must be locked up with the CO clock  
system.  
The 192 kHz receive bit clock is recovered (via PLL) from the receive data stream on the  
T interface.  
2.3.3  
Receive Signal Oversampling  
The receive signal is sampled several times (oversampling) inside the receive clock  
period, and a majority logic is used to reduce the bit error rate in severe conditions.  
As illustrated in figure 13, each received bit is sampled 29 times at 7.68 MHz clock  
intervals inside the estimated bit window. The samples obtained are compared against  
a threshold of 50 % with respect to the signal stored by the peak detector. If at least 16  
samples have an amplitude exceeding the set threshold, a logical “0” is considered to be  
detected; otherwise a logical “1” (no signal) is considered to be detected.  
Semiconductor Group  
27  
PEB 2084  
-
VSR2 VSR1  
or  
VTR1  
VTR2  
0 V  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Derived 192-kHz Receive Bit Period  
ITD02361  
Figure 13  
Receive Signal Oversampling on S and T Interfaces  
The PLL also provides a synchronous 1.536 MHz clock (adaptive timing recovery),  
which can be used to synchronize the PCM clocks of the PEB 20550, ELIC, by means of  
a XTAL controlled PLL circuit. Refer to figure 14.  
Figure 14  
Clock System in LT-S and LT-T Modes  
Semiconductor Group  
28  
 
PEB 2084  
Since the ELIC generates the IOM-2 clocks (FSC, DCL) for all connected layer-1 and  
layer-2 devices, the loop is closed. If several layer-1 devices are operated in LT-T mode,  
only one device (one channel in a QUAT-S) may be selected (Configuration Register, bit  
RCLK) to deliver the reference clock.  
The receive PLL performs tracking every 250 µs after detecting a phase difference  
between the F/L transition of the receive signal and the recovered clock. A phase  
adjustment is done by adding or subtracting 65 ns to or from the 1.536 MHz clock cycle.  
Elastic Buffer  
The two interfaces (IOM-2 and S/T) of the QUAT-S require a buffer to compensate for  
the differences in bit rate between the two interfaces as well as the different round trip  
delays of various wiring configurations. The QUAT-S enables intermediate storage of  
3 × B1, 3 × B2 and 6 D-bits for phase difference and wander absorption.  
Moreover, the buffer is designed as a wander-tolerant system, required in LT-T modes  
where the QUAT-S is a slave to both interfaces and the data clocks of the two interfaces  
have a time dependent phase relationship. The elastic buffer of the QUAT-S  
compensates for a maximum phase wander of 50 µs peak-to-peak and a slip detector  
indicates when this limit is exceeded. Setting the C/W-bit in the Configuration Register  
gives a warning when a slip of 25 µs is exceeded. An indication (Slip detected) is  
released in the C/I channel. However the data may be lost.  
The phase relationship between the IOM-2 interface and the S/T interface is arbitrary in  
this case.  
The transmit frame is shifted (delayed) by two bits with respect to the receive frame.  
2.3.4  
Activation / Deactivation  
An incorporated finite state machine controls the activation and deactivation procedures  
and communicates with the layer-2 unit via the IOM-2 C/I channel. Each of the four C/I  
channels is allocated to its corresponding S/T line interface. Refer to chapter 3.6.  
2.3.5  
S/T Interface Frame Structures Synchronization  
The QUAT-S supports two different kinds of frame structures:  
a) A Multi-Frame consisting of 20 consecutive S/T frames.  
b) A Super-Frame consisting of 2 × n (n = 1, 2, …) consecutive S/T frames.  
Both frames provide an extra layer-1 capacity for information transmission in both  
application modes: LT-T and LT-S (refer to chapter 3.6, access to S and Q channels).  
Semiconductor Group  
29  
PEB 2084  
2.3.5.1 Multi-Frame Generation with a short FSC  
The QUAT-S synchronizes to a multi-frame structure according to CCITT  
recommendation I.430.  
In LT-S application mode the S interface multi-frame (20 × 250 µs = 5 ms period) can be  
generated by a master device (e.g. ELIC) by inserting a short FSC pulse.  
An external strobe on the pin CEB/SSYNC can be used for simple terminal  
synchronization.  
A short FSC pulse has a width of one DCL clock whereas a normal FSC pulse has a  
width of at least two DCL clocks. The QUAT-S samples the FSC input with the second  
falling edge of DCL clock in the very first bit positions of the frame. If the sampled bit is  
zero the S/T interface transmit frame, including multi-frame, is reset.  
The frame relationship between IOM-2 interface (FSC) and S/T interface is shown in the  
following figures.  
Figure 15  
Multi-Frame Generation with a Short FSC  
Semiconductor Group  
30  
PEB 2084  
2.3.5.2 Super-Frame (M-bit) Generation using SSYNC (for DECT)  
A zero pulse on the SSYNC input pin forces the QUAT-S to send M = 1 synchronously  
on all four S/T interfaces. (Useful with MFD = 1 only.)  
Figure 16  
M-bit Generation Using SSYNC  
In LT-T mode the QUAT-S synchronizes to the received FA-bit inversions and M-bits.  
When the synchronization is not achieved or lost, it mirrors the received FA-bits.  
Multi-frame synchronization is achieved after two complete multi-frames have been  
detected with reference to FA/N-bit and M-bit positions. Multi-frame synchronization is  
lost after two or more bit errors in FA/N-bit and M-bit positions have been detected in  
consequence, i.e. without a complete valid multi-frame in between.  
The multi-frame synchronization can be disabled by programming the Configuration  
Register:  
MFD = 1.  
Semiconductor Group  
31  
PEB 2084  
3
Operational Description  
All procedures required for data transmission over the S/T interface are implemented.  
These comprise the S/T interface frame and multiframe synchronization,  
activation/deactivation procedure, and timing requirements such as bit rate and jitter. For  
a correct functionality of the QUAT-S the following operational precautions must be  
taken:  
3.1  
Reset  
At power up, a reset pulse (RST) should be applied to bring the line interfaces of the  
PEB 2084, QUAT-S, to the state “reset”. No clocks are required during that procedure.  
After that the PEB 2084, QUAT-S, may be operated according to the state diagram,  
each line interface controlled via the corresponding C/I channel.  
3.2  
Push – Pull Sensing on Pin IDO  
The QUAT-S senses whether an external pull-up resistor (100 kto 1 M) is connected  
to the pin IDO. The sensing is done after reset within the following two IOM frames in the  
monitor channel.  
The pin is pulled low for one bit and then switched to tristate. If the voltage level at IDP0  
rises in the next bit to “High”, QUAT-S interprets this behaviour as an external pull up  
being connected to the pin and remains as open collector. If the level stays at “Low”  
QUAT-S switches to push-pull. However, actions of other device on this line or crosstalk  
from other lines during the sensing procedure may falsify the result. (A pull down resistor  
of 100 kto 1 Mmay improve the correctness of the sensing). This feature is useful if  
multiple transmitters are connected to the same IOM-2 interface, e.g. QUAT-S with an  
IDEC.  
3.3  
IOM®-2 Interface  
3.3.1  
ISDN Channels Allocation  
The allocation between S/T line interfaces and the IOM-2 ISDN channels is according to  
their numbers with an offset of four or zero. The offset can be selected via pin ICS by pin  
strapping, i.e.  
for ICS = 0 the SRX0a,b is allocated to IOM channel 0, and so on,  
for ICS = 1 the SRX0a,b is allocated to IOM channel 4, and so on.  
For detailed electrical definition refer to the chapter 5 and the IOM Interface  
Specification, Rev. 2.  
As described in chapter 2.2.2, each basic ISDN channel consists of five different  
communication channels: two voice channels, one monitor channel (incl. MR and MX  
bits), one D-channel and one command/indication (C/I) channel.  
Semiconductor Group  
32  
PEB 2084  
3.3.2  
Monitor Channel  
Before starting a data transmission to the QUAT-S, a microprocessor must verify that the  
transmitter of the QUAT-S is inactive, i.e. that a previous transmission has been  
terminated.  
The QUAT-S has a monitor transmitter time out function of minimum 4 ms implemented.  
This prevents the monitor message to be transmitted continuously if the monitor data  
won’t be acknowledged by the receiver.  
First the Identification Register of the QUAT-S may be read. Two bytes are transmitted  
to the QUAT-S and as a result of the read operation two bytes are returned to the  
controller. In case of a write operation the data is only acknowledged and no data is  
returned from the QUAT-S to the controller.  
The first byte of the data transmitted to the QUAT-S always indicates the type of the  
desired monitor operation (i.e. read or write to the internal registers).  
The example shows the typical register access of the ELIC and gives a feeling about the  
important bits.  
The ELIC uses a 16-Byte FIFO for transmission and reception of the monitor data.  
Therefore the user doesn’t need to provide routines for the handshake protocol.  
An example for a communication between a µP, an ELIC and the QUAT-S is shown in  
figures 17 and 18.  
Semiconductor Group  
33  
PEB 2084  
Figure 17  
Monitor Channel Handling: µP ELIC QUAT-S  
A detailed description of the hand-shake procedure using MX and MR bits is shown in  
figure 18.  
Semiconductor Group  
34  
PEB 2084  
Figure 18  
Monitor Channel Handling: Hand-shake by the Use of MX and MR Bits (LT-S  
Mode)  
QUAT-S in LT-S Mode  
Data Downstream:  
Data Upstream:  
MX-bit at ELIC MR-bit at QUAT-S  
MX-bit at QUAT-S MR-bit at ELIC  
QUAT-S in LT-T Mode  
Data Downstream:  
Data Upstream:  
MX-bit at QUAT-S MR-bit at ELIC  
MX-bit at ELIC MR-bit at QUAT-S  
Semiconductor Group  
35  
PEB 2084  
3.3.3  
D-Channel Handling  
Decentral D-channel handling in a PBX depends on QUAT-S application mode: LT-S or  
LT-T.  
LT-S Mode. Configuration Register, MODE = 0.  
It is used in PBX applications with only one signalling controller (HDLC) used for up to 32  
ISDN subscribers in order to minimize system costs. A terminal is allowed to send data  
only if the signalling controller is ready to receive data. The D-channel access can be  
controlled via a central D-channel arbiter unit integrated in the PEB 20550, ELIC, or  
according to CCITT I.430 via an arbitration logic in the QUAT-S.  
D-Channel Arbitration via ELIC. Auxiliary Register, DCM(1:0) = 11.  
ELIC, PEB 20550, informs the QUAT-S whether the signalling controller (SACCO-A) is  
ready to receive data. It sends commands (C/I) to individual QUAT-S channels:  
C/I = 1100H (e.g. 1000H) indicates that the D-channel is “available” and can be used.  
C/I = 1100H indicates that the D-channel currently can not be used (is “blocked”) as  
the signalling controller is allocated to an other terminal.  
The QUAT-S controls the connected terminal transmitters (e.g. ISAC-S, SBCX,  
ISAC-S TE) via its S interfaces accordingly. It translates the information “available” or  
“blocked” by setting the E-bit on the S interface.  
E = D indicates to the terminal that its HDLC controller can send data.  
E = D indicates that the HDLC controller may not send data or has to abort sending data.  
Figure 19  
QUAT-S in LT-S Mode with a D-Channel Access via ELIC D-Channel Arbiter  
Semiconductor Group  
36  
PEB 2084  
The codes (C/I = 1100H and 1100H) can only be used when the QUAT-S is in the state  
G3 activated (during INFO 4 transmission). Refer to chapter 3.6.  
For a detailed description of the D-Channel Arbiter refer to “ELIC, PEB 20550, Technical  
Manual 9.93”, page 54, chapter 2.2.8.  
D-Channel Access According to CCITT I.430 (Star Configuration)  
The D-channel access is arbitrated among the terminals themselves,  
if the QUAT-S Auxiliary Register is programmed to DCM(1:0) = 10.  
Figure 20  
QUAT-S in LT-S Mode Supporting Arbitration According to CCITT I.430  
The D-channel access control is established as a logical passive bus structure. All  
received D-channels are ANDed and the resulting value (internally connected to the pin  
CEB) is sent back as Echo bit on all involved S/T interfaces.  
If more QUAT-S work in parallel the CEB pins (open drain output) are wired via an  
external pull-up resistor to VDD.  
The “short passive bus”, a system of multiple TE’s accessing a single D-channel, is  
extended to multiple physical S lines still representing a single logical “short passive  
bus”. It is a system with multiple B-channels using a single D-channel.  
Only the winning D-channel reaches the ELIC. The other D-channels remain blocked  
until a TE encounters 8 (10) E-bits equal to the D-bit in a row.  
Semiconductor Group  
37  
PEB 2084  
The ELIC D-channel arbiter doesn’t work in this application as an arbiter (all channels  
are permanently sent the C/I command “available” = 1000H), it only detects the winning  
D-channel on the IOM interface and controls the connected LABD controller  
(SACCO-A).  
LT-T Mode Configuration Register, bit 0: MODE = 1  
D-channel collision resolution is always controlled according to CCITT I.430.  
Four-Channel LT-T Applications  
The pin DRDY conveys control information synchronous to the D-channel timeslots to  
control PEB 2075, IDEC, if the Auxiliary Register, bits DCM(1:0) = 10.  
Stop when DRDY = “0”, Go when DRDY = “1”.  
Figure 21  
QUAT-S in LT-T Mode with IDEC for Four-Channel Applications  
Semiconductor Group  
38  
PEB 2084  
Single-Channel LT-T Applications  
QUAT-S can also be used in a mixed mode, e.g. by programming three channels in LT-S  
mode and one channel in LT-T mode. The Auxiliary Register of only one channel can be  
programmed to DCM(1:0) = 11 and the Configuration Register pin RCLK to 1.  
Whereas the subscriber D-channels are handled by the D-channel arbiter and SACCO-A  
in ELIC (as described in chapter LT-S Mode), the trunk D-channel is handled by the  
QUAT-S arbitration logic and SACCO-B in ELIC.  
If the Echo bit differs from the D-bit then QUAT-S stops SACCO-B: DRDY = “1”, else  
SACCO-B may send data: DRDY = “0”. Pin DRDY conveys control information  
asynchronous to the D-channel timeslot.  
This mode is applicable to single channel LT-T applications only.  
Figure 22  
QUAT-S with SACCO-B for Single-Channel LT-T Applications  
Semiconductor Group  
39  
PEB 2084  
Clock generation for the above application is shown in figure 14.  
3.3.4 Command/Indicate Channel  
The exchange of control information in the C/I channel is state oriented. This means that  
a code in the C/I channel is repeated in every IOM frame until a next change is  
necessary. A new code must be found in two consecutive IOM frames to be considered  
as valid (double last look criterion).  
C/I commands trigger QUAT-S layer-1 state machine in accordance with CCITT I.430.  
For a list of the C/I codes and their use refer to chapter 3.6.  
3.4  
Activation and Deactivation  
An internal finite state machine of the PEB 2084, QUAT-S, controls the  
activation/deactivation procedures, switching of loops and transmission of special pulse  
patterns. Such actions can be initiated by primitives (INFOS) on the S/T interface or by  
control codes (C/I) sent over the IOM-2 interface.  
The IOM-2 interface should be kept active in both application modes, LT-S and LT-T, for  
the QUAT-S is always ready to transmit and receive messages.  
Depending on the application mode and the transfer direction the QUAT-S state  
machines support about 20 different codes in conditional and unconditional states:  
LT-S mode C/I codes data downstream = Commands: reset, test mode,  
activate req.,..  
data upstream  
= Indications: not sync., code violation,  
timer out,..  
States:  
deactivated, activated, pending, lost framing, test mode.  
The state diagram is shown in figure 23.  
LT-T mode C/I codes for data upstream = Commands: reset, test,  
activate request,..  
command x  
acknowledged,..  
data downstream = Indications:  
Conditional states: power up, pending deactivation, synchronized,  
slip detected,..  
The state diagram is shown in figure 24.  
Unconditional states can be entered from any conditional state and should  
be left with the command TIM:  
loop closed, test mode,  
reset state,..  
The state diagram is shown in figure 25.  
The activation and deactivation procedures implemented in the PEB 2084, QUAT-S,  
correspond with those implemented in the PEB 2081, SBCX.  
Semiconductor Group  
40  
PEB 2084  
3.4.1  
LT-S Mode  
Command / Indication Codes  
Commands (downstream) Abbreviation Code Remark  
LT-S mode  
Deactivate request  
Reset  
DR  
0000 (x)  
0001 (x)  
RES  
TM1  
Test mode 1  
0010 Transmission of pseudo-ternary  
pulses at 2 kHz frequency (x)  
Test mode 2  
TM2  
0011 Transmission of pseudo-ternary  
pulses at 96 kHz frequency (x)  
Activate request  
AR  
AI  
1000  
Activate indication  
1100 Transmission of transparent  
INFO acc. to state diagram with  
inverted D-channel mirrored back  
in E-channel  
Activate request loop  
ARL  
DC  
1010 Activation request for loop 2  
Deactivate confirmation  
1111 Deactivation acknowledgment,  
quiescent state  
(x) unconditional commands  
Indications (upstream)  
LT-S mode  
Abbreviation Code Remark  
Timing  
TIM  
RSY  
AR  
0000  
Resynchronizing  
Activate request  
Code violation received  
0100 Receiver is not synchronous  
1000 INFO 1 received  
CVR  
1011 After each multi-frame the receipt  
of at least one illegal code  
violation is indicated four times.  
This function must be enabled by  
setting the RCVE-bit in the  
configuration register.  
Activate indication  
AI  
DI  
1100 Synchronous receiver  
Deactivate indication  
1111 Timer (32 ms) expired or INFO 0  
received after deactivation  
request  
Semiconductor Group  
41  
PEB 2084  
Figure 23  
QUAT-S State Diagram of LT-S Mode  
Note: 1) ARD stands for AR or ARL  
2) only if DCM (1:0) = 11  
Semiconductor Group  
42  
PEB 2084  
Figure 24  
QUAT-S State Diagram in the LT-T Mode, Conditional States  
Note: 1) × = TM1 and TM2 and RES and ARL  
2) Alp stand for AI8 or Al10  
3) ARp TMI stands for AR8 or AR10  
4) TMI stands for TM1 or TM2  
Semiconductor Group  
43  
PEB 2084  
LT-S Mode States  
• G1 deactivated  
The line interface is not transmitting. There is no signal detected on the S interface,  
and no activation command is received in the C/I channel.  
• G2 pending activation  
As a result of an INFO 1 detected on the S line or an ARD command, the line interface  
begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise  
reception of INFO 3 is to be implemented in software. In case of an ARL command,  
loop 2 is closed.  
• G3 activated  
Normal state where INFO 4 is transmitted to the S interface. The line interface  
remains in this state as long as neither a deactivation nor a test mode is requested,  
nor the receiver looses synchronism. When receiver synchronism is lost, INFO 2 is  
sent automatically. After reception of INFO 3, the transmitter keeps on sending  
INFO 4.  
• G2 lost framing  
This state is reached when the line interface has lost synchronism in the state G3  
activated.  
• G4 pending deactivation  
This state is triggered by a deactivation request DR. It is an unstable state: indication  
DI (state “G4 wait for DR.”) is issued by the QUAT-S when: either INFO 0 is received,  
or an internal timer of 32 ms expires.  
• G4 wait for DR  
Final state after a deactivation request. The line interface remains in this state until a  
response to DI (in other words DC) is issued.  
• Test mode 1  
Single alternating pulses are sent on the S interface (2 kHz repetition rate).  
• Test mode 2  
Continuous alternating pulses are sent on the S interface (96 kHz).  
Semiconductor Group  
44  
PEB 2084  
3.4.2  
LT-T Mode  
Command / Indication Codes, Conditional States  
Commands (upstream)  
LT-T Mode  
Abbreviation Code Remark  
Timing  
TIM  
RS  
0000 Line interface is powered up  
Reset  
0001 (x)  
Test mode 1  
TM1  
0010 Transmission of pseudo-ternary  
pulses at 2 kHz frequency (x)  
Test mode 2  
TM2  
0011 Transmission of pseudo-ternary  
pulses at 96 kHz frequency (x)  
Activate request, priority 8 AR8  
Activate request, priority 10 AR10  
1000 Activation command,  
D channel priority is 8  
1001 Activation command,  
D channel priority is 10  
Active request loop  
ARL  
DI  
1010 Activation of loop 3 (x)  
Deactivate indication  
(x) unconditional commands  
1111 Line interface is powered down  
Semiconductor Group  
45  
PEB 2084  
Indications (downstream) Abbreviation Code Remark  
LT-T Mode  
Deactivate request  
DR  
0000 Deactivation request via S/T  
interface  
Reset  
RES  
TM1  
TM2  
SLIP  
0001 Reset acknowledge  
0010 TM1 acknowledge  
0011 TM2 acknowledge  
Test mode 1  
Test mode 2  
Slip detected  
0011 Wander is larger than 50 µs peak-  
to-peak (or 25 µs peak-to-peak if  
programmed, refer to the C/W-bit  
of the Configuration Register)  
Resynchronization during  
level detect  
RSY  
0100 Signal received, receiver not  
synchronous  
Power up  
PU  
0111 Line interface is powered up  
1000 INFO 2 received  
Activate request  
Activate request loop  
Code violation received  
AR  
ARL  
CVR  
1010 Loop 3 closed  
1011 After each multiframe the receipt  
of at least one illegal code  
violation is indicated four times.  
This function must be enabled by  
setting the RCVE-bit in the  
configuration register.  
Activate indication loop  
AIL  
AI8  
1110 Loop 3 activated  
Activate indication with  
priority class 8  
1100 INFO 4 received,  
D-channel priority is 8 or 9  
Activate indication with  
priority class 10  
AI10  
DC  
1101 INFO 4 received,  
D-channel priority is 10 or 11  
Deactivate confirmation  
1111 Line interface is powered down  
Semiconductor Group  
46  
PEB 2084  
Figure 25  
QUAT-S State Diagram in the LT-T Mode, Unconditional States (Transitions)  
Note: 1) In state loop 3 activated, i3 is the internal signal, the external signal is i0.  
Semiconductor Group  
47  
PEB 2084  
LT-T Mode, Conditional States  
• F3 power down  
This is the deactivated state of the physical protocol. The receive line awake unit is  
active.  
• F3 power up  
This state is similar to “F3 power down”. The state is invoked by a C/I command  
TIM = “0000” (or DI static low). After the subsequent activation of the clocks the  
“Power Up” message is output.  
• F3 pending deactivation  
The line interface reaches this state after receiving INFO 0 (from states F5 to F8).  
From this state an activation is only possible from the line (transition “F3 pend. deact.”  
to “F5 unsynchronized”). The power down state may be reached only after receiving  
DI.  
• F4 pending activation  
Activation has been requested from the terminal, INFO 1 is transmitted, INFO 0 is still  
received, “Power Up” is transmitted in the C/I channel. This state is stable: timer T3  
(I.430) is to be implemented in software.  
• F5/8 unsynchronized  
At the reception of any signal from the NT, the QUAT-S ceases to transmit INFO 1,  
adapts its receiver circuit, and awaits identification of INFO 2 or INFO 4. This state is  
also reached after the line interface has lost synchronism in the states F6 or F7  
respectively.  
• F6 synchronized  
When the QUAT-S receives an activation signal (INFO 2), it responds with INFO 3 and  
waits for normal frames (INFO 4).  
• F7 activated  
This is the normal active state with the layer-1 protocol activated in both directions.  
From state “F6 synchronized”, state F7 is reached almost 0.5 ms after reception of  
INFO 4.  
• F7 slip detected  
When a slip is detected between the T interface clocking system and the IOM-2  
interface clocks (phase wander greater than 50 µs, data may be disturbed, or 25 µs if  
programmed in the configuration register) the line interface enters this state,  
synchronizing again the internal buffer. After 0.5 ms this state is left again.  
Semiconductor Group  
48  
PEB 2084  
LT-T Mode, Unconditional States  
The unconditional states should be left with the command TIM.  
• Loop 3 closed  
On Activate Request Loop command, INFO 3 is sent by the line transmitter internally  
to the line receiver (INFO 0 is transmitted to the line). The receiver is not yet  
synchronized.  
• Loop 3 activated  
The receiver is synchronized on INFO 3 which is looped back internally from the  
transmitter. Data may be sent. The indication “AIL” is output to indicate the activated  
state. When the S/T line awake detector, which is switched to the line, detects an  
incoming signal, this is indicated by “RSY”.  
• Test mode 1  
Single alternating pulses are sent on the T interface (2 kHz repetition rate).  
• Test mode 2  
Continuous alternating pulses are sent on the T interface (96 kHz).  
• Reset state  
A hardware or software reset (RES) forces the line interface to an idle state where the  
analog components are disabled (transmission of INFO 0) and the T line awake  
detector is inactive. Thus activation from the NT is not possible.  
Semiconductor Group  
49  
PEB 2084  
3.4.3  
Example of Activation/Deactivation  
An activation and deactivation procedure between a QUAT-S and an ISAC-S or SBCX  
in TE mode over the S/T interface line is shown in figure 26. It illustrates how the state  
machines of the respective modes interwork to facilitate activation and deactivation. In  
this case activation was initiated by an AR request at the terminal side and deactivation  
by a DR command at the LT side. Activation could also be initialized at the LT side using  
an AR request.  
Figure 26  
Example of S/T Interface Activation and Deactivation  
Note: T1: 4 ms  
T2: 1 ms  
T3: 500 ms  
T4: 16 ms  
time for INFO 1 detection  
time for synchronization  
time for INFO 4 detection (2 subsequent frames)  
time for INFO 0 detection  
timer  
T5: 32 ms  
Semiconductor Group  
50  
 
PEB 2084  
3.5  
Diagnostic Functions, Test Loop-backs  
Different test loops for B1, B2 and D-channels can be closed in the QUAT-S:  
– Transparent analog loops (the data are also sent forward).  
– Non transparent analog loops (the forward data path is blocked).  
– External transparent analog loop for board test.  
The loops may be closed in both operational modes, in LT-S and in LT-T, via the C/I  
command ARL which may be applied (continuously) in the states “G4 pending  
deactivation”, “G4 wait for DR” and “G1 deactivated”.  
Loop transparency can be achieved by setting the LP-bit in the Configuration Register.  
An example is shown in figure 27.  
Figure 27  
An Example for QUAT-S in LT-S Mode with a Transparent Loop (Loop 2)  
and in LT-T Mode with a Non Transparent Loop (Loop 3)  
Loop 2 and 3 are activated over the IOM-2 interface with Activate Request Loop (ARL).  
Semiconductor Group  
51  
 
PEB 2084  
3.6  
S and Q Channel Access  
According to CCITT recommendation I.430 a multi-frame (= 20 consecutive S/T frames)  
provides an additional communication channel between TE and LT or LT and CO via S  
and Q bits. Refer to figure 28.  
Two S channels (S1 and S2) can be used by the QUAT-S for communication in data  
downstream direction.  
The Q channel bits are defined to be the bits in the FA bit position and are used for  
communication in data upstream direction.  
Figure 28  
Direction of S and Q Channels in Different Application Modes  
The following table shows the S and Q bit positions within the multi-frame (20 S/T  
frames).  
Frame Number  
LT to TE or  
CO to LT  
TE to LT or  
LT to CO  
1
2
S11  
S21  
Q1  
ZERO  
6
7
S12  
S22  
Q2  
ZERO  
11  
12  
S13  
S23  
Q3  
ZERO  
16  
17  
S14  
S24  
Q4  
ZERO  
1
S11  
Q1  
Semiconductor Group  
52  
 
PEB 2084  
All other S and Q bit positions within the remaining 12 frames of the multi-frame carry the  
value ZERO.  
The S and Q bits are accessed by the ELIC or EPIC via IOM-2 interface monitor channel.  
The bits are handled in byte format packed in the lower nibble. The upper nibble is used  
as identifier for the message type. The bit structure used by the QUAT-S is outlined in the  
following table.  
Identifier  
Downstream Data  
S11 S12 S13 S14  
S21 S22 S23 S24  
Upstream Data  
0
0
0
0
0
0
0 1  
1 0  
0 1  
Q1 Q2 Q3 Q4  
QUAT-S has implemented a 3 × 4 bit RAM as buffer for the S and Q bits. The 4-bit RAM  
cells can be addressed separately.  
The data are handled by the QUAT-S in either non auto mode or in transparent mode.  
In the transparent mode the S data are transferred in downstream direction as a real time  
data stream of 1.600 bit/s (8 bits in 5 ms = 20 × 250 µs), the Q data are transferred in  
upstream direction as a real time data stream of 800 bit/s (4 bits in 5 ms).  
In non auto mode the received S and Q channels are checked for code changes and, if  
a change is detected, the new four bits are transferred. In transmit direction each of the  
4-bit message is repeated until a new word is written into the buffer (e.g. into the MFFIFO  
in ELIC).  
3.7  
Default-Use of Pin CEB/SSYNC  
The PEB 2084, QUAT-S, uses the input signal at pin CEB/SSYNC as an external  
multiframe synchronization input in any case except if DCM(1:0) is set to “10” in any of  
the four channels. The external multiframe synchronization input signal is expected to be  
low for 125 µs and high for 2n + 1 times 125 µs thus defining an S/T interface multiframe  
of n + 1 frames. The edges of the external multiframe synchronization input signal have  
to be in coincidence with the rising edges of FSC. Each low at this input will generate one  
frame with M-bit as binary ONEs at the S/T interface output. When setting bit MFD  
(configuration register) to “1”, this function enables the generation of arbitrary  
multiframes, which may be useful to synchronize digital cellular wireless  
communications equipment.  
While using SSYNC for M-bit generation the short FSC signal is not allowed as it would  
reset the Super-Frame generated by SSYNC. If not used, the SSYNC input must be  
connected via a pull-up resistor to VDD.  
Semiconductor Group  
53  
PEB 2084  
4
Registers Description  
As the QUAT-S contains four PEB 2081, SBCX, cores, it contains four complete register  
sets. All registers programming is done via the four IOM monitor channels.  
Access to the registers of the QUAT-S are treated as local functions and therefore are  
marked with the code “1000” in the first four bits of the message:  
Monitor message:  
Code = 1 0 0 0  
Internal address  
D7 D6 D5 D4  
D3 D2 D1 D0  
Register Read  
An internal register is read by setting the internal address to zero (0H) and indicating the  
address of the specific register in the bits D(3:0). The bits D(7:4) are set to zero.  
E.g. “80H 01H” is the read command for the register 1H, the Configuration Register.  
Code = 1 0 0 0  
0 0 0 0  
0 0 0 0  
register addr. = 01H  
The response message from QUAT-S comprises two bytes, the first showing the  
address after the local function code, the second showing the register data.  
E.g. “81H (D7:0)” is the response to a read command on address 1H, where D(7:0) is the  
content of the Configuration Register.  
Code = 1 0 0 0  
register addr.= 01H  
D7 D6 D5 D4  
D3 D2 D1 D0  
Register Write  
An internal register is written by setting the internal address to the address of the specific  
register. The register will then be loaded with the value of D(7:0),  
e.g. “81H 5DH” programs the Configuration Register (addr. 1H) with the value 5DH.  
Code = 1 0 0 0  
register addr.  
D7 D6 D5 D4  
D3 D2 D1 D0  
4.1  
Identification Register  
Read, Address: 0H  
bit 7  
bit 0  
Format:  
0
1
0
0
0
1
0
0
After the read command “80H 00H” according to the procedure described above the  
QUAT-S transmits the response “80H 44H”.  
The returned value 44H of the Identification Register is specific for the PEB 2084,  
QUAT-S.  
Semiconductor Group  
54  
PEB 2084  
4.2  
Configuration Register  
Read/Write, Address: 1H  
bit 7  
bit 0  
Format:  
Initial value: 00H  
Bit-name Description  
MFD  
RCLK  
0
LP  
SQM  
RCVE  
C/W  
MODE  
MFD  
Multi-Frame Disable (write):  
0: All multi-frame functions active.  
1: Multi-frame generation (LT-S) or synchronization (LT-T) prohibited.  
No SQ monitor messages released.  
Multi-Frame Detected (read):  
0: No multi-frame synchronization achieved.  
1: Multi-frame synchronization (LT-T) achieved.  
RCLK  
Receive Clock  
0: No output signal at pin CLK1/IDS  
(if all QUAT-S channels are programmed to 0 at this bit location, the  
output pin CLK1 is tristated)  
1: The 1.536 MHz clock synchronized to the receiver (LT-T) is output  
at the pin CLK1(Due to an internal short-circuit safety logic, a 1 is  
only processed if the other three channels are set to 0 at this bit  
location.)  
Note: The pin CLK1/IDS is used to pin-strap the DCL data clock ratio  
during HW reset phase  
10: Double clock  
11: Single clock  
LP  
Loop  
LT-S mode  
0: Transparent analog loop  
1: Non transparent analog loop  
LT-T mode  
0: Non transparent analog loop  
1: External transparent loop  
SQM  
SQ channel handling Mode selection  
0: Non auto mode  
1: Transparent mode  
only S1 and Q channels  
S1, S2 and Q channels  
Semiconductor Group  
55  
PEB 2084  
Bit-name Description  
RCVE Receive Code Violation Indication (C/I) Enable  
0: Normal operation  
1: A code violation detector is implemented to support the  
Far-end-code-violation (FECV) function according to ANSI T1.605.  
After each multi-frame the receipt of at least one illegal code  
violation is indicated by the occurrence of four times the CI code  
1011 (CVR).  
C/W  
Configuration / Wander detection  
LT-S mode: Configuration  
0: Point-to-point or extended passive bus configuration  
(adaptive timing recovery).  
1: short passive bus configuration (fixed timing recovery)  
LT-T mode: Wander detection (warning on slip detection in C/I, data may  
be lost!)  
0: “SLIP” after 50 µs wander  
1: “SLIP” after 25 µs wander  
MODE  
Mode select  
0: LT-S mode selected  
1: LT-T mode selected  
4.3  
Loopback Register  
Read/Write, Address: 2H  
bit 7  
bit 0  
0
Format:  
0
SB2  
SB1  
0
0
0
1
Initial value: 02H  
Bit-name Description  
SB2  
SB1  
Loopback B2 channel at the S/T interface  
Loopback B1 channel at the S/T interface  
Note: Register bits not described may exist in hardware due to the use of the PEB 2081,  
SBCX, core. Writing those bits other than the default value will cause unexpected  
behavior of the device.  
Semiconductor Group  
56  
PEB 2084  
4.4  
Auxiliary Register  
Read/Write, Address: 4H  
bit 7  
bit 0  
Format:  
CI3  
CI2  
CI1  
CI0  
TOD  
0
DCM1 DCM0  
Initial value: CI(3:0), 0H  
Bit-name Description  
CI(3:0)  
C/I codes as in C/I channel  
The indication can be read via monitor channel CI (3:0).  
TOD  
Time-Out Disable  
0: Monitor timeout (minimum 5 ms)  
1: The time-out function of the monitor transmitter can be disabled  
to ease manual software debugging.  
DCM(1:0) D-channel mode:  
Specific D channel associated functions including the pins DRDY and  
CEB/SSYNC:  
00: Transparent D-channel, pins DRDY and CEB/SSYNC tristated.  
10: LT-T mode: D-channel collision resolution according to CCITT  
I.430. Pin DRDY conveys control information  
synchronous to D-channel timeslots to control  
PEB 2075, IDEC (0: stop; 1: go).  
LT-S mode: D-channel access control by establishing a logical  
passive bus structure, where the received D-channel is  
ANDed with the other channels selected over pin  
CEB and the resulting value is sent back as Echo bit.  
11: LT-T mode: D-channel collision resolution according to CCITT  
I.430. Pin DRDY conveys asynchronous control  
information to control SACCO-B in the ELIC,  
PEB 20550. This mode is only applicable for a single  
channel LT-T application (0: go; 1: stop).  
LT-S mode: D-channel access control via the central D-channel  
arbiter unit of the PEB 20550, ELIC. Dependent on  
the command, each channel mirrors the received  
D-channel into the Echo channel inverted  
command 1100H) or unchanged (1000H).  
01: Not applicable  
Note: Register bits not described may exist in hardware due to the use of PEB 2081,  
SBCX, core. Writing those bits other than the default value will cause unexpected  
behavior of the device.  
Semiconductor Group  
57  
PEB 2084  
4.5  
Other Registers  
Other registers are implemented at address locations 3H, 5H, and 8H. Access to those  
monitor addresses may cause unexpected behavior of the device.  
Semiconductor Group  
58  
PEB 2084  
5
Electrical Characteristics  
All characteristics given are valid under the following conditions unless otherwise  
indicated:  
TA = 0 to 70 °C; VDD = 5 V ± 5 %; VSS = 0 V  
5.1  
Absolute Maximum Ratings  
Parameter  
Symbol  
TA  
Limit Values  
0 to 70  
Unit  
°C  
°C  
V
Ambient temperature under bias  
Storage temperature  
Tstg  
– 65 to 125  
– 0.4 to VDD + 0.4  
6
Voltage on any pin with respect to ground VS  
Maximum voltage on any pin  
Vmax  
V
Note: Stresses above the listed values may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit.  
Semiconductor Group  
59  
PEB 2084  
Line Overload Protection  
The maximum input current (under overvoltage conditions) is given as a function of the  
width of a rectangular input current pulse. For the destruction current limits refer to  
figure 29.  
Ι
5000  
mA  
500  
50  
5
t
10-9  
10-7  
10-5  
10-3  
sec  
ITD05400  
Figure 29  
Maximum Line Input Current for the Receiver  
Semiconductor Group  
60  
 
PEB 2084  
5.2  
DC Characteristics  
Parameter  
Pin  
Symbol Limit Values Unit Test Condition  
min. max.  
All pins  
except  
SXna,b;  
SRna,b  
Input voltage  
VIL  
VIH  
– 0.4 + 0.8 V  
Input high voltage  
2.0  
VDD  
V
+ 0.4  
Output low voltage  
VOL  
0.45  
0.45  
V
V
IOL = 2 mA  
IOL = 7 mA  
XTAL1, 2  
DRDY,  
IDO  
Output low voltage  
Output high voltage  
VOL1  
All pins  
except  
SXna,b;  
SRna,b;  
XTAL1, 2  
VOH  
2.4  
V
V
IOH = – 400 µA  
IOH = – 100 µA  
VDD  
– 0.5  
Input leakage current  
Output leakage current  
ILI  
+ 1  
+ 1  
µA  
µA  
0 V VIN VDD  
0 V VOUT VDD  
ILO  
VX  
SXna,b  
Absolute value of  
output pulse amplitude  
2.03 2.31  
2.10 2.39  
V
V
RL = 50 1)  
RL = 400 1)  
(VSXna VSXnb  
)
SXna,b  
SXna,b  
Transmitter output current IX  
7.5  
10  
13.4 mA RL = 5.6 1)  
Transmitter output  
impedance  
ZX  
kΩ  
inactive or  
during binary  
one  
(VDD = 0 … 5 V)  
during binary  
zero  
0
RL = 50 Ω  
SRna,b  
XTAL1  
Receiver input  
impedance  
ZR  
30  
100  
kΩ  
VDD = 5 V  
VDD = 0 V  
Input high voltage  
VIH  
3.5  
VDD  
V
+ 0.4  
XTAL1  
XTAL2  
Input low voltage  
VIL  
– 0.4 1.5  
4.5  
V
V
Output high voltage  
VOH  
IOH = 5 µA,  
C 50 pF  
XTAL2  
Output low voltage  
VOL  
0.4  
V
IOH = 5 µA,  
C 50 pF  
Note: 1) Due to the transformers, the load resistance as seen by the circuit is four times RL.  
Semiconductor Group  
61  
PEB 2084  
DC Characteristics (cont’d)  
Pin  
Parameter  
Symbol Limit Values Unit Test Condition  
min. max.  
Power  
supply  
current  
operational ICC  
55  
mA VDD = 5 V  
inputs at  
VSS/VDD  
power  
down  
5
mA No outputs  
loads, no  
XTAL1  
power  
down  
10  
mA No output  
loads, with  
XTAL1  
5.3  
Capacitances  
TA = 25 °C; VDD = 5 V ± 5 %; VSS = 0 V; fC = 1 MHz  
Pin Parameter  
Symbol Limit Values Unit  
min. max.  
All pins except SXn a, b Pin capacitance  
CIO  
7
pF  
pF  
SXn a, b  
Output capacitance  
COUT  
10  
against VSS  
XTAL1, 2  
External load capacitance CL  
50  
pF  
Semiconductor Group  
62  
PEB 2084  
5.4  
Recommended Oscillator Circuits  
Crystal nominal frequency: 7.68 MHz ± 100 ppm  
Figure 30  
Recommended Oscillator Circuits  
5.5  
AC Characteristics  
TA = 0 to 70 °C; VDD = 5 V ± 5 %  
AC testing: Set-up, Hold, Delays  
Inputs are driven at VDD – 0.5 V for a logic “1” and 0.45 V for a logic “0”.  
Timing measurements are made at 2.0 V for a logic “1” and at 0.8 V for a  
logic “0”.  
Figure 31  
Input/Output Wave Form for AC Tests  
Jitter  
The clock input FSC is used as reference clock to provide the 192 kHz clock for the S/T  
interface. In the case of a desynchronous 7.68 MHz clock generated by an oscillator, the  
clock FSC should have a jitter of less than 50 ns peak-to-peak.  
Semiconductor Group  
63  
PEB 2084  
5.6  
Clocks  
CLK1  
Parameter  
Symbol Limit Values Unit Test Condition  
min. max.  
High phase of clock  
Low phase of clock  
Clock period  
tWH  
tWL  
Tp  
250  
ns  
ns  
50 pF load  
capacitance at CLK1  
250  
50 pF load  
capacitance at CLK1  
650.8 651.2 ns  
CLK2  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min. max.  
High phase of clock  
Low phase of clock  
Clock period  
tWH  
tWL  
TP  
40  
ns  
50 pF load capacitance  
at CLK2  
40  
ns  
50 pF load capacitance  
at CLK2  
130.16 130.24 ns  
CLK2 is directly derived from the oscillator clock and can drive up to 6 oscillator inputs  
of other communication ICs, e.g. ISAC-S, PEB 2085.  
3.5 V  
0.8 V  
tWH  
tWL  
TP  
ITT00766  
Figure 32  
Definition of Clock Period and Width  
Semiconductor Group  
64  
PEB 2084  
5.7  
IOM®-2 Interface Timing  
Figure 33  
Timing of the IOM®-2 Interface with Double Data Rate DCL  
Timing Characteristics of the IOM®-2  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
min. typ.  
max.  
Frame sync hold  
Frame sync setup  
Frame sync high  
Frame sync low  
Data delay to clock  
Data delay to frame1)  
Data setup  
tFH  
30  
ns  
ns  
ns  
tFS  
70  
tFWH  
tFWL  
tDDC  
tDDF  
tDS  
130  
tDCL  
100  
150  
ns  
ns  
ns  
ns  
20  
50  
Data hold  
tDH  
1)  
Note: tDDF = 0.5 tDCL + tDDC tFH  
Semiconductor Group  
65  
PEB 2084  
Figure 34  
IOM®-2 Interface Timing with Single Data Rate DCL  
Timing Characteristics of the IOM®-2  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
min. typ.  
max.  
Frame sync. hold  
Frame sync. setup  
Frame sync. high  
Frame sync. low  
Data delay to clock  
Data delay to frame1)  
Data setup  
tFH  
30  
ns  
ns  
ns  
tFS  
70  
tFWH  
tFWL  
tDDC  
tDDF  
tDS  
130  
tDCL  
100  
150  
ns  
ns  
ns  
ns  
20  
50  
Data hold  
tDH  
Note: 1) tDDF = 0.5 tDCL + tDDC tFH  
Semiconductor Group  
66  
PEB 2084  
Figure 35  
SSYNC Timing  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit  
Superframe sync. setup  
Superframe sync. hold  
tSSYS  
tSSYH  
200  
200  
ns  
ns  
Semiconductor Group  
67  
PEB 2084  
5.8  
Timing of Boundary Scan Test Interface  
Figure 36  
Boundary Scan Test Interface Timing  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
Test clock period  
tTCP  
tTCPL  
tTCPH  
tMSS  
tMSH  
tDIS  
160  
80  
80  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test clock period low  
Test clock period high  
TMS setup time to TCK  
TMS hold time from TCK  
TDI setup time to TCK  
TDI hold time from TCK  
TDO valid delay from TCK  
tDIH  
tDOD  
60  
Semiconductor Group  
68  
PEB 2084  
5.9  
Transceiver Characteristics  
The transceiver comprises the transmitter output stages, the differential-to-single ended  
receiver input stage, the loop switch, the peak detector, and the threshold comparators.  
Figure 37  
Transceiver Architecture of one S/T-Channel  
When transmitting a binary ZERO, the transmitter output is ± 2.1 V (difference between  
SXna and SXnb), when transmitting a binary ONE, it is tristate. The receiver input range  
is ± 2.5 V to ± 85 mV, the latter being a hardwired minimum peak level.  
Semiconductor Group  
69  
PEB 2084  
Transmitter Performance  
Cable 0.6 mm, 120 nF/km  
Configuration  
Condition  
Distance TE-TE Distance TE-NT/LT  
Point-to-point  
no noise  
980 m  
940 m  
200 / 2000 kHz  
100 mVpp  
Ext. passive bus  
no noise  
120 m  
120 m  
720 m  
540 m  
(Roundtrip < 2 µs) 200 / 2000 kHz  
100 mVpp  
Cable 0.6 mm, 30 nF/km  
Configuration  
Condition  
Distance TE-TE Distance TE-NT/LT  
Point-to-point  
no noise  
> 1500 m  
> 1050 m  
200 / 2000 kHz  
100 mVpp  
Ext. passive bus  
no noise  
> 250 m  
> 250 m  
> 1250 m  
> 800 m  
(Roundtrip < 2 µs) 200 / 2000 kHz  
100 mVpp  
Semiconductor Group  
70  
PEB 2084  
6
Package Outlines  
Plastic Package, P-MQFP-44-2  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
71  
PEB 2084  
7
Appendix  
List of Transformer Manufacturers and S0 Transformers  
The following list contains transformers recommended by different manufacturers for  
use with Siemens S0 transceivers.  
Transformers marked with * have been tested in Siemens S evaluation boards and have  
shown positive test results concerning pulse shape and impedance requirements of  
ETS 300 012.  
Manufacturers  
Transformers  
APC  
APC 2040 S  
APC 1020 S  
APC 3060 S  
APC 9018 D  
APC 3366 D  
Pulse Engineering  
PE-68975*  
PE-64995  
PE-65495  
PE-65795  
PE-68995  
S + M Components  
B78384-A1060-A2*  
B78384-P1111-A2  
Vacuumschmelze VAC  
T60403-L4025-X021*  
T60403-L4097-X011*  
T60403-L5051-X006*  
T60403-L4021-X066  
T60403-L4025-X095  
T60403-L4097-X029  
T60403-L5032-X002  
VALOR  
VOGT  
PT 5001  
PT 5069  
ST 5069  
543 21 002 00*  
543 21 004 00*  
Semiconductor Group  
72  

相关型号:

PEB2085

ISDN SubscribernAccess Controller
INFINEON

PEB2085-N

ISDN Line Interface
ETC

PEB2085-P

ISDN Line Interface
ETC

PEB2085A-2N

Digital Transmission Interface, Basic, CMOS, PQCC44,
INFINEON

PEB2085B1N

Digital Transmission Interface, Basic, CMOS, PQCC44,
INFINEON

PEB2085B1P

Digital Transmission Interface, Basic, CMOS, PDIP40
INFINEON

PEB2085C

ISDN Line Interface
ETC

PEB2085N

ISDN Controller, Basic, 1-Func, CMOS, PQCC44, PLASTIC, LCC-44
INFINEON

PEB2085P

ISDN Controller, Basic, 1-Func, CMOS, PDIP40, PLASTIC, DIP-40
INFINEON

PEB2086

ISDN SubscribernAccess Controller
INFINEON

PEB2086-H

DATACOM, ISDN CONTROLLER, PQFP64, PLASTIC, MQFP-64
INFINEON

PEB2086H

ISDN SubscribernAccess Controller
INFINEON