PEF22504E [INFINEON]

Quad E1/T1/J1 Line Interface Component for Long- and Short-Haul Applications;
PEF22504E
型号: PEF22504E
厂家: Infineon    Infineon
描述:

Quad E1/T1/J1 Line Interface Component for Long- and Short-Haul Applications

文件: 总255页 (文件大小:7193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.3, Jan. 2006  
QuadLIUTM  
Quad E1/T1/J1 Line Interface Component for  
Long- and Short-Haul Applications  
PEF 22504 E, PEF 22504 HT, Version 2.1  
Communications  
Edition 2006-01-25  
Published by Infineon Technologies AG,  
81726 München, Germany  
© Infineon Technologies AG 2006.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
QuadLIUTM  
PEF 22504  
PEF 22504 E, Quad E1/T1/J1 Line Interface Component for Long- and Short-Haul Applications  
Revision History: 2006-01-25, Rev. 1.3  
Previous Version: Preliminary Data Sheet 2005-11-07  
Chapter, Table Subjects (major changes since last revision)  
Chapter 2.3,  
The QuadLIUTM is now available in PG-TQFP-144-17 package also  
Chapter 5  
Trademarks  
ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®, FALC®, GEMINAX®, IDEC®,  
INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®, MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®,  
QUAT®, QuadFALC®, SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®,  
10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG. 10BaseS™, EasyPort™,  
VDSLite™ are trademarks of Infineon Technologies AG. Microsoft® is a registered trademark of Microsoft  
Corporation, Linux® of Linus Torvalds, Visio® of Visio Corporation, and FrameMaker® of Adobe Systems  
Incorporated.  
Data Sheet  
3
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Table of Contents  
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.1  
1.2  
1.3  
2
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ball Diagram P/PG-LBGA-160-1 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ball Diagram P/PG-LBGA-160-1 (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Diagram P-TQFP-144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
2.1  
2.2  
2.3  
2.4  
2.5  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.5.1  
3.5.1.1  
3.5.2  
3.5.2.1  
3.5.2.2  
3.5.3  
3.5.4  
3.5.5  
3.5.5.1  
3.6  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Asynchronous Micro Controller Interface (Intel or Motorola mode) . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Mixed Byte/Word Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Serial Micro Controller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
SCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Interrupt Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Boundary Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Master Clocking Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
PLL (Reset and Configuring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Line Coding and Framer Interface Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Bipolar Violation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Receive Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Receive Line Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Receive Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
“Generic” Receiver Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Receive Line Monitoring Mode (RLM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Monitoring Application using RLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Redundancy Application using RLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
General Redundancy Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Loss-of-Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Receive Equalization Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Receive Line Attenuation Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Receive Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Receive Jitter Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Receive Jitter Attenuation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Jitter Tolerance (E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Output Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Output Wander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Dual Receive Elastic Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Additional Receiver Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Error Monitoring and Alarm Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Automatic Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
One-Second Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
3.6.1  
3.7  
3.7.1  
3.7.2  
3.7.3  
3.7.3.1  
3.7.3.2  
3.7.3.3  
3.7.3.4  
3.7.3.5  
3.7.4  
3.7.5  
3.7.6  
3.7.7  
3.7.8  
3.7.8.1  
3.7.8.2  
3.7.8.3  
3.7.8.4  
3.7.9  
3.8  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
Data Sheet  
4
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Table of Contents  
3.9  
Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Transmit Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Transmit Clock TCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Automatic Transmit Clock Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Transmit Jitter Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Dual Transmit Elastic Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Programmable Pulse Shaper and Line Build-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
QuadFALCTM V2.1 Compatible Programming with XPM(2:0) Registers . . . . . . . . . . . . . . . . . . 106  
Programming with TXP(16:1) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Transmit Line Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Framer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Pseudo-Random Binary Sequence Generation and Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
In-Band Loop Generation, Detection and Loop Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Remote Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Local Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Payload Loop-Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Alarm Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Multi Function Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
3.9.5  
3.9.6  
3.9.6.1  
3.9.6.2  
3.9.7  
3.10  
3.11  
3.11.1  
3.11.2  
3.11.3  
3.11.4  
3.11.5  
3.11.6  
3.12  
4
4.1  
4.1.1  
4.2  
4.2.1  
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Detailed Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Detailed Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
6
6.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Master Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
JTAG Boundary Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Asynchronous Microprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Intel Bus Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Motorola Bus Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
SCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Digital Interface (Framer Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Pulse Templates - Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Pulse Template E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Pulse Template T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Test Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Power Supply Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.4.1  
6.1.4.2  
6.1.4.3  
6.1.4.4  
6.1.5  
6.1.6  
6.1.6.1  
6.1.6.2  
6.2  
6.3  
6.4  
6.4.1  
6.4.2  
7
Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Operational Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Device Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Device Configuration in E1 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Device Configuration in T1/J1 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Device Configuration for Digital Clock Interface Mode (DCIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Data Sheet  
5
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Table of Contents  
8
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Protection Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Software Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
8.1  
8.2  
8.3  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
Data Sheet  
6
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Multiple Link Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical Multiple Repeater Application between line #1 and Line #2. . . . . . . . . . . . . . . . . . . . . . . . 16  
Top View of the Pin Configuration (Ball Layout) P/PG-LBGA-160-1 . . . . . . . . . . . . . . . . . . . . . . . 17  
Bottom View of the Pin Configuration (Ball Layout) P/PG-LBGA-160-1. . . . . . . . . . . . . . . . . . . . . 18  
Pin Configuration P-TQFP-144-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Single Voltage Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Dual Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 10 SCI Interface Application with Point To Point Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 11 SCI Interface Application with Multipoint To Multipoint Connection . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 12 SCI Message Structure of QuadLIUTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 13 Frame Structure of QuadLIUTM SCI Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 14 Principle of Building Addresses and RSTA bytes in the SCI ACK Message of the QuadLIUTM . . . 72  
Figure 15 Read Status Byte (RSTA) byte of the SCI Acknowledge (ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 16 SPI Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 17 SPI Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 18 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 19 Block Diagram of Test Access Port and Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 20 Flexible Master Clock Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 21 Behaviour of Bipolar Violation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 22 Receive System of one Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 23 Recovered and Receive Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 24 General Receiver Configuration with Integrated Resistor and Analog Switches for Receive  
Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 25 Principle of Receive Line Monitoring RLM (shown for one line) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 26 Monitoring Application using RLM (shown for one line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 27 Redundancy Application using RLM (shown for one line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 28 General Redundancy Application (shown for one line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 29 Principle of Configuring the DCO-R and DCO-X Corner Frequencies . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 30 Jitter Attenuation Performance (E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 31 Jitter Attenuation Performance (T1/J1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 32 Jitter Tolerance (E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 33 Jitter Tolerance (T1/J1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 34 Output Wander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 35 The Receive Elastic Buffer as Circularly Organized Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 36 Transmit System of one Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 37 Transmit Line Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 38 Clocking and Data in Remote Loop Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 39 Measurement Configuration for E1 Transmit Pulse Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 40 Measurement Configuration for T1/J1 Transmit Pulse Template . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 41 Transmit Line Monitor Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 42 Framer Interface (shown for one channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 43 Remote Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 44 Local Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 45 Payload Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 46 P/PG-LBGA-160-1 (Plastic Green Low Profile Ball Grid Array Package). . . . . . . . . . . . . . . . . . . 220  
Figure 47 PG-TQFP-144-17 (Plastic Thin Quad Flat Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 48 MCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Figure 49 JTAG Boundary Scan Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 50 Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 51 Intel Non-Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Figure 52 Intel Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Data Sheet  
7
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
List of Figures  
Figure 53 Intel Read Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Figure 54 Intel Write Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Figure 55 Motorola Read Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Figure 56 Motorola Write Cycle Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Figure 57 SCI Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
Figure 58 SPI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Figure 59 FCLKX Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Figure 60 FCLKR Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Figure 61 SYNC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Figure 62 FSC Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Figure 63 E1 Pulse Shape at Transmitter Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Figure 64 T1 Pulse Shape at the Cross Connect Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Figure 65 Thermal Behavior of Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Figure 66 Input/Output Waveforms for AC Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Figure 67 Device Configuration for Power Supply Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Figure 68 Protection Circuitry Examples (shown for one channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Figure 69 Screen Shot of the “Master Clock Frequency Calculator” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
Figure 70 Screen Shot of the “External Line Frontend Calculator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
Data Sheet  
8
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
I/O Signals for P/PG-LBGA-160-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I/O Signals for P-TQFP-144-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Overview about the Pin Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Data Bus Access (16-Bit Intel Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Data Bus Access (16-Bit Motorola Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Selectable asynchronous Bus and Microprocessor Interface Configuration . . . . . . . . . . . . . . . . 68  
Read Status Byte (RSTA) Byte of the SCI Acknowledge (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Definition of Control Bits in Commands (CMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
SCI Configuration Register Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Interrupt Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
TAP Controller Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Conditions for a PLL Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Line Coding and Framer Interface Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Controlling of the Receive Interface Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Generic Receiver Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
External Component Recommendations for Monitoring Applications using RLM . . . . . . . . . . . . . 87  
Tristate Configurations for the RDO, RSIG, SCLKR and RFM Pins . . . . . . . . . . . . . . . . . . . . . . . 88  
Configuration for Redundancy Application using RLM, switching with only one board signal . . . 89  
General (proposed) Configuration for Redundancy Applications, Switching with only one Board  
Signal  
90  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Configuration for “non-generic” Redundancy Applications, Switching with only one Board Signal 91  
Configuration for “generic” Redundancy Applications, Switching with only one Board Signal . . . 91  
Switching in “Generic” Redundancy Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Overview DCO-R (DCO-X) Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Clocking Modes of DCO-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Output Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Receive (Transmit) Elastic Buffer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Summary of Alarm Detection and Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Recommended Transmitter Configuration Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Recommended Pulse Shaper Programming for T1/J1 with Registers XPM(2:0) (Compatible to  
QuadFALC V2.1 )  
106  
Table 30  
Recommended Pulse Shaper Programming for E1 with Registers XPM(2:0) (Compatible to  
QuadFALC V2.1)  
107  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
Table 50  
Recommended Pulse Shaper Programming for T1 with Registers TXP(16:1) . . . . . . . . . . . . . . 107  
Recommended Pulse Shaper Programming for E1 with registers TXP(16:1) . . . . . . . . . . . . . . 108  
Supported PRBS Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Multi Function Port Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Registers Access Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
IMRn Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Interrupt Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
CCBn Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Clear Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
FLLB Constant Values (Case 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
FLLB Constant Values (Case 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
LLBP Constant Values (Case 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
LLBP Constant Values (Case 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
RPC1 Constant Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
XPC1 Constant Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
PCn Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Port Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Clock Mode Register Settings for E1 or T1/J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
TXP Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Data Sheet  
9
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
List of Tables  
Table 51  
Table 52  
Table 53  
Table 54  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
Table 79  
Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Registers Access Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Alarm Simulation States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
MCLK Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
JTAG Boundary Scan Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Reset Timing Parameter Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Intel Bus Interface Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Motorola Bus Interface Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
SCI Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
SPI Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
FCLKX Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
FCLKR Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
SYNC Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
FSC Timing Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
T1 Pulse Template at Cross Connect Point (T1.102 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Package Characteristic Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Power Supply Test Conditions E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Power Supply Test Conditions T1/J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Initial Values after Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Configuration Parameters (E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Line Interface Configuration (E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Configuration Parameters (T1/J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Line Interface Configuration (T1/J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Device Configuration for DCIM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
Data Sheet  
10  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Preface  
The QuadLIUTM is four channel E1/T1/J1 Line interface Component, it is designed to fulfill all required interfacing  
between four analog E1/T1/J1 lines and four digital framers.  
The digital functions as well as the analog characteristics can be configured either via a flexible microprocessor  
interface, SPI interface or via a SCI interface.  
Organization of this Document  
This Data Sheet is organized as follows:  
Chapter 1, “Introduction”: Gives a general description of the product and its family, lists the key features, and  
presents some typical applications.  
Chapter 2, “Pin Descriptions”: Lists pin locations with associated signals, categorizes signals according to  
function, and describe signals.  
Chapter 3, “Functional Description”: Describes the functional blocks and principle operation modes, organized  
into separate sections for E1 and T1/J1 operation  
Chapter 4, “Registers”: Gives a detailed description of all implemented registers and how to use them in  
different applications/configurations.  
Chapter 5, “Package Outlines”: Shows the mechanical characteristics of the device packages.  
Chapter 6, “Electrical Characteristics”: Specifies maximum ratings, DC and AC characteristics.  
Chapter 7, “Operational Description”: Shows the operation modes and how they are to be initialized  
(separately for E1 and T1/J1).  
Chapter 8, “Appendix”: Gives an example for over voltage protection and information about application notes  
and tool support.  
Related Documentation  
This document refers to the following international standards (in alphabetical/numerical order):  
ANSI/EIA-656  
ANSI T1.102  
ANSI T1.231  
ANSI T1.403  
AT&T PUB 43802  
AT&T PUB 54016  
AT&T PUB 62411  
ESD Ass. Standard EOS/ESD-5.1-1993  
ETSI ETS 300 011  
ETSI ETS 300 233  
ETSI TBR12  
ITU-T G.703  
ITU-T G.736  
ITU-T G.737  
ITU-T G.738  
ITU-T G.739  
ITU.T G.733  
ITU-T G.775  
ITU-T G.823  
ITU-T G.824  
ITU-T I.431  
JT-G703  
ETSI TBR13  
JT-G704  
FCC Part68  
JT-G706  
H.100  
JT-G33  
H-MVIP  
JT-I431  
IEEE 1149.1  
MIL-Std. 883D  
UL 1459  
TR-TSY-000009  
TR-TSY-000253  
TR-TSY-000499  
Data Sheet  
11  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Introduction  
1
Introduction  
The QuadLIUTM is the latest addition to Infineon’s family of sophisticated E1/T1/J1 Line interface Components.  
This monolithic four channel device is designed to fulfill all required interfacing between four analog E1/T1/J1 lines  
and four digital framer interfaces for world market telecommunication systems.  
The device is supplied in P/PG-LBGA-160-1 package (P/PG-LBGA-160-1 is RoHS compliant) and in a PG-TQFP-  
144-17 package, and is designed to minimize the number of external components required, so reducing system  
costs and board space.  
Due to its multitude of implemented functions, it fits to a wide range of networking applications and fulfills the  
according international standards.  
Crystal-less jitter attenuation with only one master clock source reduces the amount of required external  
components.  
Equipped with a flexible microprocessor interface, a SCI and a SPI interface, it connects to various control  
processor environment. A standard boundary scan interface is provided to support board level testing. LBGA  
device packaging, minimum number of external components and low power consumption lead to reduced overall  
system costs.  
The QuadLIUTM is not hardware and software compatibel to older versions!  
Other members of the FALC® family are the OctalLIUTM supporting eight line interface components on a single  
chip, the OctalFALCTM and the QuadFALC® E1/T1/J1 Framer And Line interface Components for long-haul and  
short-haul applications, supporting 8 or 4 channels on a single chip respectively.  
Data Sheet  
12  
Rev. 1.3, 2006-01-25  
Quad E1/T1/J1 Line Interface Component for Long-  
and Short-Haul Applications  
QuadLIUTM  
PEF 22504 E  
Version 2.1  
1.1  
Features  
Line Interface  
High-density, generic interface for all E1/T1/J1 applications  
Four Analog receive and transmit circuits for long-haul and short-haul  
applications  
E1 or T1/J1 mode selectable  
Data and clock recovery using an integrated digital phase-locked loop  
Clock generator for jitter-free transmit clocks per channel  
Jitter specifications of ITU-T I.431, G.703, G.736 (E1), G.823 (E1) and  
AT&T TR62411 (T1/J1) and PUB 62411 are met  
Maximum line attenuation up to -43 dB at 1024 kHz (E1) and up to -  
36 dB at 772 kHz (T1/J1)  
Flexible programmable transmit pulse shapes for E1 and T1/J1 pulse  
masks  
Programmable line build-out for CSU signals according to ANSI T1.  
403 and FCC68: 0 dB, -7.5 dB, -15 dB, -22.5 dB (T1/J1)  
Programmable low transmitter output impedances for high transmit  
return loss and generic E1/T1/J1 applications  
P/PG-LBGA-160-1  
Tristate function of the analog transmit line outputs  
Transmit line monitor protecting the device from damage  
Flexible tristate functions of the digital receive outputs  
Receive line monitor mode  
P-TQFP-144-6, -8, -14  
Integrated switchtable 300 receive resistors for generic E1/T1/J1  
applications to meet termination resistance 75/120 for E1, 100 for T1 and 110 for J1  
Integrated multi purpose analog switch at line receive interface to support generic redundancy applications  
(only supported in P/PG-LBGA-160-1 package)  
Crystal-less wander and jitter attenuation/compensation according to TR 62411, ETS-TBR 12/13, PUB 62411  
Common master clock reference for E1 and T1/J1 with any frequency within 1.02 and 20 MHz  
Power-down function  
Support of automatic protection switching  
Dual-rail or single-rail digital inputs and outputs  
Unipolar CMI for interfacing fiber-optical transmission routes  
Selectable line codes (E1: HDB3, AMI/T1: B8ZS, AMI with ZCS)  
Loss-of-signal indication with programmable thresholds according to ITU-T G.775, ETS300233 (E1) and ANSI  
T1.403 (T1/J1)  
Optional data stream muting upon LOS detection  
Programmable receive slicer threshold  
Type  
Package  
PEF 22504 HT  
PEF 22504 E  
PG-TQFP-144-17  
P/PG-LBGA-160-1  
Data Sheet  
13  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Introduction  
Local loop, digital loop and remote loop for diagnostic purposes. Automatic remote loop switching is possible  
with In-Band and Out-Band loop codes  
Low power device, two power supply voltages 1.8 V and 3.3 V or a single supply of 3.3 V  
Alarm and performance monitoring per second 16-bit counter for code violations, PRBS bit errors  
Insertion and extraction of alarm indication signals (AIS)  
Single-bit defect insertion  
Flexible clock frequency for receiver and transmitter  
Dual elastic stores for both, receive and transmit route clock wander and jitter compensation; controlled slip  
capability and slip indication  
Programmable elastic buffer size: 2 frames/1 frame/short buffer/bypass  
Programmable In-band loop code detection and generation (TR62411)  
Local loop back, payload loop back land remote loop back capabilities (TR54016)  
Flexible pseudo-random binary sequence generator and monitor  
Microprocessor Interfaces  
Asynchronous 8/16-bit microprocessor bus interface (Intel or Motorola type selectable)  
SPI bus interface  
SCI bus interface  
All registers directly accessible  
Multiplexed and non-multiplexed address bus operations on asynchronous 8/16-bit microprocessor bus  
interface  
Hard/software reset options  
Extended interrupt capabilities  
One-second timer (internal or external timing reference)  
General  
Boundary scan standard IEEE 1149.1  
PG-TQFP-144-17P-BGA-160-1 package  
Temperature range from -40 to +85 °C  
1.8 V and 3.3 V power supply or single 3.3 V power supply  
Typical power consumption 140 mW per channel  
Applications  
Wireless base stations  
E1/T1/J1 ATM gateways, multiplexer  
E1/T1/J1 Channel & Data Service Units (CSU, DSU)  
E1/T1/J1 Internet access equipment  
LAN/WAN router  
ISDN PRI, PABX  
Digital Access Crossconnect Systems (DACS)  
SONET/SDH add/drop multiplexer  
Data Sheet  
14  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Introduction  
1.2  
Logic Symbol  
RLAS2(4:1)  
RL1(4:1)  
RL2(4:1)  
Receive  
Line  
Interface  
RDO(4:1)  
RPA(4:1)  
RPB(4:1)  
Receive  
Digital  
Interface  
RPC(4:1)  
RPD(4:1)  
FCLKR(4:1)  
QuadLIU V2.1  
PEF 22504 E  
TDI  
Boundary  
Scan  
Interface  
TMS  
TCK  
TRS  
TDO  
P/PG-BGA-160-1  
PEF 22504 HT  
PG-TQFP-144-17  
XDI(4:1)  
XPA(4:1)  
Transmit  
Digital  
Interface  
XPB(4:1)  
XPC(4:1)  
XPD(4:1)  
FCLKX(4:1)  
Transmit  
Line  
XL1(4:1)  
XL2(4:1)  
Interface  
(SCI- or  
SPI-Bus)  
Microprocessor Interface  
Mode  
QLIU_Logic_symbol  
Figure 1  
Logic Symbol  
Data Sheet  
15  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Introduction  
1.3  
Typical Applications  
Figure 2 shows a multiple link application, Figure 3 a repeater application using the QuadLIUTM  
.
.
4 x E1/T1/J1  
Receive&  
Transmit  
System  
Highway  
QuadLIU  
Framer ASIC  
.
.
PEB 22504  
Microprocessor  
QLI U_F0195  
Figure 2  
Typical Multiple Link Application  
RL1.1  
RDO1  
FCLKR1  
RL2.1  
XL1.1  
RDON1  
XDI1  
Bidirectional  
Line #1  
FCLKX1  
XL2.1  
RL1.2  
XDIN1  
RDO2  
1/2  
QuadLIU  
FCLKR2  
RL2.2  
XL1.2  
RDON2  
XDI2  
Bidirectional  
Line #2  
FCLKX2  
XDIN2  
XL2.2  
QLI U_F0069  
Figure 3  
Typical Multiple Repeater Application between line #1 and Line #2  
Data Sheet  
16  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
2
Pin Descriptions  
In this chapter the function and placement of all pins are described.  
2.1  
Ball Diagram P/PG-LBGA-160-1 (top view)  
Figure 4 shows the ball layout of the QuadLIUTM in a P/PG-LBGA-160-1 package.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
XL1_2 XL2_2 VDDR VSSR RL1_2 RL2_2 RL2_1 RL1_1 VSSR VDDR XL2_1 XL1_1  
A
B
C
D
E
F
VSSX  
VSSX  
VSSX XDI1 MCLK XPC2 TRS XPD2 VDD XPA1 VDDP XPB1 D15 VSSX  
FCLKX  
(RLAS22)  
(RLAS21)  
VDDX VDDX  
TCK VSSP VDDP XPA2 XPB2 XPC1 VDDC TDO  
D14 VDDX VDDX  
1
RPC1 RPA1 RPB1 RPD1 TMS VSEL RCLK2 VSS XPD1 RCLK1 TDI  
FCLKR  
D12  
D13  
D11  
D10  
D6  
RDO1  
VDD  
VDD  
RPA2  
RPD2  
VSS  
VDD VDD  
1
FCLKR  
2
RDO2 VSS  
RPC2 RPB2  
D9  
D7  
D8  
READY  
/DTACK  
FCLKX  
2
VSS  
VSS  
VSS  
VSS  
D5  
D4  
D0  
D3  
D1  
G
H
J
(VDD)  
READY_  
FCLKX  
XDI3  
3
XDI2 RPA3  
D2 EN  
(VSS)  
FCLKR  
BHE/  
BLE  
WR/  
RW  
RPB3 RPD3 RPC3  
CS  
A8  
A3  
A1  
A0  
RD/DS  
A7  
3
IM1  
RDO3  
VDD RDO4  
A9  
A5  
IM  
A6  
A2  
(VSS)  
K
L
FCLKR  
4
SEC/  
FSC  
RPB4 RPA4 DBW RCLK3 XPA3 XPD3 XPB4 ALE  
A4  
FCLKX  
VDDX VDDX RPC4  
VSSX  
INT  
RES  
VDD VDD XPD4 VDDC  
VDDX VDDX  
4
M
N
P
VSSX  
VSSX  
VSSX RPD4 XDI4 XPC3 SYNC XPB3 XPA4 RCLK4 VSS XPC4  
(RLAS23)  
(RLAS24)  
XL1_3 XL2_3 VDDR VSSR RL1_3 RL2_3 RL2_4 RL1_4 VSSR VDDR XL2_4 XL1_4  
QLI U_F0213_2  
Figure 4  
Top View of the Pin Configuration (Ball Layout) P/PG-LBGA-160-1  
2.2  
Ball Diagram P/PG-LBGA-160-1 (bottom view)  
Figure 4 shows the ball layout of the QuadLIUTM in a P/PG-LBGA-160-1 package.  
Data Sheet  
17  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
XL1_1 XL2_1 VDDR VSSR RL1_1 RL2_1 RL2_2 RL1_2 VSSR VDDR XL2_2 XL1_2  
A
VSSX  
VSSX  
VSSX D15 XPB1 VDDP XPA1 VDD XPD2 TRS XPC2 MCLK XDI1 VSSX  
FCLKX  
B (RLAS21)  
(RLAS22)  
VDDX VDDX D14  
TDO VDDC XPC1 XPB2 XPA2 VDDP VSSP TCK  
VDDX VDDX  
C
1
D11  
D13  
D12  
TDI RCLK1 XPD1 VSS RCLK2 VSEL TMS RPD1 RPB1 RPA1 RPC1  
FCLKR  
D
D10  
VDD VDD  
VSS  
VDD  
VDD  
RDO1  
E
1
FCLKR  
2
D6  
D8  
D7  
D9  
RPA2  
RPD2  
VSS RDO2  
RPB2 RPC2  
F
READY/  
FCLKX  
2
D3  
D4 DTACK D5  
(VDD)  
VSS  
VSS  
VSS  
VSS  
G
READY_  
FCLKX  
XDI3  
3
D1  
D0  
EN  
D2  
RPA3 XDI2  
FCLKR  
H
(VSS)  
WR/  
RW  
BHE/  
BLE  
RD/DS  
CS  
A8  
RPC3 RPD3 RPB3  
J
3
IM1  
A7  
A6  
A2  
A9  
A5  
IM  
RDO4 VDD  
RDO3  
K
(VSS)  
SEC/  
FSC  
FCLKR  
4
A4  
A3  
A1  
ALE XPB4 XPD3 XPA3 RCLK3 DBW RPA4 RPB4  
FCLKX  
L
VDDX VDDX  
VSSX  
VDDC XPD4 VDD VDD  
RES  
INT  
RPC4 VDDX VDDX  
M
4
VSSX  
VSSX A0  
XPC4 VSS RCLK4 XPA4 XPB3 SYNC XPC3 XDI4 RPD4 VSSX  
N (RLAS24)  
(RLAS23)  
XL1_4 XL2_4 VDDR VSSR RL1_4 RL2_4 RL2_3 RL1_3 VSSR VDDR XL2_3 XL1_3  
P
QLIU_F0213_3  
Figure 5  
Bottom View of the Pin Configuration (Ball Layout) P/PG-LBGA-160-1  
Data Sheet  
18  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
2.3  
Pin Diagram P-TQFP-144  
Figure 6 shows the pin diagram of the QuadLIUTM  
.
108  
109  
104  
100  
96  
92  
88  
84  
80  
76  
73  
72  
XL1_1/XDOP1/XOID1  
VDDX  
XL1_4/XDOP4/XOID4  
VDDX  
XL2_1/XDON1/XFM1  
XL2_4/XDON4/XFM4  
TDI  
112  
116  
120  
124  
128  
132  
136  
140  
SEC/FSC  
TDO  
68  
64  
60  
56  
52  
48  
44  
IM  
VDDR  
VDDR  
RL1_1/RDIP1/ROID1  
RL2_1/RDIN1/RCLKI1  
VSSR  
RL1_4/RDIP4/ROID4  
RL2_4/RDIN4/RCLKI4  
VSSR  
VDDC  
VDDC  
RCLK1  
ALE  
XPA1  
RCLK4  
XPB1  
XPC1  
XPD1  
VDDP  
XPD4  
XPC4  
XPB4  
XPA4  
VSS  
VSS  
XPA2  
VDD  
XPB2  
XPC2  
XPD2  
RCLK2  
XPD3  
XPC3  
XPB3  
XPA3  
TRS  
SCLKX4  
VDDP  
XDI4  
MCLK  
SYNC  
VSEL  
RCLK3  
VSSP  
VSSR  
RES  
VSSR  
RL2_2/RDIN2/RCLKI2  
RL2_3/RDIN3/RCLKI3  
RL1_2/RDIP2/ROID2  
RL1_3/RDIP3/ROID3  
VDDR  
TCK  
VDDR  
INT  
TMS  
40  
37  
DBW  
XL2_2/XDON2/XFM2  
XL2_3/XDON3/XFM3  
VDDX  
VDDX  
XL1_2/XDOP2/XOID2  
144  
1
XL1_3/XDOP3/XOID3  
4
8
12  
16  
20  
24  
28  
32  
36  
QLIU_F214  
Figure 6  
Pin Configuration P-TQFP-144-8  
Data Sheet  
19  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
2.4  
Pin Definitions and Functions  
The following table describes all pins and their functions:  
Table 1  
Pin No.  
I/O Signals for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
Operation Mode Selection and Device Initialization  
M5  
RES  
I
PU  
Hardware Reset  
Active low  
K2  
IM1  
IM0  
I
I
PD  
PU  
Interface Mode Selection  
´00B´: Asynchronous Intel Bus Mode.  
´01B´: Asynchronous Motorola Bus Mode  
´10B´: SPI Bus Slave Mode.  
M11  
´11B´: SCI Bus Slave Mode  
Asynchronous and Serial Micro Controller Interfaces  
K11  
K12  
K14  
K13  
L11  
A9  
A8  
A7  
A6  
A5  
A5  
I
I
I
I
I
I
PU  
PU  
PU  
PU  
PU  
PU  
Address Bus Line 9 (MSB)  
Address Bus Line 8  
Address Bus Line 7  
Address Bus Line 6  
Address Bus Line 5  
SCI source address bit 5 (MSB)  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
L14  
L12  
L13  
M12  
N12  
B12  
A4  
A4  
I
I
PU  
PU  
Address Bus Line 4  
SCI source address bit 4  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
A3  
A3  
I
I
PU  
PU  
Address Bus Line 3  
SCI source address bit 3  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
A2  
A2  
I
I
PU  
PU  
Address Bus Line 2  
SCI source address bit 2  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
A1  
A1  
I
I
PU  
PU  
Address Bus Line 1  
SCI source address bit 1  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
A0  
A0  
I
I
PU  
PU  
Address Bus Line 0  
SCI source address bit 0 (LSB)  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
D15  
IO  
I
PU  
PU  
Data Bus Line 15  
PLL10  
PLL programming bit 10  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
Data Sheet  
20  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
C12  
D13  
D12  
D14  
E14  
F11  
F13  
F12  
F14  
G11  
D14  
IO  
I
PU  
PU  
Data Bus Line 14  
PLL9  
PLL programming bit 9  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D13  
IO  
I
PU  
PU  
Data Bus Line 13  
PLL8  
PLL programming bit 8  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D12  
IO  
I
PU  
PU  
Data Bus Line 12  
PLL7  
PLL programming bit 7  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D11  
IO  
I
PU  
PU  
Data Bus Line 11  
PLL6  
PLL programming bit 6  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D10  
IO  
I
PU  
PU  
Data Bus Line 10  
PLL5  
PLL programming bit 5  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D9  
IO  
I
PU  
PU  
Data Bus Line 9  
PLL4  
PLL programming bit 4  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D8  
IO  
I
PU  
PU  
Data Bus Line 8  
PLL3  
PLL programming bit 3  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D7  
IO  
I
PU  
PU  
Data Bus Line 7  
PLL2  
PLL programming bit 2  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D6  
IO  
I
PU  
PU  
Data Bus Line 6  
PLL1  
PLL programming bit 1  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
D5  
IO  
I
PU  
PU  
Data Bus Line 5  
PLL0  
PLL programming bit 0  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = ´1Xb´.  
G13  
G14  
D4  
D3  
IO  
IO  
PU  
PU  
Data Bus Line 4  
Data Bus Line 3  
Data Sheet  
21  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
H11  
H14  
H13  
L9  
D2  
IO  
I
PU  
Data Bus Line 2  
SCI Bus Clock  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
SCI_CLK  
SCLK  
I
SPI Bus Clock  
Only used if SPI interface mode is selected by IM(1:0) =  
´10b´.  
D1  
IO  
I
PU  
PU  
Data Bus Line 1  
SCI_RXD  
SCI Bus Serial Data In  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
SDI  
I
PU  
PU  
SPI Serial Data In  
Only used if SPI interface mode is selected by IM(1:0) =  
´10b´.  
D0  
IO  
I
Data Bus Line 0  
SCI_TXD  
PP or oD SCI Bus Serial Data Out  
Only used if SCI interface mode is selected by IM(1:0) =  
´11b´.  
SDO  
ALE  
I
I
PU  
PU  
SPI Bus Serial Data Out  
Only used if SPI interface mode is selected by IM(1:0) =  
´10b´.  
Address Latch Enable  
A high on this line indicates an address on an external  
multiplexed address/data bus. The address information  
provided on lines A(10:0) is internally latched with the  
falling edge of ALE. This function allows the QuadLIUTM  
to be connected to a multiplexed address/data bus  
without the need for external latches. In this case, pins  
A(7:0) must be connected to the data bus pins  
externally. In case of demultiplexed mode this pin can  
be connected directly to VDD or can be left open.  
J14  
RD  
DS  
I
I
PU  
PU  
Read Enable  
Intel bus mode.  
This signal indicates a read operation. When the  
QuadLIUTM is selected via CS, the RD signal enables  
the bus drivers to output data from an internal register  
addressed by A(10:0) to the Data Bus.  
Data Strobe  
Motorola bus mode.  
This pin serves as input to control read/write operations.  
Data Sheet  
22  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
J13  
WR  
I
PU  
Write Enable  
Intel bus mode.  
This signal indicates a write operation. When CS is  
active the QuadLIUTM loads an internal register with  
data provided on the data bus.  
RW  
I
I
PU  
PU  
Read/Write Select  
Motorola bus mode.  
This signal distinguishes between read and write  
operation.  
L4  
DBW  
Data Bus Width select  
Bus interface mode  
A low signal on this input selects the 8-bit bus interface  
mode. A high signal on this input selects the 16-bit bus  
interface mode. In this case word transfer to/from the  
internal registers is enabled. Byte transfers are  
implemented by using A0 and BHE/BLE.  
J11  
BHE  
BLE  
I
I
PU  
PU  
Bus High Enable  
Intel bus mode.  
If 16-bit bus interface mode is enabled, this signal  
indicates a data transfer on the upper byte of the data  
bus D(15:8). In 8-bit bus interface mode this signal has  
no function and should be tied to VDD or left open.  
Bus Low Enable  
Motorola bus mode.  
If 16-bit bus interface mode is enabled, this signal  
indicates a data transfer on the lower byte of the data  
bus D(7:0). In 8-bit bus interface mode this signal has  
no function and should be tied to VDD or left open.  
J12  
M4  
CS  
I
PU  
Chip Select  
Low active chip select.  
INT  
O
Interrupt Request  
Interrupt request.  
INT serves as general interrupt request for all interrupt  
sources. These interrupt sources can be masked via  
registers IMR(7:0). Interrupt status is reported via  
registers GIS (Global Interrupt Status) and ISR(7:0).  
Output characteristics (push-pull active low/high, open  
drain) are determined by programming register IPC.  
Data Sheet  
23  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
G12  
READY  
O
O
I
oD  
(PU)  
Data Ready  
oD output only if activated by READY_EN = 1B and if  
Intel bus mode is selected. If not activated (READY_EN  
= 0B) the pull-up resistor is active.  
Asynchronous handshake signal to indicate successful  
read or write cycle.  
DTACK  
oD  
(PU)  
Data Acknowledge  
oD output only if activated by READY_EN = 1B and if  
motorola bus mode is selected. If not activated  
(READY_EN = 0B) the pull-up resistor is active.  
Asynchronous handshake signal to indicate successful  
read or write cycle.  
H12  
READY_EN  
PD  
Ready Enable  
Activates the oD functionality of READY/ DTACK.  
0B: READY/ DTACK is not activated (only pull-up  
resistor is active). Pin READY/ DTACK can be  
connected to VDD.  
1B: READY/ DTACK is an active oD output  
Separate Analog Switches (only supported in BGA package)  
B14  
RLAS21  
RLAS22  
RLAS23  
RLAS24  
IO  
(analog)  
Analog Switch Connector port 1  
Can be connected to VSSX if analog switch is not used  
(HW compatibel to QuadFALC® v2.1)  
B1  
IO  
(analog)  
Analog Switch Connector port 2  
Can be connected to VSSX if analog switch is not used  
(HW compatibel to QuadFALC® v2.1)  
N1  
IO  
(analog)  
Analog Switch Connector port 3  
Can be connected to VSSX if analog switch is not used  
(HW compatibel to QuadFALC® v2.1)  
N14  
IO  
Analog Switch Connector port 4  
(analog)  
Can be connected to VSSX if analog switch is not used  
(HW compatibel to QuadFALC® v2.1)  
Line Interface Receiver  
A9  
RL1.1  
I (analog) –  
Line Receiver input 1, port 1  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
ROID1  
I
Receive Optical Interface Data, port 1  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). If CMI coding is  
selected (MR0.RC(1:0) = ´01b´ and LIM0.DRS = ´1´), an  
internal DPLL recovers clock an data; no clock signal on  
RCLKI2 is required.  
A8  
RL2.1  
I (analog) –  
Line Receiver input 2, port 1  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
Data Sheet  
24  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
A6  
RL1.2  
I (analog) –  
Line Receiver input 1, port 1  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
ROID2  
I
Receive Optical Interface Data, port 2  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). If CMI coding is  
selected (MR0.RC(1:0) = ´01b´ and LIM0.DRS = ´1´), an  
internal DPLL recovers clock an data; no clock signal on  
RCLKI2 is required.  
A7  
P6  
RL2.2  
RL1.3  
ROID3  
I (analog) –  
I (analog) –  
Line Receiver input 2, port 2  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
Line Receiver input 1, port 3  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
I
Receive Optical Interface Data, port 3  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). If CMI coding is  
selected (MR0.RC(1:0) = ´01b´ and LIM0.DRS = ´1´), an  
internal DPLL recovers clock an data; no clock signal on  
RCLKI2 is required.  
P7  
P9  
RL2.3  
RL1.4  
ROID4  
I (analog) –  
I (analog) –  
Line Receiver input 2, port 3  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
Line Receiver input 1, port 4  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
I
Receive Optical Interface Data, port 4  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). If CMI coding is  
selected (MR0.RC(1:0) = ´01b´ and LIM0.DRS = ´1´), an  
internal DPLL recovers clock an data; no clock signal on  
RCLKI2 is required.  
P8  
RL2.4  
I (analog) –  
Line Receiver input 2, port 4  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
Data Sheet  
25  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
Line Interface Transmitter  
A13  
XL1.1  
O
Transmit Line 1, port 1  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
XOID1  
O
Transmit Optical Interface Data, port 1  
Data in CMI code is shifted out with 50% or 100% duty  
cycle on both transitions of XCLK2 according to the CMI  
coding. Output polarity is selected by bit LIM0.XDOS  
(after reset: data is sent active high). The single-rail  
mode is selected if LIM1.DRS is set and MR0.XC1 is  
cleared. After reset this pin is in high-impedance state  
until register LIM1.DRS is set and XPM2.XLT is cleared.  
A12  
A2  
XL2.1  
XL1.2  
XOID2  
O
Transmit Line 2, port 1  
(analog)  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
O
Transmit Line 1, port 2  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
O
Transmit Optical Interface Data, port 2  
Data in CMI code is shifted out with 50% or 100% duty  
cycle on both transitions of XCLK2 according to the CMI  
coding. Output polarity is selected by bit LIM0.XDOS  
(after reset: data is sent active high). The single-rail  
mode is selected if LIM1.DRS is set and MR0.XC1 is  
cleared. After reset this pin is in high-impedance state  
until register LIM1.DRS is set and XPM2.XLT is cleared.  
A3  
XL2.2  
O
Transmit Line 2, port 2  
(analog)  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
Data Sheet  
26  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
P2  
XL1.3  
O
Transmit Line 1, port 3  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
XOID3  
O
Transmit Optical Interface Data, port 3  
Data in CMI code is shifted out with 50% or 100% duty  
cycle on both transitions of XCLK3 according to the CMI  
coding. Output polarity is selected by bit LIM0.XDOS  
(after reset: data is sent active high). The single-rail  
mode is selected if LIM1.DRS is set and MR0.XC1 is  
cleared. After reset this pin is in high-impedance state  
until register LIM1.DRS is set and XPM2.XLT is cleared.  
P3  
XL2.3  
XL1.4  
XOID4  
O
Transmit Line 2, port 3  
(analog)  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
P13  
O
Transmit Line 1, port 4  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
O
Transmit Optical Interface Data, port 4  
Data in CMI code is shifted out with 50% or 100% duty  
cycle on both transitions of XCLK4 according to the CMI  
coding. Output polarity is selected by bit LIM0.XDOS  
(after reset: data is sent active high). The single-rail  
mode is selected if LIM1.DRS is set and MR0.XC1 is  
cleared. After reset this pin is in high-impedance state  
until register LIM1.DRS is set and XPM2.XLT is cleared.  
P12  
XL2.4  
MCLK  
O
Transmit Line 2, port 4  
(analog)  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit MR0.XC1 is set and  
XPM2.XLT is cleared.  
Clock Signals  
B4  
I
Master Clock  
A reference clock of better than ±32 ppm accuracy in  
the range of 1.02 to 20 MHz must be provided on this  
pin. The QuadLIUTM internally derives all necessary  
clocks from this master  
(see registers GCM(6:1)).  
Data Sheet  
27  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
N6  
SYNC  
I
PU  
Clock Synchronization of DCO-R  
If a clock is detected on pin SYNC the  
DCO-R circuitry of the QuadLIUTM synchronizes to this  
1.544/2.048 MHz clock (see LIM0.MAS, CMR1.DCS  
and CMR2.DCF). Additionally, in master mode the  
QuadLIUTM is able to synchronize to an 8 kHz reference  
clock (IPC.SSYF = ´1´). If not connected, an internal  
pull-up transistor ensures high input level.  
L10  
FSC  
O
O
8 kHz Frame Synchronization  
The optionally synchronization pulse is active high or  
low for one 2.048/1.544 MHz cycle (pulse width =  
488 ns for E1and 648 ns or T1/J1).  
D10, D7, L5, N9 RCLK(1:4)  
Receive Clock Out, ports 1 to 4  
After reset this ports are configured to be internally  
pulled up weakly. Setting of register bit PC5.CRPR will  
switch this ports to be active outputs.  
Digital (Framer) Interface Receive  
E1  
RDO1  
O
Receive Data Out, port 1  
Received data at RL1, RL2 is sent to RDOP, RDON.  
Clocking of data is done with the rising or falling edge of  
RCLK.  
E2  
F1  
F3  
K1  
J4  
FCLKR1  
RDO2  
I/O  
O
PU  
Framer Data Clock Receive, port 1  
Input if PC5.CSRP = ´0´, output if PC5.CSRP = ´1´.  
Receive Data Out, port 2  
See description of RDOP1.  
FCLKR2  
RDO3  
I/O  
O
PU  
Framer Data Clock Receive, port 2  
See description of FCLKR1.  
Receive Data Out, port 3  
See description of RDOP1.  
FCLKR3  
RDO4  
I/O  
O
PU  
Framer Data Clock Receive, port 3  
See description of FCLKR1.  
K4  
L1  
Receive Data Out, port 4  
See description of RDOP1.  
FCLKR4  
I/O  
PU  
Framer Data Clock Receive, port 4  
See description of FCLKR1.  
Digital (Framer) Interface Transmit  
B3  
XDI1  
I
Transmit Data In, port 1  
NRZ transmit data received from the framer. Latching of  
data is done with rising or falling transitions of FCLKX1  
according to bit DIC3.RESX.  
C3  
H3  
FCLKX1  
XDI2  
I/O  
I
Framer Data Clock Transmit, port 1  
Transmit Data In, port 2  
See description of XDI1.  
G3  
H1  
FCLKX2  
XDI3  
I/O  
I
Framer Data Clock Transmit, port 2  
See description of FCLKX1.  
Transmit Data In, port 3  
See description of XDI1.  
Data Sheet  
28  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
H2  
N4  
M6  
FCLKX3  
XDI4  
I/O  
Framer Data Clock Transmit, port 3  
See description of FCLKX1.  
I
Transmit Data In, port 4  
See description of XDI1.  
FCLKX4  
I/O  
Framer Data Clock Transmit, port 4  
See description of FCLKX1.  
Multi Function Pins  
D2  
D3  
D1  
D4  
RPA1  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 1  
Depending on programming of bits PC(1:4).RPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset these ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
RPB1  
RPC1  
RPD1  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESR  
latching/transmission of data is done with the rising or  
falling edge of FCLKR. If not connected, an internal pull-  
up transistor ensures a high input level.  
An input function must not be selected twice or more.  
Selectable pin functions are described below.  
D2  
D3  
D1  
D4  
D2  
D3  
D1  
D4  
D2  
D3  
D1  
D4  
D2  
D3  
D1  
D4  
D2  
D3  
D1  
D4  
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
I
PU  
PU  
Receive Line Termination (RLT), port 1  
PC(1:4).RPC(3:0) = ´1000b´.  
These input function controls together with LIM0.RTRS  
the analog switch of the receive line interface: A logical  
equivalence is build out of LIM0.RTRS and RLT.  
I
General Purpose Input (GPI), port 1  
PC(1:4).RPC(3:0) = ´1001b.  
The pin is set to input. The state of this input is reflected  
in the register bits MFPI.RPA, MFPI.RPB or MFPI.RPC  
respectively.  
O
O
O
General Purpose Output High (GPOH), port 1  
PC(1:4).RPC(3:0) = ´1010b´.  
The pin level is set fix to high level.  
General Purpose Output Low (GPOL), port 1  
PC(1:4).RPC(3:0) = ´1011b´.  
The pin level is set fix to low-level.  
Loss of Signal Indication Output (LOS), port 1  
PC(1:3).RPC(3:0) = ´1100b.  
The output reflects the Loss of Signal status as readable  
in LSR0.LOS.  
Data Sheet  
29  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
D2  
D3  
D1  
D4  
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Data Output Negative (RDON), port 1  
PC(1:4).RPC(3:0) = ´1110b´.  
Receive data output negative for dual rail mode on  
digital (framer) interface (LIM3.DRR = ´1´).  
Bipolar violation output for single rail mode on digital  
(framer) interface (LIM3.DRR = ´0´).  
D2  
D3  
D1  
D4  
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Clock Output (RCLK), port 1  
PC(1:4).RPC(3:0) = ´1111b´. Default setting after reset  
Receive clock output RCLK. After reset RCLK is  
configured to be internally pulled up weekly. By setting  
of PC5.CRP RCLK is an active output.  
RCLK source and frequency selection is made by  
CMR1.RS(1:0) if COMP = ´1´ or by CMR4.RS(2:0) if  
COMP = ´0´.  
F4  
RPA2  
RPB2  
RPC2  
RPD2  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 2  
Depending on programming of bits PC(1:4).RPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset these ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
G2  
G1  
G4  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESR  
latching/transmission of data is done with the rising or  
falling edge of FCLKR. If not connected, an internal pull-  
up transistor ensures a high input level.  
An input function must not be selected twice or more.  
Selectable pin functions as described for port 1.  
H4  
J1  
J3  
J2  
RPA3  
RPB3  
RPC3  
RPD3  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 3  
Depending on programming of bits PC(1:4).RPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset these ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESR  
latching/transmission of data is done with the rising or  
falling edge of FCLKR. If not connected, an internal pull-  
up transistor ensures a high input level.  
An input function must not be selected twice or more.  
Selectable pin functions as described for port 1.  
Data Sheet  
30  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
L3  
RPA4  
RPB4  
RPC4  
RPD4  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 4  
Depending on programming of bits PC(1:4).RPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset these ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
L2  
M3  
N3  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESR  
latching/transmission of data is done with the rising or  
falling edge of FCLKR. If not connected, an internal pull-  
up transistor ensures a high input level.  
An input function must not be selected twice or more.  
Selectable pin functions as described for port 1.  
B9  
XPA1  
XPB1  
XPC1  
XPD1  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 1  
Depending on programming of bits PC(1:4).XPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset the ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESX  
latching/transmission of data is done with the rising or  
falling edge of FCLKX. If not connected, an internal pull-  
up transistor ensures a high input level.  
B11  
C9  
D9  
Each input function (TCLK, XDIN, XLT or XLT) may only  
be selected once.  
Selectable pin functions are described below.  
B9  
XPA1  
XPB1  
XPC1  
XPD1  
I
PU  
Transmit Clock (TCLK), port 1  
PC(1:4).XPC(3:0) = ´0011b´  
B11  
C9  
D9  
A 2.048/8.192 MHz (E1) or 1.544/6.176 MHz (T1/J1)  
clock has to be sourced by the framer if the internally  
generated transmit clock (generated by DCO-X) shall  
not be used. Optionally this input is used as a  
synchronization clock for the DCO-X circuitry with a  
frequency of 2.048 (E1) or 1.544 MHz (T1/J1).  
B9  
XPA1  
XPB1  
XPC1  
XPD1  
O
I
Transmit Clock (XCLK), port 1  
PC(1:4).XPC(3:0) = ´0111b´  
Transmit line clock of 2.048 MHz (E1) or 1.544 MHz  
(T1/J1) derived from FCLKX/R, RCLK or generated  
internally by DCO circuitries.  
B11  
C9  
D9  
B9  
XPA1  
XPB1  
XPC1  
XPD1  
PU  
Transmit Line Tristate (XLT), port 1  
PC(1:4).XPC(3:0) = ´1000b´  
A high level on this port sets the transmit lines XL1/2 or  
XDOP/N into tristate mode. This pin function is logically  
OR´d with register bit XPM2.XLT.  
B11  
C9  
D9  
Data Sheet  
31  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
B9  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
I
PU  
General Purpose Input (GPI), port 1  
PC(1:4).XPC(3:0) = ´1001b.  
The pin is set to input. The state of this input is reflected  
in the register bits MFPI.XPA, MFPI.XPB or MFPI.XPC  
respectively.  
B11  
C9  
D9  
B9  
O
O
I
General Purpose Output High (GPOH), port 1  
PC(1:4).XPC(3:0) = ´1010b´.  
The pin level is set fix to high level.  
B11  
C9  
D9  
B9  
General Purpose Output Low (GPOL), port 1  
PC(1:4).XPC(3:0) = ´1011b´.  
The pin level is set fix to high level.  
B11  
C9  
D9  
B9  
PU  
Transmit Data Input Negative (XDIN), port 1  
PC(1:2).XPC(3:0) = ´1101b.  
Transmit data input negative for dual rail mode on  
framer side (LIM3.DRX = ´1´). Depending on bit  
DIC3.RESX latching of data is done with the rising or  
falling edge of FCLKX.  
B11  
C9  
D9  
B9  
XPA1  
XPB1  
XPC1  
XPD1  
I
PU  
Transmit Line Tristate, low active, port 1  
XLT : PC(1:4).XPC(3:0) = ´1110b´.  
A low level on this port sets the transmit lines XL1/2 or  
XDOP/N into tristate mode. This pin function is logically  
OR´d with register bit XPM2.XLT.  
B11  
C9  
D9  
C7  
C8  
XPA2,  
XPB2  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 2  
Depending on programming of bits PC(1:4).XPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset the ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESX  
latching/transmission of data is done with the rising or  
falling edge of FCLKX. If not connected, an internal pull-  
up transistor ensures a high input level.  
B5  
B7  
XPC2  
XPD2  
Each input function (TCLK, XDIN, XLT or XLT) may only  
be selected once.  
Selectable pin functions as described for port 1.  
Data Sheet  
32  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
L6  
N7  
XPA3  
XPB3  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 3  
Depending on programming of bits PC(1:4).XPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset the ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESX  
latching/transmission of data is done with the rising or  
falling edge of FCLKX. If not connected, an internal pull-  
up transistor ensures a high input level.  
N5  
L7  
XPC3  
XPD3  
Each input function (TCLK, XDIN, XLT or XLT) may only  
be selected once.  
Selectable pin functions as described for port 1.  
N8  
L8  
XPA4  
XPB4  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 4  
Depending on programming of bits PC(1:4).XPC(3:0)  
these multifunction ports carry information to the framer  
interface or from the framer to the QuadLIUTM. After  
reset the ports are configured to be inputs. With the  
selection of the appropriate pin function, the  
corresponding input/output configuration is achieved  
automatically. Depending on bit DIC3.RESX  
latching/transmission of data is done with the rising or  
falling edge of FCLKX. If not connected, an internal pull-  
up transistor ensures a high input level.  
N11  
M9  
XPC4  
XPD4  
Each input function (TCLK, XDIN, XLT or XLT) may only  
be selected once.  
Selectable pin functions as described for port 1.  
Power Supply  
A11  
VDDR1  
VDDR2  
VDDR3  
VDDR4  
VDDX1  
VDDX2  
VDDX3  
VDDX4  
S
S
S
S
S
S
S
S
Positive Power Supply  
For the analog receiver 1 (3.3 V)  
A4  
Positive Power Supply  
For the analog receiver 2 (3.3 V)  
P4  
Positive Power Supply  
For the analog receiver 3 (3.3 V)  
P11  
Positive Power Supply  
For the analog receiver 4 (3.3 V)  
C13, C14  
C1, C2  
M1, M2  
M13, M14  
Positive Power Supply  
For the analog transmitter 1  
Positive Power Supply  
For the analog transmitter 2  
Positive Power Supply  
For the analog transmitter 3  
Positive Power Supply  
For the analog transmitter 4  
Data Sheet  
33  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
M10, C10  
VDDC  
S
Positive Power Supply  
For the digital core (1.8 V).  
These pins can either be positive power supply input or  
output, dependent on VSEL:  
VSEL connected to VSS : 1.8 V power supply inputs,  
require decoupling.  
VSEL connected to VDD: 1.8 V outputs for decoupling to  
V
SS . These pins must not be used to supply external  
devices.  
B10  
C6  
VDDPLL  
VDDP  
S
S
Positive Power Supply  
For the analog PLL  
E3, E4  
K3  
Positive Power Supply  
For the digital pads(3.3 V)  
For correct operation, all VDDP pins have to be  
connected to positive power supply.  
M7, M8  
E12, E13, B8  
P5  
VSS  
S
Power Ground  
Common for all sub circuits (0 V)  
For correct operation, all VSS pins have to be connected  
to ground.  
P10  
A10  
A5  
B2  
N2  
N13  
B13  
F2  
N10  
E11  
D8  
G7  
G8  
H7  
H8  
C5  
B1, B14, N1, N14 VSS  
S
Only for P/PG-LBGA-160-1 Package  
Either usage as power ground or usage as connectors  
RLAS2 of the analog switches  
Power Supply Configuration  
D6  
VSEL  
I + PU  
Voltage Select  
Enables the internal voltage regulator for 3.3 V only  
operation mode if connected to VDD (recommended) or  
left open.  
Disables the internal voltage regulator for dual power  
supply mode (1.8 V and 3.3 V) if connected to VSS.  
Data Sheet  
34  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 1  
Pin No.  
I/O Signals (cont’d)for P/PG-LBGA-160-1  
Name  
Pin Type Buffer  
Type  
Function  
Boundary Scan/Joint Test Access Group (JTAG)  
B6  
TRS  
I
PD  
Test Reset  
For Boundary Scan (active low). If not connected, an  
internal pull-down transistor ensures low input level.  
D11  
TDI  
PU  
Test Data Input  
For Boundary Scan.  
If not connected an internal pull-up transistor ensures  
high input level.  
D5  
TMS  
TCK  
TDO  
Test Mode Select  
For Boundary Scan.  
If not connected an internal pull-up transistor ensures  
high input level.  
C4  
Test Clock  
For Boundary Scan.  
If not connected an internal pull-up transistor ensures  
high input level.  
C11  
O
Test Data Output  
For Boundary Scan  
Note:oD = open drain output PU = input or input/output comprising an internal pull-up device To override the  
internal pull-up by an external pull-down, a resistor value of 22 kis recommended. The pull-up devices are  
activated during reset, this means their state is undefined until the reset signal has been applied. Unused  
pins containing pull-ups can be left open.  
Data Sheet  
35  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
Operation Mode Selection and Device Initialization  
46  
RES  
I
PU  
Hardware Reset  
Active low.  
29  
68  
IM1  
IM  
I
I
PD  
PU  
Interface Mode Selection  
00B Asynchronous Intel Bus Mode  
01B Asynchronous Motorola Bus Mode  
10B SPI Bus Slave Mode  
11B SCI Bus Slave Mode  
Asynchronous and Serial Microcontroller Interfaces  
83  
82  
81  
80  
79  
A9  
A8  
A7  
A6  
A5  
A5  
I
I
I
I
I
I
PU  
PU  
PU  
PU  
PU  
PU  
Address Bus Line 9 (MSB)  
Address Bus Line 8  
Address Bus Line 7  
Address Bus Line 6  
Address Bus Line 5  
SCI Source address bit 5 (MSB)  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
78  
77  
76  
75  
74  
107  
A4  
A4  
I
I
PU  
PU  
Address Bus Line 4  
SCI Source Address bit 4  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
A3  
A3  
I
I
PU  
PU  
Address Bus Line 3  
SCI Source Address bit 3  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
A2  
A2  
I
I
PU  
PU  
Address Bus Line 2  
SCI Source Address bit 2  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
A1  
A1  
I
I
PU  
PU  
Address Bus Line 1  
SCI Source Address bit 1  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
A0  
A0  
I
I
PU  
PU  
Address Bus Line 0  
SCI Source Address Bit 0 (LSB)  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
D15  
IO  
I
PU  
PU  
Data Bus Line 15  
PLL10  
PLL Programming Bit 10  
Only used if SCI or SPI interface mode is selected by IM(1:0)  
= 1XB.  
106  
105  
D14  
IO  
I
PU  
PU  
Data Bus Line 14  
PLL9  
PLL Programming Bit 9  
Only used if SCI or SPI interface mode is selected by IM(1:0)  
= 1XB.  
D13  
IO  
I
PU  
PU  
Data Bus Line 13  
PLL8  
PLL programming bit 8  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
Data Sheet  
36  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
104  
103  
100  
99  
D12  
IO  
I
PU  
PU  
Data Bus Line 12  
PLL7  
PLL programming bit 7  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
D11  
IO  
I
PU  
PU  
Data Bus Line 11  
PLL6  
PLL programming bit 6  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
D10  
IO  
I
PU  
PU  
Data Bus Line 10  
PLL5  
PLL programming bit 5  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
D9  
IO  
I
PU  
PU  
Data Bus Line 9  
PLL4  
PLL programming bit 4  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
98  
D8  
IO  
I
PU  
PU  
Data Bus Line 8  
PLL3  
PLL programming bit 3  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
97  
D7  
IO  
I
PU  
PU  
Data Bus Line 7  
PLL2  
PLL programming bit 2  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
96  
D6  
IO  
I
PU  
PU  
Data Bus Line 6  
PLL1  
PLL programming bit 1  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
95  
D5  
IO  
I
PU  
PU  
Data Bus Line 5  
PLL0  
PLL programming bit 0  
Only used if SCI or SPI interface mode is selected by  
IM(1:0) = 1XB.  
94  
93  
90  
D4  
IO  
IO  
IO  
I
PU  
PU  
PU  
Data Bus Line 4  
Data Bus Line 3  
Data Bus Line 2  
D3  
D2  
SCI_CLK  
SCI Bus Clock  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
SCLK  
I
SPI Bus Clock  
Only used if SPI interface mode is selected by IM(1:0) = 10B.  
89  
D1  
IO  
I
PU  
PU  
Data Bus Line 1  
SCI_RXD  
SCI Bus Serial Data In  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
SDI  
I
PU  
SPI Serial Data In  
Only used if SPI interface mode is selected by IM(1:0) = 10B.  
Data Sheet  
37  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
88  
62  
D0  
IO  
I
PU  
Data Bus Line 0  
SCI_TXD  
PP or oD SCI Bus Serial Data Out  
Only used if SCI interface mode is selected by IM(1:0) = 11B.  
SDO  
ALE  
I
I
PU  
PU  
SPI Bus Serial Data Out  
Only used if SPI interface mode is selected by IM(1:0) = 10B.  
Address Latch Enable  
A high on this line indicates an address on an external  
multiplexed address/data bus. The address information  
provided on A(9:0) is internally latched with the falling edge  
of ALE. This function allows the QuadLIUTM to be connected  
to a multiplexed address/data bus without the need for  
external latches. In this case, pins A(7:0) must be connected  
to the data bus pins externally. In case of demultiplexed  
mode this pin can be connected directly to VDD or can be left  
open.  
85  
RD  
I
PU  
Read Enable  
Intel bus mode.  
This signal indicates a read operation. When the QuadLIUTM  
is selected via CS, the RD signal enables the bus drivers to  
output data from an internal register addressed by A(10:0) to  
the Data Bus.  
DS  
I
I
PU  
PU  
Data Strobe  
Motorola bus mode.  
This pin serves as input to control read/write operations.  
84  
WR  
Write Enable  
Intel bus mode.  
This signal indicates a write operation. When CS is active the  
QuadLIUTM loads an internal register with data provided on  
the data bus.  
RW  
I
I
PU  
PU  
Read/Write Select  
Motorola bus mode.  
This signal distinguishes between read and write operation.  
40  
DBW  
Data Bus Width select  
Bus interface mode  
A low signal on this input selects the 8-bit bus interface  
mode. A high signal on this input selects the 16-bit bus  
interface mode. In this case word transfer to/from the internal  
registers is enabled. Byte transfers are implemented by using  
A0 and BHE/BLE.  
Data Sheet  
38  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
87  
BHE  
BLE  
I
PU  
Bus High Enable  
Intel bus mode.  
If 16-bit bus interface mode is enabled, this signal indicates  
a data transfer on the upper byte of the data bus D(15:8). In  
8-bit bus interface mode this signal has no function and  
should be tied to VDD or left open.  
I
PU  
Bus Low Enable  
Motorola bus mode.  
If 16-bit bus interface mode is enabled, this signal indicates  
a data transfer on the lower byte of the data bus D(7:0). In 8-  
bit bus interface mode this signal has no function and should  
be tied to VDD or left open.  
86  
41  
CS  
I
PU  
Chip Select  
Low active chip select.  
INT  
O
Interrupt Request  
INT serves as general interrupt request for all interrupt  
sources. These interrupt sources can be masked via  
registers IMR(7:0). Interrupt status is reported via registers  
GIS (Global Interrupt Status) and ISR(7:0).  
Output characteristics (push-pull active low/high, open drain)  
are determined by programming register IPC.  
91  
READY  
O
O
I
oD  
(PU)  
Data Ready  
oD output only if activated by READY_EN = 1B and if Intel  
bus mode is selected. If not activated (READY_EN = 0B) the  
pull-up resistor is active.  
Asynchronous handshake signal to indicate successful read  
or write cycle.  
DTACK  
oD  
(PU)  
Data Acknowledge  
oD output only if activated by READY_EN = 1B and if  
motorola bus mode is selected. If not activated (READY_EN  
= 0B) the pull-up resistor is active.  
Asynchronous handshake signal to indicate successful read  
or write cycle.  
92  
READY_EN  
PD  
Ready Enable  
Activates the oD functionality of READY/ DTACK.  
0B: READY/ DTACK is not activated (only pull-up resistor is  
active). Pin READY/ DTACK can be connected to VDD.  
1B: READY/ DTACK is an active oD output  
Data Sheet  
39  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
Line Interface Receiver  
115  
RL1.1  
I (analog)  
I
Line Receiver input 1, port 1  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIP1  
Receive Data Input Positive, port 1  
Digital input for received dual-rail PCM(+) route signal which  
is latched with the internally recovered receive route clock.  
An internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%. The dual-rail mode is selected if  
LIM1.DRS and FMR0.RC1 are set. Input polarity is selected  
by bit RC0.RDIS (after reset: active low), line coding is  
selected by FMR0.RC(1:0).  
ROID1  
I
Receive Optical Interface Data, port 1  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). Latching of data is  
done with the falling edge of RCLKI. Input polarity is selected  
by bit RC0.RDIS. The single-rail mode is selected if  
LIM1.DRS is set and FMR0.RC1 is cleared. If CMI coding is  
selected (FMR0.RC(1:0) = 01B), an internal DPLL recovers  
clock an data; no clock signal on RCLKI1 is required.  
116  
RL2.1  
I (analog)  
I
Line Receiver input 2, port 1  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIN1  
Receive Data Input Negative, port 1  
Input for received dual-rail PCM(-) route signal which is  
latched with the internally recovered receive route clock. An  
internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%.  
The dual-rail mode is selected if LIM1.DRS and FMR0.RC1  
are set. Input polarity is selected by bit RC0.RDIS  
(after reset: active low), line coding is selected by  
FMR0.RC(1:0).  
RCLKI1  
I
Receive Clock Input, port 1  
Receive clock input for the optical interface if LIM1.DRS is  
set and  
FMR0.RC(1:0) = 00B.  
Clock frequency: 2.048 MHz (E1) or 1.544 MHz (T1/J1).  
RCLKI1 is ignored if CMI coding is selected.  
Data Sheet  
40  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
138  
RL1.2  
I (analog)  
Line Receiver input 1, port 2  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIP2  
I
Receive Data Input Positive, port 2  
Digital input for received dual-rail PCM(+) route signal which  
is latched with the internally recovered receive route clock.  
An internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%. The dual-rail mode is selected if  
LIM1.DRS and FMR0.RC1 are set. Input polarity is selected  
by bit RC0.RDIS (after reset: active low), line coding is  
selected by FMR0.RC(1:0).  
ROID2  
I
Receive Optical Interface Data, port 2  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). Latching of data is  
done with the falling edge of RCLKI. Input polarity is selected  
by bit RC0.RDIS. The single-rail mode is selected if  
LIM1.DRS is set and FMR0.RC1 is cleared. If CMI coding is  
selected (FMR0.RC(1:0) = 01B), an internal DPLL recovers  
clock an data; no clock signal on RCLKI2 is required.  
137  
RL2.2  
I (analog)  
I
Line Receiver input 2, port 2  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIN2  
Receive Data Input Negative, port 2  
Input for received dual-rail PCM(-) route signal which is  
latched with the internally recovered receive route clock. An  
internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%.  
The dual-rail mode is selected if LIM1.DRS and FMR0.RC1  
are set. Input polarity is selected by bit RC0.RDIS  
(after reset: active low), line coding is selected by  
FMR0.RC(1:0).  
RCLKI2  
I
Receive Clock Input, port 2  
Receive clock input for the optical interface if LIM1.DRS is  
set and  
FMR0.RC(1:0) = 00B.  
Clock frequency: 2.048 MHz (E1) or 1.544 MHz (T1/J1).  
RCLKI2 is ignored if CMI coding is selected.  
Data Sheet  
41  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
43  
RL1.3  
I (analog)  
Line Receiver input 1, port 3  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIP3  
I
Receive Data Input Positive, port 3  
Digital input for received dual-rail PCM(+) route signal which  
is latched with the internally recovered receive route clock.  
An internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%. The dual-rail mode is selected if  
LIM1.DRS and FMR0.RC1 are set. Input polarity is selected  
by bit RC0.RDIS (after reset: active low), line coding is  
selected by FMR0.RC(1:0).  
ROID3  
I
Receive Optical Interface Data, port 3  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). Latching of data is  
done with the falling edge of RCLKI. Input polarity is selected  
by bit RC0.RDIS. The single-rail mode is selected if  
LIM1.DRS is set and FMR0.RC1 is cleared. If CMI coding is  
selected (FMR0.RC(1:0) = 01B), an internal DPLL recovers  
clock an data; no clock signal on RCLKI3 is required.  
44  
RL2.3  
I (analog)  
I
Line Receiver input 2, port 3  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIN3  
Receive Data Input Negative, port 3  
Input for received dual-rail PCM(-) route signal which is  
latched with the internally recovered receive route clock. An  
internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%.  
The dual-rail mode is selected if LIM1.DRS and FMR0.RC1  
are set. Input polarity is selected by bit RC0.RDIS  
(after reset: active low), line coding is selected by  
FMR0.RC(1:0).  
RCLKI3  
I
Receive Clock Input, port 3  
Receive clock input for the optical interface if LIM1.DRS is  
set and  
FMR0.RC(1:0) = 00B.  
Clock frequency: 2.048 MHz (E1) or 1.544 MHz (T1/J1).  
RCLKI3 is ignored if CMI coding is selected.  
Data Sheet  
42  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
66  
RL1.4  
I (analog)  
Line Receiver input 1, port 4  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIP4  
I
Receive Data Input Positive, port 4  
Digital input for received dual-rail PCM(+) route signal which  
is latched with the internally recovered receive route clock.  
An internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%. The dual-rail mode is selected if  
LIM1.DRS and FMR0.RC1 are set. Input polarity is selected  
by bit RC0.RDIS (after reset: active low), line coding is  
selected by FMR0.RC(1:0).  
ROID4  
I
Receive Optical Interface Data, port 4  
Unipolar data received from a fiber-optical interface with  
2048 kbit/s (E1) or 1544 kbit/s (T1/J1). Latching of data is  
done with the falling edge of RCLKI. Input polarity is selected  
by bit RC0.RDIS. The single-rail mode is selected if  
LIM1.DRS is set and FMR0.RC1 is cleared. If CMI coding is  
selected (FMR0.RC(1:0) = 01B), an internal DPLL recovers  
clock an data; no clock signal on RCLKI4 is required.  
65  
RL2.4  
I (analog)  
I
Line Receiver input 2, port 4  
Analog input from the external transformer. Selected if  
LIM1.DRS is cleared.  
RDIN4  
Receive Data Input Negative, port 4  
Input for received dual-rail PCM(-) route signal which is  
latched with the internally recovered receive route clock. An  
internal DPLL extracts the receive route clock from the  
incoming data pulses. The duty cycle of the received signal  
has to be close to 50%.  
The dual-rail mode is selected if LIM1.DRS and FMR0.RC1  
are set. Input polarity is selected by bit RC0.RDIS  
(after reset: active low), line coding is selected by  
FMR0.RC(1:0).  
RCLKI4  
I
Receive Clock Input, port 4  
Receive clock input for the optical interface if LIM1.DRS is  
set and  
FMR0.RC(1:0) = 00B.  
Clock frequency: 2.048 MHz (E1) or 1.544 MHz (T1/J1).  
RCLKI4 is ignored if CMI coding is selected.  
Data Sheet  
43  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
109  
XL1.1  
O
Transmit Line 1, port 1  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDOP1  
O
Transmit Data Output Positive, port 1  
This digital output for transmitted dual-rail PCM(+) route  
signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked with positive transitions of XCLK1 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low). The dual-rail mode is selected if LIM1.DRS  
and FMR0.XC1 are set. After reset this pin is in high-  
impedance state until register LIM1.DRS is set and  
XPM2.XLT is cleared.  
XOID1  
O
Transmit Optical Interface Data, port 1  
Unipolar data sent to a fiber-optical interface with 2048 kbit/s  
(E1) or 1544 kbit/s (T1/J1) which is clocked on the positive  
transitions of XCLK1. Clocking of data in NRZ code is done  
with 100% duty cycle. Data in CMI code is shifted out with  
50% or 100% duty cycle on both transitions of XCLK  
according to the CMI coding. Output polarity is selected by bit  
LIM0.XDOS (after reset: data is sent active high). The single-  
rail mode is selected if LIM1.DRS is set and FMR0.XC1 is  
cleared. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT is cleared.  
Data Sheet  
44  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
111  
XL2.1  
O (analog) –  
Transmit Line 2, port 1  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDON1  
O
Transmit Data Output Negative, port 1  
This digital output for transmitted dual-rail  
PCM(-) route signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked on positive transitions of XCLK1 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low).  
The dual-rail mode is selected if LIM1.DRS and FMR0.XC1  
are set. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT cleared.  
XFM1  
O
Transmit Frame Marker, port 1  
This digital output marks the first bit of every frame  
transmitted on port XDOP. This function is only available in  
the optical interface mode (LIM1.DRS = 1B and FMR0.XC1 =  
0B). Data is clocked on positive transitions of XCLK1. After  
reset this pin is in high-impedance state until register  
LIM1.DRS is set and XPM2.XLT cleared.  
In remote loop configuration the XFM1 marker is not valid.  
Data Sheet  
45  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
144  
XL1.2  
O
Transmit Line 1, port 2  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDOP2  
O
Transmit Data Output Positive, port 2  
This digital output for transmitted dual-rail PCM(+) route  
signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked with positive transitions of XCLK2 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low). The dual-rail mode is selected if LIM1.DRS  
and FMR0.XC1 are set. After reset this pin is in high-  
impedance state until register LIM1.DRS is set and  
XPM2.XLT is cleared.  
XOID2  
O
Transmit Optical Interface Data, port 2  
Unipolar data sent to a fiber-optical interface with 2048 kbit/s  
(E1) or 1544 kbit/s (T1/J1) which is clocked on the positive  
transitions of XCLK. Clocking of data in NRZ code is done  
with 100% duty cycle. Data in CMI code is shifted out with  
50% or 100% duty cycle on both transitions of XCLK2  
according to the CMI coding. Output polarity is selected by bit  
LIM0.XDOS (after reset: data is sent active high). The single-  
rail mode is selected if LIM1.DRS is set and FMR0.XC1 is  
cleared. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT is cleared.  
Data Sheet  
46  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
142  
XL2.2  
O (analog) –  
Transmit Line 2, port 2  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDON2  
O
Transmit Data Output Negative, port 2  
This digital output for transmitted dual-rail  
PCM(-) route signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked on positive transitions of XCLK2 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low).  
The dual-rail mode is selected if LIM1.DRS and FMR0.XC1  
are set. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT cleared.  
XFM2  
O
Transmit Frame Marker, port 2  
This digital output marks the first bit of every frame  
transmitted on port XDOP. This function is only available in  
the optical interface mode (LIM1.DRS = 1B and FMR0.XC1 =  
0B). Data is clocked on positive transitions of XCLK2. After  
reset this pin is in high-impedance state until register  
LIM1.DRS is set and XPM2.XLT cleared.  
In remote loop configuration the XFM2 marker is not valid.  
Data Sheet  
47  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
37  
XL1.3  
O
Transmit Line 1, port 3  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDOP3  
O
Transmit Data Output Positive, port 3  
This digital output for transmitted dual-rail PCM(+) route  
signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked with positive transitions of XCLK3 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low). The dual-rail mode is selected if LIM1.DRS  
and FMR0.XC1 are set. After reset this pin is in high-  
impedance state until register LIM1.DRS is set and  
XPM2.XLT is cleared.  
XOID3  
O
Transmit Optical Interface Data, port 3  
Unipolar data sent to a fiber-optical interface with 2048 kbit/s  
(E1) or 1544 kbit/s (T1/J1) which is clocked on the positive  
transitions of XCLK. Clocking of data in NRZ code is done  
with 100% duty cycle. Data in CMI code is shifted out with  
50% or 100% duty cycle on both transitions of XCLK3  
according to the CMI coding. Output polarity is selected by bit  
LIM0.XDOS (after reset: data is sent active high). The single-  
rail mode is selected if LIM1.DRS is set and FMR0.XC1 is  
cleared. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT is cleared.  
Data Sheet  
48  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
39  
XL2.3  
O (analog) –  
Transmit Line 2, port 3  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDON3  
O
Transmit Data Output Negative, port 3  
This digital output for transmitted dual-rail  
PCM(-) route signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked on positive transitions of XCLK3 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low).  
The dual-rail mode is selected if LIM1.DRS and FMR0.XC1  
are set. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT cleared.  
XFM3  
O
Transmit Frame Marker, port 3  
This digital output marks the first bit of every frame  
transmitted on port XDOP. This function is only available in  
the optical interface mode (LIM1.DRS = 1 and FMR0.XC1 =  
0B). Data is clocked on positive transitions of XCLK3. After  
reset this pin is in high-impedance state until register  
LIM1.DRS is set and XPM2.XLT cleared.  
In remote loop configuration the XFM3 marker is not valid.  
Data Sheet  
49  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
72  
XL1.4  
O
Transmit Line 1, port 4  
(analog)  
Analog output to the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDOP4  
O
Transmit Data Output Positive, port 4  
This digital output for transmitted dual-rail PCM(+) route  
signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked with positive transitions of XCLK4 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low). The dual-rail mode is selected if LIM1.DRS  
and FMR0.XC1 are set. After reset this pin is in high-  
impedance state until register LIM1.DRS is set and  
XPM2.XLT is cleared.  
XOID4  
O
Transmit Optical Interface Data, port 4  
Unipolar data sent to a fiber-optical interface with 2048 kbit/s  
(E1) or 1544 kbit/s (T1/J1) which is clocked on the positive  
transitions of XCLK. Clocking of data in NRZ code is done  
with 100% duty cycle. Data in CMI code is shifted out with  
50% or 100% duty cycle on both transitions of XCLK4  
according to the CMI coding. Output polarity is selected by bit  
LIM0.XDOS (after reset: data is sent active high). The single-  
rail mode is selected if LIM1.DRS is set and FMR0.XC1 is  
cleared. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT is cleared.  
Data Sheet  
50  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
70  
XL2.4  
O (analog) –  
Transmit Line 2, port 4  
Analog output for the external transformer. Selected if  
LIM1.DRS is cleared. After reset this pin is in high-  
impedance state until bit FMR0.XC1 is set and XPM2.XLT is  
cleared.  
XDON4  
O
Transmit Data Output Negative, port 4  
This digital output for transmitted dual-rail  
PCM(-) route signals can provide  
Half bauded signals with 50% duty cycle (LIM0.XFB = 0B)  
or  
Full bauded signals with 100% duty cycle (LIM0.XFB =  
1B)  
The data is clocked on positive transitions of XCLK4 in both  
cases. Output polarity is selected by bit LIM0.XDOS (after  
reset: active low).  
The dual-rail mode is selected if LIM1.DRS and FMR0.XC1  
are set. After reset this pin is in high-impedance state until  
register LIM1.DRS is set and XPM2.XLT cleared.  
XFM4  
O
Transmit Frame Marker, port 4  
This digital output marks the first bit of every frame  
transmitted on port XDOP. This function is only available in  
the optical interface mode (LIM1.DRS = 1B and FMR0.XC1 =  
0B). Data is clocked on positive transitions of XCLK4. After  
reset this pin is in high-impedance state until register  
LIM1.DRS is set and XPM2.XLT cleared.  
In remote loop configuration the XFM4 marker is not valid.  
Clock Signals  
133  
MCLK  
I
I
Master Clock  
A reference clock of better than ±32 ppm accuracy in the  
range of 1.02 to 20 MHz must be provided on this pin. The  
QuadLIUTM internally derives all necessary clocks from this  
master  
(see registers GCM(8:1)).  
48  
SYNC  
PU  
Clock Synchronization of DCO-R  
If a clock is detected on pin SYNC the  
DCO-R circuitry of the OctalFALCTM synchronizes to this  
1.544/2.048 MHz clock (see LIM0.MAS, CMR1.DCS and  
CMR2.DCF). Additionally, in master mode the OctalFALCTM  
is able to synchronize to an 8 kHz reference clock (IPC.SSYF  
= 1B). If not connected, an internal pullup transistor ensures  
high input level.  
Data Sheet  
51  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
69  
SEC  
I
PU  
One-Second Timer Input  
A pulse with logical high level for at least two 2.048 MHz  
cycles triggers the internal one-second timer. After reset this  
pin is configured to be an input. If not connected, an internal  
pullup transistor ensures high input level (see register  
GPC1).  
SEC  
FSC  
O
O
One-Second Timer Output  
Activated high every second for two 2.048 MHz clock cycles.  
8 kHz Frame Synchronization  
The optionally synchronization pulse is active high or low for  
one 2.048/1.544 MHz cycle (pulse width = 488 ns for E1and  
648 ns or T1/J1).  
119,  
130,  
47,  
RCLK(1:4)  
O
O
Receive Clock Out, ports 1 to 4  
After reset this ports are configured to be internally pulled up  
weakly. Setting of register bit PC5.CRP will switch this ports  
to be active outputs.  
61  
System Interface Receive  
9
RDO1  
Receive Data Out, port 1  
Received data that is sent to the system highway. Clocking  
of data is done with the rising or falling edge (SIC3.RESR) of  
SCLKR1, if the receive elastic store is bypassed. The delay  
between the beginning of time slot 0 and the initial edge of  
SCLKR1 (after SYPR goes active) is determined by the  
values of registers RC1 and RC0.  
If received data is shifted out with higher (more than  
2.048/1.544 Mbit/s) data rates, the active channel phase is  
defined by bits SIC2.SICS(2:0). During inactive channel  
phases RDO1 is cleared (driven to low level, not tristate).  
8
SCLKR1  
I/O  
PU  
System Clock Receive, port 1  
Working clock for the receive system interface with a  
frequency of 16.384/8.192/4.096/2.048 MHz in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode. If the receive elastic store is bypassed, the clock  
supplied on this pin is ignored, because RCLK is used to  
clock the receive system interface.  
If SCLKR1 is configured to be an output, the internal working  
clock of the receive system interface sourced by DCO-R or  
RCLK is output.  
12  
RDO2  
O
Receive Data Out, port 2  
Received data that is sent to the system highway. Clocking  
of data is done with the rising or falling edge (SIC3.RESR) of  
SCLKR2, if the receive elastic store is bypassed. The delay  
between the beginning of time slot 0 and the initial edge of  
SCLKR2 (after SYPR goes active) is determined by the  
values of registers RC1 and RC0.  
If received data is shifted out with higher (more than  
2.048/1.544 Mbit/s) data rates, the active channel phase is  
defined by bits SIC2.SICS(2:0). During inactive channel  
phases RDO2 is cleared (driven to low level, not tristate).  
Data Sheet  
52  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
13  
27  
26  
30  
SCLKR2  
I/O  
PU  
System Clock Receive, port 2  
Working clock for the receive system interface with a  
frequency of 16.384/8.192/4.096/2.048 MHz in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode. If the receive elastic store is bypassed, the clock  
supplied on this pin is ignored, because RCLK is used to  
clock the receive system interface.  
If SCLKR2 is configured to be an output, the internal working  
clock of the receive system interface sourced by DCO-R or  
RCLK is output.  
RDO3  
O
Receive Data Out, port 3  
Received data that is sent to the system highway. Clocking  
of data is done with the rising or falling edge (SIC3.RESR) of  
SCLKR3, if the receive elastic store is bypassed. The delay  
between the beginning of time slot 0 and the initial edge of  
SCLKR3 (after SYPR goes active) is determined by the  
values of registers RC1 and RC0.  
If received data is shifted out with higher (more than  
2.048/1.544 Mbit/s) data rates, the active channel phase is  
defined by bits SIC2.SICS(2:0). During inactive channel  
phases RDO3 is cleared (driven to low level, not tristate).  
SCLKR3  
I/O  
PU  
System Clock Receive, port 3  
Working clock for the receive system interface with a  
frequency of 16.384/8.192/4.096/2.048 MHz in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode. If the receive elastic store is bypassed, the clock  
supplied on this pin is ignored, because RCLK is used to  
clock the receive system interface.  
If SCLKR3 is configured to be an output, the internal working  
clock of the receive system interface sourced by DCO-R or  
RCLK is output.  
RDO4  
O
Receive Data Out, port 4  
Received data that is sent to the system highway. Clocking  
of data is done with the rising or falling edge (SIC3.RESR) of  
SCLKR4, if the receive elastic store is bypassed. The delay  
between the beginning of time slot 0 and the initial edge of  
SCLKR4 (after SYPR goes active) is determined by the  
values of registers RC1 and RC0.  
If received data is shifted out with higher (more than  
2.048/1.544 Mbit/s) data rates, the active channel phase is  
defined by bits SIC2.SICS(2:0). During inactive channel  
phases RDO4 is cleared (driven to low level, not tristate).  
Data Sheet  
53  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
31  
SCLKR4  
I/O  
PU  
System Clock Receive, port 4  
Working clock for the receive system interface with a  
frequency of 16.384/8.192/4.096/2.048 MHz in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode. If the receive elastic store is bypassed, the clock  
supplied on this pin is ignored, because RCLK is used to  
clock the receive system interface.  
If SCLKR4 is configured to be an output, the internal working  
clock of the receive system interface sourced by DCO-R or  
RCLK is output.  
System Interface Transmit  
2
XDI1  
I
Transmit Data In, port 1  
Transmit data received from the system highway. Latching of  
data is done with rising or falling transitions of SCLKX1  
according to bit SIC3.RESX.  
The delay between the beginning of time slot 0 and the initial  
edge of SCLKX1 (after SYPX goes active) is determined by  
the registers XC(1:0).  
In higher (more than 1.544/2.048 Mbit/s) data rates sampling  
of data is defined by bits SIC2.SICS(2:0).  
3
SCLKX1  
XDI2  
I
I
PU  
System Clock Transmit, port 1  
Working clock for the transmit system interface with a  
frequency of 16.384/8.192/4.096/2.048 in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode.  
18  
Transmit Data In, port 2  
Transmit data received from the system highway. Latching of  
data is done with rising or falling transitions of SCLKX2  
according to bit SIC3.RESX.  
The delay between the beginning of time slot 0 and the initial  
edge of SCLKX2 (after SYPX goes active) is determined by  
the registers XC(1:0).  
In higher (more than 1.544/2.048 Mbit/s) data rates sampling  
of data is defined by bits SIC2.SICS(2:0).  
19  
SCLKX2  
I
PU  
System Clock Transmit, port 2  
Working clock for the transmit system interface with a  
frequency of 16.384/8.192/4.096/2.048 in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode.  
Data Sheet  
54  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
20  
XDI3  
I
Transmit Data In, port 3  
Transmit data received from the system highway. Latching of  
data is done with rising or falling transitions of SCLKX3  
according to bit SIC3.RESX.  
The delay between the beginning of time slot 0 and the initial  
edge of SCLKX3 (after SYPX goes active) is determined by  
the registers XC(1:0).  
In higher (more than 1.544/2.048 Mbit/s) data rates sampling  
of data is defined by bits SIC2.SICS(2:0).  
21  
49  
SCLKX3  
XDI4  
I
I
PU  
System Clock Transmit, port 3  
Working clock for the transmit system interface with a  
frequency of 16.384/8.192/4.096/2.048 in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode.  
Transmit Data In, port 4  
Transmit data received from the system highway. Latching of  
data is done with rising or falling transitions of SCLKX4  
according to bit SIC3.RESX.  
The delay between the beginning of time slot 0 and the initial  
edge of SCLKX4 (after SYPX goes active) is determined by  
the registers XC(1:0).  
In higher (more than 1.544/2.048 Mbit/s) data rates sampling  
of data is defined by bits SIC2.SICS(2:0).  
50  
SCLKX4  
I
PU  
System Clock Transmit, port 4  
Working clock for the transmit system interface with a  
frequency of 16.384/8.192/4.096/2.048 in E1 mode and  
16.384/8.192/4.096/2.048 MHz (SIC2.SSC2 = 0B) or  
12.352/6.176/3.088/1.544 MHz (SIC2.SSC2 = 1B) in T1/J1  
mode.  
Multi Function Pins  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 1  
Depending on programming of bits PC(1:4).RPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset these ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESR latching/transmission of data is done with the  
rising or falling edge of SCLKR. If not connected, an internal  
pullup transistor ensures a high input level.  
The input function must not be selected twice or more.  
Selectable pin functions are described below.  
Data Sheet  
55  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
I
PU  
Synchronous Pulse Receive, port 1  
SYPR, PC(1:4).RPC(3:0) = 0000B  
Together with the values of registers RC(1:0) this signal  
defines the beginning of time slot 0 on system highway port  
RDO.  
Only one multifunction port may be selected as SYPR input.  
After reset, SYPR of port A is used, the other lines are  
ignored.  
In system interface multiplex mode, SYPR has to be provided  
at port RPA1 for four or all four channels dependent if 4:1 or  
8:1 multiplex mode is selected. SYPR defines the beginning  
of the time slot 0 on port RDO/RSIG.  
The pulse cycle is an integer multiple of 125 µs.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Frame Marker (RFM), port 1  
PC(1:4).RPC(3:0) = 0001B  
CMR2.IRSP = 0B  
The receive frame marker can be active high for a 2.048 MHz  
(E1) or 1.544 MHz (T1/J1) period during any bit position of  
the current frame. It is clocked off with the rising or falling  
edge of SCLKR or RCLK, depending on SIC3.RESR. Offset  
programming is done by using registers RC(1:0).  
CMR2.IRSP = 1B  
Frame synchronization pulse generated by the DCO-R  
circuitry internally. This pulse is active low for a 2.048 MHz  
(E1) or 1.544 MHz (T1/J1) period.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Multiframe Begin (RMFB), port 1  
PC(1:4).RPC(3:0) = 0010B  
In E1 mode RMFB marks the beginning of every received  
multiframe (RDO). Optionally the time slot 16 CAS  
multiframe begin can be marked (SIC3.CASMF). Active high  
for one 2.048 MHz period.  
In T1/J1 mode the function depends on bit XC0.MFBS:  
MFBS = 1B  
RMFB marks the beginning of every received multiframe  
(RDO).  
MFBS = 0B  
RMFB marks the beginning of every received superframe.  
Additional pulses are provided every 12 frames when using  
ESF/F24 or F72 format.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Signaling Marker (RSIGM), port 1  
PC(1:4).RPC(3:0) = 0011B  
E1: Marks the time slots which are defined by register  
RTR(4:1) of every received frame on port RDO.  
T1/J1: Marks the time slots which are defined by register  
RTR(4:1) of every received frame on port RDO, if CAS-BR is  
not used.  
When using the CAS-BR signaling scheme, the robbed bit of  
each channel every sixth frames is marked, if CAS-BR is  
enabled by XC0.BRM = 1B.  
Data Sheet  
56  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Signaling Data (RSIG), port 1  
PC(1:4).RPC(3:0) = 0100B  
The received CAS signaling data is sourced by this pin. Time  
slots on RSIG correlate directly to the time slot assignment  
on RDO.  
In 4:1 system interface multiplex mode four received signaing  
data streams are merged into a single data stream  
respectively which is transmitted on RPB1 (bit- or byte-  
interleaved).  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
Data Link Bit Receive (DLR), port 1  
PC(1:4).RPC(3:0) = 0101B  
E1: Marks the Sa(8:4)-bits within the data stream on RDO.  
The Sa(8:4)-bit positions in time slot 0 of every frame not  
containing the frame alignment signal are selected by  
register XC0.  
T1/J1: Marks the DL-bit position within the data stream on  
RDO.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
O
Freeze signaling (FREEZE), port 1  
PC(1:4).RPC(3:0) = 0110B  
The freeze signaling status is set active high by detecting a  
loss of signal alarm, a loss of CAS frame alignment or a  
receive slip (positive or negative). It will stay high for at least  
one complete multiframe after the alarm disappears. Setting  
SIC2.FFS enforces a high on pin FREEZE.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
Frame Synchronous Pulse (RFSP) , port 1  
RFSP, PC(1:4).RPC(3:0) = 0111B  
Active low framing pulse derived from the received PCM  
route signal (line side, RCLK). During loss of synchronization  
(bit FRS0.LFA = 1B), this pulse is suppressed (not influenced  
during alarm simulation).  
Pulse frequency: 8 kHz  
Pulse width: 488 ns (E1) or 648 ns (T1/J1).  
4
5
6
7
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
I
PU  
PU  
Receive Line Termination (RLT), port 1  
PC(1:4).RPC(3:0) = 1000B.  
I
General Purpose Input (GPI), port 1  
PC(1:4).RPC(3:0) = 1001B.  
The pin is set to input. The state of this input is reflected in  
the register bits MFPI.RPA, MFPI.RPB or MFPI.RPC  
respectively.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
General Purpose Output High (GPOH), port 1  
PC(1:4).RPC(3:0) = 1010B.  
The pin level is set fix to high level.  
Data Sheet  
57  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
4
5
6
7
4
5
6
7
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
RPA1  
RPB1  
RPC1  
RPD1  
O
O
I
General Purpose Output Low (GPOL), port 1  
PC(1:4).RPC(3:0) = 1011B.  
The pin level is set fix to low level.  
Loss of Signal Indication Output (LOS), port 1  
PC(1:4).RPC(3:0) = 1100B.  
The output reflects the Loss of Signal status as readable in  
FRS0.LOS.  
PU  
Receive TDM System Interface Tristate (RTDMT), port 1  
PC(1:4).RPC(3:0) = 1101B.  
Controlling of tristate mode for RDO, RSIG,SCLKR and  
RFM. The RTDMT value is logically exored with the register  
bit SIC3.RRTRI.  
4
5
6
7
RPA1  
RPB1  
RPC1  
RPD1  
O
Receive Clock Output (RCLK), port 1  
PC(1:4).RPC(3:0) = 1111B. Default setting after reset  
Receive clock output RCLK. After reset RCLK is configured  
to be internally pulled up weekly. By setting of PC5.CRP  
RCLK is an active output.  
RCLK source and frequency selection is made by  
CMR1.RS(1:0) if GPC6.COMP_DIS = 0B or by  
CMR4.RS(2:0) if GPC6.COMP_DIS = 1B.  
14  
15  
16  
17  
RPA2  
RPB2  
RPC2  
RPD2  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 2  
Depending on programming of bits PC(1:4).RPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset these ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESR latching/transmission of data is done with the  
rising or falling edge of SCLKR. If not connected, an internal  
pullup transistor ensures a high input level.  
The input function must not be selected twice or more.  
Selectable pin functions as described for port 1.  
22  
23  
24  
25  
RPA3  
RPB3  
RPC3  
RPD3  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 3  
Depending on programming of bits PC(1:4).RPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset these ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESR latching/transmission of data is done with the  
rising or falling edge of SCLKR. If not connected, an internal  
pullup transistor ensures a high input level.  
The input function must not be selected twice or more.  
Selectable pin functions as described for port 1.  
Data Sheet  
58  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
32  
33  
34  
35  
RPA4  
RPB4  
RPC4  
RPD4  
I/O  
PU/–  
Receive Multifunction Pins A to D, port 4  
Depending on programming of bits PC(1:4).RPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset these ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESR latching/transmission of data is done with the  
rising or falling edge of SCLKR. If not connected, an internal  
pullup transistor ensures a high input level.  
The input function must not be selected twice or more.  
Selectable pin functions as described for port 1.  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 1  
Depending on programming of bits PC(1:4).XPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset the ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESX latching/transmission of data is done with the  
rising or falling edge of SCLKX. If not connected, an internal  
pullup transistor ensures a high input level.  
Each input function (SYPX, XMFS, XSIG,TCLK, XLT or XLT)  
may only be selected once. SYPX and XMFS must not be  
used in parallel.  
Selectable pin functions are described below.  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
I
I
PU  
PU  
Synchronous Pulse Transmit, port 1  
SYPX, PC(1:4).XPC(3:0) = ´0000B´  
Together with the values of registers XC(0:1) this signal  
defines the beginning of time slot 0 at system highway port  
XDI.  
The pulse cycle is an integer multiple of 125 µs.  
SYPX must not be used in parallel with XMFS.  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
Tran4mit Multiframe Synchronization (XMFS), port 1  
PC(1:4).XPC(3:0) = 0001B  
This port defines the frame and multiframe begin on the  
transmit system interface ports XDI and XSIG.  
Depending on PC5.CXMFS the signal on XMFS is active  
high or low.  
XMFS must not be used in parallel with SYPX.  
Note:A new multiframe position has settled at least one  
multiframe after pulse XMFS has been supplied.  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
I
PU  
Transmit Signaling Data (XSIG), port 1  
PC(1:4).XPC(3:0) = 0010B  
Input for transmit signaling data received from the signaling  
highway. Optionally, (SIC3.TTRF = 1), sampling of XSIG  
data is controlled by the active high XSIGM marker. At higher  
data rates sampling of data is defined by bits  
SIC2.SICS(2:0).  
Data Sheet  
59  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
I
PU  
Transmit Clock (TCLK) input, port 1  
PC(1:4).XPC(3:0) = 0011B  
A 2.048/8.192 MHz (E1) or 1.544/6.176 MHz (T1/J1) clock  
has to be sourced by the system if the internally generated  
transmit clock (generated by DCO-X) shall not be used.  
Optionally this input is used as a synchronization clock for the  
DCO-X circuitry with a frequency of 2.048 (E1) or 1.544 MHz  
(T1/J1).  
120  
121  
122  
123  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
O
O
Transmit Multiframe Begin (XMFB), port 1  
PC(1:4).XPC(3:0) = 0100B  
XMFB marks the beginning of every transmitted multiframe  
on XDI. The signal is active high for one 2.048 (E1) or  
1.544 MHz (T1/J1) period.  
Transmit Signaling Marker (XSIGM), port 1  
PC(1:4).XPC(3:0) = 0101B  
E1  
Marks the transmit time slots on XDI of every frame which are  
defined by register TTR(1:4).  
T1/J1  
Marks the transmit time slots on XDI of every frame which are  
defined by register TTR(1:4) (if not CAS-BR is used).  
When using the CAS-BR signaling scheme the robbed bit of  
each channel in every sixth frame is marked.  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
O
Data Link Bit Transmit (DLX), port 1  
PC(1:4).XPC(3:0) = 0110B  
E1  
Marks the Sa(8:4)-bits within the data stream on XDI. The  
Sa(8:4)-bit positions in time slot 0 of every frame not  
containing the frame alignment signal are selected by  
register XC0.SA8E to XC0.SA4E.  
T1/J1  
This output provides a 4 kHz signal which marks the DL-bit  
position within the data stream on XDI (in ESF mode only).  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
O
I
Tran4mit Clock (XCLK), port 1  
PC(1:4).XPC(3:0) = 0111B  
Transmit line clock of 2.048 MHz (E1) or 1.544 MHz (T1/J1)  
derived from SCLKX/R, RCLK or generated internally by  
DCO circuitries.  
120  
121  
122  
123  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
PU  
PU  
Transmit Line Tristate (XLT), port 1  
PC(1:4).XPC(3:0) = 1000B  
A high level on this port sets the transmit lines XL1/2 or  
XDOP/N into tristate mode. This pin function is logically ored  
with register bit XPM2.XLT.  
I
General Purpose Input (GPI), port 1  
PC(1:4).XPC(3:0) = 1001B.  
The pin is set to input. The state of this input is reflected in  
the register bits MFPI.XPA, MFPI.XPB or MFPI.XPC  
respectively.  
Data Sheet  
60  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
120  
121  
122  
123  
120  
121  
122  
123  
120  
121  
122  
123  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
XPA1  
XPB1  
XPC1  
XPD1  
O
O
I
General Purpose Output High (GPOH), port 1  
PC(1:4).XPC(3:0) = 1010B.  
The pin level is set fix to high level.  
General Purpose Output Low (GPOL), port 1  
PC(1:4).XPC(3:0) = 1011B.  
The pin level is set fix to high level.  
PU  
Transmit Line Tristate, low active, port 1  
XLT : PC(1:2).XPC(3:0) = 1110B.  
A low level on this port sets the transmit lines XL1/2 or  
XDOP/N into tristate mode. This pin function is logically ored  
with register bit XPM2.XLT.  
126,  
127,  
128,  
129  
XPA2  
XPB2  
XPC2  
XPD2  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 2  
Depending on programming of bits PC(1:4).XPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset the ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESX latching/transmission of data is done with the  
rising or falling edge of SCLKX. If not connected, an internal  
pullup transistor ensures a high input level.  
Each input function (SYPX, XMFS, XSIG,TCLK, XLT or XLT)  
may only be selected once. SYPX and XMFS must not be  
used in parallel.  
Selectable pin functions as described for port 1.  
51,  
52,  
53,  
54  
XPA3  
XPB3  
XPC3  
XPD3  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 3  
Depending on programming of bits PC(1:4).XPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset the ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESX latching/transmission of data is done with the  
rising or falling edge of SCLKX. If not connected, an internal  
pullup transistor ensures a high input level.  
Each input function (SYPX, XMFS, XSIG,TCLK, XLT or XLT)  
may only be selected once. SYPX and XMFS must not be  
used in parallel.  
Selectable pin functions as described for port 1.  
Data Sheet  
61  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
57,  
58,  
59,  
60  
XPA4  
XPB4  
XPC4  
XPD4  
I/O  
PU/–  
Transmit Multifunction Pins A to D, port 4  
Depending on programming of bits PC(1:4).XPC(3:0) these  
multifunction ports carry information to the system interface  
or from the system to the QuadLIUTM. After reset the ports  
are configured to be inputs. With the selection of the  
appropriate pin function, the corresponding input/output  
configuration is achieved automatically. Depending on bit  
SIC3.RESX latching/transmission of data is done with the  
rising or falling edge of SCLKX. If not connected, an internal  
pullup transistor ensures a high input level.  
Each input function (SYPX, XMFS, XSIG,TCLK, XLT or XLT)  
may only be selected once. SYPX and XMFS must not be  
used in parallel.  
Selectable pin functions as described for port 1.  
Power Supply  
114  
139  
42  
VDDR1  
S
S
S
S
S
S
S
S
S
Positive Power Supply  
For the analog receiver 1 (3.3 V)  
VDDR2  
VDDR3  
VDDR4  
VDDX1  
VDDX2  
VDDX3  
VDDX4  
VDDC  
Positive Power Supply  
For the analog receiver 2 (3.3 V)  
Positive Power Supply  
For the analog receiver 3 (3.3 V)  
67  
Positive Power Supply  
For the analog receiver 4 (3.3 V)  
110  
143  
38  
Positive Power Supply  
For the analog transmitter 1 (3.3 V)  
Positive Power Supply  
For the analog transmitter 2(3.3 V)  
Positive Power Supply  
For the analog transmitter 3 (3.3 V)  
71  
Positive Power Supply  
For the analog transmitter 4 (3.3 V)  
63  
Positive Power Supply  
For the digital core (1.8 V).  
These pins can either be positive power supply input or  
output, dependent on VSEL:  
118  
VSEL connected to VSS : 1.8 V power supply inputs, require  
decoupling.  
VSEL connected to VDD: 1.8 V outputs for decoupling to VSS.  
These pins must not be used to supply external devices.  
124  
132  
10  
V
S
S
Positive Power Supply  
For the analog PLL (3.3 V)  
VDDP  
Positive Power Supply  
For the digital pads (3.3 V)  
For correct operation, all VDDP pins have to be connected to  
positive power supply.  
28  
55  
101  
Data Sheet  
62  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
Table 2  
I/O Signals for P-TQFP-144-8 (cont’d)  
Pin No. Name  
Pin Type Buffer  
Type  
Function  
45  
VSS  
S
Power Ground  
Common for all sub circuits (0 V)  
For correct operation, all VSS pins have to be connected to  
ground.  
64  
117  
136  
1
36  
73  
108  
11  
56  
102  
125  
135  
Power Supply Configuration  
134 VSEL I + PU  
Voltage Select  
Enables the internal voltage regulator for 3.3 V only operation  
mode if connected to VDD (recommended) or left open.  
Disables the internal voltage regulator for dual power supply  
mode (1.8 V and 3.3 V) if connected to VSS.  
Boundary Scan/Joint Test Access Group (JTAG)  
131  
TRS  
I
PD  
Test Reset  
For Boundary Scan (active low). If not connected, an internal  
pulldown transistor ensures low input level.  
112  
TDI  
PU  
Test Data Input  
For Boundary Scan.  
If not connected an internal pullup transistor ensures high  
input level.  
141  
140  
113  
TMS  
TCK  
TDO  
Test Mode Select  
For Boundary Scan.  
If not connected an internal pullup transistor ensures high  
input level.  
Test Clock  
For Boundary Scan.  
If not connected an internal pullup transistor ensures high  
input level.  
O
Test Data Output  
For Boundary Scan  
Data Sheet  
63  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Pin Descriptions  
2.5  
Pin Strapping  
Some pins are used for selection of functional modes of the QuadLIUTM  
:
Table 3  
PIN  
Overview about the Pin Strapping  
Pin Strapping is used  
Always  
Pin Strapping Function  
IM(1:0)  
A(5:0)  
Defines the used micro controller interface  
Only in SCI interface mode Defines the six LBSs of the SCI source address, see  
Chapter 3.5.2.1  
D(15:5)  
Only in SCI or SPI  
interface mode  
Programs the parameters N and M of the PLL in the  
master clocking unit instead of registers GCM5 and  
GCM6, see Chapter 3.5.5:  
- D(15:11) values programs PLL dividing factor M  
- D(10:5) values programs PLL dividing factor N  
Programming by pin strapping is equivalent to  
programming by register bits GCM5.PLL_M(4:0) and  
GCM6.PLL_N(5:0) which is used in asynchronous micro  
controller modes.  
Data Sheet  
64  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3
Functional Description  
3.1  
Hardware  
The QuadLIUTM requires either two supply voltages, 1.8 V and 3.3 V, see Figure 8, or a single 3.3 V supply, with  
the 1.8 V supply being generated internally by an on-chip regulator, see Figure 7. In order to minimize power  
dissipation, it is recommended to operate the device using separate external 3.3 V and 1.8 V supplies. Please note  
that the 1.8 V supply requires de-coupling whether generated on-chip or externally. Supply voltage selection is  
done by the pin VSEL.  
The pin IM1 is used to select the additional serial interfaces SPI and SCI bus, see also Chapter 2.5.  
The pin READY_EN can be used to activate the output functionality of the additional pin READY/ DTACK. for the  
asynchronous micro controller interface. Because the READY_EN pin is used for VSS in version 2.1, the pin  
READY/ DTACK is not active (is in tri-state mode) if no change is made on the board. Therefore for the READY/  
DTACK pin also no change must be made on the board. See also Chapter 3.5.1.  
Some pins of the micro controller interface have different functions if the SPI or SCI bus is selected as interface  
to the micro controller.  
The pins RLAS2(1:4) of the additional separate analog switches at the receive line interfaces (supported only in  
P/PG-LBGA-160-1 package) can be connected to VSSX if the analog switches are not used.  
To accommodate the package several signals can be configured at the multifunction ports. Four multifunction  
ports exist for the receive direction and four for the transmit direction for each of the four channels.  
3.3 V  
3.3 V  
VDD  
VDDX  
VDDR  
VDDP  
VDDC  
VDDC  
VSEL  
(can be left  
open)  
VDD , VDDP , VDDX , VDDR > VDDC  
QuadLIU  
VSS  
must always be guaranteed,  
also during power on and  
power down sequences.  
VSSP  
VSSX  
VSSR  
QLIU_F0248  
Figure 7  
Single Voltage Supply  
Data Sheet  
65  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
1.8 V  
3.3 V  
VDD  
VDDX  
VDDR  
VDDP  
VDDC  
VDDC  
VSEL  
VDD , VDDP , VDDX , VDDR > VDDC  
QuadLIU  
VSS  
must always be guaranteed,  
also during power on and  
power down sequences.  
VSSP  
VSSX  
VSSR  
QLIU_F0249  
Figure 8  
Dual Voltage Supply  
3.2  
Software  
The QuadLIUTM device contains analog and digital function blocks that are configured and controlled by an  
external microprocessor or micro controller, using either the asynchronous interface, SPI bus or SCI bus.  
The register address range is 10 bit wide.  
3.3  
Functional Overview  
The main interfaces are  
Receive and transmit line interface  
Asynchronous Microprocessor interface with two modes: Intel or Motorola  
SPI Bus interface  
SCI Bus interface  
Framer interface  
Boundary scan interface  
As well as several control lines for reset, mode and clocking purpose.  
The main internal functional blocks are  
Analog line receiver with equalizer network and clock/data recovery  
Analog line driver with programmable pulse shaper and line build out  
Master clock generation unit  
Dual elastic buffers for receive and transmit direction, controlled by the appropriate jitter attenuators  
Receive line decoding, alarm detection and PRBS monitoring  
Transmit line encoding, alarm and PRBS generation  
Receive jitter attenuator  
Transmit jitter attenuator  
Available test loops: Local loop, remote loop and payload loop  
Boundary scan control  
Data Sheet  
66  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3.4  
Block Diagram  
Figure 9 shows the block diagram of the QuadLIUTM  
.
Receive  
Jitter Attunator  
MUX  
FCLKR(1:4)  
RDO(1:4)  
RLAS2(1:4)  
Analog Switch  
Long+Short  
Dual Receive  
Elastic Buffer  
Receive  
RL1/ROID(1:4)  
RL2(1:4)  
RPA(1:4)  
RPB(1:4)  
RPC(1:4)  
RPD(1:4)  
Haul Receive  
Line Decoder  
PRBS Monitor  
Framer  
Line Interface  
Clock &Data  
Interface  
IBL Monitor  
Recovery  
XDI(1:4)  
XPA(1:4)  
XPB(1:4)  
XPC(1:4)  
XPD(1:4)  
Line Encoder  
PRBS Gener.  
IBL Generator  
Transmit  
Framer  
Long+Short  
Haul Transmit  
Line Interface  
Dual Transmit  
Elastic Buffer  
XL1/XOID(1:4)  
XL2(1:4)  
Interface  
FCLKX(1:4)  
Transmit  
Jitter Attunator  
MUX  
TCLK  
RCLK  
Voltage  
Regulator  
Boundary Scan  
JTAG  
Asynchronous Micro  
Controller Interface  
Master Clocking  
Unit  
SCI Interface SPI Interface  
CS  
RD/DS ALE  
RES  
MCLK SYNC FSC  
READY/TDACK  
INT D(15:0)  
READY_EN  
IM(1:0) VSEL TDI,TMS,TCK,TRS,TDO  
A(9:0)  
WR/RW BHE/BLE DBW  
QLIU_blockdiagram  
Figure 9  
Block Diagram  
3.5  
Functional Blocks  
The four possible micro controller interface modes - two asynchronous modes (Intel, Motorola) and two serial  
interface modes (SPI bus or SCI bus) - are selected by using the interface mode selection pins IM(1:0). This  
selection is valid immediately after reset becomes inactive.  
After changing of the interface mode by IM(1:0), a hardware reset must be applied.  
3.5.1  
Asynchronous Micro Controller Interface (Intel or Motorola mode)  
The asychronous micro controller interface is selected if IM(1:0) is strapped to ´00B´ (Intel mode) or ´01B´  
(Motorola mode).  
An handshake signal (data acknowledge DTACK for Motorola- and READY for Intel-mode) is provided indicating  
successful read or write cycle. By using DTACK or READY respectively no counter is necessary in the micro  
controller to finish the access, see also timing diagrams Figure 51 ff.  
If activated, READY/ DTACK is an open Drain (oD) output and will be only driven to low if CS is low. Therefore the  
READY/ DTACK signals of two or more QuadLIUTM v3.1 can be connect together, using a common external pull-  
up resistor (wired or).  
The generation of READY /DTACK is asynchronous:  
In Intel mode read access READY will be set to low by the QuadLIUTM after the data output is stable at the  
QuadLIUTM. After the rising edge of RD (which is driven by the micro controller), READY is low for a “hold time”,  
before it will be set to high by the QuadLIUTM  
Data Sheet  
.
67  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
In the Intel mode write access READY will be set to low by the QuadLIUTM after the falling edge of WR (which is  
driven by the micro controller). After WR is high and data are written successfully into the registers of the  
QuadLIUTM, READY will be set to high by the QuadLIUTM  
.
The general timing diagrams are shown in Figure 51 to Figure 56.  
The communication between the external micro controller and the QuadLIUTM is done using a set of directly  
accessible registers. The interface can be configured as Intel or Motorola type with a selectable data bus width of  
8 or 16 bits.  
The external micro controller transfers data to and from the QuadLIUTM, sets the operating modes, controls  
function sequences, and gets status information by writing or reading control and status registers. All accesses  
can be done as byte or word accesses if enabled. If 16-bit bus width is selected, access to lower/upper part of the  
data bus is determined by address line A0 and signal BHE / BLE as shown in Table 4 and Table 5.  
Table 6 shows how the ALE (Address Latch Enable) line is used to control the bus structure and interface type.  
The switching of ALE allows the QuadLIUTM to be directly connected to a multiplexed address/data bus.  
3.5.1.1  
Mixed Byte/Word Access  
Reading from or writing to the internal registers can be done using a 8-bit (byte) or 16-bit (word) access depending  
on the selected bus interface mode. Randomly mixed byte/word access is allowed without any restrictions.  
Table 4  
Data Bus Access (16-Bit Intel Mode)  
BHE  
A0  
Register Access  
QuadLIUTM Data Pins Used  
0
0
1
1
0
1
0
1
Register word access (even addresses)  
Register byte access (odd addresses)  
Register byte access (even addresses)  
No transfer performed  
D(15:0)  
D(15:8)  
D(7:0)  
None  
Table 5  
Data Bus Access (16-Bit Motorola Mode)  
BLE  
A0  
Register Access  
QuadLIUTM Data Pins Used  
0
0
1
1
0
1
0
1
Register word access (even addresses)  
Register byte access (odd addresses)  
Register byte access (even addresses)  
No transfer performed  
D(15:0)  
D(7:0)  
D(15:8)  
None  
Table 6  
ALE  
Selectable asynchronous Bus and Microprocessor Interface Configuration  
IM(1:0) Asynchronous Microprocessor Interface Mode Bus Structure  
Constant  
level  
01  
00  
00  
Motorola  
Intel  
De-multiplexed  
De-multiplexed  
Multiplexed  
Switching  
Intel  
The assignment of registers with even/odd addresses to the data lines in case of 16-bit register access depends  
on the selected asynchronous microprocessor interface mode:  
Data Sheet  
68  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Intel  
(Address n + 1)  
(Address n)  
Motorola  
(Address n)  
(Address n + 1)  
Data lines  
D15  
D8  
D7  
D0  
n: even address  
3.5.2  
Serial Micro Controller Interfaces  
Two serial interfaces are included to enable device programming and controlling:- Slave Serial Control Interface  
(SCI) - Slave Serial Peripheral Interface (SPI)  
By using the SCI Interface, the QuadLIUTM can be easily connected to Infineon interworking devices plus Infineon  
SHDSL- and ADSL-PHYs so that implementation of different line transmission technologies on the same line card  
easily is possible. The SCI interface is a three-wire bus and optionally replaces the parallel processor interface to  
reduce wiring overhead on the PCB, especially if multiple devices are used on a single board. Data on the bus is  
HDLC encapsulated and uses a message-based communication protocol.  
If SCI interface with multipoint to multipoint configuration is used, address pins A(5:0) are used for SCI source  
(slave) address pin strapping, see Table 3.  
Note that after a reset writing into or reading from QuadLIUTM registers using the SCI- or SPI-Interface is not  
possible until the PLL is locked: If the SCI-Interface is used no acknowledge message will be sent by the  
QuadLIUTM. If the SPI-Interface is used pin SDO has high impedance (SDO is pulled up by external resistor). To  
trace if the SPI interface is accessible, the micro controller should poll for example the register DSTR so long as  
it read no longer the value ´FH ´.  
3.5.2.1  
SCI Interface  
The Serial Control Interface (SCI) is selected if IM(1:0) is strapped to ´11H´.  
The QuadLIUTM SCI interface is always a slave.  
Figure 57 shows the timing diagram of the SCI interface, Table 62 gives the appropriate values of the timing  
parameters.  
Figure 10 shows a first application using the SCI interfaces of some QuadLIUTMs where point to point full duplex  
connections are realized between every QuadLIUTM and the micro controller. Here the data out pins of the SCI  
interfaces (SCI_TXD) of the QuadLIUTMs must be configured as push-pull (PP), see configuration register bit PP  
in Table 9.  
Figure 11 shows an application with Multipoint to multipoint connections between the QuadLIUTMs and the micro  
controller (half duplex). Here the data out pin of the SCI interfaces (SCI_TXD) of all QuadLIUTMs must be  
configured as an open Drain (oD), see configuration register bit PP in Table 9. The data out and data in pins  
(SCI_RXD, SCI_TXD) of each QuadLIUTM are connected together to form a common data line. Together with a  
common pull up resistor for the data line, all open Drain data out pins are building a wired And.  
The Infineon proprietary Daisy-Chain approach is not supported  
The group address of the SCI interface is ´00H´ after reset. Recommendation for configuring is ´C4H´ to be different  
to the group addresses of all other Infineon devices.  
In case of multipoint to multipoint applications the 6 MSBs of the SCI source address will be defined by  
pinstrapping of the address pins A5 to A0. The two LSBs of the SCI source address are constant ´10B´, see  
Table 9. The SCI source address can be overwritten by a write command into the SCI configuration register. For  
applications with point to point connections for the SCI interface the source address is not valid.  
Because 14 bits are used for the register addresses in the SCI interface macro the two MSBs of the 16 bit wide  
register addresses are set fixed to zero.  
Data Sheet  
69  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Clk  
TxData  
RxData  
PP  
SCI_TXD  
SCI_RXD  
IM(1:0)  
QuadLIU  
Microprocessor  
or  
Interworking  
Device  
Clk  
TxData  
RxData  
IM(1:0)  
Clk  
QuadLIU  
QuadLIU  
TxData  
RxData  
IM(1:0)  
QLIU-Interfaces_2  
Figure 10 SCI Interface Application with Point To Point Connections  
Clk  
oD  
Data  
SCI_TXD  
SCI_RXD  
A(5:0)  
A(5:0)  
IM(1:0)  
QuadLIU  
Micro-processor  
or  
Interworking  
Device  
Clk  
Data  
IM(1:0)  
Data  
IM(1:0)  
QuadLIU  
QuadLIU  
Clk  
A(5:0)  
QLIU_SCI_halfduplex  
Figure 11 SCI Interface Application with Multipoint To Multipoint Connection  
The following configurations of the SCI interface of the QuadLIUTM can be set by the micro controller by a write  
command into the SCI configuration register (control bits ´10B´, see Table 9, SCI register address is ´0000H´, see  
Table 4 and Figure 13):  
Half duplex/full duplex (reset value: Half duplex), bit DUP.  
OpenDrain/push-pull (configuration of output pin to openDrain/push-pull is in general independent of the  
duplex mode and must be set appropriately in application) (reset value: open Drain), bit PP.  
CRC for transmit and receive on/off (reset value: off), bit CRC_EN.  
Automatic acknowledgement of CMD messages on/off (reset value: off), bit ACK_EN.  
Clock edge rising/falling (reset value: falling), bit CLK_POL.  
Clock gating (reset value: off), bit CLK_GAT.  
The following SCI configurations are fixed and cannot be set by the micro controller:  
Interrupt feature is disabled, bit INT_EN = ´0´.  
Arbitration always made with LAPD (only SCI applications like in Figure 10 and Figure 11 are possible), bit  
ARB = ´0´.  
The maximum possible SCI clock frequency is 6 MHz for point to point applications (full duplex) and about 2 MHz  
for multipoint to multipoint applications, dependent on the electrical capacity of the bus lines of the PCB.  
Figure 12 shows the message structure of the QuadLIUTM. The SCI interface uses HDLC frames for  
communication. The HDLC flags mark beginning and end of all messages.  
Data Sheet  
70  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
HOST  
QuadLIU  
CMD  
ACK  
QLIU_SCI_message_structure  
Figure 12 SCI Message Structure of QuadLIUTM  
Every write into or read from a register of the QuadLIUTM is initiated by a command message CMD from the Host  
(micro con roller) and is then confirmed by an acknowledge message ACK from the QuadLIUTM if in the SCI  
configuration automatic acknowledgement is set (bit ACK_EN, see Table 9). Read commands are always  
confirmed, independent on the bit ACK_EN.  
The frame structure of this messages are shown in Figure 13.  
In general the LSB of every byte is transmitted first and lower bytes are transmitted before higher bytes (regarding  
the register address)  
Source and destination addresses are 8 bits long. Only the first 6 bits are really used for addressing. The bit C/R  
(Command/Response) distinguishes between a command and a response. The bit MS (Master/Slave) is ´0B´ for  
all Slaves and ´1B´ for all masters, see Table 9 and Figure 13  
The source address is defined by pinstrapping of A5 to A0 after reset, but other values can be configured by  
programming of the SCI configuration register.  
The payload of the write CMD includes two control bits (MSBs of the payload), which distinguish between the  
different kind of commands, see Table 8, the 14 bit wide register address and the 8 bit wide data whereas the read  
CMD payload includes only the control bits and the register address. Register addresses can be either QuadLIUTM  
register addresses or SCI configuration register addresses. Because of the address space of the QuadLIUTM  
really 10 LSBs of the 14 bit address are used in the QuadLIUTM. The 4 MSBs are ignored  
,
The payload of the read ACK includes the content of the register (one byte) in addition to the payload of the write  
ACK.  
The Frame Check Sequence FCS has 16 bits and is build (or checked) over the address and payload according  
to ISO 3309-1984.  
The Read Status Byte RSTA of the acknowledge message shows the status of the received message and is built  
by the SCI interface of the QuadLIUTM, see Figure 15 and Table 7.  
The destination address in the ACK message is always the source address of the corresponding CMD (the  
address of the micro controller), see Figure 14, because no CMD messages will be sent by the QuadLIUTM SCI  
interface  
Data Sheet  
71  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
SCI HDLC Basic Frame Structure  
Flag Address  
Payload  
FCS  
Flag  
Control  
bits  
Write CMD Frame Structure  
Source  
Destination  
Address  
14 bit Register  
address  
01111110  
8 bit data  
FCS  
FCS  
01111110  
01111110  
Address  
00: write OctalFALC register  
10: write SCI configuration  
register  
Read CMD Frame Structure  
Source  
Address  
Destination  
Address  
14 bit Register  
address  
Read  
Depth  
01111110  
01: read OctalFALC register  
11: read SCI configuration  
register  
Write ACK Frame Structure  
Source  
Destination  
Address  
01111110  
RSTA  
RSTA  
FCS  
01111110  
Address  
Read ACK Frame Structure  
Source  
Address  
Destination  
Address  
Register  
Content  
01111110  
FCS  
01111110  
One Byte  
t
6 bit  
address  
MS C/R  
LSB  
QLIU_SCI_frame_structure  
Figure 13 Frame Structure of QuadLIUTM SCI Messages  
Source  
Address  
Destination  
Address  
CMD  
QuadLIU SCI Interface  
Source address  
RSTA register  
Source  
Address  
Destination  
Address  
ACK  
RSTA  
QLIU_SCI_acknowledge  
Figure 14 Principle of Building Addresses and RSTA bytes in the SCI ACK Message of the QuadLIUTM  
Data Sheet  
72  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
7 (MSB)  
0 (LSB)  
VFR RDO CRC RAB  
SA1  
SA0  
C/R  
TA  
QLIU_SCI_RSTA  
Figure 15 Read Status Byte (RSTA) byte of the SCI Acknowledge (ACK)  
Table 7  
Field  
Read Status Byte (RSTA) Byte of the SCI Acknowledge (ACK)  
Bit  
Description  
VFR  
7
Valid Frame. Indicates whether a valid frame has received.  
´0´: Received frame is invalid.  
´1´: Received frame is valid.  
RDO  
CRC  
6
5
Reserved  
CRC compare check. Indicates whether a CRC check is failed or not.  
´0´: CRC error check failed on the received frame.  
´1´: Received frame is free of CRC errors.  
RAB  
4
Received message aborted. CMD message abortion is declared. The receive message  
was aborted by the HOST. A sequence of 7 consecutive ´1´ was detected before closing  
the flag. Note that ACK message and therefore RAB will not be send before destination  
address was received.  
´0´: Data reception is in progress.  
´0´: Data reception has been aborted.  
SA1  
SA0  
C/R  
TA  
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Table 8  
Definition of Control Bits in Commands (CMD)  
Command type  
Control Bits  
(MSB LSB)  
01  
00  
10  
11  
Read QuadLIUTM registers  
Write QuadLIUTM register1  
Write SCI configuration register  
Read SCI configuration register  
Table 9  
SCI Configuration Register Content  
Address  
Bit 7  
Bit6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(MSB)  
´0000H´  
´0001H´  
´0002H´  
PP  
1
CLK_POL CLK_GAT ACK_EN  
Destination Address  
INT_EN  
CRC_EN ARB  
1 (=C/R)  
1 (=C/R)  
DUP  
0 (=MS)  
0 (=MS)  
0
Group Address  
3.5.2.2  
SPI Interface  
The Serial Peripheral Interface (SPI) is selected if IM(1:0) is strapped to ´10H´.  
The SPI interface of the QuadLIUTM is always a slave.  
Data Sheet  
73  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Figure 16 and Figure 17 show the read and the write operation respectively. The start of a read or write operation  
is marked by the falling edge of the chip select signal CS whereas the end of the operations is marked by the rising  
edge of CS. Because of CS the SPI interface has no slave address.  
The first bit of the serial data in (SDI) is ´1´ for a read operation and ´0´ for a write operation. The first four bits of  
the 15 bit address are not valid for the QuadLIUTM  
.
In read operation the QuadLIUTM delivers the 8 bit wide content of the addressed register at the serial data out  
(SDO).  
In general SPI data are driven with the negative edge of the serial clock (SCLK) and sampled with the positive  
edge of SCLK. Figure 58 shows the timing of the SPI interface and Table 63 the appropriate timing parameter  
values.  
CS  
SCLK  
A9  
10 bit address  
A0  
SDI  
x
x
x
x
x
don´t care  
8 bit data  
D7  
D0  
high impedance  
SDO  
QLI U_SPI _read  
Figure 16 SPI Read Operation  
CS  
SCLK  
A9  
10 bit address  
A0 D7  
8 bit data  
D0  
SDI  
x
x
x
x x  
high impedance  
SDO  
QLI U_SPI _writ e  
Figure 17 SPI Write Operation  
3.5.3  
Interrupt Interface  
Special events in the QuadLIUTM are indicated by means of an interrupt output INT, which requests the external  
micro controller to read status information from the QuadLIUTM, or to transfer data from/to the QuadLIUTM. The  
electrical characteristics (open drain or push-pull) is programmed defined by the register bits IPC.IC(1:0), see IPC.  
The QuadLIUTM has a single interrupt output pin INT with programmable characteristics (open drain or push-pull,  
defined by registers IPC) too.  
Since only one INT request output is provided, the cause of an interrupt must be determined by the external micro  
controller by reading the QuadLIUTM’s interrupt status registers (GIS, ISR(1:4), ISR6 and ISR7). The interrupt on  
pin INT and the interrupt status bits are reset by reading the interrupt status registers. The interrupt status registers  
ISR are of type “clear on read“ (“rsc”).  
The structure of the interrupt status registers is shown in Figure 18.  
Data Sheet  
74  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
„Global“  
Interrupt Status  
Register GIS  
(per channel)  
VISPLL  
IPC  
Status Registers and Masking  
(shown for one channel)  
PLLLC  
GIS2  
1 to 4  
PLLL  
GIMR  
SR1  
ISR1  
ISR1  
PLL  
IMR1  
ISR2  
R2  
...  
PLLLS not visible  
IMR2  
ISR2  
SR3  
Channel  
...  
ISR3  
Interrupt Status  
Register CIS ,  
global  
ISR3  
SR4  
IMR3  
ISR4  
...  
IMR4  
ISR4  
...  
ISR6  
SR6  
ISR6  
SR7  
ISR7  
IMR6  
...  
ISR7  
IMR7  
VIS  
INT  
GCR  
...  
different Status bits  
...  
channel  
GIS4  
GIS3  
GIS2  
GIS1  
channel  
1to4  
channel  
QLIU_ISR_2  
Figure 18 Interrupt Status Registers  
Each interrupt indication bit of the registers ISR can be selectively masked by setting the corresponding bit in the  
corresponding mask registers IMR. If the interrupt status bits are masked they neither generate an interrupt at INT  
nor are they visible in ISR. All reserved bits in the mask registers IMR must not be written with the value ´0´.  
GIS, the non-maskable “Global” Interrupt Status Register per channel, serves as pointer to pending interrupts  
sourced by registers ISR(1:4), ISR6 and ISR7.  
The non-maskable Channel Interrupt Status Register CIS serves as channel pointer to pending interrupts sourced  
by registers GIS.  
After the QuadLIUTM has requested an interrupt by activating its INT pin, the external micro controller should first  
read the register CIS to identify the requesting interrupt source channel. Then it should read the Global Interrupt  
Status register GIS to identify the requesting interrupt source register ISR of that channel.  
After reading the assigned interrupt status registers ISR(1:4), ISR6 and ISR7, the pointer bit in register GIS is  
cleared or updated if another interrupt requires service. After all bits ISR(7:0) of a register GIS are cleared, the  
assigned bit in register CIS is cleared. After all bits in register CIS are cleared the INT pin will be deactivated.  
If all pending interrupts are acknowledged by reading (GIS is reset), pin INT goes inactive.  
Updating of interrupt status registers ISR(1:4), ISR6 and ISR7 and GIS is only prohibited during read access.  
Data Sheet  
75  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Masked Interrupts Visible in Status Registers  
The “Global” Interrupt Status register (GIS) indicates those interrupt status registers with active interrupt  
indications (bits GIS.ISR(7:0)).  
An additional interrupt mode can be selected per port via bit GCR.VIS (GCR). In this mode, masked interrupt  
status bits neither generate an interrupt on pin INT nor are they visible in GIS, but are displayed in the  
corresponding interrupt status registers ISR(1:4), ISR6 and ISR7.  
PLL Interrupt Status Register  
The bit n (n = 1 to 4) of the register CIS pointers an interrupt on channel n.  
The Global Interrupt Status register GIS2 indicates the lock status of the (global) PLL. Masking can be done  
by the register GIMR.  
An additional interrupt mode can be selected per port via bit IPC.VISPLL (IPC) where the masked interrupt  
status bit GIS2.PLLLS does not generate an interrupt on pin INT, but is displayed in the corresponding  
interrupt status register bit GIS2.PLLLC.  
The additional interrupt mode is useful when some interrupt status bits are to be polled in the individual interrupt  
status registers.  
Table 10  
Interrupt Modes  
GCR.VIS; IPC.VISPLL  
Appropriate Mask bit  
Interrupt active  
Visibility in ISR(1:4),  
ISR(6:7) and GIS2  
0
0
1
1
0
1
0
1
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
Yes  
Note:  
1. In the visible mode, all active interrupt status bits, whether the corresponding actual interrupt is masked or not,  
are reset when the interrupt status register is read. Thus, when polling of some interrupt status bits is desired,  
care must be taken that unmasked interrupts are not lost in the process.  
2. All unmasked interrupt statuses are treated as before.  
Please note that whenever polling is used, all interrupt status registers concerned have to be polled individually  
(no “hierarchical” polling possible), since GIS only contains information on actually generated, i.e. unmasked  
interrupts.  
3.5.4  
Boundary Scan Interface  
In the QuadLIUTM a Test Access Port (TAP) controller is implemented. The essential part of the TAP is a finite  
state machine (16 states) controlling the different operational modes of the boundary scan. Both, TAP controller  
and boundary scan, meet the requirements given by the JTAG standard IEEE 1149.1-2001. Figure 19 gives an  
overview, Figure 49 shows the timing diagram and Table 58 gives the appropriate values of the timing  
parameters.  
Data Sheet  
76  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
TAP controller reset  
TRS  
TCK  
TMS  
TDI  
clock  
Clock  
Generation  
Reset  
test  
BD data in  
control  
1
2
TAP Controller  
data in  
enable  
finite state machine  
instruction register  
test signal generator  
control  
bus  
n
TDO  
ID data out  
data  
out  
BD data out  
F0115  
Figure 19 Block Diagram of Test Access Port and Boundary Scan  
After switching on the device (power-on), a reset signal has to be applied to TRS, which forces the TAP controller  
into test logic reset state.  
The boundary length is t.b.d..  
If no boundary scan operation is used, TRS, TMS, TCK and TDI do not need to be connected since pull-up or  
pulldown transistors ensure default input levels in this case.  
Test handling (boundary scan operation) is performed using the pins TCK (Test Clock), TMS (Test Mode Select),  
TDI (Test Data Input) and TDO (Test Data Output) when the TAP controller is not in its reset state, that means  
TRS is connected to VDD or it remains unconnected due to its internal pull up. Test data at TDI is loaded with a  
clock signal connected to TCK. "1" or "0" on TMS causes a transition from one controller state to another; constant  
"1" on TMS leads to normal operation of the chip.  
An input pin (I) uses one boundary scan cell (data in), an output pin (O) uses two cells (data out and enable) and  
an I/O-pin (I/O) uses three cells (data in, data out and enable). Note that most functional output and input pins of  
the QuadLIUTM are tested as I/O pins in boundary scan, hence using three cells.  
The desired test mode is selected by serially loading a 8-bit instruction code into the instruction register through  
TDI (LSB first), see Table 11. The test modes are:  
EXTEST  
Extest is used to examine the interconnection of the devices on the board. In this test mode at first all input pins  
capture the current level on the corresponding external interconnection line, whereas all output pins are held at  
constant values ("0" or "1"). Then the contents of the boundary scan is shifted to TDO. At the same time the next  
scan vector is loaded from TDI. Subsequently all output pins are updated according to the new boundary scan  
contents and all input pins again capture the current external level afterwards, and so on.  
SAMPLE  
Is a test mode which provides a snapshot of pin levels during normal operation.  
Data Sheet  
77  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
IDCODE  
A 32-bit identification register is serially read out on pin TDO. It contains the version number (4 bits), the device  
code (16 bits) and the manufacturer code (11 bits). The LSB is fixed to "1".  
The ID code field is set to (MSB to LSB): t.b.d.  
Version number (first 4 bits) = ´0001B´  
Part Number (next 16 bits) = ´0000 0001 0000 0100B´  
Manufacturer ID (next 11 bits) = 0000 1000 001B´  
LSB fixed to ´1´.  
BYPASS  
A bit entering TDI is shifted to TDO after one TCK clock cycle.  
An alphabetical overview of all TAP controller operation codes is given in Table 11.  
Table 11  
TAP Controller Instruction Codes  
TAP Instruction  
BYPASS  
Instruction Code  
11111111  
EXTEST  
00000000  
IDCODE  
00000100  
SAMPLE  
00000001  
Reserved for device test  
01010011  
3.5.5  
Master Clocking Unit  
The QuadLIUTM provides a flexible clocking unit, which references to any clock in the range of 1.02 to 20 MHz  
supplied on pin MCLK, see Figure 20.  
The clocking unit has two different modes:  
In the so called “flexible master clocking mode” (GCM2.VFREQ_EN = ´1´, GCM2) the clocking unit has to be  
tuned to the selected reference frequency by setting the global clock mode registers GCM(8:1) accordingly,  
see formulas in GCM6. All four ports can work in E1 or T1 mode individually. After reset the clocking unit is in  
“flexible master clocking mode”.  
In the so called “clocking fixed mode” (GCM2.VFREQ_EN = ´0´) the tuning of the clocking unit is done  
internally so that no setting of the global clock mode registers GCM(8:1) is necessary. All four ports must work  
together either in E1 or in T1 mode.  
For the calculation for the appropriate register settings see GCM6. Calculation can be done easy by using the  
flexible Master Clock Calculator which is part of the software support of the QuadLIUTM, see Chapter 8.3.  
All required clocks for E1 or T1/J1 operation are generated by this circuit internally. The global setting depends  
only on the selected master clock frequency and is the same for E1 and T1/J1 because both clock rates are  
provided simultaneously.  
To meet the E1 requirements the MCLK reference clock must have an accuracy of better than ± 32 ppm. The  
synthesized clock can be controlled on pins RCLK and FCLKR.  
Data Sheet  
78  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
E1 Clocks  
MCLK  
T1 / J1  
Clocks  
Flexible Master Clock Unit  
GCM1...GCM8  
PLL  
channel  
1 to 4  
D(15:5) IM(1:0)  
QLIU__F0116  
Figure 20 Flexible Master Clock Unit  
3.5.5.1  
PLL (Reset and Configuring)  
If the (asynchronous) micro controller interface mode is selected by IM(1:0) the PLL must be configured  
By programming of the registers GCM5 and GCM6 in “flexible master clocking mode”. Every change of the  
contents of these registers - the divider factors N and M of the PLL - causes a reset of the PLL. Switching  
between E1 and T1 modes in arbitrary channels causes a reset of the clock unit but not of the PLL itself.  
Or by enabling of the ”fixed mode”: GCM2.VFREQ_EN = ´0´ (GCM2). Programming of registers GCM5 and  
GCM6 is not necessary. Any programming of GCM5 and GCM6 does NOT cause a reset of the PLL. Switching  
between E1 and T1 modes (for all channels) causes a reset of the clock unit but not of the PLL itself.  
The SPI and SCI are synchronous interfaces and therefore need defined clocks immediately after reset, before  
any configuration is done. So to enable access to serial interfaces, the clock MCLK must be active and must have  
a defined frequency before reset becomes inactive. Dependent on the MCLK frequency the internal PLL must be  
configured if the SCI- or SPI-Interface mode is selected by IM(1:0)  
By strapping of the pins D(15:5) if “fixed mode” is not enabled (GCM2.VFREQ_EN = ´1´), see also Table 3.  
Because “fixed mode” is not enabled after reset, pinstrapping at D(15:5) is always necessary! Every new value  
at this pins causes a reset of the PLL. Configuring by the registers GCM5 and GCM6 is not taken into account  
and causes not a reset of the PLL  
Or by enabling of the ” fixed mode”.This is only allowed if the values of N and M defined by pinstrapping are  
identical to that values which are internally used for the “fixed mode”. That avoids changing of N and M by  
switching into the ”fixed mode” and therefore a new reset of the PLL. (A new reset of the PLL can cause a hang  
up of the whole system!) In ”fixed mode” the values are: N = ´3310´, M = ´010´ so that the pinstrapping must be:  
D(10:5) = ´HLLLLH´, D(15:11) = ´LLLLL´. In ”fixed mode” programming of registers GCM1 to GCM8 is no  
longer necessary and values at the pins D(15:5) are no longer taken into account and causes NOT a reset of  
the PLL. A switching between E1 and T1 modes causes a reset of the clock unit but not of the PLL itself.  
The configuration of the PLL by pinstrapping (see Table 3) in case of serial interface modes is done in the same  
way as by using the registers GCM5 and GCM6 if asynchronous micro controller interface mode (Intel or Motorola)  
is selected. So calculation of the pinstrapping values can be done also by using the formulas in GCM6 or by using  
the “flexible Master Clock Calculator” which is part of the software support of the QuadLIUTM, see Chapter 8.3. If  
the serial interfaces are selected, pinstrapping of D(15:5) configure the PLL directly, so changes causes always a  
reset of the PLL.  
The conditions to trigger a reset of the central clock PLL are listed in Table 12. Every reset of the PLL causes a  
reset of the clock system.  
Data Sheet  
79  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 12  
Conditions for a PLL Reset  
Reset Pin GCM2.VFREQ_EN Used controller  
interface  
A PLL reset is made if ...  
Active  
X (will be set to ´1´  
by reset)  
X
Always  
Inactive  
1
Asynchron  
(Motorola or Intel)  
If GCM5 or GCM6 are written and their values N or M  
change  
SPI or SCI  
If pinstrapping values change  
Never  
0
Asynchron  
(Motorola or Intel)  
SPI or SCI  
If pinstrapping values change  
0 -> 1 or 1 -> 0  
Asynchron  
If actual values of N or M in GCM5 or GCM6 are  
(Motorola or Intel)  
different to internal settings of the “clocking fixed mode”  
SPI or SCI  
If pinstrap values are different to internal settings of the  
“clocking fixed mode”; That is not allowed!  
3.6  
Line Coding and Framer Interface Modes  
An overview of the coding at the line interface and the Modes at the framer interface is given in Table 13.  
Table 13  
Line Coding and Framer Interface Modes  
Register Bits Signals at Pins  
Line Code,  
Framer IF  
Mode  
FMR0.RC, FMR0.XC, RDON (RPC)  
LIM3.DRR LIM3.DRX  
RDO  
XDI  
XDIN (XPB)  
AMI, single rail 10  
0
10  
0
Pos and neg  
AMI error  
Neg  
Pos, via  
encoder  
Neg, via  
encoder  
AMI, dual rail  
10  
1
10  
1
Pos  
Pos, encoder  
bypass  
Neg, encoder  
bypass  
HDB3/B8ZS,  
single rail  
11  
0
11  
0
Decoded data  
Pos  
Violation  
Neg  
Via encoder  
(HDB3/B8ZS  
coding)  
HDB3/B8ZS,  
dual rail  
11  
1
11  
1
Via encoder  
(HDB3/B8ZS  
coding)  
NRZ, single rail 00  
0
00  
0
Pos  
´0´  
NRZ, via  
encoder  
Frame marker  
Frame marker  
(CMI coding)  
(CMI coding)  
NRZ, dual rail  
00  
1
00  
1
Pos  
Neg  
NRZ  
CMI, single rail 01  
0
01  
0
Decoded data  
Pos  
Violation  
Neg  
Via encoder  
Via encoder  
CMI, dual rail  
01  
1
01  
1
Data Sheet  
80  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 13  
Line Coding and Framer Interface Modes (cont’d)  
Register Bits Signals at Pins  
Line Code,  
Framer IF  
Mode  
FMR0.RC, FMR0.XC, RDON (RPC)  
LIM3.DRR LIM3.DRX  
RDO  
XDI  
XDIN (XPB)  
0 -> 1 or 1 Asynchron If actual values  
-> 0  
(Motorola of N or M in  
or Intel) GCM5 or GCM6  
are different to  
internal settings  
of the “clocking  
fixed mode”  
SPI or SCI If pinstrap  
values are  
different to  
internal settings  
of the “clocking  
fixed mode”;  
That is not  
allowed!  
3.6.1  
Bipolar Violation Detection  
If the register bit BFR.BPV is set to ´0´ and after execution of the sequence described below, Bipolar Violations  
(BPV) consisting on single ´1´ pulses (separated from the previous ´1´ pulse by at least one ´0´ pulse) or on two  
consecutive ´1´ pulses are detected correctly and thus counted by the bipolar violation counter. Bipolar Violations  
(BPV) consisting on more than two consecutive ´1´ pulses are not detected correctly and thus not counted by the  
bipolar violation counter.  
Compatibel to the QuadFALC V2.1, Bipolar Violations (BPV) are not detected correctly and thus not counted by  
the bipolar violation counter, if BFR.BPV is set to ´1´ (default after reset).  
If the second of two consecutively received Alternate Mark Inversion (AMI) pulses is a BPV (second pulse has the  
same polarity as the first pulse) and BFR.BPV is set to ´1´, the receiver converts the second AMI pulse to a logic  
zero. This conversion will cause a bit error and will mask detection and counting of the BPV. In contrast, any BPV  
separated from the previous ´1´ pulse by at least one ´0´ pulse is detected, counted, and recorded correctly  
This BPV conversion is not expected to cause any system level problems. BPV counts, bit errors counts, and CRC  
counts may be slightly inaccurate, depending on the BPV rate. Note that the special B8ZS and HDB3 substitution  
do not contain consecutive BPV pulses so the conversion described above will not occur when receiving these  
patterns  
The behaviour of the Bipolar Violation Detection is illustrated in Figure 21.  
Data Sheet  
81  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
0
+1  
0
-1  
0
+1 -1 +1  
0
+1  
0
-1 +1 -1 -1  
0 +1 -1 -1 -1  
RL1  
RL2  
BPV always  
detected  
BPV detected if BPV detected if  
BFR.BPV = ´0´ BFR.BPV = ´0´  
BPV not  
detected  
Internal Signals:  
P
N for  
BFR.BPV  
= ´1´  
Databits set to´0´,  
BPV not detected  
BPV for  
BFR.BPV  
= ´1´  
N for  
BFR.BPV  
= ´0´  
BPV  
BPV for  
BFR.BPV  
= ´0´  
Figure 21 Behaviour of Bipolar Violation Detection  
Independent from the setting of BFR.BPV all BPVs will be detected  
In patterns with alternate ´1´ and ´0´ (50 % ´1´ density)  
In all fixed patterns with no consecutive ´1´ (less than 50 % ´1´ density)  
For BFR.BPV = ´1´ and execution of the sequence described below, variable or fixed patterns with at least two  
consecutive ´1´ pulses will show reduced BPVs. Reduction of BPVs depends on densitiy of ´1´ pulses. As ´1´ pulse  
density increases, BPV rate decrease until the limiting case of “all-one”. In framed “all-one” pattern no BPVs will  
be detected, except a BPV following a frameing bit that is ´0´.  
For BFR.BPV = ´0´ variable or fixed patterns with at maximum two consecutive ´1´ pulses will show no reduced  
BPVs.  
Sequence  
If the register bit BFR.BPV is set to ´0´, additionally the global registers REGFP and REGFD must be written with  
the following sequence to configure the best performance of the Bipolar Violation detection for all four channels:  
Write ´2CH´ into REGFP  
Write ´FFH´ into REGFD  
Write ´ACH´ into REGFP  
Write ´2BH´ into REGFP  
Write ´00H´ into REGFD  
Write ´ABH´ into REGFP  
Write ´2AH´ into REGFP  
Write ´FFH´ into REGFD  
Write ´AAH´ into REGFP  
Write ´29H´ into REGFP  
Write ´FFH´ into REGFD  
Write ´A9H´ into REGFP  
Write ´28H´ into REGFP  
Write ´00H´ into REGFD  
Write ´A8H´ into REGFP  
Write ´27H´ into REGFP  
Write ´FFH´ into REGFD  
Data Sheet  
82  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Write ´A7H´ into REGFP  
Write ´00H´ into REGFP  
Note that the configuration of the Bipolar Violation detection by these sequence is reset by a receive reset  
(CMDR.RRES = ´1´)  
3.7  
Receive Path  
An overview about the receive path of one channel of the QuadLIUTM is given in Figure 22.  
RDO  
Clock &  
RL1/ROID  
RL2  
Data  
Dual Receive Elastic Buffer  
Equalizer  
Decoder  
RDON  
Recovery  
DPLL  
internal  
receive  
Receive Line  
Interface  
FCLKR  
RCLK  
from other  
channels  
clock  
J
LOS  
D
Analog  
Alarm  
A
LOS  
Detector  
Detector  
Recovered  
clock selection  
DCO-R  
C
SYNC  
MCLK  
Master  
Clocking Unit  
A: controlled by CMR5.DRSS(2:0)  
QLIU_F0117  
C: controlledby CMR1.DCSand LIM0.MAS  
D: controlled by CMR4.RS(2:0)  
J: controlled by CMR2.IRSC and DIC1.RBS(1:0)  
Figure 22 Receive System of one Channel  
The recovered clock selection of Figure 22 (multiplexer “A”) is shown in more detail in Figure 23.  
The multiplexer “C” in Figure 22 selects the mode of the receive jitter attenuator, see chapter Chapter 3.7.8.  
The multiplexer “D” in Figure 22 selects if the receive clock RCLK of a channel is sourced by the recovered route  
clock or by the DCO-R (see above). The appropriate control register bits are CMR4.RS(2:0) (CMR4). These  
register bits selects also different DCO-R output frequencies.  
The sources of the receive clock output pins of the QuadLIUTM (RCLK(4:1)), can be selected out of the receive  
clocks of the channels:  
The source of each of the four receive clock pins of the QuadLIUTM (RCLK(4:1)) can be independently selected  
out of each of the four receive clocks of the channels by programming the registers bits GPC(2:6).RS(2:0) (GPC2),  
see cross connection “B” in Figure 23.  
Data Sheet  
83  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
channel 1  
channel 2  
channel 3  
channel 4  
A
A
A
A
Recovered clock  
Recoveredclock  
Recoveredclock  
Recovered clock  
to  
to  
to  
to  
selection  
selection  
selection  
selection  
DCO_R  
DCO_R  
DCO_R  
DCO_R  
C
C
C
C
RCLK  
RCLK  
RCLK  
RCLK  
SYNC  
pins  
B
RCLK1  
RCLK2  
RCLK3  
RCLK4  
A: controlled by CMR5.DRSS(2:0)  
B: controlled by GPC(2:4).RS(2:0)  
Receive clock  
selection  
QLIU_rec_clk_sel_2  
Figure 23 Recovered and Receive Clock Selection  
3.7.1  
Receive Line Interface  
For data input, two different data types are supported:  
Ternary coded signals received at pins RL1 and RL2 from 0 dB downto -43 dB for E1 or downto -36 dB for  
T1/J1 ternary interface. The ternary interface is selected if LIM1.DRS is cleared.  
Unipolar data (CMI code) on pin ROID received from an optical interface. The optical interface is selected if  
LIM1.DRS is set and MR0.RC(1:0) = ´01b´.  
3.7.2  
Receive Line Coding  
In E1 applications, HDB3 line code and AMI coding is provided for the data received from the ternary interface. In  
T1/J1 mode, B8ZS and AMI code is supported. Selection of the receive line code is done with register bits  
MR0.RC(1:0) (MR0). In case of the optical interface the CMI Code (1T2B) with HDB3 or AMI postprocessing is  
provided. If CMI code is selected the receive route clock is recovered from the data stream. The CMI decoder does  
not correct any errors. The HDB3 code is used along with double violation detection or extended code violation  
detection (selectable by MR0.EXZE)). In AMI code all code violations are detected. The detected errors increment  
the code violation counter (16 bits length).  
The signal at the ternary interface is received at both ends of a transformer.  
An overview of the receive line coding is given in Table 13.  
3.7.3  
Receive Line Interface  
Each of the QuadLIUTM receivers includes an integrated switchable resistor RTERM = 300 .  
Only for P/PG-LBGA-160-1 package it also includes an integrated analog switch, see Figure 24. In this case the  
connectors RLAS2(1:4) must not be connected to VSSX. This allows the device to support 100 T1, 110 J1,  
120 E1 and 75 E1 applications with a single bill of materials (so called “generic” modes).  
The 300 switch is controlled by the registerbit LIM0.RTRS (LIM0). The multi purpose analog switch is controlled  
by LIM2.MPAS. So a simple software controlling of both switches is possible, independent from one another.  
To enable switching of the separate analog switches of all four ports in general the register bits  
GPC(3:6).ENMPAS must be all set to ´1´. This is an additional protection to avoid closing of the analog switches  
if its connectors RLAS2(1:4) are connected to VSSX in fully QuadLIUTM Version 1.2 hardware compatible  
Data Sheet  
84  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
applications. Closing of the separate analog switches if its connectors RLAS2(1:4) are connected to VSSX  
the device might get demaged.  
It is also possible to control both switches by using a combination of both hardware and software using one (but  
not more) of the receive Multi Function Ports as a Receive Line Termination (RLT) input.  
It is proposed that the Multi Function Port RPB be used for the RLT input, if this is the case then the  
PC2.RPC2(3:0) register bits must be programed to ´1000b´, see Table 34.  
If RLT is configured at one of the Multi Function Ports, the RTERM = 300 switch is controlled by the logical function  
(LIM0.RTRS == RLT) & LIM2.MPAS and the analog switch is controlled by the logical function LIM0.RTRS ==  
RLT, were “==” means logical equivalence.  
This enables a simple redundancy application using only one common board signal for switching between two  
channels. While one channel terminates the receive line with an impedance matched to the line impedance Z0, the  
other channel is in high impedance mode (both switches are óff´).  
Table 14 shows the controlling of the switches (if GPC(3:6).ENMPAS = ´1111b´).  
Table 14  
Controlling of the Receive Interface Switches  
300 Ohm  
Switch  
Analog  
Switch  
RLT is not Configured  
RLT is Configured  
LIM0.RTRS  
LIM2.MPAS  
LIM0.RTRS == RLT LIM2.MPAS  
off  
off  
on  
on  
off  
on  
off  
on  
0
0
1
1
0
0
X
1
1
0
0
1
Not applicable1)  
1
1
1) Because makes no sense for redundancy applications  
externally  
internally  
RL1  
RL2  
Z0  
RE  
RTERM  
RS  
RLAS2  
QLIU_analog_switches_1  
Figure 24 General Receiver Configuration with Integrated Resistor and Analog Switches for Receive  
Impedance Matching  
This type of control offers very flexible receiver configurations which are described in the next chapters:  
3.7.3.1  
“Generic” Receiver Interface  
A “generic” receiver configuration, using the same resistor RE = 100 for all applications with different line  
impedances Z0, is shown in Table 15.  
Data Sheet  
85  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 15  
Generic Receiver Configuration Example  
Line Impedance Z0 External Resistor  
RE  
External Resistors 300 Ohm Switch  
S1 and RS2  
Analog Switch  
R
120 Ω  
100 Ω  
75Ω  
100 (for common  
E1/T1/J1  
applications)  
off  
off  
on  
----  
not used  
This example uses the 300 switch to switch between 100 and 75 termination resistance for the different line  
impedances, the analog switch is not used.  
3.7.3.2  
Receive Line Monitoring Mode (RLM)  
For short-haul monitoring applications, the receive equalizer can be switched into receive line monitoring mode  
(RLM) by setting of the register bit LIM0.RLM. One channel is used as a short-haul receiver while the other is used  
as a short-haul monitor, see Figure 25. In this mode the receiver sensitivity of the monitor is increased to detect  
an incoming signal of -20 dB resistive attenuation.  
t2 : t1  
RL1  
E1/T1/J1  
FALC®  
(Receiver)  
R
Receive  
E
Line  
RL2  
LIM0.RLM=0  
R3  
R3  
t2 : t1  
RL1  
RL2  
FALC®  
R
E
(Monitor)  
resistive -20 dB network  
LIM0.RLM=1  
F0074  
Figure 25 Principle of Receive Line Monitoring RLM (shown for one line)  
3.7.3.3  
Monitoring Application using RLM  
A monitoring application using the receive line monitoring mode is shown in Figure 26. Both, the 300 switch and  
the separate analog switch are always óff´, so that in P/PG-LBGA-160-1 package the pins RLAS2 can be  
connected to VSSX and HW compatibility to the QuadLIUTM V2.1 is fullfiled.  
Data Sheet  
86  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
RSER  
XL1  
E1/T1/J1  
Transmit  
Line  
XDI  
RSER  
receiver  
channel  
XL2  
RL1  
E1/T1/J1  
Receive  
Line  
RE  
RDO  
RSIG  
RL2  
XL1  
R
SER  
R3  
XDI  
R
monitor  
channel  
SER  
XL2  
RL1  
RE  
RDO  
RSIG  
RL2  
QFALC_monit or_RLM  
Figure 26 Monitoring Application using RLM (shown for one line)  
The required resistor and transformer values are given in Table 16.  
Table 16  
External Component Recommendations for Monitoring Applications using RLM  
Parameters of  
Line Impedance Z0  
Line Impedance Z0  
external components1)  
E1  
T1  
J1  
75 Ohm  
75 Ω  
120 Ohm  
120 Ω  
510 Ω  
100 Ohm  
100 Ω  
430 Ω  
110 Ohm  
110 Ω  
470 Ω  
RE (±1 %)  
R3 (±1 %)  
RSER  
330 Ω  
See Chapter 3.9.1  
t2 : t1  
1 :1  
1 :1  
1 : 1  
1 : 1  
1) This includes all parasitic effects caused by circuit board design.  
3.7.3.4  
Redundancy Application using RLM  
In general for redundancy applications (“protection switching”) one channel is active while the other is in stand-by  
mode.  
Switching between active and stand-by mode can be done by software and by hardware.  
Software controlled switching can be done on the line side in transmit direction by using the register bit XPM2.XLT.  
Combined hardware and software controlled switching can be done on the line side in transmit direction by a  
hardware signal if a Multi Function Port is configured as tristate input XLT. It is proposed that the Multi Function  
Port XPA be used for XLT or XLT input respectively, if this is the case then the PC1.XPC1(3:0) register bits must  
be programed, see Table 34. For one channel the Multi Function Port XPA must be programmed as low active  
(PC1.XPC1 = ´1110b´) and for the other channel as high active (PC1.XPC1 = ´1000b´), so that no external inverter  
Data Sheet  
87  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
is necessary. So switching between both channels on line side is possible using only one signal as it is shown in  
Figure 27.  
If XLT or XLT is configured, the value of the register bit XPM2.XLT and the value of XLT are logically ored to control  
the transmit line side. (That means if XPA is configured as low active then the line side is in tristate mode for  
tristate = XPM2.XLT or not(XPA).  
Because the register bit XPM2.XLT and the Multi Function Port XPA exist individually for every channel, switching  
on the line side in transmit direction can be done between channels of different or of the same QuadLIUTM device.  
This enables a simple application using only one common board signal for switching between two channels were  
both transmit channels are working in parallel (see Figure 27). While one of them is driving the line, the other one  
is switched into transmit line tristate mode.  
The receive system interface pins RDO, RSIG, SCLKR and RFM can be set by software into tristate mode  
constantly using the register bit SIC3.RRTRI. In this mode “tristate” means high impedance against VDD and VSS:  
No internal pull up or pull down resistor is present.  
Combined hardware and software controlling of the tristate mode can be done by a hardware signal if a Multi  
Function Port is configured as RTDMT input . It is proposed that the Multi Function Port RPA be used for RTDMT,  
if this is the case then the PC1.RPC1(3:0) register bits must be programed, see Table 34. If RTDMT is configured  
the value of the register bit SIC3.RRTRI and the value of RTDMT are logically exored.  
This enables a simple application using only one common board signal for switching between two channels. While  
one of them is driving the system receive interface, the other one is switched into tristate mode.  
An overview about the tristate configurations of RDO, RSIG, SCLKR and RFM is given in Table 17.  
Table 17  
Tristate Configurations for the RDO, RSIG, SCLKR and RFM Pins  
SIC3.RRTRI /  
SIC3.RTRI  
Pins RDO and RSIG  
Pins SCLKR and RFM  
SIC3.RRTRI exor RTDMT  
if RTDMT is selected on  
Multi Function Port  
1
X
Constant tristate (without Constant tristate (without  
pull up and pull down  
resistor)  
pull up and pull down  
resistor)  
0
0
0
1
Never tristate  
Never tristate  
Never tristate  
Tristate during inactive  
channel phases (with pull  
up resistor  
Switching between both channels can be done on the system side in the receive direction by using the register bit  
SIC3.RRTRI and with or without selection of the Multi Function Port as RTDMT. If the RTDMT function is selected,  
the values of RTDMT and SIC3.RRTRI are logically exored. If in one channel SIC3.RRTRI is set, RTDMT is active  
low because of the logical exor, and if in the other channel SIC3.RRTRI is cleared, RTDMT is active low because  
of the logical exor. So switching between both channels on the system side in the receive direction is possible  
using only one board signal.  
For application using RLM for protection switching the XLT, XLT and RTDMT Multi Function Ports operate in  
conjunction with the SIC3.RRTRI bits. Switching between channels can be done together on the system and the  
line side with only one common board signal, connected to XPA (XLT, XLT) and RPA (RTDMT), as shown in  
Figure 27 and Table 17: If this signal has low level channel 1 is active and channel 2 is in stand-by, if it has high  
level channel 1 is in stand-by and channel 2 is active.  
Different line impedances require different resistor values as shown in Table 16. Both switches are always off so  
that LIM0.RTRS and GPC1.MPAS must be always ´0´.  
If both channels are configured identically and supplied with the same system data and clocks, the transmit path  
can be switched from one channel to the other without causing a synchronization loss at the remote end.  
Data Sheet  
88  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 18  
Configuration for Redundancy Application using RLM, switching with only one board signal  
Configuration  
Register Bits  
Channel 1  
Channel 2  
(active/stand-by)  
(stand-by/active)  
XLT, XLT  
PC1.XPC1(3:0)  
1000  
1110  
RTDMT  
PC1.RPC1(3:0)  
SIC3.RRTRI  
LIM0.RLM  
1101  
1101  
Receive system interface  
RLM mode  
0
0
0
0
1
1
0
0
Analog switch (always off) LIM2.MPAS  
300 switch (always off) LIM0.RTRSS  
RSER  
XL1  
E1/T1/J1  
Transmit  
Line  
XDI  
RSER  
active/stand-by  
channel  
SIC3.RRTRI = ´0´  
LIM0.RLM = ´0´  
XL2  
RL1  
E1/T1/J1  
Receive  
Line  
RE  
RDO  
RSIG  
RTDMT  
XLT  
RL2  
XL1  
(XPA)  
(RPA)  
R
SER  
R3  
XDI  
R
active/stand-by  
channel  
SIC3.RRTRI = ´1´  
LIM0.RLM = ´1´  
SER  
XL2  
RL1  
RE  
RDO  
RSIG  
XLT  
RTDMT  
RL2  
(XPA)  
(RPA)  
QLIU_receiver_redun_RLM  
´low´/´high´  
Figure 27 Redundancy Application using RLM (shown for one line)  
3.7.3.5  
General Redundancy Applications  
Using the integrated analog switch of the QuadLIUTM general redundancy applications are possible were no  
additional resistive network is necessary. Therefore, unlike in the redundancy application using RLM, long haul  
redundancy applications are possible as there are no serial resistors in the receive path.  
For these applications all of the hardware control functions described in Chapter 3.7.3.4 are used in the same  
way. Additionally the hardware control function of the receive interface switches is used: By configuring one of the  
Multi Function Ports in both of the two channels to RLT, the receive interfaces of these channels can be connected  
on one receive line as shown in Figure 28.  
If RLT is configured at the Multi Function Port RPB (proposed) by programming of the register bits PC2.RPC2(3:0)  
the configuration for the redundancy mode application is listed in Table 19.  
The analog switch is connected at the resistor RS.  
Data Sheet  
89  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Switching between active and stand-by modes can be achieved by a single common board signal which is  
connected at the RLT, XLT and RTDMT inputs of both channels . In this application both receive channels are  
working in parallel for redundancy purpose. While one of them builds an interface with a receive termination  
resistance matched to the line impedance Z0 , the other one is switched into high impedance mode.  
RSER  
XL1  
E1/T1/J1  
Transmit Line  
XDI  
Active/stand-by  
Channel  
RSER  
XL2  
RL1  
SIC3.RRTRI = ´0´  
LIM0.RTRS = ´0´  
E1/T1/J1  
Receive Line  
RLAS2  
RDO  
RS  
RSIG  
RL2  
XLT  
RLT RTDMT  
(XPA) (RPB) (RPA)  
RSER  
XL1  
XDI  
stand-by/active  
Channel  
RSER  
XL2  
RL1  
SIC3.RRTRI = ´1´  
LIM0.RTRS = ´1´  
RLAS2  
RL2  
RDO  
RS  
RSIG  
XLT  
RLT RTDMT  
(XPA) (RPB) (RPA)  
´low´/´high´  
QLIU_longhaul_red  
Figure 28 General Redundancy Application (shown for one line)  
Table 19  
General (proposed) Configuration for Redundancy Applications, Switching with only one  
Board Signal  
Configuration  
Register Bits  
Channel 1  
Channel 2  
(active/stand-by)  
(stand-by/active)  
XLT, XLT  
PC1.XPC1(3:0)  
1000  
1110  
RTDMT  
PC1.RPC1(3:0)  
PC2.RPC2(3:0)  
SIC3.RRTRI  
LIM0.RTRS  
1101  
1101  
RLT  
1000  
1000  
Receive system interface  
Receive line interface  
RLM mode  
0
0
0
1
1
0
LIM0.RLM  
Two types of general redundancy applications like shown in Figure 28 can be configured:  
A first application were the values of the external resistors RS and RSER are dependend on the line impedance  
Z0.  
A so called “generic” redundancy application were the values of the external resistors RS and RSER are fix for  
different line impedances Z0.  
For both applications the general configuration shown in Table 19 is used.  
Data Sheet 90  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
In the first (“non-generic”) application only the analog switch is used. These switch is ´on´ in the active and ´off´ in  
the stand-by channel. The 300 switch is unused (always ´off´, register bit LIM2.MPAS of both channels is always  
´0´). Also the transmit interface works in a non-generic mode (see Chapter 3.9.1): The register bit PC6.TSRE of  
both channels is always ´0´. The configuration (additional to that of Table 19) is shown in Table 20:  
Table 20  
Configuration for “non-generic” Redundancy Applications, Switching with only one Board  
Signal  
Line Impedance Z0  
[Ohm]  
RS [Ohm]  
RSER [Ohm]  
LIM2.MPAS  
PC6.TSRE  
120  
110  
100  
75  
95  
70  
5.5 or 0, see  
Table 28  
0
0
In the generic redundancy application different line impedances Z0 can be used without changing the board.  
Additionally to the the analog switch the 300 switch is used to match the termination resistance to the different  
line impedances Z0 (register bit LIM2.MPAS of both channels). In the active channel this switch is ´on´ if the line  
impedance is 75 and ´off´ otherwise. In the stand-by channel this switch is always óff´, see Table 22.  
Also the transmit interface works in a generic mode (see Chapter 3.9.1) using the register bit PC6.TSRE of both  
channels.  
The configuration (additional to that of Table 19) is shown in Table 21:  
Table 21  
Line Impedance Z0  
[Ohm]  
Configuration for “generic” Redundancy Applications, Switching with only one Board Signal  
RS [Ohm]  
RSER [Ohm]  
LIM2.MPAS  
PC6.TSRE  
120  
110  
100  
75  
0
1
See Table 28  
95  
0
Table 22 illustrates the switching in the receive path used in the “generic” redundancy application:  
Table 22  
Channel  
Switching in “Generic” Redundancy Application  
300 Ohm Switch  
Analog Switch  
Active channel  
Off, if Z0 is 120 ,110 or 100 (GPC1.MPAS = ´0´) On  
On, if Z0 is 75 (LIM2.MPAS = ´1´)  
Stand-by channel  
Off  
Off  
3.7.4  
Loss-of-Signal Detection  
There are different definitions for detecting Loss-Of-Signal (LOS) alarms in the ITU-T G.775 and ETS 300233. The  
QuadLIUTM covers all these standards. The LOS indication is performed by generating an interrupt (if not masked)  
and activating a status bit. Additionally a LOS status change interrupt is programmable by using register GCR.SCI.  
Detection: An alarm is generated if the incoming data stream has no pulses (no transitions) for a certain  
number (N) of consecutive pulse periods. A pulse with an amplitude less than Q dB below nominal is the criteria  
for “no pulse” in the analog receive interface (LIM1.DRS = ´0´) (LIM1). The receive signal level Q is  
programmable by three control bits LIM1.RIL(2:0) see Table 56. The number N can be set by an 8-bit register  
(PCD). The contents of the PCD register is multiplied by 16, which results in the number of pulse periods, i.e.  
the time which has to suspend until the alarm has to be detected. The programmable range is 16 to 4096 pulse  
Data Sheet  
91  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
periods. ETS300233 requires detection intervals of at least 1 ms. This time period results always in a LFA  
(Loss of Frame Alignment) before a LOS is detected.  
Recovery: In general the recovery procedure starts after detecting a logical one (digital receive interface) or a  
pulse (analog receive interface) with an amplitude more than Q dB (defined by LIM1.RIL(2:0)) of the nominal  
pulse. The value in the 8-bit register PCR defines the number of pulses (1 to 255) to clear the LOS alarm.  
If a loss-of-signal condition is detected in long-haul mode, the data stream can optionally be cleared automatically  
to avoid bit errors before LOS is indicated. The Selection is done by LIM1.CLOS = ´1´.  
3.7.5  
Receive Equalization Network  
The QuadLIUTM automatically recovers the signals received on pins RL1 and RL2 in a range of up to -43 dB for  
E1 or -36 dB for T1/J1. The maximum reachable length with a 22 AWG twisted pair cable is about 1500 m for E1  
and about 2000m (~6560 ft) for T1. The integrated receive equalization network recovers signals with up to -43  
dB for E1 or -36 dB for T1/J1 of cable attenuation automatically. Noise filters eliminate the higher frequency part  
of the received signals. The incoming data is peak-detected and sliced to produce the digital data stream. The  
slicing level is software selectable in four steps (45%, 50%, 55%, 67%), see Table 56. For typical E1 applications,  
a level of 50% is used. The received data is then forwarded to the clock & data recovery unit.  
3.7.6  
Receive Line Attenuation Indication  
Status register RES reports the current receive line attenuation  
For E1 in a range from 0 to -43 dB in 25 steps of approximately 1.7 dB each.  
For T1/J1 in a range from 0 to -36 dB in 25 steps of approximately 1.4 dB each.  
The least significant 5-bits of this register indicate the cable attenuation in dB. These 5-bits are only valid in  
combination with the most significant two bits (RES.EV(1:0) = ´01b´).  
3.7.7  
Receive Clock and Data Recovery  
The analog received signal on pins RL1 and RL2 is equalized and then peak-detected to produce a digital signal.  
The digital received signal on pins RDIP and RDIN is directly forwarded to the clock & data recovery. The so called  
DPLL (digital PLL) of the receive clock & data recovery extracts the route clock from the data stream received at  
the RL1/2 or ROID lines. The clock & data recovery converts the data stream into a dual-rail, unipolar bit stream.  
The clock and data recovery uses an internally generated high frequency clock out of the master clocking unit  
based on MCLK.  
The intrinsic jitter generated in the absence of any input jitter is not more than 0.035 UI.  
3.7.8  
Receive Jitter Attenuator  
The receive jitter attenuator is based on the DCO-R (digital clock oscillator, receive) in the receive path. Jitter  
attenuation of the received data is done in the dual receive elastic buffer. The working clock is an internally  
generated high frequency clock based on the clock provided on pin MCLK. The jitter attenuator meets the E1  
requirements of ITU-T I.431, G. 736 to 739, G.823 and ETSI TBR12/13 and the T1 requirements of AT&T  
PUB 62411, PUB 43802, TR-TSY 009,TR-TSY 253, TR-TSY 499 and ITU-T I.431, G.703 and G. 824.  
The internal PLL circuitry DCO-R generates a "jitter-free" output clock which is directly dependent on the phase  
difference of the incoming clock and the jitter attenuated clock. The receive jitter attenuator can be synchronized  
either on the extracted receive clock RCLK or on a 2.048 MHz/8 kHz or 1.544 MHz/8 kHz clock provided on pin  
SYNC (8 kHz in master mode only). The jitter attenuated DCO-R output clock can be output on pin RCLK and  
FCLKR. Optionally an 8 kHz clock is provided on pin SECFSC.  
For jitter attenuation the received data is written into the receive elastic buffer with the recovered clock sourced by  
the clock & data recovery and are read out with the de-jittered clock sourced by DCO-R.  
If the receive elastic buffer is read out directly with the recovered receive clock, no jitter attenuation is performed.  
If the receive elastic buffer is read out with the receive framer clock FCLKR, the receive elastic buffer performs a  
clock adoption from the recovered receive clock to FCLKR.  
Data Sheet  
92  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
The DCO-R circuitry attenuates the incoming jittered clock starting at its corner frequency with 20 dB per decade  
fall-off. Wander with a jitter frequency below the corner frequency is passed unattenuated. The intrinsic jitter in the  
absence of any input jitter is < 0.02 UI.  
The corner frequency of the DCO-R can be configured in a wide range, see Table 23 and Figure 29. The jitter  
attenuator PLL in the transmit path, so called as DCO-X, is equivalent to the DCO-R so that the principle for its  
configuring is the same.  
Table 23  
Overview DCO-R (DCO-X) Programming  
CMR6.DCOCOMPN CMR2.ECFAR LIM2.SCF  
CMR3.CFAR(3:0) CMR4.IAR(3:0) Corner-  
(CMR2.ECFAX) (CMR6.SCFX) (CMR3.CFAX(3:0)) (CMR5.IAX(4:0)) frequencies  
of DCO-R  
(DCO-X)  
E1 / T1  
X
X
0
0
0
1
0
1
X
Not used  
Not used  
Not used  
Not used  
Not used  
2 Hz / 6 Hz  
0.2 Hz / 0.6 Hz  
7H´  
´4H´  
0.2 Hz / 0.6 Hz  
2 Hz / 6 Hz  
1
1
X
´0H´ ...´FH´ , used  
as proportional  
parameter  
´00H´ ...´1FH´  
used as integral ... 100 Hz  
parameter  
Range 0.2 Hz  
´9H´  
´8H´  
´6H´  
´4H´  
´3H´  
´2H´  
´1H´  
´19H´  
´13H´  
´12H´  
´0FH´  
´0CH´  
´0AH  
0.2 Hz  
0.6 Hz  
2 Hz  
6 Hz  
25 Hz  
50 Hz  
100 Hz  
´08H´  
After reset the corner frequencies are 2 Hz in E1 and 6 Hz in T1/J1 mode and can be switched to 0.2 Hz in E1  
mode or 0.6 Hz n T1 mode by setting the register bit LIM2.SCF for the DCO-R or the register bit CMR5.SCFX for  
the DCO-X respectively. A logical table builds the integral (I) and proportional (P) parameter for the PI filter of the  
DCO-R or DCO-X, see Figure 29.  
If the register bits CMR2.ECFAR or CMR2.ECFAX are set for the DCO-R or the DCO-X respectively, the corner  
frequencies can be configured in a range between 2 Hz and 0.2 Hz using the register bits CMR3.CFAR(3:0) or  
CMR3.CFAX(3:0) respectively, see CMR3, CMR4 and CMR5. A logical table builds the integral and proportional  
parameter for the PI filter of the DCO-R or DCO-X out of the settings in CMR3.CFAR(3:0) or CMR3.CFAX(3:0)  
respectively.  
If additionally to CMR2.ECFAR or CMR2.ECFAX the bit CMR6.DCOCOMPN (CMR6) is set, which is valid for the  
DCO-R and the DCO-X, the corner frequencies and attenuation factors can be programmed in a wide range using  
the register bits CMR3.CFAR(3:0) and CMR4.IAR(4:0) for the DCO-R and CMR3.CFAX(3:0) and CMR5.IAX(4:0)  
for the DCO-X. The settings in CMR3.CFAR(3:0)/CFAX(3:0) build the proportional parameter, the settings in  
CMR4.IAR(4:0) and CMR5.IAX(4:0) build the integral parameter for the PI filters, independent from another.  
Data Sheet  
93  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
LIM2.SCF for DCO-R,  
CMR6.SCFX for DCO-X  
LIM2,  
CMR6  
ECFAX for DCO-X, ECFAR for DCO-R  
CMR2  
switches  
corner  
frequency to  
0.2 Hz in E1  
„Corner  
frequency  
adjust“  
CFAX(for DCO-X)CFAR (for DCO-R) CMR3  
CMR5  
CMR4  
IAX (for DCO-X) IAR (for DCO-R)  
Table  
Table  
P
I
P
P
I
I
corner  
frequency  
corner  
corner  
frequency  
range 8 …  
sets corner  
frequency to  
2 Hz in E1  
frequency  
range 2 …  
2 or 0.2 Hz  
inE1  
0.2 Hz in E1 0.2 Hz  
CMR6  
Reset  
DCOCOMPN  
MUX  
P
I
MUX  
P
I
DCO-R  
(DCO-X)  
QLIU_DCO_X_adjust_2  
Figure 29 Principle of Configuring the DCO-R and DCO-X Corner Frequencies  
The DCO-R reference clock is watched: If one, two or three clock periods of the 2.048 MHz (1.544 MHz in T1/J1  
mode) clock at pin SYNC or RCLKI (in single rail digital line interface mode) are missing the DCO-R regulates it´s  
output frequency. If four or more clock periods are missing  
The DCO-R circuitry is automatically centered to the nominal bit rate if the center function of DCO-R is enabled  
by CMR2.DCF = ´0´.  
The actual DCO-R output frequency is “frozen” if the center function of DCO-R is disabled by CMR2.DCF = ´1´.  
The receive jitter attenuator works in two different modes, selected by the multiplexer “C” in Figure 22:  
Slave mode: In slave mode (LIM0.MAS = ´0´) the DCO-R is synchronized on the recovered route clock. In case  
of loss of signal (LOS) the DCO-R switches automatically to Master mode. The frequency at the pin SYNC  
must be 2.048 MHz (1.544 MHz). If bit CMR1.DCS is set automatic switching from the recovered route clock  
to SYNC is disabled.  
Master mode: In master mode (LIM0.MAS = ´1´) the DCO-R is in free running mode if no clock is supplied on  
pin SYNC. If an external clock on the SYNC input is applied, the DCO-R synchronizes to this input. The  
external frequency can be 2.048 MHz (1.544 MHz) for IPC.SSYF = ´0´ or 8.0 kHz for IPC.SSYF = ´1´.  
The following table Table 24 shows this modes with the corresponding synchronization sources.  
Data Sheet  
94  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 24  
Mode  
Clocking Modes of DCO-R  
Internal LOS SYNC Input System Clocks generated by DCO-R  
Active  
Master  
Master  
Independent Fixed to VDD DCO-R centered, if CMR2.DCF = ´0´. (CMR2.DCF should not be  
set), see also CMR2  
Independent 2.048 MHz  
Synchronized to SYNC input (external 2.048 MHz or 1.544 MHz,  
(E1) or  
1.544 MHz  
(T1)  
IPC.SSYF = ´0´), see also IPC  
Master  
Independent 8.0 kHz  
Synchronized to SYNC input (external 8.0 kHz, IPC.SSYF = ´1´,  
CMR2.DCF = ´0´)  
Slave  
Slave  
No  
No  
Fixed to VDD Synchronized to recovered line clock  
2.048 MHz  
(E1) or  
Synchronized to recovered line clock  
1.544 MHz  
(T1)  
Slave  
Slave  
Yes  
Yes  
Fixed to VDD CMR1.DCS = ´0´: DCO-R is centered, if CMR2.DCF = ´0´.  
(CMR2.DCF should not be set)  
CMR1.DCS = ´1´: Synchronized on recovered line clock  
2.048 MHz  
CMR1.DCS = ´0´: Synchronized to SYNC input  
(external 2.048 MHz or 1.544 MHz)  
CMR1.DCS = ´1´: Synchronized on recovered line clock  
The receive clock output RCLK of every channel can be switched between 2 sources, see multiplexer “D” in  
Figure 22:  
If the DCO-R is the source of RCLK the following frequencies are possible: 1.544, 3.088, 6.176, and 12.352 in  
T1/J1 mode and 2.048, 4.096, 8.192, and 16.384 MHz in E1 mode. Controlling of the frequency is done by the  
register bits CMR4.RS(1:0).  
If the recovered clock out (of the clock and data recovery) is the source of RCLK (see multiplexer “D” in  
Figure 22), only 2.048 MHz (1.544 MHz) is possible as output frequency.  
3.7.8.1  
Receive Jitter Attenuation Performance  
For E1 the jitter attenuator meets the jitter transfer requirements of the ITU-T I.431 and G.735 to 739 (refer to  
Figure 30)  
For T1/J1 the jitter attenuator meets the jitter transfer requirements of the PUB 62411, PUB 43802, TR-  
TSY 009,TR-TSY 253, TR-TSY 499 and ITU-T I.431 and G.703 (refer to Figure 31).  
Data Sheet  
95  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
10  
0
ITU G 736 Template  
QuadLIU  
-10  
-20  
-30  
-40  
-50  
-60  
1
10  
100  
1000  
10000  
100000  
Jitter Frequency [Hz]  
QLIU_jitt_att_E1  
Figure 30 Jitter Attenuation Performance (E1)  
10  
0
PUB 62411 H  
PUB 62411 L  
QuadLIU  
-10  
-20  
-30  
-20 dB/decade  
-40 dB/decade  
-40  
-50  
-60  
1
10  
100  
1000  
10000  
100000  
Jitter Frequency [Hz]  
QLIU_jitt_att_T1  
Figure 31 Jitter Attenuation Performance (T1/J1)  
Also the requirements of ETSI TBR12/13 are satisfied. Insuring adequate margin against TBR12/13 output jitter  
limit with 15 UI input at 20 Hz the DCO-R circuitry starts jitter attenuation at about 2 Hz.  
3.7.8.2  
Jitter Tolerance (E1)  
The QuadLIUTM receiver’s tolerance to input jitter complies with ITU for CEPT applications.  
Figure 32 and Figure 33 shows the curves of different input jitter specifications stated below as well as the  
QuadLIUTM performance.  
Data Sheet  
96  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
1000  
100  
PUB 62411  
TR-NWT 000499 Cat II  
CCITT G.823  
ITU-T I.431  
QuadLIU  
10  
1
0.1  
1
10  
100  
1000  
10000  
100000  
Jitter Frequency [Hz]  
QLIU_jitt_tol_E1  
Figure 32 Jitter Tolerance (E1)  
1000  
PUB 62411  
TR-NWT 000499 Cat II  
CCITT G.823  
ITU-T I.431  
QuadLIU  
100  
10  
1
0.1  
1
10  
100  
1000  
10000  
100000  
Jitter Frequency [Hz]  
QLIU_jitt_tol_E1  
Figure 33 Jitter Tolerance (T1/J1)  
Data Sheet  
97  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3.7.8.3  
Output Jitter  
In the absence of any input jitter the QuadLIUTM generates the intrinsic output jitter, which is specified in  
theTable 25 below.  
Table 25  
Output Jitter  
Specification  
Measurement Filter Bandwidth  
Intrinsic Output Jitter  
(UI peak to peak)  
Lower Cutoff  
Upper Cutoff  
100 kHz  
100 kHz  
100 kHz  
8 kHz  
ITU-T I.431  
20 Hz  
< 0.015  
< 0.015  
< 0.11  
700 Hz  
40 Hz  
ETSI TBR 12  
PUB 62411  
10 Hz  
< 0.015  
< 0.015  
< 0.015  
< 0.02  
8 Hz  
40 kHz  
10 Hz  
40 kHz  
Broadband  
3.7.8.4  
Output Wander  
Figure 34 shows 2 curves for the output wander. For both, setting of the register bits of GCM1 to GCM8 is identical  
to Table 49.  
Curve 1 gives the default output wander were no additional programming of bits of registers GPC6, REGFP,  
REGFD and WCON is necessary as described below. The corner frequency of the DCO-R is 2 Hz (see Table 23).  
Figure 34 Output Wander  
For further improvement of the output wander (curve 2), the following programming of register bits must be done:  
GPC6. WAND_IMP = ´1´  
WCON.WAND = ´03H´  
After that, the global registers REGFP and REGFD must be written with the following sequence to improve the  
output wander for both channels:  
Write ´30H´ into REGFP  
Write ´AAH´ into REGFD  
Write ´B0H´ into REGFP  
Write ´31H´ into REGFP  
Data Sheet  
98  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Write ´00H´ into REGFD  
Write ´B1H´ into REGFP  
Write ´32H´ into REGFP  
Write ´AAH´ into REGFD  
Write ´B2H´ into REGFP  
Write ´33H´ into REGFP  
Write ´00H´ into REGFD  
Write ´B3H´ into REGFP  
Note that these wander configuration is reset by a receive reset (CMDR.RRES = ´1´)  
Using this programming and 2 Hz for the corner frequency of the DCO-R, the output wander is given by curve 2.  
3.7.9  
Dual Receive Elastic Buffer  
For jitter attenuation the received data is written into the receive elastic buffer with the recovered clock sourced by  
the clock & data recovery and are read out with the de-jittered clock sourced by DCO-R, see Figure 22.  
If the receive elastic buffer is read out directly with the recovered receive clock, no jitter attenuation is performed.  
If the receive elastic buffer is read out with the receive framer clock FCLKR of the framer interface (FCLKR is  
input), the receive elastic buffer performs a clock adoption from the recovered receive clock to FCLKR.  
The receive elastic buffer can buffer two data streams so that dual rail mode is possible at the receive framer  
interface (RDOP/RDON). In case of single rail mode on the receive framer interface, the bipolar violation signal  
BPV is buffered in the same way as the single rail signal and is supported at multi function pin RDON.  
The size of the elastic buffer can be configured independently for the receive and transmit direction. Programming  
of the receive buffer size is done by DIC1.RBS(1:0), of the transmit buffer size by DIC1.XBS(1:0) see Table 26:  
Table 26  
Receive (Transmit) Elastic Buffer Modes  
Framebuffer Maximum of Average delay  
DIC1.RBS(1:0) (DIC1.XBS(1:0)) Mode  
Slip  
wander (UI = after performing Performance  
size (bits)  
648 ns)  
190  
140  
100  
74  
a slip  
256  
193  
128  
96  
00  
01  
10  
11  
10  
01  
E1  
512  
396  
256  
193  
96  
T1/J1  
E1  
Yes  
No  
T1/J1  
11 (short buffer E1  
mode)  
38  
48  
T1/J1  
E1  
T1/J1  
00  
Bypass of the receive (transmit) elastic buffer  
Bypass of the receive (transmit) elastic buffer  
The functions are:  
Clock adoption between framer receive clock (FCLKR input) and internally generated route clock (recovered  
line clock), see Chapter 3.7.8.  
Compensation of input wander and jitter.  
Reporting and controlling of slips  
In “one frame” or short buffer mode the delay through the receive buffer is reduced to an average delay of 128 or  
46 bits. In bypass mode the time slot assigner is disabled. Slips are performed in all buffer modes except the  
bypass mode. After a slip is detected the read pointer is adjusted to one half of the current buffer size.  
Figure 35 gives an idea of operation of the dual receive elastic buffer: A slip condition is detected when the write  
pointer (W) and the read pointer (R) of the memory are nearly coincident, i.e. the read pointer is within the slip  
limits (S +, S –). If a slip condition is detected, a negative slip (one frame or one half of the current buffer size is  
skipped) or a positive slip (one frame or one half of the current buffer size is read out twice) is performed at the  
system interface, depending on the difference between RCLK and the current working clock of the receive  
Data Sheet  
99  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
backplane interface. I.e. on the position of pointer R and W within the memory. A positive/negative slip is indicated  
in the interrupt status bits ISR3.RSP and ISR3.RSN.  
Frame 2 Time Slots  
R’  
R
Slip  
S-  
S+  
W
Frame 1 Time Slots  
Moment of Slip Detection  
W : Write Pointer (Route Clock controlled)  
R : Read Pointer (System Clock controlled)  
S+, S- : Limits for Slip Detection (mode dependent)  
ITD10952  
Figure 35 The Receive Elastic Buffer as Circularly Organized Memory  
3.8  
Additional Receiver Functions  
3.8.1  
Error Monitoring and Alarm Handling  
The following error monitoring and alarm handling is supported by the QuadLIUTM  
:
Loss-Of-Signal: Detection and recovery is flagged by bit LSR0.LOS and ISR2.LOS.  
Transmit Line Shorted: Detection and release is flagged by bit LSR1.XLS and ISR1.XLSC  
Transmit Ones-Density: Detection and release is flagged by bit LSR1.XLO and ISR1.XLSC  
Table 27  
Alarm  
Summary of Alarm Detection and Release  
Detection Condition  
Clear Condition  
Loss-Of-Signal  
(LOS)  
No transitions (logical zeros) in a  
Programmable number of ones (1 to 256) in  
programmable time interval of 16 to a programmable time interval of 16 to 4096  
4096 consecutive pulse periods. consecutive pulse periods. A one is a signal  
Programmable receive input signal with a level above the programmed  
threshold  
threshold.  
Transmit Line Short  
(XLS)  
More than 3 pulse periods with  
highly increased transmit line  
current on XL1/2  
Transmit line current limiter inactive, see  
also Chapter 3.9.7  
Transmit Ones-Density  
(XLO)  
32 consecutive zeros in the transmit Cleared with each transmitted pulse  
data stream on XL1/2  
Data Sheet  
100  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3.8.2  
Automatic Modes  
The following automatic modes are performed by the QuadLIUTM  
:
Automatic clock source switching (see also: In slave mode (LIM0.MAS = ´0´) the DCO-R synchronizes to the  
recovered route clock. In case of loss-of-signal (LOS) the DCO-R switches to Master mode automatically. If bit  
CMR1.DCS is set, automatic switching from the recovered route clock to SYNC is disabled. See also Table 24.  
Automatic transmit clock switching, see Chapter 3.9.3.  
Automatic local and remote loop switching based on In-Band loop codes, see Chapter 3.11.2.  
3.8.3  
Error Counter  
The QuadLIUTM offers two error counters where each of them has a length of 16 bit:  
Code Violation Counter, status registers CVCL and CVCH  
PRBS error counter, status registers BECL and BECH  
The error counters are buffered. Buffer updating is done in two modes:  
One-second accumulation  
On demand by handshake with writing to the DEC register  
In the one-second mode an internal/external one-second timer updates these buffers and resets the counter to  
accumulate the error events in the next one-second period. The error counter cannot overflow. Error events  
occurring during an error counter reset are not lost.  
3.8.4  
One-Second Timer  
A one-second timer interrupt can be generated internally to indicate that the enabled alarm status bits or the error  
counters have to be checked. The one-second timer signal is output on port SEC/FSC if configured by  
GPC1.CSFP(1:0) (GPC1). Optionally synchronization to an external second timer is possible which has to be  
provided on pin SEC/FSC. Selecting the external second timer is done with GCR.SES.  
Data Sheet  
101  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3.9  
Transmit Path  
The transmit path of the QuadLIUTM is shown in Figure 36.  
XL3  
Pulse  
XL1/XOID  
Shaper,  
XDIP  
Dual Transmit Elastic Buffer  
Encoder  
DAC  
LBO  
XL2  
XDIN  
from  
XL4  
Transmit Line  
Interface  
DCO-R  
internal  
transmit  
clock  
recovered  
receive clock  
XCLK  
MCLK  
FCLKR  
(in)  
E
DCO-X  
G
FCLKX  
TCLK  
F
H
%
Master  
Clocking Unit  
Automatic Transmit  
Clock Switching  
E: controlled by CMR2.IXSC and CMR2.IRSC  
F: controlled by CMR1.DXSS and automatic transmit clock switching  
G: controlled by LIM1.RL,JATT and LIM2.ELT  
H: controlled by DIC1.XBS(1:0) and automatic transmit clock switching  
%: divider: controlled by CMR6.STF(2:0)  
QLIU_ITS10305  
Figure 36 Transmit System of one Channel  
The serial transmit bit stream (single rail or dual rail) is processed by the transmitter which has the following  
functions:  
AIS generation (blue alarm)  
Generation of In-band loop-up/-down code  
3.9.1  
Transmit Line Interface  
The transmit line interface includes two integrated serial resistors RTX as shown in Figure 37. Two application  
modes are possible:  
For non-generic applications the extermal serial resistance RSER is dependent on the operation mode  
(E1/T1/J1) as shown in Table 28. The additional register bit PC6.TSRE is not used, RTX is always 2 Ω  
For generic E1/T1/J1 applications with optimized return loss the transmit output resistance RTX is configured  
by the register bit PC6.TSRE: The operation mode (E1/T1/J1) is selected by software without the need for  
external hardware changes: Here the external resistor RSER is always 0 , see Table 28.  
In E1 mode the value of RSER in Table 28 is valid for both characteristic line impedances Z0 = 120 and Z0 = 75 .  
Note that shorts between XL1 and XL2 cannot be detected, because the short circuit current is lower than 120 mA.  
This way a short between XL1 and XL2 will not harm the device  
The analog transmitter transforms the unipolar bit stream to ternary (alternate bipolar) return to zero signals of the  
appropriate programmable shape. The unipolar data is provided on pin XDI and the digital transmitter.  
Data Sheet  
102  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
externally  
internally  
XL1  
XL2  
RSER  
RTX  
Z0  
RSER  
RTX  
QLIU_TX-interface  
Figure 37 Transmit Line Interface  
Table 28  
Recommended Transmitter Configuration Values  
PC6.TSRE  
R
SER (Ohm), accuracy +/- 1 Application Mode  
XL3, XL4  
Operation  
Mode  
%
21)  
2
Generic  
1
Connected to  
SER and  
Xformer junction  
E1  
R
0
T1/J1  
7.5  
2
Non generic  
0
0
Left open  
E1  
Left open  
T1/J1  
1) The values in this column refers to an ideal transformer without any parasitics. Any transformer resistance or other parasitic  
resistances have to be taken into account when calculating the final value of the output serial resistors.  
Similar to the receive line interface two different data types are supported:  
Ternary Signal: Single-rail data is converted into a ternary signal which is output on pins XL1 and XL2.  
Selection between B8ZS or simple AMI coding is provided.  
Unipolar data on port XOID is transmitted in CMI code with or without (DIC3.CMI) preprocessed by B8ZS  
coding or HDB3 precoding (MR3.CMI) to a fiber-optical interface. Clocking off data is done with the rising edge  
of the transmit clock XCLK (1544 kHz) and with a programmable polarity. Selection is done by MR0.XC1 = ´0´  
and LIM1.DRS = ´1´.  
An overview of the transmit line coding is given in Table 13.  
3.9.2  
Transmit Clock TCLK  
The transmit clock input TCLK (multi function port) of the QuadLIUTM can be configured for 1.544, 3.088, 6.176,  
12.352 and 24.704 MHz input frequency in T1/J1 mode and 2.048, 4.096, 8.192, 16.384 and 32.768 MHz input  
frequency in E1 mode. Frequency selection is done by the register bits CMR6.STF(2:0) (CMR6). See divider “%”  
in Figure 36.  
3.9.3  
Automatic Transmit Clock Switching  
The transmit clock output XCLK can be derived from TCLK  
Directly. In this case the TCLK frequency must be 32.768 MHz in E1 or 24.704 MHz in T1/J1 mode. or  
With using the DCO-X, were the DCO-X reference is TCLK.  
If TCLK fails, the transmit clock output XCLK will also fail. To avoid this, a so called automatic transmit clock  
switching can be enabled by setting the register bit CMR6.ATCS (CMR6). Then FCLKX will be used instead of  
TCLK if TCLK is lost. The transmit elastic buffer must be active. Automatically switching between TCLK and  
FCLKX is done in the following both cases:  
If the TCLK input is used directly as source for the transmit clock XCLK, the output of the DCO-X is not used.  
The DCO-X reference clock is FCLKX. If loss of TCLK is detected, the transmit clock XCLK will be switched  
automatically (if CMR6.ATCS = ´1´) to the DCO-X output which is synchronous to FCLKX (see multiplexer “H”  
in Figure 36). If XCLK was switched to the DCO-X output and TCLK becomes active, switching of XCLK (back)  
Data Sheet  
103  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
to TCLK is automatically performed if CMR6.ATCS = ´1´. All switchings of XCLK between TCLK and the DCO-  
X output are shown in the interrupt status bit ISR7.XCLKSS0 which is masked by IMR7.XCLKSS0. These  
kinds of switching cannot be done in general without causing phase jumps in the transmit clock XCLK.  
Additionally after loss of TCLK the transmit clock XCLK is also lost during the “detection time” for loss of TCLK  
and the transmit pulses are disturbed. If CMR6.ATCS is cleared, TCLK is used (again) as source for the  
transmit clock XCLK, independent if TCLK is lost or not. The interrupt status bit ISR7.XCLKSS0 will be set also.  
If the transmit clock XCLK is sourced by the DCO-X output and the DCO-X reference clock is TCLK, the DCO-  
X reference will be switched automatically (if CMR6.ATCS = ´1´) to FCLKX (see multiplexer “F” in Figure 36)  
after a loss of TCLK was detected. If the DCO-X reference was switched to FCLKX and TCLK becomes active,  
switching of the reference (back) to TCLK is automatically performed if CMR6.ATCS = ´1´. All switchings of the  
reference between TCLK and FCLKX are shown in the interrupt status bit ISR7.XCLKSS1 which is masked by  
IMR7.XCLKSS1. For these kinds of automatically switching, the transmit clock XCLK fulfills the jitter-, wander-  
and frequency deviation- requirements as specified for E1/T1 after the clock source of the DCO-X was  
changed. If CMR6.ATCS is cleared, TCLK is used (again) as reference for the DCO-X, independent if TCLK  
is lost or not. The interrupt status bit ISR7.XCLKSS1 will be set also.  
The status register bits CLKSTAT.TCLKLOS and CLKSTAT.FCLKXLOS (CLKSTAT) show if the appropriate  
clock is actual lost or not, so together with ISR7.XCLKSS1 and ISR7.XCLKSS0 the complete information  
regarding the current status of the transmit clock system is provided.  
3.9.4  
Transmit Jitter Attenuator  
The transmit jitter attenuator is based on the so called DCO-X (digital clock oscillator, transmit) in the transmit path.  
Jitter attenuation of the transmit data is done in the transmit elastic buffer, see Figure 36. The DCO-X circuitry  
generates a "jitter-free" transmit clock and meets the E1 requirements of ITU-T I.431, G. 736 to 739, G.823 and  
ETSI TBR12/13 and the T1 requirements of AT&T PUB 62411, PUB 43802, TR-TSY 009,TR-TSY 253, TR-  
TSY 499 and ITU-T I.431, G.703 and G. 824. The DCO-X circuitry works internally with the same high frequency  
clock as the DCO-R. It synchronizes either to the working clock of the transmit system interface (internal transmit  
clock) or the clock provided on multi function pin TCLK or the receive clock RCLK (remote loop/loop-timed). The  
DCO-X attenuates the incoming jitter starting at its corner frequency with 20 dB per decade fall-off. With the jitter  
attenuated clock, which is directly depending on the phase difference of the incoming clock and the jitter  
attenuated clock, data is read from the transmit elastic buffer (512/386 bit) or from the JATT buffer (512/386 bit,  
remote loop), see Figure 38. Wander with a jitter frequency below the corner frequency is passed transparently.  
The dual transmit elastic buffer can buffer two data streams so that dual rail mode is possible at the transmit framer  
interface (XDIP/XDIN).  
The DCO-X is equivalent to the DCO-R so that the principle for its configuring is the same, see Figure 29 and  
CMR3, CMR4 and CMR5.  
The DCO-X reference clock is monitored: If one, two or three clock periods of the 2.048 MHz (1.544 MHz in T1/J1  
mode) clock at FCLKX are missing the DCO-X regulates it´s output frequency. If four or more clock periods are  
missing  
The DCO-X circuitry is automatically centered to the nominal frequency of 2.048 MHz (1.544 MHz in T1/J1) if  
the center function of DCO-X is enabled by CMR2.DCOXC = ´1´.  
The actual DCO-X output frequency is “frozen” if the center function of DCO-R is disabled by  
CMR2.DCOXC = ´0´.  
The jitter attenuated clock is output on pin XCLK if the transmit jitter attenuator is enabled, see multiplexer “H” in  
Figure 36.  
The transmit jitter attenuator can be disabled. In that case data is read from the transmit elastic buffer with the  
clock sourced on pin TCLK, see multiplexer “H” in Figure 36. Synchronization between FCLKX and TCLK has to  
be done externally.  
In the loop-timed clock configuration (LIM2.ELT) the DCO-X circuitry generates a transmit clock which is frequency  
synchronized on RCLK, see Figure 38 and multiplexers “G” and “F” in Figure 36. In this configuration the transmit  
elastic buffer has to be enabled.  
Data Sheet  
104  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Clock &  
Data  
RL1/ROID  
RL2  
Equalizer  
Decoder  
RDATA  
Recovery  
DPLL  
Receive Line  
Interface  
JATT  
Buffer  
XL3  
Pulse  
Shaper,  
LBO  
XL1/XOID1  
XL2  
Encoder  
XDATA  
DAC  
from  
XL4  
Transmit Line  
Interface  
DCO-R  
recovered  
receive clock  
XCLK  
FCLKR  
E
DCO-X  
G
FCLKX  
F
H
TCLK  
%
Master  
Clocking Unit  
MCLK  
Automatic Transmit  
Clock Switching  
QLIU_remote_loop_clocking  
Figure 38 Clocking and Data in Remote Loop Configuration  
3.9.5  
Dual Transmit Elastic Buffer  
The received single rail bit stream from pin XDI or dual rail bit stream from the pins XDIP and XDIN are optionally  
stored in the transmit elastic buffer, see Figure 36. The tansmit elastic buffer is organized as the receive elastic  
buffer. The functions are also equal to the receive side. Programming of the dual transmit buffer size is done by  
DIC1.XBS(1:0) in the same way as programming of the dual receive buffer size by DIC1.RBS(1:0), see Table 26:  
The functions of the transmit buffer are:  
Clock adoption between framer transmit clock (FCLKX) and internally generated transmit route clock, see  
Chapter 3.9.4.  
Compensation of input wander and jitter.  
Reporting and controlling of slips  
Writing of received data from XDIP/XDIN is controlled by the internal transmit clock. Selection of FCLKX or FCLKR  
is possible, see multiplexer “E” in Figure 36. (If the DCO-R output is selected, the DCO_R output is also output at  
FCLKR.)  
Reading of stored data is controlled by the clock generated either by the DCO-X circuitry or the externally  
generated TCLK. With the de-jittered clock data is read from the dual transmit elastic buffer and are forwarded to  
the transmitter. Reporting and controlling of slips is done according to the receive direction. Positive/negative slips  
are reported in interrupt status bits ISR4.XSP and ISR4.XSN. If the transmit buffer is bypassed data is directly  
transferred to the transmitter.  
3.9.6  
Programmable Pulse Shaper and Line Build-Out  
The transmitter includes a programmable pulse shaper to generate transmit pulse masks according to:  
For T1: FCC68; ANSI T1. 403 1999, figure 4; ITU-T G703 11/2001, figure 10 (for different cable lengths), see  
Figure 64 and Figure 40 for measurement configuration were Rload = 100 Ω  
For E1: ITU-T G703 11/2001, figure 15 (for 0 m cable length) see Figure 63; ITU-T G703 11/2001, figure 20  
(for DCIM mode), see Figure 39 for measurement configuration were Rload = 120 or Rload = 75 Ω  
The transmit pulse shape (UPULSE) is programmed either  
Data Sheet  
105  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
By the registers XMP(2:0) compatible to the QuadLIUTM, see Table 29 and Table 30, if the register bit  
XPM2.XPDIS is cleared, see XPM2  
Or by the registers TXP(16:1), see TXP1, if the register bit XPM2.XPDIS is set, see Table 31 and Table 32.  
For more details see chapter “Operational Description”  
To reduce the crosstalk on the received signals in long haul applications the QuadLIUTM offers the ability to place  
a transmit attenuator (Line Build-Out, LBO) in the data path. This is used only in T1 mode. LBO attenuation is  
selectable with the values 0, -7.5, -15 or -22.5 dB (register bits LIM2.LBO(2:1)). ANSI T1. 403 defines only 0 to -  
15 dB.  
XL1  
RSER  
R
U
PULSE  
QuadLIU  
load  
XL2  
QLIU_pulse_meas_temp_E1  
Figure 39 Measurement Configuration for E1 Transmit Pulse Template  
XL1  
RSER  
Cable, Z0  
R
UPULSE  
QuadLIU  
load  
XL2  
0 to 200 m  
(0to655ft)  
QLIU_pulse_meas_temp_T1  
Figure 40 Measurement Configuration for T1/J1 Transmit Pulse Template  
3.9.6.1  
QuadFALCTM V2.1 Compatible Programming with XPM(2:0) Registers  
After reset XPM2.XPDIS is zero so that programming with XPM(2:0) is selected. The default setting after reset for  
the registers XMP(2:0) generates the E1 pulse shape, see Table 30, but with an unreduced amplitude. No reset  
value for T1 mode exists. So after switching into T1 mode, an explicit new programming like described in Table 29  
is necessary.  
If LBO attenuation is selected, the programming of XPM(2:0) will be ignored. Instead the pulse shape  
programming is handled internally: The generated pulse shape before LBO filtering is the same as for T1 0 to 40 m.  
The given values are optimized for transformer ratio: 1 : 2.4 and cable type AWG24 using transmitter  
configurations listed in Table 28 and shown in Figure 37. The measurement configurations of Figure 39 with Rload  
= 120 and Figure 40 with Rload = 100 are used.  
Table 29  
Recommended Pulse Shaper Programming for T1/J1 with Registers XPM(2:0) (Compatible to  
QuadFALC V2.1 )  
LBO  
Range  
(m)  
Range  
XPM0  
XPM1  
XPM2  
(dB)  
(ft)  
Hexadecimal  
0
0
0
0
0 to 40  
0 to 133  
133 to 266  
266 to 399  
399 to 533  
D7  
FA  
3D  
5F  
22  
26  
37  
3F  
11  
11  
11  
11  
40 to 81  
81 to 122  
122 to 162  
Data Sheet  
106  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 29  
Recommended Pulse Shaper Programming for T1/J1 with Registers XPM(2:0) (Compatible to  
QuadFALC V2.1 (cont’d))  
LBO  
0
Range  
Range  
XPM0  
XPM1  
XPM2  
162 to 200  
533 to 655  
3F  
CB  
11  
7.5  
15  
---  
---  
---  
Are not taken into account: pulse shape generation is  
handled internally.  
22.5  
Table 30  
RSER  
Recommended Pulse Shaper Programming for E1 with Registers XPM(2:0) (Compatible to  
QuadFALC V2.1)  
Z0  
Transmit Line  
Interface Mode  
XPM0  
XPM1  
XPM2  
(Ω)  
7.51)  
7.5  
---  
()  
Hexadecimal  
120  
Non generic  
Non generic  
9C  
8D  
7B  
EF  
03  
03  
03  
BD  
00  
00  
40  
07  
75  
Reset values  
DCIM Mode  
7.5  
Non generic  
1) The values in this row refers to an ideal application without any parasitics. Any other parasitic resistances have to be taken  
into account when calculating the final value of the output serial resistors.  
3.9.6.2  
Programming with TXP(16:1) Registers  
By setting of register bit XPM2.XPDIS the pulse shape will be configured by the registers TXP(16:1) (TXP1). Every  
of these registers define the amplitude value of one sampling point in the symbol. A symbol is formed by 16  
sampling points.  
The default setting after reset for the registers TXP(16:1) generates also the E1 pulse shape (0m), but with an  
unreduced amplitude. (TXP(9:16) = ´00H´; TXP(1:8) = ´38H´= 56D´) No reset value for T1 mode exists. So after  
switching into T1 mode, an explicit new programming like Table 31 is necessary.  
The pulse shape configuration will be done also by the registers TXP(16:1) if a LBO attenuation is selected. The  
pulse shape is then determined by both, the values of TXP(16:1) and the LBO filtering.  
The given values in Table 31 and Table 32 are optimized for transformer ratio: 1 : 2.4; cable: AWG24 and  
configurations listed in Table 28 and shown in Figure 37.  
Table 31  
LBO  
Recommended Pulse Shaper Programming for T1 with Registers TXP(16:1)  
Range Range TXP Values, Decimal  
(dB) (m)  
(ft)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
0 to 40  
40 to 81  
0 to 133  
46 46 46 44 44 44 44 44 16 -17 -14 -14 -4 -4 -4 -4  
0
133 to 266 48 50 48 46 46 44 44 44 16 -17 -14 -14 -4 -4 -4 -4  
0
81 to 122 266 to 399 48 50 46 44 44 44 44 44 16 -25 -17 -14 -4 -4 -4 -4  
81 to 122 266 to 399 56 58 54 52 48 48 48 48 16 -25 -17 -14 -4 -4 -4 -4  
122 to 162 399 to 533 63 63 58 56 52 52 51 51 16 -34 -32 -17 -4 -4 -4 -4  
0
0
7.5  
155  
--  
--  
--  
--  
--  
46 46 46 44 44 44 44 44 16 -17 -14 -14 -4 -4 -4 -4  
46 46 46 44 44 44 44 44 16 -17 -14 -14 -4 -4 -4 -4  
46 46 46 44 44 44 44 44 16 -17 -14 -14 -4 -4 -4 -4  
22.5 --  
Data Sheet  
107  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Table 32  
RSER  
Recommended Pulse Shaper Programming for E1 with registers TXP(16:1)  
Z0  
Transmit TXP values, decimal  
Line  
Interface  
Mode  
()  
21)  
7.5  
2
()  
120  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Generic  
42 40 40 40 40 40 40 42  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
120  
75  
Non generic 63 57 57 57 57 57 57 57 -4  
Generic  
Non generic 60 58 58 58 58 58 58 58  
56 56 56 56 56 56 56 56  
42 40 40 40 40 40 40 40  
0
0
0
7.5  
--  
75  
Reset values  
2
DCIM  
Mode  
Generic  
20 20 20 20 20 20 20 20 -20 -20 -20 -20 -20 -20 -20 -20  
7.5  
DCIM  
mode  
Non generic 28 28 28 28 28 28 28 28 -28 -28 -28 -28 -28 -28 -28 -28  
1) The values in this row refers to an ideal application without any parasitics. Any other parasitic resistances have to be taken  
into account when calculating the final value of the output serial resistors.  
3.9.7  
Transmit Line Monitor  
The transmit line monitor (see principle in Figure 41) compares the transmit line current on XL1 and XL2 with an  
on-chip transmit line current limiter. The monitor detects faults on the primary side of the transformer indicated by  
a highly increased transmit line current (more than 120 mA for at least 3 consecutive pulses sourced by VDDX)  
and protects the device from damage by setting the transmit line driver XL1/2 into high-impedance state  
automatically (if enabled by XPM2.DAXLT = ´0´, see XPM2). The current limiter checks the actual current value  
of XL1/2 and if the transmit line current drops below the detection limit the high-impedance state is cleared.  
Two conditions are detected by the monitor:  
Transmit line ones density (more than 31 consecutive zeros) indicated by LSR1.XLO (LSR1).  
Transmit line high current indicated by LSR1.XLS.  
In both cases a transmit line monitor status change interrupt is provided.  
Shorts between XL1 or XL2 and VDD, VDDC or VDDP are not detected.  
Note that shorts between XL1 and XL2 cannot be detected. This way a short between XL1 and XL2 will not harm  
the device.  
Line  
Monitor  
TRI  
XL1  
Pulse  
Shaper  
XL2  
XDATA  
ITS10936  
Figure 41 Transmit Line Monitor Configuration  
Data Sheet  
108  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3.10  
Framer Interface  
The framer interface of the QuadLIUTM is shown in Figure 42.  
RDOP  
Receive System  
(see chapter 3.6)  
Multi Function  
Ports  
RDOP  
Dual Receive  
Elastic Buffer  
Receive  
Framer  
Interface  
RDON/BPV  
LOS  
RDON/BPV  
LOS  
RP(A...C)  
RCLK  
RCLK  
recovered  
clock  
internal  
from  
DCO-R  
receive clock  
J
FCLKR  
FCLKX  
1
FCLKX  
internal  
transmit  
clock  
K
XDIN  
XDIP  
XDIN  
Dual Transmit  
Eastic Buffer  
XP(A...B)  
TCLK  
Transmit  
Framer  
XCLK  
Transmit System  
(see chapter 3.8.)  
TCLK  
Interface  
Multi Function  
Ports  
XDIP  
J: controlled by CMR2.IRSC and DIC1.RBS(1:0)  
K: controlled by CMR2.IXSC  
1: Input/output selection of FCLKR by PC5.CSRP  
QLIU_framer_if  
Figure 42 Framer Interface (shown for one channel)  
Configuring of the framer interface consists on  
Configuration of the interface mode (single/dual rail)  
Configuration of the multi function ports, see Chapter 3.12  
Selection of dual or single rail mode can be done in receive and transmit direction independent from each other.  
In single rail mode of the receive direction (LIM3.DRR = ´0´, LIM3), the unipolar data is supported at RDOP and  
the bipolar violation (BPV) is supported at the receive multifunction pins. Therefore one of the three receive  
multifunction pins must be configured to RDON/BPV output (for example PC3.RPX3(3:0) = ´1110b´), seeTable 34,  
if BPV output is used exernally.  
If dual rail mode is selected in receive direction by setting of register bit LIM3.DRR, the positive rail of the data is  
supported at RDOP and the negative rail of the data or is supported at the receive multi function pins. Therefore  
one of the three receive multifunction pins must be configured to RDON/BPV output, seeTable 34.  
Clocking of RDOP and RDON/BPV is done with the rising or falling edge of the internal receive clock, selected by  
DIC3.RESR. The internal receive clock can be sourced either  
By the receive clock RCLK of the receive system (CMR2.IRSC = ´1´, CMR2). To support the framer with these  
clock FCLKR output pin function must be selected by PC5.CSRP = ´1´ (PC5). or  
Data Sheet  
109  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
By the FCLKR input pin. In that case FCLKR input pin function must be selected by PC5.CSRP = ´0´ to use  
the receiver clock from the framer.  
In single rail mode of the transmit direction (LIM3.DRX = ´0´, LIM3), the input for the unipolar data of the framer is  
XDIP.  
If dual rail mode is selected in transmit direction by setting of register bit LIM3.DRX, the input for the positive rail  
of the data is XDIP and the input for the negative rail of the data is the multi function port XDIN. Therefore one of  
the both transmit multifunction ports must be configured to XDIN (for example PC1.XPX1(3:0) = ´1101b´),  
seeTable 34.  
Clocking (sampling) of XDIP and XDIN is done with the rising or falling edge of the internal transmit clock, selected  
by DIC3.RESX. The internal transmit clock can be sourced either  
By the internal receive clock of the receive system (CMR2.IXSC = ´1´). To support the framer with these clock  
FCLKR output pin function must be selected by PC5.CSRP = ´1´. or  
By the FCLKX input pin (CMR2.IXSC = ´0´). In that case FCLKX is supported by the framer.  
3.11  
Test Functions  
The following chapters describe the different test function of the QuadLIUTM  
.
3.11.1  
Pseudo-Random Binary Sequence Generation and Monitor  
All bits of all slots in a E1T1/J1 frame are used for PRBS.  
The QuadLIUTM has the ability to generate and monitor pseudo-random binary sequences (PRBS). The generated  
PRBS pattern is transmitted to the remote end on pins XL1/2 and can be inverted optionally. Generating and  
monitoring of PRBS pattern is done according to ITU-T O.150 and ITU-T O.151.  
The PRBS monitor senses the PRBS pattern in the incoming data stream. Synchronization is done on the inverted  
and non-inverted PRBS pattern. The current synchronization status is reported in status and interrupt status  
registers. Enabled by bit LCR1.EPRM each PRBS bit error increments an error counter BEC (BECL).  
Synchronization is reached within 400 ms with a probability of 99.9% at a bit error rate of up to 10-1.  
The PRBS pattern (polynomials) can be selected to be 211-1, 215-1, 220-1or 223-1 by the register bits  
TPC0.PRP(1:0) and LCR1.LLBP (LCR1), see Table 33. For definition of this polynomials see the Standards ITU-  
T O.150, O.151. and TR62441. The polynomials 211-1 and 223-1 can be selected only if TPC0.PRM unequal  
´00b´.  
Transmission of PRBS pattern is enabled by register bit LCR1.XPRBS. With the register bit LCR1.FLLB switching  
between not inverted and inverted transmit pattern can be done.  
The receive monitoring of PRBS patterns is enabled by register bit LCR1.EPRM. In general, depending on bit  
LCR1.EPRM the source of the interrupt status bit ISR1.LLBSC changed, see register description. The type of  
detected PRBS pattern in the receiver is shown in the status register bits PRBSSTA.PRS. Every change of the  
bits PRS in PRBSSTA sets the interrupt bit ISR1.LLBSC if register bit LCR1.EPRM is set. No pattern is also  
detected if the mode “alarm simulation” is active.  
The detection of all_zero or all_ones pattern is done over 12, 16, 21 or 24 consecutive bits, depending on the  
selected PRBS polynomial (211-1, 215-1, 220-1or 223-1 respectively). The detection of all_zero or all_ones is  
independent on LCR1.FLLB.  
The distinction between all-ones and all-zeros pattern is possible by combination of.  
The information about the first reached PRBS status after the PRBS monitor was enabled (“PRBS pattern  
detected” or “inverted PRBS pattern detected”) with  
The status information “all-zero pattern detected” or “all-ones pattern detected”  
If an “all-one” or an “all-zero” pattern is detected by the PRBS monitor, the interrupt status bit ISR1.LLBSC is set  
not only once, but is set permanent. To avoid that the LLBSC interrupt is issued permanent and the HOST micro  
controller would permanent be occupied, the following proceeding is recommended:  
After reading of the interrupt status bit ISR1.LLBSC , the appropriate interrupt routine should set the interrupt mask  
bits IMR1.LLBSC to ´1´, after an “all-one” or an “all-zero” pattern was indicated, to avoid permanent interrupts  
issued by the QuadLIUTM. The PRBS status register bits PRBSSTA.PRS should be polled to detect changes in  
Data Sheet  
110  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
the pattern, for example once per second, using the ISR3.SEC interrupt. In case PRBSSTA.PRS(2:1) is unequal  
´11B´, the interrupt mask bits should be cleared to return to normal operation.  
Because every bit error in the PRBS sequence increments the bit error counter BEC, no special status information  
like “PRBS detected with errors” is given here.  
Table 33  
Supported PRBS Polynomials  
TPC0.PRP(1:0)  
TPC0.PRM  
01 or 11  
01 or 11  
01 or 11  
01 or 11  
00  
LCR1.LLBP  
Kind of Polynomial Comment  
00  
01  
10  
11  
XX  
XX  
X
X
X
X
0
211 -1  
215 -1  
220 -1  
2
23 -1  
215 -1  
220 -1  
SW compatible to  
QuadLIU  
00  
1
3.11.2  
In-Band Loop Generation, Detection and Loop Switching  
Detection and generation of In-band Loop code is supported by the QuadLIUTM on the line side and on the framer  
side independent from another. On the framer side it is only supported in single rail mode.  
The QuadLIUTM generates and detects unframed In-band codes where the complete data stream is used by the  
In-band signaling information.The so called loop-up code (for loop activation) and loop-down code (for loop  
deactivation) are recognized.  
The maximum allowed bit error rate within the loop codes can be up to 10-2 for proper detection of the loop codes.  
One “In-band loop sequence” consists of a bit sequence of 51200 consecutive bits. The In-band loop code  
detection is based on the examination of such “In-band loop sequences”.  
The following In-band loop code functionality is performed by the QuadLIUTM  
:
The necessary reception time of In-band loop codes until an automatic loop switching is performed is  
configured for the system side by the register bits INBLDTR.INBLDT(1:0) (INBLDTR). Configuring for the line  
side is done by INBLDTR.INBLDR(1:0). If for example INBLDTR.INBLDR(1:0) = ´00b´ a time of 16 “In-band  
loop sequences” (16 x 51200 bits) is selected for the line side.  
The interrupt status register bits ISR6.(3:0) reflects the type of detected In-band loop code. Masking can be  
done by IMR6(3:0). The status bits are set after one “In-band loop sequence” is detected (no dependency on  
INBLDTR).  
Transmission of In-Band loop codes is enabled by programming MR3.XLD/XLU in E1 mode or MR5.XLD/XLU  
in T1/J1 mode. Transmission of codes is done by the QuadLIUTM lasting for at least 5 seconds.  
The QuadLIUTM also offers the ability to generate and detect flexible In-band loop-up and loop-down patterns  
(LCR1.LLBP = ´1´) (LCR1). Programming of these patterns is done in registers LCR2 and LCR3 (LCR2). The  
pattern length is individually programmable in length from 2 to 8 bits by LCR1.LAC(1:0) and LCR1.LDC(1:0).  
A shorter pattern can be inplemented by configuring a repeating pattern in the LCR2 and LCR3.  
Automatic loop switching (activation and deactivation, for remote loop, see Chapter 3.11.3 and local loop, see  
Chapter 3.11.4) based on In-band Loop codes can be done. Two kinds of line loop back (LLB) codes are  
defined in ANSI-T1.403, 1999 in chapter 9.4.1.1 and 9.4.1.2. respectively. Automatic loop switching must be  
enabled through configuration register bits ALS.SILS for the In-Band Loop codes coming from the system side  
and ALS.LILS for the In-Band Loop codes coming from the line side respectively. Masking of ISR6.(3:0) for  
interrupt can be done by register bits IMR6.(3:0). The interrupt status register bits ISR6.(3:0) (ISR6) will be set  
to ´1´ if an appropriate In-Band code were detected, independent if automatic loop switching is enabled.  
(Because the controller knows if automatic loop switching is enabled, it knows if a loop is activated or not.)  
Code detection status only for the line side is displayed in E1 mode in status register bits LSR2.LLBDD /  
LLBAD and in T1/J1 mode in LSR1.LLBDD / LLBAD.  
Only unframed In-Band loop code can be generated and detected.  
Automatic loop switching is logically OR´d with the appropriate loop switching by register bits.  
Data Sheet  
111  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
If a remote loop is activated by an automatic loop switching the register bit LIM0.JATT controls also if the jitter  
attenuator is active or not, see also Figure 38.  
If ALS.LILS is set (ALS), the remote loop is activated after an activation In-Band loop code (see ANSI T1 404,  
chapter 9.4.1.1.) was detected from the line side and if the local loop is not activated by LIM0.LL = ´1´. The remote  
loop is deactivated after a deactivation In-Band loop code (see ANSI T1 404, chapter 9.4.1.2.) was detected from  
the line side. (But if the remote loop is additionally activated by LIM0.RL = ´1´ the remote loop is still active,  
because automatic loop switching is logically OR´d with the appropriate loop switching by register bits.).  
If ALS.SILS is set, the local loop is activated after an activation In-Band loop code (see ANSI T1 404, chapter  
9.4.1.1.) was detected from the system side. The local loop is deactivated after a deactivation In-Band loop code  
(see ANSI T1 404, chapter 9.4.1.2.) was detected from the system side. (But if the local loop is additionally  
activated by LIM0.LL = ´1´ the local loop is still active, because automatic loop switching is logically OR´d with the  
appropriate loop switching by register bits.).  
ALS.SILS and ALS.LILS both must not be set to ´1´ simultaneous.  
If ALS.SILS or ALS.LILS are set after an In-Band loop code was detected, no automatic loop switching is  
performed.  
If ALS.LILS is cleared, an automatic activated remote loop is deactivated.  
If ALS.SILS is cleared, an automatic activated local loop is deactivated.  
The kind of detected In-Band loop codes is shown in the interrupt status register bits ISR6.(3:0).  
To avoid deadlocks in the QuadLIUTM an activation of the remote loop is not possible by In-band loop codes if the  
local loop (see Chapter 3.11.4) is closed (LIM0.LL is set).  
3.11.3  
Remote Loop  
In the remote loop-back mode the clock and data recovered from the line inputs RL1/2 or ROID are routed back  
to the line outputs XL1/2 or XOID through the analog or digital transmitter, see Figure 43 and Figure 38. As in  
normal mode they are also sent to the framer interface. The remote loop-back mode is activated by  
Control bit LIM1.RL or  
After detection of the appropriate In-band loop code, if enabled by ALS.LILS and if LIM0.LL = ´0´ (LIM0) (to  
avoid deadlocks), see Chapter 3.11.2.  
Received data can be looped with or without the jitter attenuator (JATT buffer) dependent on LIM1.JATT (LIM1).  
Clock &  
RL1/ROID  
Data  
Recovery  
DPLL  
Equalizer  
Decoder  
RDATA  
RL2  
Receive Line  
Interface  
JATT  
clocking  
Buffer  
Pulse  
XL1/XOID  
XL2  
Shaper,  
LBO  
Encoder  
XDATA  
DAC  
Transmit Line  
Interface  
QLIU_remote_loop  
Figure 43 Remote Loop  
Data Sheet  
112  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
3.11.4  
Local Loop  
The local loop-back is activated by  
The control bit LIM0.LL (LIM0).  
After detection of the appropriate In-band loop code, if enabled by ALS.SILS, see Chapter 3.11.2.  
The local loop-back mode disconnects the receive lines RL1/2 or ROID from the receiver. Instead of the signals  
coming from the line the data provided by the framer interface is routed through the analog receiver back to the  
framer interface. However, the bit stream is transmitted undisturbed on the line at XL1/2. However, an AIS to the  
distant end can be enabled by setting MR1.XAIS = ´1´ without influencing the data looped back to the framer  
interface.  
The signal codes for transmitter and receiver have to be identical.  
RDOP  
Clock &  
RL1/ROID  
RL2  
Data  
Dual Receive Elastic Buffer  
Equalizer  
Decoder  
RDON  
Recovery  
DPLL  
internal  
Receive Line  
Interface  
J
receive clock  
Local Loop  
RCLK  
D
A
DCO-R  
C
XL3  
Pulse  
Shaper,  
LBO  
XL1  
XL2  
XDIP  
XDIN  
Dual Transmit Elastic Buffer  
Encoder  
DAC  
XL4  
Transmit Line  
Interface  
internal  
transmit  
clock  
recovered  
receive clock  
E
DCO-X  
G
FCLKX  
TCLK  
F
H
%
QLIU_local_loop  
Figure 44 Local Loop  
3.11.5  
Payload Loop-Back  
The payload loop-back is activated by setting MR2.PLB (MR2).  
During activated payload loop-back the data stream is looped from the receiver section back to transmitter section.  
The looped data passes the complete receiver including the wander and jitter compensation in the receive elastic  
buffer and is output on pin RDO. Instead of the data an AIS signal (MR2.SAIS) can be sent to the framer interface.  
If the PLB is enabled the transmitter and the data on pins XL1/2 or XDOP/XDON are clocked with FCLKR instead  
of FCLKX. All the received data is processed normally.  
Data Sheet  
113  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
RDOP  
Clock &  
Data  
Dual Receive Elastic Buffer  
Equalizer  
Decoder  
RDON  
RL1/ROID  
RL2  
Recovery  
DPLL  
FCLKR  
internal  
receive  
clock  
Receive Line  
Interface  
J
RCLK  
D
A
DCO-R  
C
Payload Loop  
XL3  
Pulse  
XL1  
XL2  
XDIP  
Shaper,  
LBO  
Dual Transmit Elastic Buffer  
Encoder  
DAC  
XDIN  
XL4  
Transmit Line  
Interface  
internal  
transmit  
clock  
recovered  
receive clock  
E
DCO-X  
G
FCLKX  
TCLK  
F
H
%
QLIU_payload_loop  
Figure 45 Payload Loop  
3.11.6  
Alarm Simulation  
Alarm simulation does not affect the normal operation of the device. However, possible real alarm conditions are  
not reported to the micro controller or to the remote end when the device is in the alarm simulation mode.  
The alarm simulation and setting of the appropriate status bists is initiated by setting the bit MR0.SIM. For details  
(differences between E1 and T1/J1 mode) see description in MR0. The following alarms are simulated:  
Loss-Of-Signal (LOS)  
Alarm Indication Signal (AIS)  
Code violation counter (HDB3 Code)  
Error counting and indication occurs while this bit is set. After it is reset all simulated error conditions disappear,  
but the generated interrupt statuses are still pending until the corresponding interrupt status register is read.  
Alarms like AIS and LOS are cleared automatically. Interrupt status registers and error counters are automatically  
cleared on read.  
3.12  
Multi Function Ports  
Several signals are available on the multi function ports, see Table 34 and PC1. After reset, no function is selected  
(´0000b´).  
Four multi function ports (MFP) for RX - so called as RPA, RPB, RPC, RPC - and four MFPs for TX - XPA to XPD  
- are implemented for every channel. The port levels are reflected in the appropriate bits of the register MFPI, see  
MFPID  
The functions of RPA, RPB, RPC and RPC are configured by PC1.RPC1(3:0) , PC2.RPC2(3:0), PC3.RPC2(3:0)  
and PC4.RPC3(3:0) respectively. The functions of XPA to XPD are configured by PC1.XPC1(3:0) to  
PC4.XPC2(3:0) respectively.  
The actual logical state of the 8 multifunction ports can be read out using the register MFPI. This function together  
with static output signal options in Table 34 offers general purpose I/O functionality on unused multi function port  
pins.  
If a port is configured as GPOH or GPOL the port level is set fix to high or low-level respectively.  
Data Sheet  
114  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Functional Description  
Each of the input functions may only be selected once in a channel except for the GPI functionality. No input  
function must be selected twice or more.  
Table 34  
Multi Function Port Selection  
Selection  
RFP Signal Available RFP Function  
on port  
XFP Signal Available XFP Function  
on port  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RLT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TCLK  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A, B, C, D Transmit clock input  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
XCLK  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A, B, C, D Transmit clock output  
A, B, C, D Receive line  
XLT  
A, B, C, D Transmit line tristate  
control, high active  
termination; logically  
OR´d with  
LIM0.RTRS  
1001  
1010  
1011  
1100  
1101  
GPI  
A, B, C, D General purpose  
input  
GPI  
A, B, C, D General purpose  
input  
GPOH  
GPOL  
LOS  
A, B, C, D General purpose  
output high  
GPOH  
GPOL  
Reserved  
XDIN  
A, B, C, D General purpose  
output high  
A, B, C, D General purpose  
output low  
A, B, C, D General purpose  
output low  
A, B, C, D Loss of signal  
indication output  
A, B, C, D Reserved  
RTDMT  
A, B, C, D Receive framer  
interface tristate for  
pins RDOP and  
A, B, C, D Transmit data  
negative input  
RCLK; logically OR´d  
with DIC3.RRTRI  
1110  
1111  
RDON  
RCLK  
A, B, C, D Receive data  
negative output or  
bipolar violation  
output  
XLT  
A, B, C, D Transmit line tristate  
control, low active  
A, B, C, D RCLK output  
Reserved  
Reserved  
Data Sheet  
115  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
4
Register Description  
To maintain easy readability this chapter is divided into separate control register and status register sections.  
The higher address part of all global registers is ´00H´, that of the port (channel) specific ones include the channel  
number 0 to 3 and is marked in the following tables with ´xxH´. So ´xxH´ has the values ´00H´ up to ´03H´.  
Note:RES” in the register schematics means reserved, not reset. If these bits are written then the value must be  
´0´.  
Note:In all bit fields used in the register schematics and also in the table descriptions the most significant bit is the  
left one and the least significant bit is the right one. Sometimes in the text a bit field with the name  
“bitfieldname” is denoted as <bitfieldname>(MSB:LSB). For example: In register GPC2 the bit field FSS  
consists on MDS(2:0).  
4.1  
Detailed Control Register Description  
Table 35  
Registers Overview  
Register Short Name  
IPC  
GCR  
GPC1  
GPC2  
GCM1  
GCM2  
GCM3  
GCM4  
GCM5  
GCM6  
GCM7  
GCM8  
GIMR  
Register Long Name  
Offset Address Page Number  
Interrupt Port Configuration  
Global Configuration Register  
Global Port Configuration 1  
Global Port Configuration Register 2  
Global Clock Mode Register 1  
Global Clock Mode Register 2  
Global Clock Mode Register 3  
Global Clock Mode Register 4  
Global Clock Mode Register 5  
Global Clock Mode Register 6  
Global Clock Mode Register 7  
Global Clock Mode Register 7  
Global Interrupt Mask Register  
Register Field Pointer  
0008H  
0046H  
0085H  
008AH  
0092H  
0093H  
0094H  
0095H  
0096H  
0097H  
0098H  
0099H  
00A7H  
00BBH  
00BCH  
00D3H  
00D4H  
00D5H  
00D6H  
00D7H  
xx02H  
xx15H  
xx16H  
xx17H  
xx18H  
xx1AH  
121  
158  
164  
166  
167  
168  
170  
171  
172  
173  
175  
176  
177  
179  
180  
183  
184  
185  
186  
187  
120  
122  
122  
122  
122  
122  
REGFP  
REGFD  
GPC3  
GPC4  
GPC5  
Register Field Data  
Global Port Configuration Register 3  
Global Port Configuration Register 4  
Global Port Configuration Register 5  
Global Port Configuration Register 6  
In-Band Loop Detection Time Register  
Command Register  
Interrupt Mask Register 1  
Interrupt Mask Register 2  
Interrupt Mask Register 3  
Interrupt Mask Register 4  
GPC6  
INBLDTR  
CMDR  
IMR1  
IMR2  
IMR3  
IMR4  
IMR6  
Interrupt Mask Register 6  
Data Sheet  
116  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Table 35  
Registers Overview (cont’d)  
Register Short Name  
MR0  
MR1  
MR2  
LOOP  
MR4  
Register Long Name  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Loop-Back Register  
Mode Register 4  
Framer Mode Register 5  
Receive Control 0  
Transmit Pulse Mask0  
Transmit Pulse Mask1  
Transmit Pulse Mask2  
Clear Channel Register 1  
Clear Channel Register 2  
Mode Register 3  
Clear Channel Register 3  
Line Interface Mode 0  
Line Interface Mode 1  
Pulse Count Detection Register  
Pulse Count Recovery  
Line Interface Mode 2  
Loop Code Register 1  
Loop Code Register 2  
Loop Code Register 3  
Digital Interface Control 1  
Digital Interface Control 2  
Digital Interface Control 3  
Clock Mode Register 4  
Clock Mode Register 5  
Clock Mode Register 6  
Clock Mode Register 1  
Clock Mode Register 2  
Clock Mode Register 3  
Port Configuration 1  
Offset Address Page Number  
xx1CH  
xx1DH  
xx1EH  
xx1FH  
xx20H  
xx21H  
xx24H  
xx26H  
xx27H  
xx28H  
xx2FH  
xx30H  
xx31H  
xx31H  
xx36H  
xx37H  
xx38H  
xx39H  
xx3AH  
xx3BH  
xx3CH  
xx3DH  
xx3EH  
xx3FH  
xx40H  
xx41H  
xx42H  
xx43H  
xx44H  
xx45H  
xx48H  
xx80H  
xx81H  
xx82H  
xx83H  
xx84H  
xx86H  
xxA8H  
xxBDH  
xxC1H  
xxC2H  
124  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
135  
136  
135  
137  
139  
140  
141  
142  
143  
145  
146  
147  
148  
149  
151  
152  
153  
155  
156  
159  
160  
162  
162  
162  
163  
165  
178  
181  
182  
182  
MR5  
RC0  
XPM0  
XPM1  
XPM2  
CCB1  
CCB2  
MR3  
CCB3  
LIM0  
LIM1  
PCD  
PCR  
LIM2  
LCR1  
LCR2  
LCR3  
DIC1  
DIC2  
DIC3  
CMR4  
CMR5  
CMR6  
CMR1  
CMR2  
CMR3  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
TPC0  
BFR  
TXP1  
TXP2  
Port Configuration Register 2  
Port Configuration Register 3  
Port Configuration Register 4  
Port Configuration 5  
Port Configuration 6  
Test Pattern Control Register 0  
Bugfix Register  
TX Pulse Template Register 1  
TX Pulse Template Register 2  
Data Sheet  
117  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Table 35  
Registers Overview (cont’d)  
Register Short Name  
TXP3  
TXP4  
TXP5  
TXP6  
TXP7  
TXP8  
TXP9  
TXP10  
TXP11  
TXP12  
TXP13  
TXP14  
TXP15  
TXP16  
ALS  
Register Long Name  
Offset Address Page Number  
TX Pulse Template Register 3  
TX Pulse Template Register 4  
TX Pulse Template Register 5  
TX Pulse Template Register 6  
TX Pulse Template Register 7  
TX Pulse Template Register 8  
TX Pulse Template Register 9  
TX Pulse Template Register 10  
TX Pulse Template Register 11  
TX Pulse Template Register 12  
TX Pulse Template Register 13  
TX Pulse Template Register 14  
TX Pulse Template Register 15  
TX Pulse Template Register 16  
Automatic Loop Switching Register  
Interrupt Mask Register 7  
xxC3H  
xxC4H  
xxC5H  
xxC6H  
xxC7H  
xxC8H  
xxC9H  
xxCAH  
xxCBH  
xxCCH  
xxCDH  
xxCEH  
xxCFH  
xxD0H  
xxD9H  
xxDFH  
xxE2H  
xxE8H  
182  
182  
182  
182  
182  
182  
182  
182  
182  
182  
182  
182  
182  
182  
188  
122  
189  
190  
IMR7  
LIM3  
WCON  
LIU Mode Register 3  
Wander Configuration Register  
The register is addressed wordwise.  
Data Sheet  
118  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Table 36  
Mode  
Basic Access Types  
Registers Access Types  
Symbol Description Hardware (HW)  
Description Software (SW)  
Register is read and writable by SW  
read/write  
rw  
Register is used as input for the HW  
read/write  
virtual  
rwv  
Physically, there is no new register in Register is read and writable by SW (same  
the generated register file. The real  
readable and writable register resides  
in the attached hardware.  
as rw type register)  
read  
r
Register is written by HW (register  
Value written by SW is ignored by HW; that  
between input and output -> one cycle is, SW may write any value to this field  
delay)  
Same as r type register  
Physically, there is no new register in Value written by SW is ignored by HW; that  
without affecting HW behavior  
Same as r type register  
read only  
read virtual  
ro  
rv  
the generated register file. The real  
readable register resides in the  
attached hardware.  
is, SW may write any value to this field  
without affecting HW behavior (same as r  
type register)  
write  
w
Register is written by software and  
affects hardware behavior with every  
write by software.  
Register is writable by SW. When read, the  
register does not return the value that has  
been written previously, but some constant  
value instead.  
write virtual  
wv  
rwh  
Physically, there is no new register in Register is writable by SW (same as w type  
the generated register file. The real  
writable register resides in the attached  
hardware.  
register)  
read/write  
hardware  
affected  
Register can be modified by hardware Register can be modified by HW and SW,  
and software at the same time. A but the priority SW versus HW has to be  
priority scheme decides, how the value specified.  
changes with simultaneous writes by  
hardware and software.  
SW can read the register.  
Special Access Types  
Latch high,  
self clearing  
lhsc  
Latch high signal at high level, clear on SW can read the register  
read  
Latch low,  
self clearing  
llsc  
Latch high signal at low-level, clear on SW can read the register  
read  
Latch high,  
lhmk  
llmk  
ihsc  
ilsc  
Latch high signal at high level, register SW can read the register, with write mask  
mask clearing  
cleared with written mask  
the register can be cleared (1 clears)  
Latch low,  
mask clearing  
Interrupt high,  
self clearing  
Interrupt low,  
self clearing  
Latch high signal at low-level, register SW can read the register, with write mask  
cleared on read  
Differentiate the input signal (low-  
>high) register cleared on read  
the register can be cleared (1 clears)  
SW can read the register  
Differentiate the input signal (high-  
>low) register cleared on read  
SW can read the register  
Interrupt high,  
mask clearing  
Interrupt low,  
mask clearing  
ihmk  
ilmk  
Differentiate the input signal (high-  
SW can read the register, with write mask  
>low) register cleared with written mask the register can be cleared  
Differentiate the input signal (low-  
>high) register cleared with written  
mask  
SW can read the register, with write mask  
the register can be cleared  
Data Sheet  
119  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionCommand Register  
Table 36  
Mode  
Registers Access Types (cont’d)  
Symbol Description Hardware (HW)  
Description Software (SW)  
Interrupt enable ien  
register  
Enables the interrupt source for  
interrupt generation  
SW can read and write this register  
latch_on_reset lor  
rw register, value is latched after first  
clock cycle after reset  
Register is read and writable by SW  
Read/write  
self clearing  
rwsc  
Register is used as input for the HW,  
Writing to the register generates a strobe  
the register will be cleared due to a HW signal for the HW (1 pdi clock cycle)  
mechanism.  
Register is read and writable by SW.  
4.1.1  
Control Registers  
Command Register  
CMDR  
Command Register  
Offset  
xx02H  
Reset Value  
00H  
;5(6  
Z
5HV  
55(6  
5HV  
5HV  
Z
Field  
Bits  
Type  
Description  
RRES  
6
w
Receiver Reset  
The receive line interface except the clock and data recovery unit (DPLL)  
is reset. However the contents of the control registers is not deleted.  
A receiver reset should be made after switching from power down to  
power up (GCR.PD = ´1´ -> ´0´).  
XRES  
4
w
Transmitter Reset  
The transmit framer and transmit line interface excluding the system  
clock generator and the pulse shaper are reset. However the contents of  
the control registers is not deleted.  
Data Sheet  
120  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Port Configuration  
Interrupt Port Configuration  
See Chapter 3.5.3 and Table 10.  
Note:Unused bits have to be cleared.  
IPC  
Offset  
0008H  
Reset Value  
00H  
Interrupt Port Configuration  
9,63//  
UZ  
5HV  
66<)  
UZ  
,&  
UZ  
Field  
Bits  
Type  
Description  
VISPLL  
7
rw  
Masked PLL Interrupts Visible  
See also Chapter 3.5.3  
0B  
1B  
Masked interrupt status bits PLLLC and PLLIC are not visible in  
register GIS2.  
Masked interrupt status bits PLLLC and PLLIC are visible in GIS2,  
but they are not visible in registers GIS.  
SSYF  
IC  
2
rw  
rw  
Select SYNC Frequency  
Only applicable in master mode (LIM0.MAS = ´1´) and bit CMR2.DCF is  
cleared, see also Table 9.  
0B  
1B  
Reference clock on port SYNC is 2.048 MHz  
Reference clock on port SYNC is 8 kHz  
1:0  
Interrupt Port Configuration  
These bits define the function of the interrupt output pin INT.  
X0B Open drain output  
01B Push/pull output, active low  
11B Push/pull output, active high  
Data Sheet  
121  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Mask Register 1  
Interrupt Mask Register 1  
Each interrupt source can generate an interrupt signal on port INT (characteristics of the output stage are defined  
by register IPC). A “1” in a bit position of IMR(1:4), IMR(6:7) sets the mask active for the interrupt status in ISR(1:4),  
ISR(6:7). Masked interrupt statuses neither generate a signal on INT, nor are they visible in register GIS.  
Moreover, they are- not displayed in the interrupt status register if bit GCR.VIS is cleared- displayed in the interrupt  
status register if bit GCR.VIS is set, see Chapter 3.5.3.  
Note:After reset, all interrupts are disabled.  
IMR1  
Offset  
xx15H  
Reset Value  
FFH  
Interrupt Mask Register 1  
//%6&  
UZ  
5HV  
;/6&  
UZ  
5HV  
Field  
LLBSC  
Bits  
7
Type  
rw  
Description  
Interrupt Mask Bit LLBSC  
Each interrupt source can generate an interrupt signal on port INT.  
Characteristics of the output stage are defined by register IPC. A ´1´ in a  
bit position of IMR(7:0) sets the mask active for the interrupt status in the  
registers ISR. Mask interrupt statuses neither generate a signal on INT,  
not are they visible in register GIS. Moreover they are not displayed in the  
interrupt status register if bit GCR.VIS is cleared; they are displayed in the  
interrupt status register if bit GCR.VIS is set.  
The bit IMR1.LLBSC is only valid in E1 mode. For T1/J1 mode the  
equivalent bit is in IMR3.LLBSC.  
XLSC  
1
rw  
Interrupt Mask Bit XLSC  
The other Interrupt Mask Registers have the same description.  
The Offset Addresses are listed in IMRn Overview, for bit names and layout refer to Interrupt Mask Registers.  
Table 37  
IMRn Overview  
Register Short Name  
Register Long Name  
Offset Address Page Number  
IMR2  
IMR3  
IMR4  
IMR6  
IMR7  
Interrupt Mask Register 2  
Interrupt Mask Register 3  
Interrupt Mask Register 4  
Interrupt Mask Register 6  
Interrupt Mask Register 7  
xx16H  
xx17H  
xx18H  
xx1AH  
xxDFH  
Table 38  
bit number  
IMR1  
Interrupt Mask Registers  
7
6
5
4
3
2
1
0
LLBSC  
(E1 only)  
XLSC  
Data Sheet  
122  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Table 38  
IMR2  
IMR3  
Interrupt Mask Registers (cont’d)  
AIS  
LOS  
LTC  
SEC  
LLBSC  
(T1/J1  
only)  
RSN  
RSP  
IMR4  
IMR6  
IMR7  
XSP  
XSN  
LILSU  
LILSD  
XCLKSS1 XCLKSS0  
Data Sheet  
123  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 0  
Mode Register 0  
MR0  
Mode Register 0  
Offset  
xx1CH  
Reset Value  
00H  
;&  
UZ  
5&  
(;=(  
UZ  
$/0  
UZ  
5HV  
6,0  
UZ  
UZ  
Field  
XC  
Bits  
Type  
Description  
Transmit Code  
Serial line code for the transmitter, independent of the receiver.  
After changing XC(1:0), a transmitter software reset is required  
(CMDR.XRES = 1). See Chapter 3.9.1.  
00B reserved  
01B CMI (1T2B+HDB3), (optical interface)  
10B AMI (ternary or digital dual-rail interface)  
11B HDB3 Code in E1 or B8ZS code in T1/J1 mode (ternary or digital  
dual-rail interface)  
Receive Code  
Serial line code for the receiver, independent of the transmitter.  
After changing RC(1:0), a receiver software reset is required  
(CMDR.RRES = ´1´). See Chapter 3.7.2.  
00B reserved  
01B CMI (1T2B+HDB3), (optical interface)  
10B AMI (ternary or digital dual-rail interface)  
11B HDB3 Code in E1 or B8ZS code in T1/J1 mode (ternary or digital  
dual-rail interface)  
7:6  
5:4  
3
rw  
rw  
rw  
RC  
EXZE  
Extended HDB3 Error Detection, E1 only  
Selects error detection mode in E1 mode. In T1/J1 mode this bit is  
reserved.  
0B  
1B  
Only double violations are detected.  
Extended code violation detection: 0000 strings are detected  
additionally. Incrementing of the code violation counter CVC is  
done after receiving four zeros. Errors are indicated by LSR1.EXZD  
= ´1´.  
Data Sheet  
124  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 0  
Field  
Bits  
Type  
Description  
ALM  
2
rw  
Alarm Mode, E1 only  
Selects the AIS alarm detection mode in E1 mode. In T1/J1 mode this bit  
is reserved.  
0B  
The AIS alarm is detected according to ETS300233. Detection: An  
AIS alarm is detected if the incoming data stream contains less than  
3 zeros within a period of 512 bits and a loss of frame alignment is  
indicated. Recovery: The alarm is cleared if 3 or more zeros within  
512 bits are detected or the FAS word is found.  
1B  
The AIS alarm is detected according to ITU-T G.775 Detection: An  
AIS alarm is detected if the incoming data stream contains less than  
3 zeros in each doubleframe period of two consecutive  
doubleframe periods (1024 bits). Recovery: The alarm is cleared if  
3 or more zeros are detected within two consecutive doubleframe  
periods.  
SIM  
0
rw  
Alarm Simulation, in E1 mode  
SIM has to be held stable at high or low level for at least one receive clock  
period before changing it again.  
0B  
1B  
Normal operation.  
Initiates internal error simulation of AIS, loss-of-signal and code  
violations.  
Alarm Simulation, in T1/J1 mode  
Setting/resetting of SIM initiates internal error simulation of AIS (blue  
alarm), loss-of-signal (red alarm) and code violations. The error counter  
CVC is incremented.The selection of simulated alarms is done by the  
error simulation counter: LSR2.ESC(2:0) which is incremented with each  
setting of bit SIM. For complete checking of the alarm indications eight  
simulation steps are necessary (LSR2.ESC(2:0) = ´0´ after a complete  
simulation).  
SIM has to be held stable at high or low level for at least one receive clock  
period before changing it again.  
Data Sheet  
125  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 1  
Mode Register 1  
MR1  
Mode Register 1  
Offset  
xx1DH  
Reset Value  
00H  
302'  
UZ  
5HV  
5HV  
;$,6  
UZ  
Field  
PMOD  
Bits  
4
Type  
rw  
Description  
PCM Mode  
This bit decides between E1 and T1/J1 mode. Switching from E1 to T1 or  
vice versa the device needs up to 20 µs to settle up to the internal  
clocking.  
0B  
1B  
PCM 30 or E1 mode.  
PCM 24 or T1/J1 mode .  
XAIS  
0
rw  
Transmit AIS Towards Remote End  
Sends AIS on ports XL1, XL2, XOID towards the remote end. The  
outgoing data stream which can be looped back through the local loop to  
the system interface is not affected.  
Data Sheet  
126  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 2  
Mode Register 2  
MR2  
Mode Register 2  
Offset  
xx1EH  
Reset Value  
00H  
5HV  
570  
UZ  
'$,6  
UZ  
5HV  
3/%  
UZ  
5HV  
Field  
Bits  
Type  
Description  
RTM  
5
rw  
Receive Transparent Mode, E1 only  
For E1 mode this bit must be set to ´1´ for proper operation.  
0B  
1B  
reserved  
DAIS  
PLB  
4
rw  
Disable AIS to Framer Interface  
This bit must be set to ´1´ for proper operation.  
0B  
1B  
AIS is automatically inserted into the data stream to RDO if  
QuadLIUTM is in asynchronous state.  
Automatic AIS insertion is disabled. Furthermore, AIS insertion can  
be initiated by programming bit MR2.SAIS.  
2
rw  
Payload Loop-Back  
See Chapter 3.11.5.  
0B  
1B  
Normal operation. Payload loop is disabled.  
The payload loop-back loops the data stream from the receiver  
section back to transmitter section. Looped data is output on pin  
RDO. Data received on port XDI, XSIG, SYPX and XMFS is  
ignored.  
Data Sheet  
127  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLoop-Back Register  
Loop-Back Register  
LOOP  
Loop-Back Register  
Offset  
xx1FH  
Reset Value  
00H  
5HV  
570  
UZ  
5HV  
Field  
RTM  
Bits  
6
Type  
rw  
Description  
Receive Transparent Mode, T1 only  
For T1/J1 mode this bit must be set to ´1´ for proper operation.  
0B  
1B  
reserved  
Data Sheet  
128  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 4  
Mode Register 4  
MR4  
Mode Register 4  
Offset  
xx20H  
Reset Value  
00H  
5HV  
70  
UZ  
5HV  
Field  
TM  
Bits  
6
Type  
rw  
Description  
Transparent Mode, T1 only  
For T1/J1 mode this bit must be set to ´1´ for proper operation.  
0B  
1B  
reserved  
Data Sheet  
129  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 5  
Mode Register 5  
MR5  
Offset  
xx21H  
Reset Value  
00H  
Framer Mode Register 5  
;/'B77ꢀ  
UZ  
5HV  
;/8  
UZ  
5HV  
;70  
UZ  
5HV  
Field  
XLD_TT0  
Bits  
Type  
rw  
Description  
5
4
2
XLD, Transmit Line Loop-Back (LLB) Down Code, T1/J1 only  
The equivalent bit in E1 mode is MR3.XLD.  
0B  
1B  
Normal operation.  
A one in this bit position causes the transmitter to replace normal  
transmit data with the LLB down (deactivate) Code continuously  
until this bit is reset. The LLB down code is overwritten by the  
framing/DL/CRC bits optionally.  
TT0, Transmit Transparent Mode, E1 only  
For proper operation this bit must be set to ´1´ in E1 mode.  
XLU  
rw  
rw  
Transmit LLB Up Code, T1/J1 only  
This bit is not valid in E1 mode. The equivalent bit in E1 mode is  
MR3.XLU.  
0B  
1B  
Normal operation.  
A one in this bit position causes the transmitter to replace normal  
transmit data with the LLB up (activate) code continuously until this  
bit is reset. The LLB up code is optionally overwritten by the  
framing/DL/CRC bits. For proper operation bit MR5.XLD must be  
cleared.  
XTM  
Transmit Transparent Mode  
For proper operation this bit must be set to ´1´.  
Data Sheet  
130  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionReceive Control 0  
Receive Control 0  
RC0  
Offset  
xx24H  
Reset Value  
00H  
Receive Control 0  
5HV  
5',6  
UZ  
5HV  
Field  
RDIS  
Bits  
3
Type  
rw  
Description  
Receive Data Input Sense  
Configures the input polarity of the digital receive inputs.  
0B  
1B  
in dual rail mode RDI, RDIN are active low, in DCIM mode ROID is  
active high.  
in dual rail mode RDI, RDIN are active high, in DCIM mode ROID  
is active low.  
Data Sheet  
131  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionTransmit Pulse Mask 0  
Transmit Pulse Mask 0  
See Chapter 3.9.6.1 and Chapter 3.9.6.2. The transmit pulse shape which is defined in ITU-T G.703 is output on  
pins XL1 and XL2. The level of the pulse shape can be programmed by registers XPM(2:0) if XPM2.XPDIS is set  
to ´0´ to create a custom waveform. If XPM2.XPDIS is set to ´1´, the custom waveform can be programed by the  
registers TXP(16:1) and the register bits of XPM(2:0) are unused with exception of the bits XPM2.XLT,  
XPM2.DAXLT and XPM2.XPDIS. In order to get an optimized pulse shape for the external transformers each  
pulse shape is internally divided into four sub pulse shapes if XPM2.XPDIS is set to ´0´. In each sub pulse shape  
a programmed 5-bit value defines the level of the analog voltage on pins XL1/2. Together four 5-bit values have  
to be programmed to form one complete transmit pulse shape. The four 5-bit values are sent in the following  
sequence:  
XP04 to 00: First pulse shape level  
XP14 to 10: Second pulse shape level  
XP24 to 20: Third pulse shape level  
XP34 to 30: Fourth pulse shape level  
Changing the LSB of each subpulse in registers XPM(2:0) changes the amplitude of the differential voltage on  
XL1/2 by approximately 80 mV. Recommended values for standard applications are given in Table 22 and  
Table 23.  
Note that in the special cases were the LBO pulse masks are performed in T1 mode, the programming of the pulse  
masks is done internally, independent on the settings in XPM(2:0).  
XPM0  
Transmit Pulse Mask0  
Offset  
xx26H  
Reset Value  
7BH  
;3ꢀꢁ  
UZ  
;3ꢀꢀ  
UZ  
;3ꢀꢂ  
UZ  
;3ꢂꢃ  
UZ  
;3ꢂꢄ  
UZ  
;3ꢂꢁ  
UZ  
;3ꢂꢀ  
UZ  
;3ꢂꢂ  
UZ  
Field  
Bits  
Type  
Description  
XP12  
XP11  
XP10  
XP04  
XP03  
XP02  
XP01  
XP00  
7
6
5
4
3
2
1
0
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Bit 2 of second pulse shape level  
Bit 1 of second pulse shape level  
Bit 0 (LSB) of second pulse shape level  
Bit 4 (MSB) of first pulse shape level  
Bit 3 of first pulse shape level  
Bit 2 of first pulse shape level  
Bit 1 of first pulse shape level  
Bit 0 (LSB) of first pulse shape level  
Data Sheet  
132  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionTransmit Pulse Mask 1  
Transmit Pulse Mask 1  
For description see Transmit Pulse Mask 0  
XPM1  
Transmit Pulse Mask1  
Offset  
xx27H  
Reset Value  
03H  
;3ꢀꢁ  
UZ  
;3ꢂꢃ  
UZ  
;3ꢂꢀ  
UZ  
;3ꢂꢂ  
UZ  
;3ꢂꢄ  
UZ  
;3ꢂꢁ  
UZ  
;3ꢄꢃ  
UZ  
;3ꢄꢀ  
UZ  
Field  
Bits  
Type  
Description  
XP30  
XP24  
XP23  
XP22  
XP21  
XP20  
XP14  
XP13  
7
6
5
4
3
2
1
0
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Bit 0 (LSB) of fourth pulse shape level  
Bit 4 (MSB) of third pulse shape level  
Bit 3 of third pulse shape level  
Bit 2 of third pulse shape level  
Bit 1of third pulse shape level  
Bit 0 (LSB) of third pulse shape level  
Bit 4 (MSB) of second pulse shape level  
Bit 3 of second pulse shape level  
Data Sheet  
133  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionTransmit Pulse Mask 2  
Transmit Pulse Mask 2  
For description see Transmit Pulse Mask 0  
XPM2  
Transmit Pulse Mask2  
Offset  
xx28H  
Reset Value  
40H  
U
'$;/7  
UZ  
;3',6  
UZ  
;/7  
UZ  
;3ꢁꢂ  
UZ  
;3ꢁꢁ  
UZ  
;3ꢁꢃ  
UZ  
;3ꢁꢄ  
UZ  
Field  
0
Bits  
7
Type  
r
Description  
Always ´0´  
XLT  
6
rw  
Transmit Line Tristate  
See also Chapter 3.9.1.  
0B  
1B  
Normal operation  
Transmit line XL1 and XL2 are switched into high-impedance state.  
If this bit is set the transmit line monitor status information is frozen  
(default value after hardware reset).  
DAXLT  
5
rw  
Disable Automatic Tristating of XL1/2  
See Chapter 3.9.7.  
0B  
1B  
Normal operation. If a short is detected on pins XL1/2 the transmit  
line monitor sets the XL1/2 outputs into a high-impedance state.  
If a short is detected on XL1/2 pins automatic setting these pins into  
a high-impedance (by the XL-monitor) state is disabled.  
XPDIS  
XP34  
4
3
rw  
rw  
Disable XPM Values  
See Chapter 3.9.6.  
0B  
1B  
XP values from registers XPM(2:0) are used for pulse shaping.  
TXP values from registers TXP(16:1) are used for pulse shaping.  
Bit 4 (MSB) of second pulse shape level  
See Chapter 3.9.6.1.  
XP33  
XP32  
XP31  
2
1
0
rw  
rw  
rw  
Bit 3 of fourth pulse shape level  
Bit 2 of fourth pulse shape level  
Bit 1 of fourth pulse shape level  
Data Sheet  
134  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClear Channel Register 1  
Clear Channel Register 1  
The registers CCB(1:3) are only valid in T1/J1 mode.  
CCB1  
Offset  
xx2FH  
Reset Value  
00H  
Clear Channel Register 1  
&+ꢀ  
UZ  
&+ꢁ  
UZ  
&+ꢂ  
UZ  
&+ꢃ  
UZ  
&+ꢄ  
UZ  
&+ꢅ  
UZ  
&+ꢆ  
UZ  
&+ꢇ  
UZ  
Field  
Bits  
Type  
rw  
Description  
Channel Selection Bits  
If AMI code is selected, all bits must be set to ´1´ for proper operation.  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
7
6
5
4
3
2
1
0
0B  
1B  
Normal operation. Bit robbing information and zero code  
suppression (ZCS, B7 stuffing) can change contents of the selected  
speech/data channel if assigned modes are enabled by bits  
MR5.EIBR and MR0.XC(1:0).  
Clear channel mode. Contents of selected speech/data channel  
are not overwritten by internal or external bit robbing and ZCS  
information. Transmission of channel assigned signaling and  
control of pulse-density is applied by the user.  
Registers CCB2 and CCB3 have the same description.  
The Offset Addresses are listed in CCBn Overview, for layout and bit names refer to Clear Channel Registers  
Table 39  
CCBn Overview  
Register Short Name  
Register Long Name  
Offset Address Page Number  
CCB2  
CCB3  
Clear Channel Register 2  
Clear Channel Register 3  
xx30H  
xx31H  
Table 40  
Clear Channel Registers  
7
6
5
4
3
2
1
0
CCB1  
CCB2  
CCB3  
CH1  
CH9  
CH17  
CH2  
CH10  
CH18  
CH3  
CH11  
CH19  
CH4  
CH12  
CH20  
CH5  
CH13  
CH21  
CH6  
CH14  
CH22  
CH7  
CH15  
CH23  
CH8  
CH16  
CH24  
Data Sheet  
135  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMode Register 3  
Mode Register 3  
Only valid in E1 mode.  
MR3  
Mode Register 3  
Offset  
xx31H  
Reset Value  
00H  
5HV  
;/'  
UZ  
;/8  
UZ  
&0,  
UZ  
5HV  
Field  
Bits  
Type  
Description  
XLD  
5
rw  
Transmit LLB Down Code, E1 only  
This bit is not valid in T1/J1 mode. In T1/J1 mode the bis MR5.XLD is  
used instead.  
0B  
1B  
Normal operation.  
A one in this bit position causes the transmitter to replace normal  
transmit data with the LLB down (deactivate) Code continuously  
until this bit is reset. The LLB down Code is optionally overwritten  
by the time slot 0 depending on bit LCR1.FLLB.  
XLU  
CMI  
4
rw  
Transmit LLB UP Code, E1 only  
This bit is not valid in T1/J1 mode. In T1/J1 mode the bit MR5.XLU is used  
instead.  
0B  
1B  
Normal operation.  
A one in this bit position causes the transmitter to replace normal  
transmit data with the LLB UP Code continuously until this bit is  
reset. The LLB UP Code is overwritten by the time slot 0 depending  
on bit LCR1.FLLB. For proper operation bit MR3.XLD must be  
cleared.  
3
rw  
Select CMI Precoding, E1 only  
This bit is not valid in T1/J1 mode. In T1/J1 mode the similar bit for B8ZS  
precoding is DIC3.CMI.  
In E1 mode only valid if CMI code (MR0.XC(1:0) = ´01b´) is selected. This  
bit defines the CMI precoding and influences transmit and receive data.  
Note: Before local loop is selected, HDB3 precoding has to be disabled.  
0B  
1B  
CMI with HDB3 precoding  
CMI without HDB3 precoding  
Data Sheet  
136  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Interface Mode 0  
Line Interface Mode 0  
LIM0  
Offset  
xx36H  
Reset Value  
00H  
Line Interface Mode 0  
;'26  
UZ  
;)%  
UZ  
5756  
UZ  
'&,0  
UZ  
5HV  
5/0  
UZ  
//  
UZ  
0$6  
UZ  
Field  
Bits  
Type  
Description  
XFB  
7
rw  
Transmit Full Bauded Mode  
Only applicable for dual-rail mode (bit LIM1.DRS = ´1´).  
Note: If CMI coding is selected (MR0.XC(1:0) = ´01b´) this bit has to be  
cleared.  
0B  
1B  
Output signals XDO/XDON are half bauded.  
Output signals XDO/XDON are full bauded.  
XDOS  
6
rw  
Transmit Data Out Sense  
Note: If CMI coding is selected (MR0.XC(1:0) = ´01b´) this bit has to be  
cleared. The transmit frame marker XFM is independent of this bit.  
0B  
Output signals XDO/XDON are active low. Output XOID is active  
high (normal operation).  
1B  
Output signals XDO/XDON are active high. Output XOID is active  
low.  
RTRS  
5
4
rw  
rw  
Receive Termination Resistance Selection  
This bit controls switching of the internal 300 resistance at the receive  
line interface, see also Chapter 3.7.3.  
Note: If the RLT functionality is selected at one of the multi function ports,  
the 300 resistance is switched off, independend from RTRS and  
the level at RLT. If RLT functionality is not configured at one of the  
multi function ports, the 300 switch is controlled only by RTRS.  
0B  
1B  
300 resistance is switched off.  
300 resistance is switched on.  
DCIM  
Digital Clock Interface Mode  
Note: DCO-X must be used in DCIM mode (CMR1.DXJA = ´0´).  
0B  
1B  
normal operation.  
enables the digital Clock Interface Mode (synchronization interface  
mode) according to ITU-T G.703, Section 13.  
A 2048/1544 kHz clock is expected on RL1/2. On XL1/2 a  
2048/1544 kHz output clock is driven. The transmit clock signal on  
XL1/2 is derived from the clock supplied on FCLKX  
(CMR1.DXSS = ´0´).  
Data Sheet  
137  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Interface Mode 0  
Field  
Bits  
Type  
Description  
RLM  
2
rw  
Receive Line Monitoring  
See Chapter 3.7.3.2.  
0B  
1B  
Normal receiver mode  
Receiver mode for receive line monitoring; the receiver sensitivity  
is increased to detect resistively attenuated signals of -20 dB (short-  
haul mode only)  
LL  
1
rw  
Local Loop  
See Chapter 3.11.4.  
0B  
1B  
Normal operation  
Local loop active. The local loop back mode disconnects the  
receive lines RL1/RL2 or ROID from the receiver. Instead of the  
signals coming from the line the data provided by system interface  
are routed through the analog receiver back to the system interface.  
The unipolar bit stream is transmitted undisturbed on the line.  
Receiver and transmitter coding must be identical. Operates in  
analog and digital line interface mode. In analog line interface mode  
data is transferred through the complete analog receiver.  
MAS  
0
rw  
Master Mode  
See also Table 24.  
0B  
1B  
Slave mode  
Master mode on. Setting this bit the DCO-R circuitry is frequency  
synchronized to the clock (2.048 MHz or 8 kHz, see IPC.SSYF)  
supplied by SYNC. If this pin is connected to VSS or VDD (or left  
open and pulled up to VDD internally) the DCO-R circuitry is  
centered and no receive jitter attenuation is performed (only if  
2.048 MHz clock is selected by resetting bit IPC.SSYF). The  
generated clocks are stable.  
Data Sheet  
138  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Interface Mode 1  
Line Interface Mode 1  
LIM1  
Offset  
xx37H  
Reset Value  
80H  
Line Interface Mode 1  
&/26  
UZ  
5,/ꢀ  
UZ  
5,/ꢁ  
UZ  
5,/ꢂ  
UZ  
5HV  
-$77  
UZ  
5/  
UZ  
'56  
UZ  
Field  
Bits  
Type  
Description  
CLOS  
7
rw  
Clear Data in Case of LOS  
0B  
Normal receiver mode, receive data stream is transferred normally  
in long-haul mode  
1B  
received data is cleared (driven to low level), as soon as LOS is  
detected  
RIL2  
RIL1  
RIL0  
6
5
4
rw  
rw  
rw  
Receive Input Threshold  
Only valid if analog line interface is selected (LIM1.DRS = ´0´).“No signal”  
is declared if the voltage between pins RL1 and RL2 drops below the  
limits programmed by bits RIL(2:0) and the received data stream has no  
transition for a period defined in the PCD register.  
See DC characteristics for detail.  
JATT  
2
rw  
Transmit Jitter Attenuator  
Note: JATT is only used to define the jitter attenuation during remote loop  
operation. Remote loop operation can be set by LIM1.RL Jitter  
attenuation during normal operation is not affected by JATT.  
0B  
Transmit jitter attenuator is disabled for remote Loop. Transmit  
data bypasses the remote loop jitter attenuator buffer.  
Jitter attenuator is active for remote loop. Received data from pins  
RL1/2 or ROID is sent "jitter-free" on ports XL1/2 or XOID. The de-  
jittered clock is generated by the DCO-X circuitry.  
1B  
RL  
1
0
rw  
rw  
Remote Loop  
Note: RL is logically OR´d with automatic loop switching by BOM  
messages.  
0B  
1B  
Normal operation.  
Remote Loop active.  
DRS  
Dual-Rail Select  
0B  
The ternary interface is selected. Ports RL1/2 and XL1/2 become  
analog in/outputs.  
1B  
The digital dual-rail interface is selected. Received data is latched  
on ports RDIP/RDIN while transmit data is output on pins  
XDOP/XDON.  
Data Sheet  
139  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPulse Count Detection Register  
Pulse Count Detection Register  
PCD  
Offset  
xx38H  
Reset Value  
00H  
Pulse Count Detection Register  
3&'  
UZ  
Field  
PCD  
Bits  
7:0  
Type  
rw  
Description  
Pulse Count Detection  
A LOS alarm is detected if the incoming data stream has no transitions  
for a programmable number T consecutive pulse positions. The number  
T is programmable by the PCD register and can be calculated as follows:  
T = 16 x (N+1); with 0 N 255.The maximum time is: 256 x 16 x 488 ns  
= 2 ms. Every detected pulse resets the internal pulse counter. The  
counter is clocked with the receive clock RCLK.  
Data Sheet  
140  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPulse Count Recovery  
Pulse Count Recovery  
PCR  
Offset  
xx39H  
Reset Value  
00H  
Pulse Count Recovery  
3&5  
UZ  
Field  
PCR  
Bits  
7:0  
Type  
rw  
Description  
Pulse Count Recovery  
A LOS alarm is cleared if a pulse-density is detected in the received bit  
stream. The number of pulses M which must occur in the predefined PCD  
time interval is programmable by the PCR register and can be calculated  
as follows: M = N+1; with 0 N 255.The time interval starts with the first  
detected pulse transition. With every received pulse a counter is  
incremented and the actual counter is compared to the contents of PCR  
register. If the pulse number is higher or equal to the PCR value the LOS  
alarm is reset otherwise the alarm stays active. In this case the next  
detected pulse transition starts a new time interval.  
Data Sheet  
141  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Interface Mode 2  
Line Interface Mode 2  
LIM2  
Offset  
xx3AH  
Reset Value  
20H  
Line Interface Mode 2  
03$6  
UZ  
5HV  
6/7ꢀ  
UZ  
6/7ꢁ  
UZ  
6&)  
UZ  
(/7  
UZ  
5HV  
Field  
SLT1  
SLT0  
Bits  
5
4
Type  
rw  
rw  
Description  
Receive Slicer Threshold  
00B The receive slicer generates a mark (digital one) if the voltage at  
RL1/2 exceeds 55% of the peak amplitude.  
01B The receive slicer generates a mark (digital one) if the voltage at  
RL1/2 exceeds 67% of the peak amplitude (recommended in some  
T1/J1 applications).  
10B The receive slicer generates a mark (digital one) if the voltage at  
RL1/2 exceeds 50% of the peak amplitude (default, recommended  
in E1 mode).  
11B The receive slicer generates a mark (digital one) if the voltage at  
RL1/2 exceeds 45% of the peak amplitude.  
SCF  
ELT  
3
2
rw  
rw  
Select Corner Frequency of DCO-R  
Setting this bit reduces the corner frequency of the DCO-R circuit by the  
factor of ten to 0.2 Hz. See Chapter 3.7.8.  
Note: Reducing the corner frequency of the DCO-R circuitry increases the  
synchronization time before the frequencies are synchronized.  
Enable Loop-Timed  
0B  
1B  
Normal operation  
Transmit clock is generated from the clock supplied by MCLK  
which is synchronized to the extracted receive route clock. In this  
configuration the transmit elastic buffer has to be enabled. For  
correct operation of loop timed the remote loop (bit LIM1.RL = ´0´)  
must be inactive and bit CMR1.DXSS must be cleared.  
MPAS  
1
rw  
Multi Purpose Analog Switch  
Controls the multi purpose analog switch at receive line interface if  
GPC(3:6).ENMPAS are all set to ´1´ . If RLT is not configured at any multi  
function port, only MPAS controls the switch. If RLT is configured at one  
of the multi function ports see Table 14 for contrrolling.  
0B  
1B  
multi purpose analog switch is óff´.  
multi purpose analog switch is on´.  
Data Sheet  
142  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLoop Code Register 1  
Loop Code Register 1  
LCR1  
Loop Code Register 1  
Offset  
xx3BH  
Reset Value  
00H  
(350  
UZ  
;35%6  
UZ  
/'&  
/$&  
)//%  
UZ  
//%3  
UZ  
UZ  
UZ  
Field  
Bits  
Type  
Description  
EPRM  
7
rw  
Enable Pseudo-Random Binary Sequence Monitor  
See Chapter 3.11.1.  
0B  
1B  
Pseudo-Random Binary Sequence (PRBS) monitor is disabled.  
PRBS is enabled. Setting this bit enables incrementing the CEC2  
error counter with each detected PRBS bit error. With any change  
of state of the PRBS internal synchronization status an interrupt  
ISR1.LLBSC is generated. The current status of the PRBS  
synchronizer is indicated by bit LSR2.LLBAD.  
XPRBS  
LDC  
6
rw  
rw  
Transmit Pseudo-Random Binary Sequence  
A one in this bit position enables transmission of a pseudo-random binary  
sequence to the remote end. Depending on bit LLBP the PRBS is  
generated according to 215 -1 or 220 -1 with a maximum-14-zero  
restriction (ITU-T O. 151). See Chapter 3.11.1.  
5:4  
Length Deactivate (Down) Code  
These bits defines the length of the LLB deactivate code which is  
programmable in register LCR2.  
00B Length: 5 bit  
01B Length: 6 bit, 2 bit, 3 bit  
10B Length: 7 bit  
11B Length: 8 bit, 2 bit, 4bit  
LAC  
3:2  
rw  
Length Activate (Up) Code  
These bits defines the length of the LLB activate code which is  
programmable in register LCR3.  
00B Length: 5 bit  
01B Length: 6 bit, 2 bit, 3 bit  
10B Length: 7 bit  
11B Length: 8 bit, 2 bit, 4 bit  
FLLB  
LLBP  
1
0
rw  
rw  
Framed Line Loop-Back/Invert PRBS  
Depending on bit LCR1.XPRBS this bit enables different functions:  
LCR1.XPRBS = ´0´: Table 41.  
Note: Invert PRBS LCR1.XPRBS = ´1´: see Table 42  
Line Loop-Back Pattern  
See Chapter 3.11.2  
LCR1.XPRBS = ´0´: see Table 43  
LCR1.XPRBS = ´1´ or LCR1.EPRM = ´1´: see Table 44  
Data Sheet  
143  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Table 41  
FLLB Constant Values (Case 1)  
Name and Description  
Value  
Framed Line Loop-Back/Invert PRBS  
The line loop-back code is transmitted including framing bits. LLB code overwrites the  
FS/DL-bits.  
0B  
Framed Line Loop-Back/Invert PRBS  
The line loop-back code is transmitted unframed. LLB code does not overwrite the FS/DL-  
bits.  
1B  
Table 42  
FLLB Constant Values (Case 2)  
Name and Description  
Value  
Framed Line Loop-Back/Invert PRBS  
The generated PRBS is transmitted not inverted.  
0B  
Framed Line Loop-Back/Invert PRBS  
The PRBS is transmitted inverted.  
1B  
Table 43  
LLBP Constant Values (Case 1)  
Name and Description  
Value  
Line Loop-Back Pattern  
Fixed line loop-back code according to ANSI T1. 403.  
0B  
Line Loop-Back Pattern  
Enable user-programmable line loop-back code by register LCR2/3.  
1B  
Table 44  
LLBP Constant Values (Case 2)  
Name and Description  
Value  
Line Loop-Back Pattern  
0B  
215 -1  
Line Loop-Back Pattern  
1B  
220 -1  
Data Sheet  
144  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLoop Code Register 2  
Loop Code Register 2  
LCR2  
Loop Code Register 2  
Offset  
xx3CH  
Reset Value  
00H  
/'&  
UZ  
Field  
LDC  
Bits  
7:0  
Type  
rw  
Description  
Line Loop-Back Deactivate Code  
If enabled by bit MR3.XLD = ´1´ in E1 or MR5.XLD = ´1´ in T1/J1 mode  
the LLB deactivate code automatically repeats until the LLB generator is  
stopped. Transmit data is overwritten by the LLB code. LDC0 is  
transmitted last. For correct operations bit LCR1.XPRBS has to cleared.  
If LCR2 is changed while the previous deactivate code has been detected  
and is still received, bit LSR2.LLBDD in E1 or LSR1.LLBDD in T1/J1  
mode will stay active until the incoming signal changes or a receiver reset  
is initiated (CMDR.RRES = ´1´).  
Data Sheet  
145  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLoop Code Register 3  
Loop Code Register 3  
LCR3  
Loop Code Register 3  
Offset  
xx3DH  
Reset Value  
00H  
/$&  
UZ  
Field  
LAC  
Bits  
7:0  
Type  
rw  
Description  
Line Loop-Back Activate Code  
If enabled by bit MR3.XLD = ´1´ in E1 or MR5.XLD = ´1´ in T1/J1 mode  
the LLB activate code automatically repeats until the LLB generator is  
stopped. Transmit data is overwritten by the LLB code. LAC0 is  
transmitted last. For correct operations bit LCR1.XPRBS has to cleared.If  
LCR3 is changed while the previous activate code has been detected and  
is still received, bit LSR2.LLBAD in E1 or LSR1.LLBAD in T1/J1 mode will  
stay active until the incoming signal changes or a receiver reset is  
initiated (CMDR.RRES = ´1´).  
Data Sheet  
146  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionDigital Interface Control 1  
Digital Interface Control 1  
See Chapter 3.7.9.  
DIC1  
Offset  
xx3EH  
Reset Value  
00H  
Digital Interface Control 1  
5HV  
5%6  
5HV  
%,0  
UZ  
;%6  
UZ  
UZ  
Field  
Bits  
Type  
Description  
RBS  
5:4  
rw  
Receive Buffer Size  
See Table 26.  
00B Buffer size: 2 frames  
01B Buffer size: 1 frame  
10B Buffer size: 96 bits  
11B bypass of receive elastic store  
BIM  
2
rw  
rw  
Bit Interleaved Mode  
0B  
1B  
Byte interleaved mode  
Bit interleaved mode  
XBS  
1:0  
Transmit Buffer Size  
See Table 26.  
00B Bypass of transmit elastic store  
01B Buffer size: 1 frame  
10B Buffer size: 2 frames  
11B Buffer size: 96 bits  
Data Sheet  
147  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionDigital Interface Control 2  
Digital Interface Control 2  
DIC2  
Offset  
xx3FH  
Reset Value  
00H  
Digital Interface Control 2  
5HV  
&5%  
UZ  
5HV  
Field  
CRB  
Bits  
5
Type  
rw  
Description  
Center Receive Elastic Buffer  
Only applicable if the time slot assigner is disabled (PC(3:1).RPC(3:0) =  
´0001b´), no external or internal synchronous pulse receive is generated.  
A transition from low to high forces a receive slip and the read- pointer of  
the receive elastic buffer is centered. The delay through the buffer is set  
to one half of the current buffer size. It should be hold high for at least two  
2.048 MHz periods before it is cleared.  
Data Sheet  
148  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionDigital Interface Control 3  
Digital Interface Control 3  
DIC3  
Offset  
xx40H  
Reset Value  
00H  
Digital Interface Control 3  
5575,  
UZ  
5(65  
UZ  
&0,  
UZ  
575,  
UZ  
)6&7  
UZ  
5(6;  
UZ  
5HV  
Field  
Bits  
Type  
Description  
CMI  
7
rw  
Select CMI Precoding (T1 only)  
Only valid if CMI code (MR0.XC(1:0) = ´01b´) is selected. This bit defines  
the CMI precoding and influences transmit and receive data.  
Note: Before local loop is closed, B8ZS precoding has to be switched off.  
0B  
1B  
CMI with B8ZS precoding  
CMI without B8ZS precoding  
RRTRI  
RTRI  
6
5
rw  
RDO Tristate Mode  
See Chapter 3.7.3.4  
Note: RRTRI is logically exored with RTDMT multi function port, if this  
function is selected. RTDMT exor RRTRI sets additionally RCLK  
into tristate.  
00B normal operation (RDOP is switched to low level during inactive  
channel/bit phases).  
01B RDO is switched into tristate mode during inactive channel/bit  
phases.  
10B RDO is tristate constantly (and also RCLK).  
11B RDO is tristate constantly (and also RCLK).  
FSCT  
RESX  
4
3
rw  
rw  
FSC Tristate Mode  
0B  
1B  
normal operation of FSC pin.  
FSC is switched into tristate mode.  
Rising Edge Synchronous Transmit  
Depending on this bit all transmit framer interface data are clocked  
(outputs) or sampled (inputs) with the selected active edge of the  
selected framer transmit clock.  
Only valid if CMR2.IXSC = ´0´:  
Note: CMR2.IXSC = ´1´: value of RESX bit has no impact on the selected  
edge of the system interface clock but value of RESR bit is used as  
RESX. Example: If RESR = ´0´, the rising edge of system interface  
clock is the selected one for sampling data on XDI and vice versa.  
0B  
Clocked or sampled with the first falling edge of the selected framer  
interface transmit clock.  
Clocked or sampled the first rising edge of the selected framer  
interface transmit clock.  
1B  
Data Sheet  
149  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionDigital Interface Control 3  
Field  
Bits  
Type  
Description  
RESR  
2
rw  
Rising Edge Synchronous Receive  
Depending on this bit all receive framer interface data are clocked  
(outputs) or sampled (inputs) with the selected active edge.  
0B  
Clocked or sampled with the first falling edge of the selected framer  
interface receive clock.  
1B  
Clocked or sampled with the first rising edge of the selected framer  
interface receive clock.  
Data Sheet  
150  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 4  
Clock Mode Register 4  
CMR4  
Clock Mode Register 4  
Offset  
xx41H  
Reset Value  
00H  
,$5  
UZ  
56  
UZ  
Field  
Bits  
Type  
Description  
IAR  
7:3  
rw  
Integral Parameter Selection  
(Corner frequency and attenuation selection) for the DCO-R  
Only valid if CMR6.DCOCOMPN = ´1´and CMR2.ECFAR = ´1´, see  
Chapter 3.7.8.  
RS  
2:0  
rw  
Receive Clock (RCLK) Frequency Selection  
See also Chapter 3.7.  
000B clock recovered from the line through the DPLL drives RCLK.  
001B clock recovered from the line through the DPLL drives RCLK.  
logically OR´d with the incoming LOS signal.  
010B 2.048 MHz, dejitered, sourced by DCO-R.  
011B 4.096 MHz, dejitered, sourced by DCO-R.  
100B 8.192 MHz, dejitered, sourced by DCO-R.  
101B 16.384 MHz, dejitered, sourced by DCO-R.  
110B 2.048 MHz logically OR´d with LOS.  
111B 16.384 MHz logically OR´d with LOS.  
Data Sheet  
151  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 5  
Clock Mode Register 5  
Note:The reset value depends on the channel, so that for the DCO-R the current channel is selected by the bits  
DRSS (for example for channel 3 the reset value is ´40´H).  
CMR5  
Clock Mode Register 5  
Offset  
xx42H  
Reset Value  
00H  
'566  
UZ  
,$;  
UZ  
Field  
Bits  
Type  
Description  
DRSS  
7:5  
rw  
DCO-R Channel Selection  
See Chapter 3.7.  
000B receive reference clock generated by the DPLL of channel 1.  
001B receive reference clock generated by the DPLL of channel 2.  
010B receive reference clock generated by the DPLL of channel 3.  
011B receive reference clock generated by the DPLL of channel 4.  
1xxB reserved.  
IAX  
4:0  
rw  
Integral Parameter Selection  
(Corner frequency and attenuation selection) for the DCO-X  
Only valid if CMR6.DCOCOMPN = ´1´ and CMR2.ECFAX = ´1´, see  
Chapter 3.7.8.  
Data Sheet  
152  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 6  
Clock Mode Register 6  
CMR6  
Clock Mode Register 6  
Offset  
xx43H  
Reset Value  
00H  
65(65  
UZ  
65(6;  
UZ  
'&2&203  
1
67)  
UZ  
6&);  
UZ  
$7&6  
UZ  
UZ  
Field  
Bits  
Type  
Description  
DCOCOMPN  
7
rw  
Compatibility Programming of DCO-R/DCO-X Disable  
Only applicable if CMR2.ECFAR/ECFAX is set. See Chapter 3.7.8,  
Table 23.  
0B  
programming of corner frequencies of DCO-R/DCO-X is done with  
registers CMR3.CFAR (3:0) /CFAX(3:0), compatible to the  
QuadLIU. Register bits CMR5.IAX(4:0)/CMR4.IAR(4:0) are not  
valid.  
1B  
programming of corner frequencies and attenuation factors of  
DCO-R/DCO-X is done with registers CMR3.CFAR  
(3:0)/CFAX(3:0) and CMR4.IAR(4:0)/CMR5.IAX(4:0) in the range  
0.2 ... 20 Hz.  
SRESR  
SRESX  
STF  
6
rw  
rw  
rw  
Soft Reset of DCO-R  
By setting this bit a soft reset of the DCO-R will be performed: The initial  
phase error is set to zero and the loop filter is cleared. To enable the  
DCO-R lock functionality, this bit must be cleared subsequently. See  
Chapter 3.7.8.  
0B  
1B  
DCO-R enabled (normal lock functionality).  
soft reset of DCO-R, no lock functionality.  
5
Soft Reset of DCO-X  
By setting this bit a soft reset of the DCO-X will be performed: The initial  
phase error is set to zero and the loop filter is cleared. To enable the  
DCO-X lock functionality, this bit must be cleared subsequently. See  
Chapter 3.7.8.  
0B  
1B  
DCO-X enabled (normal lock functionality).  
soft reset of DCO-X, no lock functionality.  
4:2  
Transmit Clock (TCLK) Frequency Selection  
See Chapter 3.9.2. Note that frequencies are not in ascent ordering.  
000B 2.048 MHz.  
001B 8.192 MHz.  
010B 4.096 MHz.  
011B 16.384 MHz.  
100B 32.768 MHz.  
101B reserved.  
110B reserved.  
111B reserved.  
Data Sheet  
153  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 6  
Field  
Bits  
Type  
Description  
SCFX  
1
rw  
Select Corner Frequency of DCO-X  
Only applicable if CMR2.EXFAX = ´0´. See Chapter 3.7.8 and  
Chapter 3.9.4.  
0B  
1B  
corner frequency of DCO-X is 2 Hz.  
corner frequency of DCO-X is 0.2 Hz.  
ATCS  
0
rw  
Automatic Transmit Clock Switching  
See Chapter 3.9.3. If TCLK is lost, automatically switching to FCLKX can  
be performed.  
Note: Kind of used transmit clock source is shown in status register  
XCLKS.  
0B  
1B  
automatic clock switching is disabled.  
automatic clock switching is enabled.  
Data Sheet  
154  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 1  
Clock Mode Register 1  
CMR1  
Clock Mode Register 1  
Offset  
xx44H  
Reset Value  
00H  
5HV  
'&6  
UZ  
5HV  
';-$  
UZ  
';66  
UZ  
Field  
Bits  
Type  
Description  
DCS  
3
1
0
rw  
rw  
rw  
Disable Clock-Switching  
In Slave mode (LIM0.MAS = ´0´) the DCO-R is synchronized on the  
recovered route clock. In case of loss-of-signal LOS the DCO-R switches  
automatically to the clock sourced by port SYNC.  
0B  
1B  
automatic switching from RCLK to SYNC is enabled  
automatic switching from RCLK to SYNC is disabled  
DXJA  
DXSS  
Disable Internal Transmit Jitter Attenuation  
Setting this bit disables the transmit jitter attenuation. Reading the data  
out of the transmit elastic buffer and transmitting on XL1/2  
(XDOP/N/XOID) is done with the clock provided on pin TCLK. In transmit  
elastic buffer bypass mode the transmit clock is taken from FCLKX,  
independent of this bit.  
DCO-X Synchronization Clock Source  
0B  
The DCO-X circuitry synchronizes to the internal reference clock  
which is sourced by FCLKX/R or RCLK. Since there are many  
reference clock opportunities the following internal prioritizing in  
descending order from left to right is realized: LIM1.RL >  
CMR1.DXSS > LIM2.ELT > current working clock of transmit  
system interface. If one of these bits is set the corresponding  
reference clock is taken.  
DCO-X synchronizes to an external reference clock provided on  
multi function port XPA or XPB pin function TCLK, if no remote loop  
is active. TCLK is selected by PC(2:1).XPC(3:0) = ´0011B´.  
1B  
Data Sheet  
155  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 2  
Clock Mode Register 2  
CMR2  
Clock Mode Register 2  
Offset  
xx45H  
Reset Value  
00H  
(&)$;  
UZ  
(&)$5  
UZ  
'&2;&  
UZ  
'&)  
UZ  
,563  
UZ  
,56&  
UZ  
5HV  
,;6&  
UZ  
Field  
Bits  
Type  
Description  
ECFAX  
7
rw  
Enable Corner Frequency Adjustment for DCO-X  
See Chapter 3.7.8.  
Note: DCO-X must be activated.  
0B  
1B  
adjustment is disabled (only 2 Hz and 0.2 Hz are possible).  
adjustment is enabled as programmed in CMR3.CFAX(3:0) and  
CMR4.IAX(4:0).  
ECFAR  
6
rw  
Enable Corner Frequency Adjustment for DCO-R  
See Chapter 3.7.8.  
Note: DCO-R must be activated.  
0B  
1B  
adjustment is disabled (only 2 Hz and 0.2 Hz are possible).  
adjustment is enabled as programmed in CMR3.CFAR(3:0) and  
CMR5.IAR(4:0).  
DCOXC  
DCF  
5
4
rw  
rw  
DCO-X Center-Frequency Enable  
See Chapter 3.7.8  
0B  
1B  
The center function of the DCO-X circuitry is disabled.  
The center function of the DCO-X circuitry is enabled. DCO-X  
centers to 2.048 MHz related to the master clock reference (MCLK),  
if reference clock (e.g. FCLKX) is missing.  
DCO-R Center- Frequency Disabled  
See also Table 24.  
0B  
The DCO-R circuitry is frequency centered in master mode if no  
2.048 MHz reference clock on pin SYNC is provided or in slave  
mode if a loss-of-signal occurs in combination with no 2.048 MHz  
clock on pin SYNC or a gapped clock is provided on pin RCLKI and  
this clock is inactive or stopped.  
The center function of the DCO-R circuitry is disabled. The  
generated clock (DCO-R) is frequency frozen in that moment when  
no clock is available on pin SYNC or pin RCLKI. The DCO-R  
circuitry starts synchronization as soon as a clock appears on pins  
SYNC or RCLKI.  
1B  
Data Sheet  
156  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 2  
Field  
Bits  
Type  
Description  
IRSP  
3
rw  
Internal Receive System Frame Sync Pulse  
Note: Recommendation: This bit should be set to ´1´.  
0B  
The frame sync pulse is derived from RDOP output signal internally  
(free running).  
The frame sync pulse for the receive system interface is internally  
sourced by the DCO-R circuitry. This internally generated frame  
sync signal can be output (active low) on multifunction ports RP(A  
to D) (RPC(3:0) = ´0001H´).  
1B  
IRSC  
IXSC  
2
0
rw  
rw  
Internal Receive Digital (Framer) Clock  
0B  
The working clock for the receive framer interface is sourced by  
FCLKR or in receive elastic buffer bypass mode from the  
corresponding extracted receive clock RCLK.  
1B  
The working clock for the receive framer interface is sourced  
internally by DCO-R or in bypass mode by the extracted receive  
clock. FCLKR is ignored.  
Internal Transmit Digital (Framer) Clock  
0B  
The working clock for the transmit framer interface is sourced by  
FCLKX.  
The working clock for the transmit framer interface is sourced  
internally by the working clock of the receive framer interface.  
FCLKX is ignored.  
1B  
Data Sheet  
157  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Configuration Register  
Global Configuration Register  
GCR  
Offset  
0046H  
Reset Value  
00H  
Global Configuration Register  
9,6  
UZ  
6&,  
UZ  
5HV  
3'  
UZ  
Field  
Bits  
Type  
Description  
VIS  
7
rw  
Masked Interrupts Visible  
See also Chapter 3.5.3  
0B  
1B  
Masked interrupt status bits are not visible in registers ISR(7:0).  
Masked interrupt status bits are visible in ISR(7:0), but they are not  
visible in register GIS.  
SCI  
PD  
6
rw  
Status Change Interrupt  
0B  
Interrupts are generated either on activation or deactivation of the  
internal interrupt source.  
1B  
The following interrupts are activated both on activation and  
deactivation of the internal interrupt source: ISR2.LOS, ISR2.AIS,  
ISR3.LMFA16.  
0
rw  
Power Down  
Switches between power-up and power-down mode. After switching from  
power down to power up a receiver reset should be made by setting of  
CMDR.RRES.  
0B  
1B  
Power up  
Power down: All outputs are driven inactive; multifunction ports are  
driven high by the weak internal pull-up device.  
Data Sheet  
158  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Mode Register 3  
Clock Mode Register 3  
CMR3  
Clock Mode Register 3  
Offset  
xx48H  
Reset Value  
00H  
&)$;  
&)$5  
UZ  
UZ  
Field  
Bits  
Type  
Description  
CFAX  
7:4  
rw  
Corner Frequency Adjustment for DCO-X  
see Chapter 3.7.8.  
Note: DCO-X must be activated and CMR2.ECFAX must be set  
(adjustment must be enabled).  
CFAR  
3:0  
rw  
Corner Frequency Adjustment for DCO-R  
See Chapter 3.7.8.  
Note: DCO-R must be activated and CMR2.ECFAR must be set  
(adjustment must be enabled).  
Data Sheet  
159  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPort Configuration 1  
Port Configuration 1  
See Chapter 3.12.  
PC1  
Offset  
xx80H  
Reset Value  
00H  
Port Configuration 1  
53&ꢀ  
;3&ꢀ  
UZ  
UZ  
Field  
Bits  
Type  
Description  
RPC1  
7:4  
rw  
Receive Multifunction Port Configuration  
See Chapter 3.12. The multifunction ports RP(A to D) are bidirectional.  
After Reset the ports RPA and RPB are reserved, the port RPC is  
configured as RCLK output. With the selection of the pin function the  
In/Output configuration is also achieved. Register PC1 configures port  
RPA, while PC2 configures port RPB, PC3 configures port RPC and PC4  
configures port RPD.  
See RPC1 Constant Values  
XPC1  
3:0  
rw  
Transmit Multifunction Port Configuration  
See Chapter 3.12. The multifunction ports XP(A to D) are bidirectional.  
After Reset these ports are configured as inputs. With the selection of the  
pin function the In/Output configuration is also achieved. Each of the  
three different input functions (TCLK, XLT and XLT) may only be selected  
once. No input function must be selected twice or more. Register PC1  
configures port XPA, PC2 configures port XPB, PC3 configures port XPC  
and PC4 the port XPD.  
See XPC1 Constant Values  
Table 45  
RPC1 Constant Values  
Name and Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Value  
0000B  
0001B  
0010B  
0011B  
0100B  
0101B  
0110B  
0111B  
1000B  
RLT: Receive line termination (input)  
“Hardware” switching of receive line termination, see Chapter 3.7.3 and LIM0.  
GPI: general purpose input  
Value of this input is stored in register MFPI.  
1001B  
Data Sheet  
160  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Table 45  
RPC1 Constant Values (cont’d)  
Name and Description  
Value  
GPOH: General purpose output, high level  
Pin is set fixed to high level  
1010B  
GPOL: General purpose output, low level  
1011B  
1100B  
1101B  
1110B  
1111B  
Pin is set fixed to low level  
LOS: Loss of signal  
Loss of signal indication output  
RTDMT: Receive TDM tristate (input)  
Receive TDM i/f tristate (RDOP, RCLK).  
RDON: Receive data out negative  
Negative receive data out in dual rail mode or bipolar violation out in LIU single rail mode  
RCLK: RCLK output  
Table 46  
XPC1 Constant Values  
Name and Description  
Reserved  
Reserved  
Reserved  
TCLK: Transmit Clock (Input)  
A 2.048/8.192 MHz clock has to be sourced by the system if the internal generated transmit  
clock (DCO-X) is not used. Optionally this input is used as a synchronization clock for the  
DCO-X circuitry with a frequency of 2.048 MHz.  
Value  
0000B  
0001B  
0010B  
0011B  
Reserved  
Reserved  
Reserved  
XCLK: Transmit Line Clock (Output)  
Frequency: 2.048 MHz  
0100B  
0101B  
0110B  
0111B  
XLT: Transmit Line Tristate control input, high active  
With a high level on this port the transmit lines XL1/2 or XDOP/N are set directly into tristate.  
This pin function is logically OR´d with register XPM2.XLT. See Chapter 3.9.1.  
1000B  
GPI: General Purpose Input, low level  
1001B  
1010B  
1011B  
Value of this input is stored in register MFPI.  
GPOH: General Purpose Output, high level  
Pin is set fixed to high level  
GPOL: General Purpose Output, low level  
Pin is set fixed to low level  
Reserved  
1100B  
1101B  
XDIN: Transmit Data In Negative  
Negative transmit data in for dual rail mode  
XLT: Transmit Line Tristate control input, low active  
1110B  
1111B  
See XLT  
Reserved  
Only one of the ports RPA, RPB, RPC or RPD must be configured as RTDMT.  
Only one of the ports XPA, XPB, XPC or XPD must be configured as XLT or XLT.  
Data Sheet  
161  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
The registers PC1, PC2 and PC4 have the reset values ´00H´, PC3 has the reset value ´F0H´.  
The Offset Addresses are listed in PCn Overview, for bit names refer to Port Configuration Registers.  
Table 47  
PCn Overview  
Register Short Name  
Register Long Name  
Offset Address Page Number  
PC2  
PC3  
PC4  
Port Configuration Register 2  
Port Configuration Register 3  
Port Configuration Register 4  
xx81H  
xx82H  
xx83H  
Table 48  
Port Configuration Registers  
7
6
5
4
3
2
1
0
PC1  
PC2  
PC3  
PC4  
RPC13  
RPC23  
RPC33  
RPC43  
RPC12  
RPC22  
RPC32  
RPC42  
RPC11  
RPC21  
RPC31  
RPC41  
RPC10  
RPC20  
RPC30  
RPC40  
XPC13  
XPC23  
XPC33  
XPC43  
XPC12  
XPC22  
XPC32  
XPC42  
XPC11  
XPC21  
XPC31  
XPC41  
XPC10  
XPC20  
XPC30  
XPC40  
Data Sheet  
162  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPort Configuration 5  
Port Configuration 5  
PC5  
Offset  
xx84H  
Reset Value  
00H  
Port Configuration 5  
3+'6;  
UZ  
3+'65  
UZ  
&653  
UZ  
5HV  
&53  
UZ  
UZ  
Field  
Bits  
Type  
Description  
PHDSX  
7
rw  
Phase Decoder Switch for DCO-X  
See formulas in GCM6.  
0B  
1B  
switch phase decoder by 1/3  
switch phase decoder by 1/6  
PHDSR  
6
rw  
Phase Decoder Switch for DCO-R  
See formulas in GCM6.  
0B  
1B  
switch phase decoder by 1/3  
switch phase decoder by 1/6  
0
2
1
rw  
rw  
Fixed 0  
CSRP  
Configure FCLKR Port  
0B  
1B  
FCLKR: Input  
FCLKR: Output  
CRP  
0
rw  
Configure RCLK Port  
0B  
1B  
RCLK: Input  
RCLK: Output  
Data Sheet  
163  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Port Configuration 1  
Global Port Configuration 1  
GPC1  
Offset  
0085H  
Reset Value  
00H  
Global Port Configuration 1  
5HV  
&6)3  
5HV  
UZ  
Field  
CSFP  
Bits  
6:5  
Type  
rw  
Description  
Configure SEC/FSC Port  
The FSC pulse is generated if the DCO-R circuitry of the selected channel  
is active (CMR2.IRSC = ´1´ or CMR1.RS(1:0) = ´10b´ or ´11b´), see  
Chapter 3.8.4  
00B SEC: Input, active high  
01B SEC: Output, active high  
10B FSC: Output, active high  
11B FSC: Output, active low  
Data Sheet  
164  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPort Configuration 6  
Port Configuration 6  
PC6  
Offset  
xx86H  
Reset Value  
00H  
Port Configuration 6  
5HV  
765(  
UZ  
5HV  
Field  
TSRE  
Bits  
6
Type  
rw  
Description  
Transmit Serial Resistor Enable  
0B  
1B  
Internal serial resistors are disabled.  
Internal serial resistors are enabled.  
Data Sheet  
165  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Port Configuration Register 2  
Global Port Configuration Register 2  
GPC2  
Offset  
008AH  
Reset Value  
00H  
Global Port Configuration Register 2  
5HV  
)66  
UZ  
5HV  
5ꢀ6  
UZ  
Field  
Bits  
Type  
Description  
FSS  
6:4  
rw  
FSC Source Selection  
See Chapter 3.8.4.  
000B FSC sourced by channel 1.  
001B FSC sourced by channel 2.  
010B FSC sourced by channel 3.  
011B FSC sourced by channel 4.  
1xxB reserved.  
R1S  
2:0  
rw  
RCLK1 Source Selection  
See Chapter 3.7.  
000B RCLK1 sourced by channel 1.  
001B RCLK1 sourced by channel 2.  
010B RCLK1 sourced by channel 3.  
011B RCLK1 sourced by channel 4.  
1xxB reserved.  
Data Sheet  
166  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 1  
Global Clock Mode Register 1  
GCM1  
Offset  
0092H  
Reset Value  
00H  
Global Clock Mode Register 1  
3+'B(ꢀ  
UZ  
Field  
PHD_E1  
Bits  
7:0  
Type  
rw  
Description  
Frequency Adjust for E1 lower 8 bits, for highest 4 bits see GCM2)  
For details see calculation formulas in register GCM6 and Table 49.  
Data Sheet  
167  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 2  
Global Clock Mode Register 2  
GCM2  
Offset  
0093H  
Reset Value  
10H  
Global Clock Mode Register 2  
3+6'(0  
UZ  
3+6',5  
UZ  
3+6'6  
UZ  
9)5(4B(  
1
3+'B(ꢀ  
UZ  
UZ  
Field  
Bits  
Type  
Description  
PHSDEM  
7
rw  
rw  
rw  
rw  
RX Phase Decoder Demand  
0B  
1B  
default operation  
see formulas in GCM6.  
PHSDIR  
6
5
4
RX Phase Decoder Direction  
0B  
1B  
default operation  
see formulas in GCM6.  
PHSDS  
RX Phase Decoder Switch  
0B  
1B  
default operation  
see formulas in GCM6.  
VFREQ_EN  
Variable Frequency Enable  
If “fixed mode” mode is selected the clock frequency at the pin MCLK  
must be 2.048 for E1 or 1.544 MHz for T1/J1 respectively. The setting of  
the whole clock mode is done automatically: Register bits of GCM1,  
GCM2.PHSDEM, PHDIR, PHSDS, PHD_E1 and GCM3 to GCM8 are  
unused. If “fixed mode” mode is selected and the SPI- or SCI-interface is  
used as controller interface, the pinstrapping values at D(15:5) are also  
not used. See also Chapter 3.5.5.  
Note: If “fixed mode “ is enabled all of the four ports must work in the same  
mode, either in T1 or in E1 mode. A switching between E1 and T1  
modes causes a reset of the whole clock system. If “fixed mode“ is  
disabled a switching between E1 and T1 mode (which can be done  
in this case individually for every port) causes not a reset of the  
whole clock system.  
0B  
1B  
Fixed clock frequency of 2.048 (E1) or 1.544 MHz (T1/J1)  
Variable master clock frequency (normal operation, operation after  
reset)  
Data Sheet  
168  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 2  
Field  
Bits  
Type  
Description  
PHD_E1  
3:0  
rw  
Frequency Adjust for E1  
(highest 4 bits, for lower 8 bits see GCM1)  
The 12 bit frequency adjust value is in the decimal range of -2048 to  
+2047. Negative values are represented in 2s-complement format. For  
details see calculation formulas in register GCM6 and Table 49.  
100000000000B -2048  
...B  
000000000000B 0  
...B  
011111111111B +2047  
Data Sheet  
169  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 3  
Global Clock Mode Register 3  
GCM3  
Offset  
0094H  
Reset Value  
00H  
Global Clock Mode Register 3  
3+'B7ꢀ  
UZ  
Field  
PHD_T1  
Bits  
7:0  
Type  
rw  
Description  
Frequency Adjust for T1  
(lower 8 bits, for highest 4 bits see GCM4)  
The 12 bit frequency adjust value is in the decimal range of -2048 to  
+2047. Negative values are represented in 2s-complement format. For  
details see calculation formulas in register GCM6 and Table 49.  
100000000000B -2048  
...B  
000000000000B 0  
...B  
011111111111B +2047  
Data Sheet  
170  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 4  
Global Clock Mode Register 4  
GCM4  
Offset  
0095H  
Reset Value  
00H  
Global Clock Mode Register 4  
'90B7ꢀ  
UZ  
5HV  
3+'B7ꢀ  
UZ  
Field  
Bits  
Type  
Description  
DVM_T1  
7:5  
rw  
Divider Mode for T1  
This bits can be write and read to be software compatible to QuadLIU, but  
has no influence on the clock system  
PHD_T1  
3:0  
rw  
Frequency Adjust for T1  
(highest 4 bits, for lower 8 bits see GCM3)  
The 12 bit frequency adjust value is in the decimal range of -2048 to  
+2047. Negative values are represented in 2s-complement format. For  
details see calculation formulas in register GCM6 and Table 49.  
100000000000B -2048  
...B  
000000000000B 0  
...B  
011111111111B +2047  
Data Sheet  
171  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 5  
Global Clock Mode Register 5  
Note:Write operations to GCM5 and GCM6 initiate a PLL reset if the asynchronous interface is selected (IM(1:0)  
= ´0x´) and if the “flexible master clocking mode” is selected (GCM2.VFREQ_EN = ´1´), see Chapter 3.5.5.  
GCM5  
Offset  
0096H  
Reset Value  
00H  
Global Clock Mode Register 5  
3//B0  
UZ  
0&/.B/2  
:
5HV  
UZ  
Field  
Bits  
Type  
Description  
MCLK_LOW  
7
rw  
Master Clock Range Low  
This bit can be write and read to be software compatible to QuadLIU, but  
has no influence on the clock system.  
PLL_M  
4:0  
rw  
PLL Dividing Factor M  
For details see calculation formulas in register GCM6 and Table 49.  
00001B 1  
...B  
11111B 31  
Data Sheet  
172  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 6  
Global Clock Mode Register 6  
Note:Write operations to GCM5 and GCM6 initiate a PLL reset if the asynchronous interface is selected (IM(1:0)  
= ´0x´) and if the “flexible master clocking mode” is selected (GCM2.VFREQ_EN = ´1´), see Chapter 3.5.5.1.  
GCM6  
Offset  
0097H  
Reset Value  
00H  
Global Clock Mode Register 6  
3//B1  
UZ  
5HV  
Field  
PLL_N  
Bits  
4:0  
Type  
rw  
Description  
PLL Dividing Factor N  
For details see calculation formulas below and Table 49.  
000001B 1  
...B  
111111B 63  
Flexible Clock Mode Settings:  
If “flexible master clock mode” is used (VFREQ_EN = ´1´), the according register settings can be calculated as  
follows (a windows-based program for automatic calculation is available, see Chapter 8.3. For some of the  
standard frequencies see the table below.  
1. The master clock MCLK must be in the following frequency range:  
1.02 MHz fMCLK 20 MHz  
2. Generally the PLL of the master clocking unit includes an input divider with a dividing factor PLL_M +1 and a  
feedback divider with a dividing factor 4 x (PLL_N +1). So it generates a clock fPLL of about  
fPLL = fMCLK x 4 x (PLL_N +1) / (PLL_M +1).  
3. The selection of PLL_N and PLL_M must be done in the following way:  
The PLL frequency fPLL must be in the following range:  
200 MHz fPLL 300 MHz.  
The combinations of the values PLL_M and PLL_M must fulfill the equations:  
2 MHz fMCLK / (PLL_M +1) 6 MHz , if PLL_N is in the range 25 to 63.  
5 MHz fMCLK / (PLL_M +1) 15 MHz , if PLL_N is in the range 1 to 24.  
4. In E1 mode, the selection of PHSN_E1 and PHSX_E1 must be done in such a manner that the frequency for  
the receiver fRX_E1 has nearly the value 16 x fDATA_E1 x (1 + 100ppm) = 32.7713 MHz:  
fRX_E1 = fPLL / {PHSN_E1 + (PHSX_E1 / 6)}.  
In T1/J1 mode, the selection of PHSN_T1 and PHSX_T1 must be done in such a manner that the frequency for  
the receiver fRX_T1 has nearly the value 16 x fDATA_T1 x (1 + 100ppm) = 24.706 MHz:  
fRX_T1 = fPLL / {PHSN_T1 + (PHSX_T1 / 6)}.  
GCM2.PHSDEM, GCM2.PHSDIR, GCM2.PHSDS, PC5.PHDSX and PC5.PHDSR must be left to ´0´  
Data Sheet  
173  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
5. To bring the “characteristic E1 frequency” foutE1 exact to 16 x fDATA_E1 = 32.7680 MHz a correction value PHD_E1  
is necessary:  
PHD_E1 = round (12288 x { [PHSN_E1 + (PHSX_E1 / 6)] - [ fpll / (16 x fDATA_E1)] }).  
To bring the “characteristic T1 frequency” foutT1 exact to 16 x fDATA_T1 = 24.704 MHz a correction value PHD_T1 is  
necessary:  
PHD_T1 = round (12288 x { [PHSN_T1 + (PHSX_T1 / 6)] - [ fpll / (16 x fDATA_T1)] }).  
Example: fMCLK = 2.048 MHz  
PLL_N = 33; PLL_M = 0 : fPLL = 278.528 MHz  
PHSN_E1 = 8; PHSN_E1 = 2: fRX_E1 = 33.42 MHz  
PHD_E1 = -2048: foutE1 = 32.768 MHz  
Table 49  
Clock Mode Register Settings for E1 or T1/J1  
fMCLK [MHz] GCM1  
GCM2  
15H  
18H  
18H  
18H  
GCM3  
00H  
FBH  
FBH  
FBH  
GCM4  
08H  
0BH  
0BH  
0BH  
GCM5  
00H  
00H  
00H  
01H  
GCM6  
3FH  
2FH  
0BH  
0BH  
GCM7  
9CH  
DBH  
DBH  
DBH  
GCM8  
DFH  
DFH  
DFH  
DFH  
1.5440  
2.0480  
8.1920  
16.3840  
00H  
00H  
00H  
00H  
Data Sheet  
174  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 7  
Global Clock Mode Register 7  
GCM7  
Offset  
0098H  
Reset Value  
80H  
Global Clock Mode Register 7  
U
3+6;B(ꢀ  
UZ  
3+61B(ꢀ  
UZ  
Field  
1
Bits  
7
Type  
r
Description  
Fixed ´1´  
PHSX_E1  
6:4  
rw  
Frequency Adjustment value E1  
For details see calculation formulas in register GCM6 and Table 49.  
000B  
...B  
0
101B  
5
PHSN_E1  
3:0  
rw  
Frequency Adjustment value E1  
For details see calculation formulas in register GCM6 and Table 49.  
0001B 1  
...B  
1111B 15  
Data Sheet  
175  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Clock Mode Register 7  
Global Clock Mode Register 7  
GCM8  
Offset  
0099H  
Reset Value  
80H  
Global Clock Mode Register 7  
U
3+6;B7ꢀ  
UZ  
3+61B7ꢀ  
UZ  
Field  
1
Bits  
7
Type  
r
Description  
Fixed ´1´  
PHSX_T1  
6:4  
rw  
Frequency Adjustment Value T1  
For details see calculation formulas in register GCM6 and Table 49.  
000B  
...B  
0
101B  
5
PHSN_T1  
3:0  
rw  
Frequency Adjustment Value T1  
For details see calculation formulas in register GCM6 and Table 49.  
0001B 1  
...B  
1111B 15  
Data Sheet  
176  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Interrupt Mask Register  
Global Interrupt Mask Register  
GIMR  
Offset  
00A7H  
Reset Value  
FFH  
Global Interrupt Mask Register  
5HV  
3///  
UZ  
Field  
PLLL  
Bits  
0
Type  
rw  
Description  
PLL Locked Interrupt Mask  
0B  
1B  
GIS2.PLLLC is enabled.  
GIS2.PLLLC is disabled.  
Data Sheet  
177  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionTest Pattern Control Register 0  
Test Pattern Control Register 0  
See Chapter 3.11.1.  
TPC0  
Offset  
xxA8H  
Reset Value  
00H  
Test Pattern Control Register 0  
5HV  
353  
5HV  
UZ  
Field  
PRP  
Bits  
5:4  
Type  
rw  
Description  
PRBS Pattern Selection  
00B PRBS11 pattern.  
01B PRBS15 pattern.  
10B PRBS20 pattern.  
11B PRBS23 pattern.  
Data Sheet  
178  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionRegister Field Pointer  
Register Field Pointer  
This register is used to set a pointer (address) onto the internal register field. After a pointer is set, data can be  
written into one register of the register field (that register with the address REGFP.FP) by writing data into the  
register REGFD. The registers REGFP and REGFD must be used only as described in Chapter 3.6.1 and  
Chapter 3.7.8.4. Note that all registers of the register field are reset by a receive reset (CMDR.RRES = ´1´).  
REGFP  
Register Field Pointer  
Offset  
00BBH  
Reset Value  
00H  
)3  
Z
Field  
FP  
Bits  
7:0  
Type  
w
Description  
Field Pointer  
This bitfield is a pointer onto one rtegister in the internal registerfield.  
Data Sheet  
179  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionRegister Field Data  
Register Field Data  
See REGFP and Chapter 3.6.1. for further description.  
REGFD  
Register Field Data  
Offset  
00BCH  
Reset Value  
00H  
'$7$  
UZ  
Field  
DATA  
Bits  
7:0  
Type  
rw  
Description  
Data  
Data of one register of the internal register field, pointed with the pointer  
FP.  
Data Sheet  
180  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionBugfix Register  
Bugfix Register  
See Chapter 3.5.1.  
BFR  
Bugfix Register  
Offset  
xxBDH  
Reset Value  
08H  
5HV  
%39  
UZ  
5HV  
Field  
BPV  
Bits  
3
Type  
rw  
Description  
Bipolar Violation Detection  
This bit selects the kind of Bipolar Violation Detection.  
0B  
Improved Bipolar Violation Detection: Bipolar Violations (BPV)  
consisting on single ´1´ pulses or on two consecutive ´1´ pulses are  
detected.  
1B  
Same behaviour of Bipolar Violation Detection as in the QuadLIUTM  
V2.1.  
Data Sheet  
181  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionTX Pulse Template Register 1  
TX Pulse Template Register 1  
See Chapter 3.9.6.1 and Chapter 3.9.6.2. This register contains the transmit amplitude of the 1st 1/16 of the  
transmit pulse. The contents of this register is ignored unless bit XPM2.XPDIS is set. By default, the values  
programmed in XPM0 to XPM2 are used to control the transmit pulse template.  
TXP1  
Offset  
xxC1H  
Reset Value  
00H  
TX Pulse Template Register 1  
5HV  
7;3ꢀ  
UZ  
Field  
TXP1  
Bits  
6:0  
Type  
rw  
Description  
Transmit Pulse Amplitude  
Two´s Complement number of pulse amplitude.  
Registers TXP1to TXP16 have the same description and layout. Every register TXPn defines the amplitude of the  
part n of 16 of the transmit pulse. An overview is given is the next table.  
Note that the reset values of the registers TXP1 to TXP8 are ´38H´, that of the registers TXP9 to TXP16 are ´00H´.  
Table 50  
TXP Overview  
Register Short Name  
TXP2  
TXP3  
TXP4  
TXP5  
TXP6  
TXP7  
TXP8  
TXP9  
TXP10  
TXP11  
TXP12  
TXP13  
TXP14  
TXP15  
TXP16  
Register Long Name  
Offset Address Page Number  
TX Pulse Template Register 2  
TX Pulse Template Register 3  
TX Pulse Template Register 4  
TX Pulse Template Register 5  
TX Pulse Template Register 6  
TX Pulse Template Register 7  
TX Pulse Template Register 8  
TX Pulse Template Register 9  
TX Pulse Template Register 10  
TX Pulse Template Register 11  
TX Pulse Template Register 12  
TX Pulse Template Register 13  
TX Pulse Template Register 14  
TX Pulse Template Register 15  
TX Pulse Template Register 16  
xxC2H  
xxC3H  
xxC4H  
xxC5H  
xxC6H  
xxC7H  
xxC8H  
xxC9H  
xxCAH  
xxCBH  
xxCCH  
xxCDH  
xxCEH  
xxCFH  
xxD0H  
Data Sheet  
182  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Port Configuration Register 3  
Global Port Configuration Register 3  
See Chapter 3.7.  
GPC3  
Offset  
00D3H  
Reset Value  
21H  
Global Port Configuration Register 3  
(103$6  
UZ  
5ꢀ6  
UZ  
5HV  
5ꢁ6  
UZ  
Field  
Bits  
Type  
Description  
ENMPAS  
7
rw  
Enable Multi Purpose Analog Switches  
GPC(3:6).ENMPAS must be set all to ´1´ to enable in general the  
switching of the separate analog switches of all ports.  
0B  
switching to ón´ of the separate analog switches of all ports is  
disabled.  
1B  
switching to ón´ of the separate analog switches of all ports is  
enabled (together with GPC(4:6).MPAS).  
R3S  
R2S  
6:4  
2:0  
rw  
rw  
RCLK3 Source Selection  
000B RCLK3 sourced by channel 1.  
001B RCLK3 sourced by channel 2.  
010B RCLK3 sourced by channel 3.  
011B RCLK3 sourced by channel 4.  
1xxB reserved.  
RCLK2 Source Selection  
000B RCLK2 sourced by channel 1.  
001B RCLK2 sourced by channel 2.  
010B RCLK2 sourced by channel 3.  
011B RCLK2 sourced by channel 4.  
1xxB reserved.  
Data Sheet  
183  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Port Configuration Register 4  
Global Port Configuration Register 4  
See Chapter 3.7.  
GPC4  
Offset  
00D4H  
Reset Value  
03H  
Global Port Configuration Register 4  
(103$6  
UZ  
5HV  
5ꢀ6  
UZ  
Field  
ENMPAS  
Bits  
7
Type  
rw  
Description  
Enable Multi Purpose Analog Switches  
GPC(3:6).ENMPAS must be set all to ´1´ to enable in general the  
switching of the separate analog switches of all ports.  
0B  
switching to ón´ of the separate analog switches of all ports is  
disabled.  
1B  
switching to ón´ of the separate analog switches of all ports is  
enabled (together with GPC(3,5,6).MPAS).  
R4S  
2:0  
rw  
RCLK4 Source Selection  
000B RCLK4 sourced by channel 1.  
001B RCLK4 sourced by channel 2.  
010B RCLK4 sourced by channel 3.  
011B RCLK4 sourced by channel 4.  
1xxB reserved.  
Data Sheet  
184  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Port Configuration Register 5  
Global Port Configuration Register 5  
GPC5  
Offset  
00D5H  
Reset Value  
65H  
Global Port Configuration Register 5  
(103$6  
UZ  
5HV  
Field  
ENMPAS  
Bits  
7
Type  
rw  
Description  
Enable Multi Purpose Analog Switches  
GPC(3:6).ENMPAS must be set all to ´1´ to enable in general the  
switching of the separate analog switches of all ports.  
0B  
switching to ón´ of the separate analog switches of all ports is  
disabled.  
switching to ón´ of the separate analog switches of all ports is  
enabled (together with GPC(3,4,6).MPAS).  
1B  
Data Sheet  
185  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Port Configuration Register 6  
Global Port Configuration Register 6  
GPC6  
Offset  
00D6H  
Reset Value  
07H  
Global Port Configuration Register 6  
(103$6  
UZ  
&203B',  
6
5HV  
5HV  
UZ  
Field  
ENMPAS  
Bits  
7
Type  
rw  
Description  
Enable Multi Purpose Analog Switches  
GPC(3:6).ENMPAS must be set all to ´1´ to enable in general the  
switching of the separate analog switches of all ports.  
0B  
switching to ón´ of the separate analog switches of all ports is  
disabled.  
switching to ón´ of the separate analog switches of all ports is  
enabled (together with GPC(3:5).MPAS).  
1B  
COMP_DIS  
5
rw  
Compatibility Mode Disable  
Setting of this bit disables the compatibility mode. SeeChapter 3.2.  
0B  
1B  
“Compatibility mode”: The QuadLIUTM is fully software compatibel  
to the version 2.1.  
“Generic mode”: The QuadLIUTM is not fully software compatibel to  
the version 2.1 and additional clock configuration features are  
available.  
Data Sheet  
186  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionIn-Band Loop Detection Time Register  
In-Band Loop Detection Time Register  
INBLDTR  
Offset  
00D7H  
Reset Value  
00H  
In-Band Loop Detection Time Register  
5HV  
,1%/'5  
5HV  
,1%/'7  
UZ  
UZ  
Field  
INBLDR  
Bits  
5:4  
Type  
rw  
Description  
In-Band Loop Detection Time for Line Side  
See Chapter 3.11.2.  
00B at least 16 consecutive in-band loop pattern must be valid for  
detection and to perform automatic loop switching.  
01B at least 32 consecutive in-band loop pattern must be valid for  
detection and to perform automatic loop switching.  
10B in-band loop pattern must be valid for at least 4 seconds for  
detection and to perform automatic loop switching.  
11B in-band loop pattern must be valid for at least 5 seconds for  
detection and to perform automatic loop switching.  
INBLDT  
1:0  
rw  
In-Band Loop Detection Time for Framer Side  
See Chapter 3.11.2  
00B at least 16 consecutive “In-band loop sequences” must be valid to  
perform automatic loop switching.  
01B at least 32 consecutive “In-band loop sequences” must be valid to  
perform automatic loop switching.  
10B “In-band loop sequences” must be valid for at least 4 seconds to  
perform automatic loop switching.  
11B “In-band loop sequences” must be valid for at least 5 seconds to  
perform automatic loop switching.  
Data Sheet  
187  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionAutomatic Loop Switching Register  
Automatic Loop Switching Register  
Enabling of automatic loop switching by In-band loop codes, see Chapter 3.11.2, is performed by this register.  
ALS  
Offset  
xxD9H  
Reset Value  
00H  
Automatic Loop Switching Register  
5HV  
6,/6  
UZ  
/,/6  
UZ  
Field  
SILS  
Bits  
1
Type  
rw  
Description  
Framer (System) In-Band Loop Switching (Local Loop)  
This bit controls if automatic switching of the local loop will be done by In-  
Band loop codes from the framer side, see Chapter 3.11.2. The  
necessary receiption time of In-band loop codes until an automatic loop  
switching is performed is configured by INBLDTR.INBLDT(1:0).  
Note: This feature is not described in E1/T1/J1 standards. Generation of  
an interrupt when loop up or down code is detected can be selected  
by demasking (register IMR6). Setting both, SILS and LILS to ´1´ is  
forbidden.  
0B  
automatic switching of local loop (“on framer side”) is disabled  
(default).  
automatic switching of local loop (“on framer side”) by In-band loop  
codes detected from the framer side is enabled.  
1B  
LILS  
0
rw  
Line In-Band Loop Switching (Remote Loop)  
This bit controls if automatic switching of the remote loop will be done by  
In-Band loop codes from the line side, see Chapter 3.11.2.  
Note: Generation of an interrupt when loop up or down code is detected  
can be selected by demasking (register IMR6). Setting both, SILS  
and LILS to ´1´ is forbidden.  
0B  
automatic switching of remote loop (“on line side”) is disabled  
(default).  
automatic switching of remote loop (“on line side”) by In-band loop  
codes detected from the line side is enabled if local loop is not  
activated by LIM0.LL = ´1´.  
1B  
Data Sheet  
188  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLIU Mode Register 3  
LIU Mode Register 3  
LIM3  
Offset  
xxE2H  
Reset Value  
00H  
LIU Mode Register 3  
5HV  
'55  
UZ  
'5;  
UZ  
Field  
Bits  
Type  
Description  
DRR  
1
rw  
Dual-Rail mode on digital side, receive direction  
0B  
1B  
single rail mode on framer receive side.  
dual rail mode on framer receive side.  
DRX  
0
rw  
Dual-Rail mode on digital side, transmit direction  
0B  
1B  
single rail mode on framer transmit side.  
dual rail mode on framer transmit side.  
Data Sheet  
189  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionWander Configuration Register  
Wander Configuration Register  
This register is only valid if register bit GPC6.WAN_IMP is set. See Chapter 3.6.1. for further description.  
WCON  
Offset  
xxE8H  
Reset Value  
00H  
Wander Configuration Register  
:$1'  
UZ  
Field  
WAND  
Bits  
7:0  
Type  
rw  
Description  
Wander Improovement  
This bitfield configures the internal PLLs for output wander improvement  
if register bit GPC6.WAN_IMP is set.The value must be set to ´03H´.  
Data Sheet  
190  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionWander Configuration Register  
4.2  
Detailed Status Register Description  
Table 51  
Registers Overview  
Register Short Name  
VSTR  
CIS  
GIS2  
DSTR  
RBD  
RES  
LSR0  
LSR1  
LSR3  
Register Long Name  
Version Status Register  
Channel Interrupt Status Register  
Global Interrupt Status 2  
Device Status Register  
Receive Buffer Delay  
Receive Equalizer Status  
Line Status Register 0  
Line Status Register 1  
Line Status Register 3  
Offset Address Page Number  
004AH  
006FH  
00ADH  
00E7H  
xx49H  
xx4BH  
xx4CH  
xx4DH  
xx4EH  
xx4FH  
xx52H  
xx53H  
xx58H  
xx59H  
xx69H  
xx6AH  
xx6BH  
xx6CH  
xx6EH  
xxABH  
xxACH  
xxD8H  
xxDAH  
xxFEH  
195  
212  
215  
218  
194  
196  
197  
198  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
213  
214  
216  
217  
219  
LSR2  
Line Status Register 2  
CVCL  
CVCH  
BECL  
BECH  
ISR1  
ISR2  
ISR3  
ISR4  
GIS  
MFPI  
ISR6  
ISR7  
PRBSSTA  
CLKSTAT  
Code Violation Counter Lower Byte  
Code Violation Counter Higher Byte  
PRBS Bit Error Counter Lower Bytes  
PRBS Bit Error Counter Higher Bytes  
Interrupt Status Register 1  
Interrupt Status Register 2  
Interrupt Status Register 3  
Interrupt Status Register 4  
Global Interrupt Status Register  
Multi Function Port Input Register  
Interrupt Status Register 6  
Interrupt Status Register 7  
PRBS Status Register  
Clock Status Register  
The register is addressed wordwise.  
Data Sheet  
191  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionWander Configuration Register  
Table 52  
Mode  
Registers Access Types  
Symbol Description Hardware (HW)  
Description Software (SW)  
Basic Access Types  
read/write  
rw  
Register is used as input for the HW  
Register is read and writable by SW  
read/write  
virtual  
rwv  
Physically, there is no new register in Register is read and writable by SW (same  
the generated register file. The real  
readable and writable register resides  
in the attached hardware.  
as rw type register)  
read  
r
Register is written by HW (register  
Value written by SW is ignored by HW; that  
between input and output -> one cycle is, SW may write any value to this field  
delay)  
Same as r type register  
Physically, there is no new register in Value written by SW is ignored by HW; that  
without affecting HW behavior  
Same as r type register  
read only  
read virtual  
ro  
rv  
the generated register file. The real  
readable register resides in the  
attached hardware.  
is, SW may write any value to this field  
without affecting HW behavior (same as r  
type register)  
write  
w
Register is written by software and  
affects hardware behavior with every  
write by software.  
Register is writable by SW. When read, the  
register does not return the value that has  
been written previously, but some constant  
value instead.  
write virtual  
wv  
rwh  
Physically, there is no new register in Register is writable by SW (same as w type  
the generated register file. The real  
writable register resides in the attached  
hardware.  
register)  
read/write  
hardware  
affected  
Register can be modified by hardware Register can be modified by HW and SW,  
and software at the same time. A but the priority SW versus HW has to be  
priority scheme decides, how the value specified.  
changes with simultaneous writes by  
hardware and software.  
SW can read the register.  
Special Access Types  
Latch high,  
self clearing  
lhsc  
Latch high signal at high level, clear on SW can read the register  
read  
Latch low,  
self clearing  
llsc  
Latch high signal at low-level, clear on SW can read the register  
read  
Latch high,  
lhmk  
llmk  
ihsc  
ilsc  
Latch high signal at high level, register SW can read the register, with write mask  
mask clearing  
cleared with written mask  
the register can be cleared (1 clears)  
Latch low,  
mask clearing  
Interrupt high,  
self clearing  
Interrupt low,  
self clearing  
Latch high signal at low-level, register SW can read the register, with write mask  
cleared on read  
Differentiate the input signal (low-  
>high) register cleared on read  
the register can be cleared (1 clears)  
SW can read the register  
Differentiate the input signal (high-  
>low) register cleared on read  
SW can read the register  
Interrupt high,  
mask clearing  
Interrupt low,  
mask clearing  
ihmk  
ilmk  
Differentiate the input signal (high-  
SW can read the register, with write mask  
>low) register cleared with written mask the register can be cleared  
Differentiate the input signal (low-  
>high) register cleared with written  
mask  
SW can read the register, with write mask  
the register can be cleared  
Data Sheet  
192  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionWander Configuration Register  
Table 52  
Mode  
Registers Access Types (cont’d)  
Symbol Description Hardware (HW)  
Description Software (SW)  
Interrupt enable ien  
Enables the interrupt source for  
SW can read and write this register  
Register is read and writable by SW  
Writing to the register generates a strobe  
register  
interrupt generation  
latch_on_reset lor  
rw register, value is latched after first  
clock cycle after reset  
Read/write  
self clearing  
rwsc  
Register is used as input for the HW,  
the register will be cleared due to a HW signal for the HW (1 pdi clock cycle)  
mechanism.  
Register is read and writable by SW.  
Data Sheet  
193  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionReceive Buffer Delay  
4.2.1  
Status Registers  
Receive Buffer Delay  
RBD  
Offset  
xx49H  
Reset Value  
00H  
Receive Buffer Delay  
5HV  
5%'  
U
Field  
RBD  
Bits  
5:0  
Type  
r
Description  
Receive Elastic Buffer Delay  
These bits informs the user about the current delay (in time slots) through  
the receive elastic buffer. The delay is updated every 512 or 256 bits  
(DIC1.RBS(1:0)). Before reading this register the user has to set bit  
DEC.DRBD in order to halt the current value of this register. After reading  
RBD updating of this register is enabled. Not valid if the receive buffer is  
bypassed.  
000000B Delay < 1 time slot  
...B  
111111B Delay > 63 time slot  
Data Sheet  
194  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionVersion Status Register  
Version Status Register  
VSTR  
Offset  
004AH  
Reset Value  
Version Status Register  
H
9675  
U
Field  
VSTR  
Bits  
7:0  
Type  
r
Description  
Version Number of Chip  
Status information depends on the setting of GPC6.COMP_DIS:  
00000101B for COMP_DIS = ´0´  
00100000B for COMP_DIS = ´1´  
Data Sheet  
195  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionReceive Equalizer Status  
Receive Equalizer Status  
RES  
Offset  
xx4BH  
Reset Value  
00H  
Receive Equalizer Status  
(9  
5(6  
U
U
Field  
Bits  
Type  
Description  
EV  
7:6  
r
Equalizer Status Valid  
These bits informs the user about the current state of the receive  
equalization network.  
00B Equalizer status not valid, still adapting  
01B Equalizer status valid  
10B Equalizer status not valid  
11B Equalizer status valid but high noise floor  
RES  
5:0  
r
Receive Equalizer Status  
The current line attenuation status in steps of about 1.7 dB for E1 and 1.4  
dB for T1/J1 mode are displayed in these bits. Only valid if bits EV(1:0) =  
´01b´. Accuracy: ± 2 digits, based on temperature influence and noise  
amplitude variations.  
00000B  
...B  
11001B  
Minimum attenuation: 0 dB  
Maximum attenuation: -43 dB (E1), -36 dB (T1/J1)  
Data Sheet  
196  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Status Register 0  
Line Status Register 0  
LSR0  
Offset  
xx4CH  
Reset Value  
00H  
Line Status Register 0  
/26  
U
$,6  
U
5HV  
Field  
LOS  
Bits  
7
Type  
r
Description  
Loss-of-Signal  
Detection: This bit is set when the incoming signal has “no transitions”  
(analog interface) or logical zeros (digital interface) in a time interval  
of T consecutive pulses, where T is programmable by register PCD.  
Total account of consecutive pulses: 16 T 4096. Analog interface:  
The receive signal level where “no transition” is declared is defined by  
the programmed value of LIM1.RIL(2:0).  
Recovery: Analog interface: The bit is reset in short-haul mode when  
the incoming signal has transitions with signal levels greater than the  
programmed receive input level (LIM1.RIL(2:0)) for at least M pulse  
periods defined by register PCR in the PCD time interval. In long-haul  
mode additionally bit RES.6 must be set for at least 250 µs. Digital  
interface: The bit is reset when the incoming data stream contains at  
least M ones defined by register PCR in the PCD time interval. With  
the rising edge of this bit an interrupt status bit (ISR2.LOS) is set. The  
bit is also set during alarm simulation and reset, if MR0.SIM is cleared  
and no alarm condition exists.  
AIS  
6
r
Alarm Indication Signal  
The function of this bit is determined by MR0.ALM.  
MR0.ALM = ´0´: This bit is set when two or less zeros in the received  
bit stream are detected in a time interval of 250 ms and the  
QuadLIUTM is in asynchronous state (LSR0.LFA = ´1´). The bit is reset  
when no alarm condition is detected (according to ETSI standard).  
MR0.ALM = ´1´: This bit is set when the incoming signal has two or  
less Zeros in each of two consecutive double frame period (512 bits).  
This bit is cleared when each of two consecutive doubleframe periods  
contain three or more zeros or when the frame alignment signal FAS  
has been found. (ITU-T G.775)  
The bit is also set during alarm simulation and reset if MR0.SIM is cleared  
and no alarm condition exists.With the rising edge of this bit an interrupt  
status bit (ISR2.AIS) is set.  
Data Sheet  
197  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Status Register 1  
Line Status Register 1  
LSR1  
Offset  
xx4DH  
Reset Value  
xxH  
Line Status Register 1  
(;='  
U
3'(1  
U
;/6  
U
;/2  
U
5HV  
//%''  
//%$'  
5HV  
U
U
Field  
Bits  
Type  
Description  
EXZD  
7
r
Excessive Zeros Detected  
Significant only, if excessive zero detection has been enabled  
(MR0.EXZE = ´1´). Set after detection of more than 3 (HDB3 code) or 15  
(AMI code) contiguous zeros in the received data stream.This bit is  
cleared on read.  
PDEN  
6
r
Pulse-Density Violation Detected  
The pulse-density of the received data stream is below the requirement  
defined by ANSI T1. 403 or more than 14 consecutive zeros are detected.  
With the violation of the pulse-density this bit is set and remains active  
until the pulse-density requirement is fulfilled for 23 consecutive "1"-  
pulses. Additionally an interrupt status ISR0.PDEN is generated with the  
rising edge of PDEN.  
LLBDD  
LLBAD  
4
3
r
r
Line Loop-Back Deactivation Signal Detected, only valid in T1 mode  
In E1 mode the equivalent bit is LSR2.LLBDD.  
This bit is set in case of the LLB deactivate signal is detected and then  
received over a period of more than 33,16 ms with a bit error rate less  
than 10-2. The bit remains set as long as the bit error rate does not exceed  
10-2. If framing is aligned, the first bit position of any frame is not taken  
into account for the error rate calculation.Any change of this bit causes an  
LLBSC interrupt.  
Line Loop-Back Activation Signal Detected, only valid in T1 mode  
In E1 mode the equivalent bit is LSR2.LLBAD.  
Depending on bit LCR1.EPRM the source of this status bit changed.  
LCR1.EPRM = ´0´: This bit is set in case of the LLB activate signal is  
detected and then received over a period of more than 33,16 ms with  
a bit error rate less than 10-2. The bit remains set as long as the bit  
error rate does not exceed 10-2. If framing is aligned, the first bit  
position of any frame is not taken into account for the error rate  
calculation. Any change of this bit causes an LLBSC interrupt.  
LCR1.EPRM = ´1´: The current status of the PRBS synchronizer is  
indicated in this bit. It is set high if the synchronous state is reached  
even in the presence of a bit error rate of up to 10-3. A data stream  
containing all zeros or all ones with/without framing bits is also a valid  
pseudo-random binary sequence.  
Data Sheet  
198  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Status Register 1  
Field  
Bits  
Type  
Description  
XLS  
1
r
Transmit Line Short  
See Chapter 3.9.7. Significant only if the ternary line interface is selected  
by LIM1.DRS = ´0´.  
0B  
1B  
Normal operation. No short is detected.  
The XL1 and XL2 are shortened for at least 3 pulses. As a reaction  
of the short the pins XL1 and XL2 are automatically forced into a  
high-impedance state if bit XPM2.DAXLT is reset. After 128  
consecutive pulse periods the outputs XL1/2 are activated again  
and the internal transmit current limiter is checked. If a short  
between XL1/2 is still further active the outputs XL1/2 are in high-  
impedance state again. When the short disappears pins XL1/2 are  
activated automatically and this bit is reset. With any change of this  
bit an interrupt ISR1.XLSC is generated. In case of XPM2.XLT is  
set this bit is frozen.  
XLO  
0
r
Transmit Line Open  
See also Chapter 3.9.7.  
0B  
1B  
Normal operation  
This bit is set if at least 32 consecutive zeros were sent on pins  
XL1/XL2 or XDOP/XDON. This bit is reset with the first transmitted  
pulse. With the rising edge of this bit an interrupt ISR1.XLSC is set.  
In case of XPM2.XLT is set this bit is frozen.  
Data Sheet  
199  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Status Register 3  
Line Status Register 3  
LSR3  
Offset  
xx4EH  
Reset Value  
xxH  
Line Status Register 3  
(6&  
U
5HV  
Field  
ESC  
Bits  
7:5  
Type  
r
Description  
Error Simulation Counter, T1 only  
This three-bit counter is incremented by setting bit MR0.SIM. The state of  
the counter determines the function to be tested. For complete checking  
of the alarm indications, eight simulation steps are necessary (LSR3.ESC  
= ´000b´ after a complete simulation).  
Table 53  
Alarm Simulation States  
Tested Alarms ESC(2:0) =  
0
1
2
3
4
5
6
7
LFA  
LMFA  
x
x
x
x
RRA (bit2 = 0)  
RRA (S-bit frame 12)  
RRA (DL-pattern)  
LOS1)  
x
x
x
x
x
x
x
x
x
x
x
x
EBC2) (F12,F72)  
EBC2) (only ESF)  
AIS1)  
(x)  
(x)  
x
x
x
x
x
FEC2)  
CVC  
CEC (only ESF)  
RSP  
(x)  
x
x
x
x
x
x
RSN  
x
XSP  
x
x
XSN  
x
x
BEC1)  
x
x
COEC  
x
1) Only active during FMR0.SIM = 1  
2) FEC is counting +2 while EBC is counting +1 if the framer is in synchronous state; if asynchronous in state 2 but  
synchronous in state 6, counters are incremented during state 6  
Data Sheet  
200  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register Description  
Some of these alarm indications are simulated only if the QuadLIUTM is configured in the appropriate mode. At  
simulation steps 0, 3, 4, and 7 pending status flags are reset automatically and clearing of the error counters and  
interrupt status registers ISR(7:0) should be done. Incrementing the simulation counter should not be done at time  
intervals shorter than 1.5 ms (F4, F12, F72) or 3 ms (ESF). Otherwise, reactions of initiated simulations might  
occur at later steps. Control bit FMR0.SIM has to be held stable at high or low level for at least one receive clock  
period before changing it again.  
Data Sheet  
201  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionLine Status Register 2  
Line Status Register 2  
LSR2  
Offset  
xx4FH  
Reset Value  
xxH  
Line Status Register 2  
5HV  
//%''  
//%$'  
5HV  
U
U
Field  
Bits  
Type  
Description  
LLBDD  
4
r
Line Loop-Back Deactivation Signal Detected  
Only valid in E1 mode  
In T1/J1 mode the equivalent bit is LSR1.LLBDD.  
This bit is set in case of the LLB deactivate signal is detected and then  
received over a period of more than 25 ms with a bit error rate less than  
10-2. The bit remains set as long as the bit error rate does not exceed 10-2.  
If framing is aligned, the time slot 0 is not taken into account for the error  
rate calculation.Any change of this bit causes an LLBSC interrupt.  
LLBAD  
3
r
Line Loop-Back Activation Signal Detected  
Only valid in E1 mode  
In T1/J1 mode the equivalent bit is LSR1.LLBAD.  
Depending on bit LCR1.EPRM the source of this status bit changed.  
LCR1.EPRM = ´0´: This bit is set in case of the LLB activate signal is  
detected and then received over a period of more than 25 ms with a  
bit error rate less than 10-2. The bit remains set as long as the bit error  
rate does not exceed 10-2. If framing is aligned, the time slot 0 is not  
taken into account for the error rate calculation. Any change of this bit  
causes an LLBSC interrupt.  
LCR1.EPRM = ´1´: The current status of the PRBS synchronizer is  
indicated in this bit. It is set high if the synchronous state is reached  
even in the presence of a bit error rate of 10-1. A data stream  
containing all zeros or all ones with/without framing bits is also a valid  
pseudo-random binary sequence.  
Data Sheet  
202  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionCode Violation Counter Lower Byte  
Code Violation Counter Lower Byte  
CVCL  
Offset  
xx52H  
Reset Value  
00H  
Code Violation Counter Lower Byte  
&9ꢀ  
U
&9ꢁ  
U
&9ꢂ  
U
&9ꢃ  
U
&9ꢄ  
U
&9ꢅ  
U
&9ꢆ  
U
&9ꢇ  
U
Field  
Bits  
Type  
Description  
CV7  
CV6  
CV5  
CV4  
CV3  
CV2  
CV1  
CV0  
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
Code Violations  
If the HDB3 or the CMI code with HDB3-precoding is selected, the 16-bit  
counter is incremented when violations of the HDB3 code are detected.  
The error detection mode is determined by programming the bit  
MR0.EXTD. If simple AMI coding is enabled (MR0.RC(1:0) = ´01b´) all  
bipolar violations are counted. The error counter does not roll over.During  
alarm simulation, the counter is incremented every four bits received up  
to its saturation. Clearing and updating the counter is done according to  
bit MR1.ECM. If this bit is reset the error counter is permanently updated  
in the buffer. For correct read access of the error counter bit DEC.DCVC  
has to be set. With the rising edge of this bit updating the buffer is stopped  
and the error counter is reset. Bit DEC.DCVC is reset automatically with  
reading the error counter high byte. If MR1.ECM is set every second  
(interrupt ISR3.SEC) the error counter is latched and then automatically  
reset. The latched error counter state should be read within the next  
second.  
Data Sheet  
203  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionCode Violation Counter Higher Byte  
Code Violation Counter Higher Byte  
CVCH  
Offset  
xx53H  
Reset Value  
00H  
Code Violation Counter Higher Byte  
&9ꢀꢁ  
U
&9ꢀꢂ  
U
&9ꢀꢃ  
U
&9ꢀꢄ  
U
&9ꢀꢀ  
U
&9ꢀꢅ  
U
&9ꢆ  
U
&9ꢇ  
U
Field  
Bits  
Type  
Description  
CV15  
CV14  
CV13  
CV12  
CV11  
CV10  
CV9  
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
Code Violations  
If the HDB3 or the CMI code with HDB3-precoding is selected, the 16-bit  
counter is incremented when violations of the HDB3 code are detected.  
The error detection mode is determined by programming the bit  
MR0.EXTD. If simple AMI coding is enabled (MR0.RC(1:0) = ´01b´) all  
bipolar violations are counted. The error counter does not roll over.During  
alarm simulation, the counter is incremented every four bits received up  
to its saturation. Clearing and updating the counter is done according to  
bit MR1.ECM. If this bit is reset the error counter is permanently updated  
in the buffer. For correct read access of the error counter bit DEC.DCVC  
has to be set. With the rising edge of this bit updating the buffer is stopped  
and the error counter is reset. Bit DEC.DCVC is reset automatically with  
reading the error counter high byte. If MR1.ECM is set every second  
(interrupt ISR3.SEC) the error counter is latched and then automatically  
reset. The latched error counter state should be read within the next  
second.  
CV8  
Data Sheet  
204  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPRBS Bit Error Counter Lower Bytes  
PRBS Bit Error Counter Lower Bytes  
BECL  
Offset  
xx58H  
Reset Value  
00H  
PRBS Bit Error Counter Lower Bytes  
%(&ꢀ  
U
%(&ꢁ  
U
%(&ꢂ  
U
%(&ꢃ  
U
%(&ꢄ  
U
%(&ꢅ  
U
%(&ꢆ  
U
%(&ꢇ  
U
Field  
Bits  
Type  
Description  
BEC7  
BEC6  
BEC5  
BEC4  
BEC3  
BEC2  
BEC1  
BEC0  
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
PRBS Bit Error Counter  
If the PRBS monitor is enabled by LCR1.EPRM = ´1´ this 16-bit counter  
is incremented with every received PRBS bit error in the PRBS  
synchronous state LSR1.LLBAD = ´1´.  
The error counter does not roll over.During alarm simulation, the counter  
is incremented continuously with every second received bit. Clearing and  
updating the counter is done according to bit MR1.ECM.If this bit is reset  
the error counter is permanently updated in the buffer. For correct read  
access of the PRBS bit error counter bit DEC.DBEC has to be set. With  
the rising edge of this bit updating the buffer is stopped and the error  
counter is reset.  
Bit DEC.DBEC is automatically reset with reading the error counter high  
byte. If MR1.ECM is set every second (interrupt ISR3.SEC) the error  
counter is latched and then automatically reset. The latched error counter  
state should be read within the next second.  
Data Sheet  
205  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPRBS Bit Error Counter Higher Bytes  
PRBS Bit Error Counter Higher Bytes  
BECH  
Offset  
xx59H  
Reset Value  
00H  
PRBS Bit Error Counter Higher Bytes  
%(&ꢀꢀ  
U
%(&ꢆ  
U
%(&ꢇ  
U
%(&ꢀꢁ  
%(&ꢀꢂ  
%(&ꢀꢃ  
%(&ꢀꢄ  
%(&ꢀꢅ  
U
U
U
U
U
Field  
Bits  
7
6
5
4
3
2
1
0
Type  
Description  
PRBS Bit Error Counter  
If the PRBS monitor is enabled by LCR1.EPRM = ´1´ this 16-bit counter  
is incremented with every received PRBS bit error in the PRBS  
synchronous state LSR1.LLBAD = ´1´.  
The error counter does not roll over.During alarm simulation, the counter  
is incremented continuously with every second received bit. Clearing and  
updating the counter is done according to bit MR1.ECM.If this bit is reset  
the error counter is permanently updated in the buffer. For correct read  
access of the PRBS bit error counter bit DEC.DBEC has to be set. With  
the rising edge of this bit updating the buffer is stopped and the error  
counter is reset.  
BEC15  
BEC14  
BEC13  
BEC12  
BEC11  
BEC10  
BEC9  
r
r
r
r
r
r
r
r
BEC8  
Bit DEC.DBEC is automatically reset with reading the error counter high  
byte. If MR1.ECM is set every second (interrupt ISR3.SEC) the error  
counter is latched and then automatically reset. The latched error counter  
state should be read within the next second.  
Data Sheet  
206  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Status Register 1  
Interrupt Status Register 1  
All bits are reset when ISR1 is read. If bit GCR.VIS is set, interrupt statuses in ISR1 are flagged although they are  
masked by register IMR1. However, these masked interrupt statuses neither generate a signal on INT, nor are  
visible in register GIS, see Chapter 3.5.3.  
ISR1  
Offset  
xx69H  
Reset Value  
00H  
Interrupt Status Register 1  
//%6&  
UVF  
5HV  
;/6&  
UVF  
5HV  
Field  
LLBSC  
Bits  
7
Type  
rsc  
Description  
Line Loop-Back Status Change, E1 only  
In T1/J1 mode this bit is not valid and ISR3.LLBSC is used instead.  
Depending on bit LCR1.EPRM the source of this interrupt status  
changed:  
LCR1.EPRM = 0: This bit is set, if the LLB activate signal or the LLB  
deactivate signal, respectively, is detected over a period of 25 ms with  
a bit error rate less than 10-2. The LLBSC bit is also set, if the current  
detection status is left, i.e., if the bit error rate exceeds 10-2. The actual  
detection status can be read from the LSR2.LLBAD / LSR2.LLBDD in  
E1 or LSR1.LLBAD / LSR1.LLBDD in T1/J1 mode, respectively.  
PRBS Status Change LCR1.EPRM = ´1´: With any change of state of  
the PRBS synchronizer this bit is set. The current status of the PRBS  
synchronizer is indicated in LSR2.LLBAD (E1) or LSR1.LLBAD  
(T1/J1).  
XLSC  
1
rsc  
Transmit Line Status Change  
XLSC is set with the rising edge of the bit LSR1.XLO or with any change  
of bit LSR1.XLS.  
The actual status of the transmit line monitor can be read from the  
LSR1.XLS and LSR1.XLO.  
Data Sheet  
207  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Status Register 2  
Interrupt Status Register 2  
All bits are reset when ISR2 is read. If bit GCR.VIS is set, interrupt statuses in ISR2 are flagged although they are  
masked by register IMR2. However, these masked interrupt statuses neither generate a signal on INT, nor are  
visible in register GIS. See Chapter 3.5.3  
ISR2  
Offset  
xx6AH  
Reset Value  
00H  
Interrupt Status Register 2  
$,6  
U
/26  
U
5HV  
5HV  
Field  
Bits  
Type  
Description  
AIS  
3
r
Alarm Indication Signal (Blue Alarm)  
This bit is set when an alarm indication signal is detected and bit  
LSR0.AIS is set. If GCR.SCI is set high this interrupt status bit is activated  
with every change of state of LSR0.AIS.It is set during alarm simulation.  
LOS  
2
r
Loss-of-Signal (Red Alarm)  
This bit is set when a loss-of-signal alarm is detected in the received data  
stream and LSR0.LOS is set. If GCR.SCI is set high this interrupt status  
bit is activated with every change of state of LSR0.LOS. It is set during  
alarm simulation.  
Data Sheet  
208  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Status Register 3  
Interrupt Status Register 3  
All bits are reset when ISR3 is read. If bit GCR.VIS is set, interrupt statuses in ISR3 are flagged although they are  
masked by register IMR3. However, these masked interrupt statuses neither generate a signal on INT, nor are  
visible in register GIS, see Chapter 3.5.3.  
ISR3  
Offset  
xx6BH  
Reset Value  
00H  
Interrupt Status Register 3  
5HV  
6(&  
UVF  
5HV  
//%6&  
UVF  
5HV  
561  
UVF  
563  
UFV  
Field  
SEC  
Bits  
6
Type  
rsc  
Description  
Second Timer  
The internal one-second timer has expired. The timer is derived from  
clock RCLK or external pin SEC/FSC.  
LLBSC  
3
rsc  
Line Loop-Back Status Change, T1/J1 only  
In E1 mode this bit is not valid and ISR1.LLBSC is used instead.  
Depending on bit LCR1.EPRM the source of this interrupt status  
changed:  
LCR1.EPRM = 0: This bit is set, if the LLB activate signal or the LLB  
deactivate signal, respectively, is detected over a period of 25 ms with  
a bit error rate less than 10-2. The LLBSC bit is also set, if the current  
detection status is left, i.e., if the bit error rate exceeds 10-2. The actual  
detection status can be read from the LSR2.LLBAD / LSR2.LLBDD in  
E1 or LSR1.LLBAD / LSR1.LLBDD in T1/J1 mode, respectively.  
PRBS Status Change LCR1.EPRM = ´1´: With any change of state of  
the PRBS synchronizer this bit is set. The current status of the PRBS  
synchronizer is indicated in LSR2.LLBAD (E1) or LSR1.LLBAD  
(T1/J1).  
RSN  
RSP  
1
0
rsc  
rcs  
Receive Slip Negative  
The frequency of the receive route clock is greater than the frequency of  
the receive system interface working clock based on 2.048 MHz. A frame  
is skipped. It is set during alarm simulation. See Chapter 3.7.9.  
Receive Slip Positive  
The frequency of the receive route clock is less than the frequency of the  
receive system interface working clock based on 2.048 MHz. A frame is  
repeated. It is set during alarm simulation. See Chapter 3.7.9.  
Data Sheet  
209  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Status Register 4  
Interrupt Status Register 4  
All bits are reset when ISR4 is read. If bit GCR.VIS is set, interrupt statuses in ISR4 are flagged although they are  
masked by register IMR4. However, these masked interrupt statuses neither generate a signal on INT, nor are  
visible in register GIS, see Chapter 3.5.3.  
ISR4  
Offset  
xx6CH  
Reset Value  
00H  
Interrupt Status Register 4  
;63  
UVF  
;61  
UVF  
5HV  
Field  
Bits  
Type  
Description  
XSP  
7
rsc  
Transmit Slip Positive  
The frequency of the transmit clock is less than the frequency of the  
transmit system interface working clock based on 2.048 MHz. A frame is  
repeated. After a slip has performed writing of register XC1 is not  
necessary.  
XSN  
6
rsc  
Transmit Slip Negative  
The frequency of the transmit clock is greater than the frequency of the  
transmit system interface working clock based on 2.048 MHz. A frame is  
skipped. After a slip has performed writing of register XC1 is not  
necessary.  
Data Sheet  
210  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Interrupt Status Register  
Global Interrupt Status Register  
This status register points to pending interrupts sourced by ISR(1:4) and ISR(6:7), see Chapter 3.5.3.  
GIS  
Offset  
xx6EH  
Reset Value  
00H  
Global Interrupt Status Register  
,65ꢀ  
UVF  
,65ꢁ  
UVF  
,65ꢂ  
UVF  
,65ꢃ  
UVF  
,65ꢄ  
UVF  
,65ꢅ  
UVF  
,65ꢆ  
UVF  
,65ꢇ  
UVF  
Field  
Bits  
Type  
Description  
ISR7  
7
rsc  
Interrupt Status Register 7 Pointer  
0B  
1B  
no interrupt is pending in ISR6.  
at least one interrupt is pending in ISR6.  
ISR6  
6
rsc  
Interrupt Status Register 6 Pointer  
0B  
1B  
no interrupt is pending in ISR6.  
at least one interrupt is pending in ISR6.  
ISR5  
ISR4  
5
4
rsc  
rsc  
Interrupt Status Register 5 Pointer  
Always ´0´, because no ISR5 exists  
Interrupt Status Register 4 Pointer  
0B  
1B  
no interrupt is pending in ISR4.  
at least one interrupt is pending in ISR4.  
ISR3  
ISR2  
ISR1  
ISR0  
3
2
1
0
rsc  
rsc  
rsc  
rsc  
Interrupt Status Register 3 Pointer  
0B  
1B  
no interrupt is pending in ISR3.  
at least one interrupt is pending in ISR3.  
Interrupt Status Register 2Pointer  
0B  
1B  
no interrupt is pending in ISR2.  
at least one interrupt is pending in ISR2.  
Interrupt Status Register 1 Pointer  
0B  
1B  
no interrupt is pending in ISR1.  
at least one interrupt is pending in ISR1.  
Interrupt Status Register 0 Pointer  
Always ´0´, because no ISR0 exists.  
Data Sheet  
211  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionChannel Interrupt Status Register  
Channel Interrupt Status Register  
This status register points to pending interrupts of channels 1to 4, see Chapter 3.5.3.  
CIS  
Offset  
006FH  
Reset Value  
00H  
Channel Interrupt Status Register  
3///  
UVF  
5HV  
*,6ꢀ  
UVF  
*,6ꢁ  
UVF  
*,6ꢂ  
UVF  
*,6ꢃ  
UVF  
Field  
Bits  
Type  
Description  
PLLL  
7
rsc  
PLL Lock Status  
This bit shows the lock status of the internal PLL.  
Note: PLLL has the same value as PLLLS in register GIS2 (which is used  
for GPC6.COMP_DIS = 1B).  
0B  
1B  
PLL is unlocked.  
PLL is locked.  
GIS4  
GIS3  
GIS2  
GIS1  
3
2
1
0
rsc  
rsc  
rsc  
rsc  
Global Interrupt Status of Channel 4  
0B  
1B  
no interrupt is pending on channel 4.  
at least one interrupt is pending on channel 4, read GIS of channel  
4 for more information.  
Global Interrupt Status of Channel 3  
0B  
1B  
no interrupt is pending on channel 3.  
at least one interrupt is pending on channel 3, read GIS of channel  
3 for more information.  
Global Interrupt Status of Channel 2  
0B  
1B  
no interrupt is pending on channel 2.  
at least one interrupt is pending on channel 2, read GIS of channel  
2 for more information.  
Global Interrupt Status of Channel 1  
0B  
1B  
no interrupt is pending on channel 1.  
at least one interrupt is pending on channel 1, read GIS of channel  
1 for more information.  
Data Sheet  
212  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionMulti Function Port Input Register  
Multi Function Port Input Register  
This register always reflects the state of the multi function ports, see Chapter 3.12. If used as an input, the  
according port should be switched to general purpose input mode. If not, the programmed output signal can be  
monitored through this register (see registers PC1 to PC3).  
MFPI  
Offset  
xxABH  
Reset Value  
xxH  
Multi Function Port Input Register  
53&  
U
53%  
U
53$  
U
;3%  
U
;3$  
U
5HV  
5HV  
Field  
Bits  
Type  
Description  
RPC  
RPB  
RPA  
XPB  
XPA  
6
5
4
1
0
r
r
r
r
r
RPC Input Level  
0B  
1B  
Low level on pin RPC.  
High level on pin RPC.  
RPB Input Level  
0B  
1B  
Low level on pin RPB.  
High level on pin RPB.  
RPA Input Level  
0B  
1B  
Low level on pin RPA.  
High level on pin RPA.  
XPB Input Level  
0B  
1B  
Low level on pin XPB.  
High level on pin XPB.  
XPA Input Level  
0B  
1B  
Low level on pin XPA.  
High level on pin XPA.  
Data Sheet  
213  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Status Register 6  
Interrupt Status Register 6  
ISR6  
Offset  
xxACH  
Reset Value  
00H  
Interrupt Status Register 6  
5HV  
6,/68  
UVF  
6,/6'  
UVF  
/,/68  
UVF  
/,/6'  
UVF  
Field  
Bits  
Type  
Description  
SILSU  
SILSD  
LILSU  
3
2
1
rsc  
rsc  
rsc  
Framer (System) In-Band Loop Switching Up detected  
See Chapter 3.11.2.  
System loop up code detected and payload loop is switched on if  
ALS.SILS is set.  
Framer (System) In-Band Loop Switching Down detected  
See Chapter 3.11.2.  
System loop down code detected and payload loop is switched off if  
ALS.SILS is set.  
Line In-Band Loop Switching Up Interrupt  
See Chapter 3.11.2.  
0B  
1B  
no line loop up code detected.  
line loop up code detected and line loop is switched on if ALS.LILS  
is set.  
LILSD  
0
rsc  
Line In-Band Loop Switching Down Interrupt  
See Chapter 3.11.2.  
0B  
1B  
no line loop down code detected.  
line loop down code detected and line loop is switched off if  
ALS.LILS is set.  
Data Sheet  
214  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionGlobal Interrupt Status 2  
Global Interrupt Status 2  
Interrupt status register for the PLL of the master clocking unit.  
GIS2  
Offset  
00ADH  
Reset Value  
00H  
Global Interrupt Status 2  
3///6  
U
5HV  
3///&  
UVF  
Field  
PLLLS  
Bits  
1
Type  
r
Description  
PLL Locked Status Information  
Note: PLLLS is only a status bit, not an interrupt status bit, so type is r and  
not rsc. This bit is valid independent on value of COMP. For COMP  
= ´0´ this bit must be used instead of bit 7 of register CIS which has  
then the function GIS8.  
0B  
1B  
PLL is unlocked.  
PLL is locked  
PLLLC  
0
rsc  
PLL Locked Status Change  
0B  
1B  
no change of PLL lock status since last read of this register.  
PLL lock status has changed since last read. Status information is  
available in bit PLLLS.  
Data Sheet  
215  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionInterrupt Status Register 7  
Interrupt Status Register 7  
All bits are reset when ISR7 is read. If bit GCR.VIS is set, interrupt statuses in ISR7 are flagged although they are  
masked by register IMR7. However, these masked interrupt statuses neither generate a signal on INT, nor are  
visible in register GIS, see Chapter 3.5.3.  
ISR7  
Offset  
xxD8H  
Reset Value  
00H  
Interrupt Status Register 7  
5HV  
;&/.66ꢀ  
;&/.66ꢁ  
UVF  
5HV  
UVF  
Field  
Bits  
Type  
Description  
XCLKSS1  
4
rsc  
XCLK Source Switched 1  
See Chapter 3.9.3. Shows if an automatically switching of the DCO-X  
reference between TCLK and FCLKX was performed. If automatically  
switching is not enabled (CMR6.ATCS = ´0´), this bit is always ´0´. Note  
that the status of TCLK is shown independent on CMR6.ATC in  
CLKSTAT.TCLKLOS.  
0B  
1B  
DCO-X reference not switched.  
DCO-X reference has switched between TCLK and FCLKX. The  
XCLK is always sourced by the DCO-X output.  
XCLKSS0  
3
rsc  
XCLK Source Switched 0  
See Chapter 3.9.3. Shows if an automatically switching of the XCLK  
source between TCLK and DCO-X output was performed. If automatically  
switching is not enabled (CMR6.ATCS = ´0´), this bit is always ´0´. Note  
that the status of TCLK is shown independent on CMR6.ATC in  
CLKSTAT.TCLKLOS.  
0B  
1B  
XCLK source not switched.  
XCLK source has switched automatically from TCLK to DCO-X  
output in case of TCLK loss or automatically switched back from  
DCO-X output to TCLK in case that TCLK is active again. The  
DCO-X is always sourced by FCLKX.  
Data Sheet  
216  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionPRBS Status Register  
PRBS Status Register  
PRBSSTA  
PRBS Status Register  
Offset  
xxDAH  
Reset Value  
0xH  
356  
U
5HV  
Field  
PRS  
Bits  
2:0  
Type  
r
Description  
PRBS Status Information  
Note: Every change of the bits PRS sets the interrupt bit ISR1.LLBSC if  
register bit LCR1.EPRM is set. No pattern is also detected if signal  
“alarm simulation” is active. Detection of all_zero or all_ones is  
done over 12, 16, 21 or 24 consecutive bits, dependent on the  
choosed PRBS polynomial (11, 15, 20 or 23). Because every bit  
error in the PRBS increments the bit error counter BEC, no special  
status information like “PRBS detected with errors” is given here  
000B no pattern detected.  
001B reserved.  
010B PRBS pattern detected.  
011B inverted PRBS pattern detected.  
100B reserved.  
101B reserved.  
110B all-zero pattern detected.  
111B all-ones pattern detected.  
Data Sheet  
217  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionDevice Status Register  
Device Status Register  
.
DSTR  
Device Status Register  
Offset  
00E7H  
Reset Value  
0xH  
&203  
U
5HV  
Field  
Bits  
Type  
Description  
COMP  
0
r
COMPatibility Status  
0B  
1B  
GPC6.COMP_DIS = ´1´, generic mode is selected.  
GPC6.COMP_DIS = ´0´, QuadFALC® v2.1 compatibility mode is  
selected.  
Data Sheet  
218  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Register DescriptionClock Status Register  
Clock Status Register  
The bits show the current status of the input clocks TCLK and FCLKX.  
CLKSTAT  
Clock Status Register  
Offset  
xxFEH  
Reset Value  
xxH  
)&/.;/2  
6
5HV  
7&/./26  
5HV  
U
U
Field  
Bits  
Type  
Description  
TCLKLOS  
4
r
Loss of TCLK  
Status of TCLK.  
Note: See Chapter 3.9.3 for more detail.  
0B  
1B  
TCLK is active.  
TCLK is lossed.  
FCLKXLOS  
3
r
Loss of FCLKX  
Status of FCLKX.  
Note: See Chapter 3.9.3 for more detail.  
0B  
1B  
FCLKX is active.  
FCLKX is lossed.  
Data Sheet  
219  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Package Outlines  
5
Package Outlines  
Figure 46 shows the Ball Grid Array Packages.  
13 x 1 = 13  
A13  
B14  
A2  
Index Marking  
B1  
N1  
1
P2  
0.25  
C
160x  
±0.1  
ø0.6  
0.2  
C
M
ø0.25  
C A B  
C
M
ø0.1  
A
Index Marking  
±0.1  
15  
B
GPA01100  
Figure 46 P/PG-LBGA-160-1 (Plastic Green Low Profile Ball Grid Array Package)  
Dimensions in mm.  
Data Sheet  
220  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Package Outlines  
Figure 47 shows the Flat Thin Pack package.  
H
0.5  
±0.15  
0.6  
17.5  
C
2)  
0.08  
±0.05  
0.22  
M
0.08 A-B D C 144x  
22  
0.2 A-B D 144x  
0.2 A-B D H 4x  
201)  
D
B
A
144  
Index Marking  
1
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Does not include dambar protrusion of 0.08 max. per side  
Figure 47 PG-TQFP-144-17 (Plastic Thin Quad Flat Package)  
Dimensions in mm  
Data Sheet  
221  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
6
Electrical Characteristics  
In Table 54 the absolute maximum ratings of the QuadLIUTM are listed.  
Table 54  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
Ambient temperature under  
bias  
TA  
-40  
85  
°C  
Storage temperature  
Tstg  
-65  
125  
225  
°C  
°C  
Moisture Level 3 temperature TML3  
According to IPS  
J-STD 020  
245  
°C  
According to Infineon  
internal standard  
IC supply voltage (pads, digital) VDD  
IC supply voltage (core, digital) VDDC  
-0.5  
-0.5  
-0.4  
3.3  
1.8  
4.5  
2.4  
4.5  
V
V
V
IC supply voltage receive  
(analog)  
VDDR  
IC supply voltage transmit  
(analog)  
VDDX  
-0.4  
-0.8  
-0.4  
4.5  
V
V
V
V
Receiver input signal with  
respect to ground  
VRLmax  
4.5  
RL1, RL2  
Voltage on any pin with respect Vmax  
to ground  
ESD robustness1) HBM:  
1.5 k, 100 pF  
4.5  
Except RL1, RL2  
VESD,HBM  
VESD,CDM  
2000  
500  
ESD robustness2) CDM  
1) According to JEDEC standard JESD22-A114.  
2) According to ESD Association Standard DS5.3.1 - 1999  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Maximum ratings are absolute ratings; exceeding only one of these values may cause  
irreversible damage to the integrated circuit.  
Attention: To avoid demage of the QuadLIUTM during power up, use the following sequence for biasing:  
Core voltage  
Pad voltage not before core voltage  
Signal voltage not before Pad voltage  
If this sequence does not meet your requirements make sure that  
The inverse current per signal pad is lower than 10 mA  
The current per supply domain is lower than 100 mA  
Table 55 defines the maximum values of voltages and temperature which may be applied to guarantee proper  
operation of the QuadLIUTM  
.
Data Sheet  
222  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 55  
Operating Range  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
-40  
Max.  
85  
Ambient temperature  
TA  
°C  
Supply voltage digital pads  
VDD  
3.13  
3.30  
3.46  
V
3.3 V ± 5 %  
1)  
Supply voltage digital core  
VDDC  
VDDR  
1.62  
3.13  
3.13  
0
1.80  
3.30  
3.30  
1.98  
3.46  
3.46  
V
V
V
V
1.8 V ±10 %  
2)  
Supply voltage analog receiver  
3.3 V ±5 %  
3)  
Supply voltage analog transmitter VDDX  
3.3 V ±5 %  
4)  
Analog input voltages  
VRL  
VID  
VDDR  
+0.3  
RL1, RL2  
Digital input voltages  
Ground  
-0.4  
0
3.46  
0
V
V
V
DD = 3.3 V ±5 %  
VSS  
VSSR  
VSSX  
1) Voltage ripple on analog supply less than 50 mV  
2) Voltage ripple on analog supply less than 50 mV  
3) Voltage ripple on analog supply less than 50 mV  
4) Voltage ripple on analog supply less than 50 mV  
Note:In the operating range, the functions given in the circuit description are fulfilled.  
VDD, VDDR and VDDX have to be connected to the same voltage level,  
VSS, VSSR and VSSX have to be connected to ground level.  
Table 56  
DC Characteristics  
Parameter  
Symbol  
Values  
Unit Note / Test  
Condition  
Min.  
-0.4  
2.0  
Typ.  
Max.  
0.8  
1)  
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
VIL  
V
1)  
VIH  
VOL  
VOH  
3.46  
0.45  
VDD  
V
VSS  
2.4  
V
V
I
I
OL = +2 mA2)  
OH = -2 mA 2)  
Data Sheet  
223  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 56  
DC Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test  
Condition  
Min.  
Max.  
Medium power supply current IDD33E1  
at 3.3 V supply  
230  
mA  
E1 application 3)  
LIM1.DRS = ´0´,  
(analog line interface mode)  
All-one´s pattern; 16 MHz at  
system interface; VSEL = 0  
IDD33E1  
IDD33T1  
IDD33T1  
200  
215  
190  
E1 application 4)  
LIM1.DRS = ´0´, PRBS pattern;  
2 MHz at system interface;  
VSEL = 0  
T1 application5)  
LIM1.DRS = ´0´, all-one´s pattern;  
12 MHz at system interface;  
VSEL = 0  
T1 application 6)  
LIM1.DRS = ´0´, PRBS pattern;  
1.5 MHz at system interface;  
VSEL = 0  
Medium power supply current IDD18E1  
at 1.8 V supply  
(digital line interface mode)  
220  
20  
mA  
mA  
E1 application 7)  
LIM1.DRS = ´1´, all-one´s pattern;  
16 MHz at system interface;  
VSEL = 0  
Medium power supply current IDD33T1  
at 3.3 V supply  
(digital line interface mode)  
Input leakage current  
Input leakage current  
Input pullup current  
Output leakage current  
IIL11  
IIL12  
IIP  
2
1
µA  
µA  
µA  
µA  
VIN =VDD8); all except RDO  
VIN = VSS 6); all except RDO  
VIN = VSS  
1
15  
1
IOZ1  
V
V
OUT = tristate1)  
SS < Vmeas < VDD  
measured against VDD and VSS; all  
except XL1/2  
Transmitter leakage current  
ITL  
30  
µA  
XL1/2 = VDDX; XPM2.XLT = ´1´  
XL1/2 = VSSX; XPM2.XLT = ´1´  
Applies to XL1and XL29)  
XL1, XL2  
30  
Transmitter output impedance RX  
3
Transmitter output current  
IX  
105  
2.15  
mA  
V
Differential peak voltage of a  
mark  
VX  
(between XL1 and XL2)  
Receiver peak voltage of a  
mark  
(at RL1 or RL2)  
VRL12  
VRL12  
ZR  
-0.45  
-0.75  
3.8  
4.1  
V
RL1, RL2  
RZ signals; must only be applied  
during T1 pulse over/undershoot  
according to ANSI T1.403-1999  
Receiver differential peak  
voltage of a mark  
(between RL1 and RL2)  
4.0  
V
V
RL1, RL2  
4.63  
RZ signals; must only be applied  
during T1 pulse over/undershoot  
according to ANSI T1.403-1999  
9)  
Receiver input impedance  
Data Sheet  
50  
kΩ  
224  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 56  
DC Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test  
Condition  
Min.  
Max.  
Receiver internal termination  
resistor  
RTERM  
255  
300  
345  
Internal termination enabled  
Multi Purpose Analog Switch  
RDSON  
RDSOFF  
RDSONDC  
RDSON  
SRSH  
2.7  
100  
7.1  
kΩ  
mA  
mA  
dB  
2
@ 125 oC  
25  
10  
@ 50% duty cycle  
Receiver sensitivity  
Receiver sensitivity  
0
RL1, RL2 LIM0.EQON = ´0´  
(short-haul)  
SRLH  
-43  
-36  
0
0
dB  
RL1, RL2 LIM0.EQON = ´1´ (E1,  
long-haul)  
RL1, RL2 LIM0.EQON = ´1´  
(T1/J1, long-haul)  
Receiver input threshold  
VRTH  
45  
50  
%
LIM2.SLT(1:0) = ´11b´ 9)  
LIM2.SLT(1:0) = ´10b´ 9)  
default setting  
55  
67  
LIM2.SLT(1:0) = ´00b´ 9)  
LIM2.SLT(1:0) = ´01b´ 9)  
RIL(2:0) = ´000b´ 9)  
RIL(2:0) = ´001b´ 9)  
RIL(2:0) = ´010b´10)  
RIL(2:0) = ´011b´ 9)  
RIL(2:0) = ´100b´ 9)  
RIL(2:0) = ´101b´ 9)  
RIL(2:0) = ´110b´ 9)  
RIL(2:0) = ´111b´ 9)  
Loss-Of-signal (LOS) detection VLOS  
limit  
1560  
790  
430  
220  
125  
65  
1710  
960  
500  
260  
130  
70  
mV  
35  
40  
10  
15  
1) Applies to all input pins except analog pins RLx  
2) Applies to all output pins except pins XLx  
3) Wiring conditions and external circuit configuration according to Figure 67 and Table 72.  
4) Wiring conditions and external circuit configuration according to Figure 67 and Table 72.  
5) Wiring conditions and external circuit configuration according to Figure 67 and Table 73.  
6) Wiring conditions and external circuit configuration according to Figure 67 and Table 72.  
7) Wiring conditions and external circuit configuration according to Figure 67 and Table 72.  
8) Pin leakage is measured in a test mode with all internal pullups disabled. RDO pins are not tristatable, no leakage is  
measured.  
9) Parameter not tested in production  
10) Value measured in production to fulfil ITU-T G.775  
Note:Typical characteristics specify mean values expected over the production spread. If not specified otherwise,  
typical characteristics apply at TA = 25 °C and 3.3 V supply voltage.  
Data Sheet  
225  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
6.1  
AC Characteristics  
Master Clock Timing  
6.1.1  
Figure 48 shows the timing and Table 57 the appropriate timing parameter values of the master clock at the pin  
MCLK. The accuracy is required to fulfill the jitter requirements, see Chapter 3.7.8.1 and Chapter 3.9.4.  
1
2
3
MCLK  
F0007  
Figure 48 MCLK Timing  
Table 57  
MCLK Timing Parameter Values  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Max.  
Clock period of MCLK  
1
488  
648  
ns  
E1, fixed mode  
T1/J1, fixed mode  
50  
40  
980.4  
E1/T1/J1, flexible mode  
High phase of MCLK  
Low phase of MCLK  
Clock accuracy  
2
3
%
40  
321)  
282)  
%
ppm  
1) If clock divider programming fits without rounding  
2) If clock divider programming requires rounding  
6.1.2  
JTAG Boundary Scan Interface  
Figure 49 shows the timing and Table 58 the appropriate timing parameter values at the JTAG pins to perform a  
boundary scan test of the QuadLIUTM, see Chapter 3.5.4.  
Data Sheet  
226  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
1
TRS  
2
3
4
TCK  
TMS, TDI  
TDATI  
5
6
8
7
9
TDO, TDATO  
F0120  
Figure 49 JTAG Boundary Scan Timing  
Table 58  
JTAG Boundary Scan Timing Parameter Values  
Parameter  
Symbol  
Values  
Unit  
Note / Test  
Condition  
Min.  
200  
250  
80  
Typ.  
Max.  
TRS reset active low time  
TCK period  
1
2
3
4
5
6
7
8
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK high time  
TCK low time  
80  
TMS, TDI setup time  
TMS, TDI hold time  
TDATI setup time  
TDATI hold time  
40  
40  
40  
40  
TDO, TDATO output delay  
100  
6.1.3  
Reset  
Figure 50 shows the timing and Table 59 the appropriate timing parameter value at the pin RES to perform a reset  
of the QuadLIUTM  
.
1
RES  
F0008  
Figure 50 Reset Timing  
Data Sheet  
227  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 59  
Reset Timing Parameter Value  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
RES pulse width low  
1
101)  
µs  
1) While MCLK is running  
6.1.4  
Asynchronous Microprocessor Interface  
6.1.4.1  
Intel Bus Interface Mode  
Figure 51 to Figure 54 show the timing of the SCI Interface and Table 60 the appropriate timing parameter  
values.  
Ax  
BHE  
CS  
3
3A  
1
2
RD  
WR  
ITT10975  
Figure 51 Intel Non-Multiplexed Address Timing  
Ax  
BHE  
5
4
6
ALE  
7
7A  
1
CS  
3
3A  
RD  
WR  
ITT10977  
Figure 52 Intel Multiplexed Address Timing  
Data Sheet  
228  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
CS  
RD  
WR  
8
9
9
8
11  
Dx  
32  
33  
30 31  
READY  
QLIU_F0121  
Figure 53 Intel Read Cycle Timing  
CS  
8
9
WR  
RD  
9
8
16  
31  
15  
Dx  
34  
30  
READY  
QLIU_intel_write_cycle  
Figure 54 Intel Write Cycle Timing  
Table 60  
Intel Bus Interface Timing Parameter Values  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note/ Test  
Condition  
Max.  
Address, BHE setup time  
Address, BHE hold time  
CS setup time  
1
5
ns  
ns  
ns  
ns  
ns  
ns  
2
0
3
0
CS hold time  
3A  
0
Address, BHE stable before ALE inactive 4  
25  
10  
Address, BHE hold after ALE inactive  
5
Data Sheet  
229  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 60  
Intel Bus Interface Timing Parameter Values (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note/ Test  
Condition  
Min.  
30  
0
Max.  
ALE pulse width  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE setup time before RD or WR  
ALE hold time after RD or WR  
RD, WR pulse width  
7
7A  
8
301)  
80  
702)  
10  
30  
10  
RD, WR control interval  
9
Data hold after RD inactive  
Data stable before WR inactive  
Data hold after WR inactive  
RD or WR delay after READY  
READY hold time after RD or WR  
Data stable before READY  
RD to READY delay  
11  
15  
16  
30  
31  
32  
33  
34  
30  
50  
5
100  
100  
100  
WR to READY delay  
1) Not tested in production  
2) Not tested in production  
6.1.4.2  
Motorola Bus Interface Mode  
Figure 55 and Figure 56 show the timing of the SCI Interface and Table 61 the appropriate timing parameter  
values.  
Ax, BLE  
17  
18  
CS  
RW  
DS  
Dx  
19  
20  
19A  
21  
22  
23  
24  
25  
41  
44  
43  
DTACK  
QLI U_F0122  
Figure 55 Motorola Read Cycle Timing  
Data Sheet  
230  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Ax, BLE  
CS  
17  
18  
19  
20  
19A  
RW  
DS  
21  
22A  
23  
26  
27  
41  
Dx  
42  
DTACK  
QLIU_mot_write_cycle  
Figure 56 Motorola Write Cycle Timing  
Table 61  
Motorola Bus Interface Timing Parameter Values  
Parameter  
Symbol  
Min.  
Values  
Unit  
Note/ Test  
Condition  
Typ.  
Max.  
Address, BLE setup time before DS active 17  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, BLE hold after DS inactive  
CS active before DS active  
CS hold after DS inactive  
18  
19  
0
19A  
20  
0
RW stable before DS active  
RW hold after DS inactive  
10  
0
21  
DS pulse width (read access)  
DS pulse width (write access)  
DS control interval  
22  
80  
100  
701)  
22A  
23  
Data valid after DS active (read access)  
24  
752)  
30  
Data hold after DS inactive (read access) 25  
Data stable before DS inactive (write  
access)  
26  
30  
Data hold after DS inactive (write access) 27  
10  
10  
ns  
ns  
ns  
ns  
ns  
DTACK hold time after DS inactive  
DS to DTACK delay for write  
DS to DTACK delay for read  
Data strobe before DTACK  
41  
42  
43  
44  
100  
100  
0
1) Not tested in production  
2) Not tested in production  
Data Sheet  
231  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
6.1.4.3  
SCI Interface  
Figure 57 shows the timing of the SCI Interface and Table 62 the appropriate timing parameter values.  
1
3
2
SCI_CLK  
4
5
SCI_RXD  
SCI_TXD  
6
QLIU_SCI_timing  
Figure 57 SCI Interface Timing  
Table 62  
SCI Timing Parameter Values  
Parameter  
Symbol  
Values  
Unit  
Note / Test  
Condition  
Min.  
170  
500  
76.51)  
76.52)  
0
Typ.  
Max.  
SCI_CLK cycle time in full duplex mode  
SCI_CLK cycle time in half duplex mode  
SCI_CLK clock low time  
1
1
2
3
4
5
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCI_CLK clock high time  
SCI_RXD setup time before SCI_CLK  
SCI_RXD hold time after SCI_CLK  
SCI_TXD delay time after SCI_CLK  
0
30  
1) Not tested in production  
2) Not tested in production  
Data Sheet  
232  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
6.1.4.4  
SPI Interface  
Figure 58 shows the timing of the SCI Interface and Table 63 the appropriate timing parameter values.  
7
CS  
6
2
8
1
SCLK  
SDI  
4
3
5
9
11  
10  
high impedance  
SDO  
QLIU_SPI_timing  
Figure 58 SPI Interface Timing  
Table 63  
SPI Timing Parameter Values  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
100  
SCLK frequency  
1
2
3
4
5
6
7
8
9
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS setup time before SCLK  
CS hold time after SCLK  
SDI hold time after SCLK  
SDI setup time before SCLK  
SCLK low time  
40  
40  
40  
40  
451)  
452)  
100  
50  
SCLK high time  
CS high time  
Clock disable time before SCLK  
SDO output stable after SCLK  
SDO output hold after CS disable  
40  
40  
SDO output high impedance after SCLK 11  
0
1) Not tested in production  
2) Not tested in production  
6.1.5  
Digital Interface (Framer Interface)  
Figure 59, Figure 60, Figure 61 and Figure 62 show the timing and Table 65, Table 66, Table 67 the  
appropriate timing parameter values at the digital interface of the QuadLIUTM  
.
Data Sheet  
233  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
1
2
3
FCLKX (TPE=0)  
FCLKX (TPE=1)  
data change edge  
4
5
XDI, XDIN  
QLIU_F0055  
Figure 59 FCLKX Output Timing  
Table 64  
FCLKX Timing Parameter Values  
Parameter  
Symbol  
Values  
Unit  
Note / Test  
Condition  
Min.  
Typ.  
Max.  
FCLKX clock period E1  
FCLKX clock period T1/J1  
FCLKX high  
1
1
2
3
4
5
488  
648  
ns  
ns  
%
40  
40  
20  
20  
FCLKX low  
%
XDI, XDIN setup time  
XDI, XDIN hold time  
ns  
ns  
1
2
3
FCLKR (RPE=1)  
FCLKR (RPE=0)  
data change edge  
4
5
RDO, RDON  
QLIU_F0054  
Figure 60 FCLKR Output Timing  
Data Sheet  
234  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 65  
FCLKR Timing Parameter Values  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
FCLKR clock period E1  
FCLKR clock period T1/J1  
FCLKR high  
1
1
2
3
4
5
488  
648  
ns  
ns  
%
40  
40  
-10  
200  
FCLKR low  
%
RDO, RDON setup time  
RDO, RDON hold time  
ns  
ns  
1
2
3
SYNC  
Figure 61 SYNC Timing  
F0056  
Table 66  
SYNC Timing Parameter Values  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
SYNC period 2.048 MHz  
SYNC period 1.544 MHz  
SYNC period 8 kHz  
SYNC low time  
1
1
1
2
3
488  
648  
125  
ns  
ns  
ns  
%
20  
20  
SYNC high time  
%
1
2
FSC  
3
RCLK  
F0053  
Figure 62 FSC Timing  
Data Sheet  
235  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 67  
FSC Timing Parameter Values  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
FSC period  
1
125  
488  
648  
µs  
ns  
ns  
ns  
ns  
FSC low time E1  
2
2
3
3
FSC low time T1/J1  
RCLK to FSC delay E1  
RCLK to FSC delay T1/J1  
370  
280  
6.1.6  
Pulse Templates - Transmitter  
The transmitter includes a programmable pulse shaper to generate transmit pulse masks according to:  
For T1: FCC68; ANSI T1. 403 1999, figure 4; ITU-T G703 11/2001, figure 10 (for different cable lengths), see  
Figure 64. For measurement configuration were Rload = 100 see Figure 40.  
For E1: ITU-T G703 11/2001, figure 15 (for 0 m cable length), see Figure 63; ITU-T G703 11/2001, figure 20  
(for DCIM mode). For measurement configuration were Rload = 120 or Rload = 75 see Figure 39.  
The transmit pulse form is programmed either  
By the registers XMP(2:0) compatible to the QuadLIU®, see Table 29 and Table 30, if the register bit  
XPM2.XPDIS is cleared  
Or by the registers TXP(16:1), if the register bit XPM2.XPDIS is set, see Table 31 and Table 32.  
6.1.6.1  
Pulse Template E1  
With the given values in Table 30 or Table 32, for transformer ratio: 1 : 2.4, cable type AWG24 and with Rload  
120 the pulse mask according to ITU-T G703 11/2001, see Figure 63, is fulfilled.  
=
Data Sheet  
236  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
269 ns  
(244 + 25)  
194 ns  
(244 - 50)  
V=100 %  
Nominal Pulse  
50 %  
244 ns  
219 ns  
(244 - 25)  
0 %  
488 ns  
(244 + 244)  
ITD00573  
Figure 63 E1 Pulse Shape at Transmitter Output  
6.1.6.2  
Pulse Template T1  
With the given values in Table 29 or Table 31, for transformer ratio: 1 : 2.4, cable type AWG24 and with Rload  
=
100 the pulse mask according to ITU-T G703 11/2001, figure 10, see Figure 64, is fulfilled.  
Normalized Amplitude  
V=100%  
50%  
0
-50%  
t
0
250  
500  
750  
1000  
ns  
ITD00574  
Figure 64 T1 Pulse Shape at the Cross Connect Point  
Data Sheet  
237  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 68  
T1 Pulse Template at Cross Connect Point (T1.102 1))  
Maximum Curve  
Minimum Curve  
Time [ns]  
0
Level [%]2)  
Time [ns]  
0
Level [%]  
-5  
5
250  
5
350  
-5  
325  
80  
115  
115  
105  
105  
-7  
350  
50  
325  
400  
95  
425  
500  
95  
500  
600  
90  
675  
650  
50  
725  
650  
-45  
-45  
-20  
-5  
1100  
1250  
5
800  
5
925  
1100  
1250  
-5  
1) Requirements of ITU-T G.703 are also fulfilled  
2) 100 % value must be in the range of 2.4 V and 3.6 V;  
tested at 0 and 200 m using PIC 22AWG cable characteristics.  
Data Sheet  
238  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
6.2  
Capacitances  
Values of capacitances of the input and of the output pins of the QuadLIUTM are listed in Table 69.  
Table 69  
Capacitances  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test  
Condition  
Min.  
Max.  
10  
Input capacitance1)  
Output capacitance 1)  
Output capacitance 1)  
CIN  
5
8
8
pF  
pF  
pF  
COUT  
COUT  
15  
All except XLx  
XLx  
20  
1) Not tested in production  
6.3  
Package Characteristics  
F0051  
Figure 65 Thermal Behavior of Package  
Table 70  
Package Characteristic Values  
Symbol  
Parameter  
Values  
Unit  
Note / Test  
Condition  
Min.  
Typ.  
47  
9
Max.  
1)  
Thermal Resistance  
Rthjam  
K/W  
K/W  
K/W  
Single layer PCB, no  
convection  
2)  
Rthjc  
1)  
Thermal Resistance BGA  
Junction Temperature  
Rthjab  
29  
Single layer PCB,  
natural convection  
Rj  
125  
°C  
1) Rthja = (Tjunction - Tambient)/Power: Not tested in production.  
2) Rthjc = (Tjunction - Tcase)/Power: Not tested in production.  
Data Sheet  
239  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
6.4  
Test Configuration  
AC Tests  
6.4.1  
The values for AC characteristics of the chapters above are based on the following definitions of levels and load  
capacitances:  
Table 71  
AC Test Conditions  
Parameter  
Symbol  
CL  
Test Values  
Unit  
pF  
V
Notes  
Load Capacitance  
Input Voltage high  
Input Voltage low  
Test Voltage high  
Test Voltage low  
50  
VIH  
2.4  
0.4  
2.0  
0.8  
All except RLx  
All except RLx  
All except XLx  
All except XLx  
VIL  
V
VTH  
VTL  
V
V
Test Levels  
VTH  
Device  
under  
Test  
CL  
VTL  
Timing Test  
Points  
Drive Levels  
VIH  
VIL  
F0067  
Figure 66 Input/Output Waveforms for AC Testing  
6.4.2  
Power Supply Test  
For power supply test all eight channels of the QuadLIUTM are active. Transmitter and receiver are configured as  
for typical applications. The transmitted data are looped back to the receiver by a short line as shown in Figure 67.  
On the system side the interfaces of all channels work independent from another (no multiplex mode is  
configured).  
Data Sheet  
240  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
R1  
R1  
tt1 : t  
t2  
Digital Interface  
QuadLIU  
Z0  
l
tr1 : t  
r2  
R2  
4 x  
QLIU_F0176  
Figure 67 Device Configuration for Power Supply Testing  
Table 72  
Power Supply Test Conditions E1  
Symbol  
Parameter  
Test Values  
Unit  
Notes  
Load Resistance at transmitter  
R1  
7.5  
1%; PC6.TSRE = ´0´  
Termination Resistance at receiver R2  
120  
1%; integrated receive line  
resistor RTERM is switched off  
(LIM0.RTRS =´0´)  
Line Impedance  
RL  
120  
Line Length  
l
< 0.2  
2.4 : 1  
1 : 1  
m
Transformer Ratio Transmit  
Transformer Ratio Receive  
Framer interface Frequency  
tt1 : tt2  
tr1 : tr2  
XCLK  
RCLK  
2.048  
MHz  
Test Signal  
215-1  
40H  
03H  
7BH  
85  
PRBS pattern  
Pulse Mask Programming  
(compatible to QuadLIU®)  
XPM2  
XPM1  
XPM0  
Pulse mask according to ITU-T  
G703 11/2001, see Figure 63  
Ambient Temperature  
°C  
Table 73  
Power Supply Test Conditions T1/J1  
Parameter  
Symbol  
R1  
Test Values  
Unit  
Notes  
Load Resistance  
Termination Resistance  
2
1%; PC6.TSRE = ´0´  
R2  
100  
1%; integrated receive line  
resistor RTERM is switched off  
(LIM0.RTRS =´0´)  
Line Impedance  
RL  
100  
m
Line Length  
l
< 0.2  
2.4 : 1  
1 : 1  
Transformer Ratio Transmit  
Transformer Ratio Receive  
tt1 : tt2  
tr1 : tr2  
Data Sheet  
241  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Electrical Characteristics  
Table 73  
Power Supply Test Conditions T1/J1 (cont’d)  
Parameter  
Symbol  
Test Values  
Unit  
Notes  
Framer interface Frequency  
XCLK  
RCLK  
1.544  
MHz  
Test Signal  
215-1  
02H  
27H  
9FH  
85  
PRBS pattern  
Pulse Mask Programming  
(compatible to QuadLIU®)  
XPM2  
XPM1  
XPM0  
Pulse mask according to ITU-T  
G703 11/2001, figure 10, see  
Figure 64  
Ambient Temperature  
°C  
Data Sheet  
242  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Operational Description  
7
Operational Description  
7.1  
Operational Overview  
Each of the four channels of the QuadLIUTM can be operated in two clock modes, which are either E1 mode or  
T1/J1 mode, selected by the register bit GCM2.VFREQ_EN, see Chapter 3.5.5:  
In the so called “flexible master clocking mode” (GCM2.VFREQ_EN = ´1´) all four ports can work in E1 or in  
T1 mode individually, independent from another.  
In the so called “clocking fixed mode” (GCM2.VFREQ_EN = ´0´) all four ports must work together either in E1  
or in T1 mode.  
The device is programmable via one of the three integrated micro controller interfaces which are selected by  
strapping of the pins IM(1:0):  
The asynchronous interface has two modes: Intel (IM(1:0) = ´00b´) and Motorola (IM(1:0) = ´01b´). This  
interface enables byte or word access to all control and status registers, see Chapter 3.5.1.  
SPI interface (IM(1:0) = ´10b´), see Chapter 3.5.2.2.  
SCI interface (IM(1:0) = ´11b´), see Chapter 3.5.2.1.  
The QuadLIUTM has three different kinds of registers:  
The control registers configure the whole device and have write and read access.  
The status registers are read-only and are updated continuously. Normally, the processor reads the status  
registers periodically to analyze the alarm status and signaling data.  
The interrupt status registers are read-only and are cleared by reading (“rsc”). They are updated (set)  
continuously. Normally, the processor reads the interrupt status registers after an interrupt occurs at pin INT.  
Masking can be done with the appropriate interrupt mask registers. Mask registers are control registers.  
All this registers can be separate into two groups:  
Global registers are not belonging especially to one of the four channels. The higher address byte is ´00H´.  
The other registers are belonging to one of the four channels. The higher address bytes - marked as ´xxH´ in  
the register description - are identical to the numbers 0 up to 3 of the appropriate channels. So every of this  
registers exist four time in the whole device.  
7.2  
Device Reset  
After the device is powered up, the QuadLIUTM must be forced to the reset state first.  
The QuadLIUTM is forced to the reset state if a low signal is input on pin RES for a minimum period of 10 µs, see  
Figure 50. During reset the QuadLIUTM  
Needs an active clock on pin MCLK and  
The pin VSEL must be connect either to 3.3 V or to VSS to define if internal voltage regulator is used  
The pins IM(1:0) must have defined values to select the micro controller interface.  
Only if IM(1:0) = ´11b´ (SCI interface is selected) the pins A(5:0) must have defined values to select the SCI  
source address of the device.  
Only if IM1 = ´1´ (SCI or SPI interface is selected) the pins D(15:5) must have defined values to configure the  
central PLL in the master clocking unit of the device.  
Only if IM1 = ´0´ (asynchronous micro controller interface is selected) the pin READY_EN must have a defined  
value to select if the signal READY/DTACK is used  
During and after reset all internal flip-flops are reset and most of the control registers are initialized with default  
values.  
After reset the complete device is initialized, especially to E1 operation and “flexible master clocking mode”. The  
complete initialization is listed in Table 74. Additionally all interrupt mask registers IMR1, IMR3, IMR4, IMR6 and  
IMR7 are initialized to ´FFH´, so that not masking is performed.  
After reset the QuadLIUTM must be configured first. General guidelines for configuration are described in  
Chapter 7.4 for E1 mode and Chapter 7.5 for T1/J1 mode.  
Data Sheet  
243  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Operational Description  
For reset see also Chapter 3.5.5.1.  
7.3  
Device Initialization  
After reset, the QuadLIUTM is initialized for E1 with register values listed in the following table.  
Table 74  
Register  
GPC1  
Initial Values after Reset  
Reset Value  
Meaning  
´00H´  
Reserved mode. Must be set to ´10H´ for proper operation!  
LIM0, LIM1,  
PCD, PCR  
´00H´, ´00H´,  
´00H´, ´00H´  
Slave Mode, local loop off  
Analog interface selected; remote loop off; Pulse count for LOS detection  
cleared; Pulse count for LOS recovery cleared  
XPM(2:0)  
´40H´, ´03H´, ´7BH´ E1 Transmit pulse template for 0 m but with unreduced amplitude (note that  
transmitter is in tristate mode)  
IMR(7:0)  
GCR  
´FFH´  
´00H´  
´00H´  
´00H´  
All interrupts are disabled  
Internal second timer, power on  
CMR1  
CMR2  
PC(3:1)  
RCLK output: DPLL clock, DCO-X enabled, DCO-X internal reference clock  
RCLK selected, XCLK selected  
´00H´, ´F0H´  
´00H´, ´00H´  
Functions of ports RP(A to B) are reserved, function of port RPC is RCLK  
output (but is only pulled up, because PC5.CRP = ´0´ after reset), functions  
of ports XP(A to B) are reserved.  
PC5  
´00H´  
FCLKR, FCLKX, RCLK configured to inputs,  
“Flexible master clocking mode” selected  
GCM(6:1)  
GCM2 = ´10H´,  
others ´00H´  
GPC(4:3)  
CMR(6:4)  
GPC2  
´43H´, ´21H´  
´00H´  
Sources for RCLK1 up to RCLK4 are the appropriate channels  
Recovered line clock drives RCLK  
´00H´  
Source for SEC and RCLK1 is channel 1  
TXP(16:1)  
TXP(1:8) = ´38H´ This registers are not used after reset because XPM2.XPDIS = ´0´  
TXP(9:16) = ´00H´  
INBLDTR  
ALS  
´00H´  
Minimum In-band loop detection time  
No automatic loop switching is performed  
No time slots are selected for PRBS pattern  
´00H´  
PRBSTS(4:1)  
All ´00H´  
7.4  
Device Configuration in E1 Mode  
E1 Configuration  
For a correct start up of the primary access interface a set of parameters specific to the system and hardware  
environment must be programmed after reset goes inactive. Both the basic and the operational parameters must  
be programmed before the activation procedure of the PCM line starts. Such procedures are specified in ITU-T  
and ETSI recommendations (e.g. fault conditions and consequent actions). Setting optional parameters primarily  
makes sense when basic operation via the PCM line is guaranteed. Table 75 gives an overview of the most  
important parameters in terms of signals and control bits which are to be programmed in one of the above steps.  
The sequence is recommended but not mandatory. Accordingly, parameters for the basic and operational set up,  
for example, can be programmed simultaneously. The bit MR1.PMOD should always be kept low (otherwise T1/J1  
mode is selected).  
Data Sheet  
244  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Operational Description  
Table 75  
Configuration Parameters (E1)  
Basic Set Up  
Master clocking mode  
GCM(6:1) according to external MCLK clock frequency  
MR1.PMOD = ´0´  
E1 mode select  
Clock system configuration  
Specification of line interface  
Specification of transmit pulse mask  
Line interface coding  
CMR(3:1), GPC1; CMR(6:4) and GPC(6:2)  
LIM0, LIM1, XPM(2:0)  
XPM(2:0) or TXP(16:1)  
MR0.XC(1:0), MR0.RC(1:0)  
PCD, PCR, LIM1, LIM2  
Loss-of-signal detection/recovery conditions  
Multi Function Port selection  
PC(3:1)  
Features like alarm simulation etc. are activated later. Transmission of alarms (e.g. AIS, remote alarm) and control  
of synchronization in connection with consequent actions to remote end and internal system depend on the  
activation procedure selected.  
Note:Read access to unused register addresses: value should be ignored. Write access to unused register  
addresses: should be avoided, or set to “00” hex. All control registers (except XS(16:1), CMDR, DEC) are of  
type Read/Write.  
Specific E1 Register Settings  
The following is a suggestion for a basic configuration to meet most of the E1 requirements. Depending on different  
applications and requirement any other configuration can be used.  
Table 76  
Line Interface Configuration (E1)  
GPC6.COMP_DIS = ´1´  
MR2.DAIS = ´1´  
Sets the QuadLIUTM into a defined mode (necessary for proper operation)  
Disables AIS insertion into the data stream (necessary for proper operation)  
MR2.RTM = ´1´  
Sets the receive dual elastic store in a “free running” mode (necessary for proper  
operation)  
MR5.TT0 = ´1´  
MR5.XTM = ´1´  
Enables transmit transparent mode (necessary for proper operation)  
Sets the transmitter in a “free running” mode (necessary for proper operation)  
MR0.XC0/  
MR0.RC0/  
LIM1.DRS  
MR3.CMI  
The QuadLIUTM supports requirements for the analog line interface as well as the  
digital line interface. For the analog line interface the codes AMI and HDB3 are  
supported. For the digital line interface modes (dual- or single-rail) the QuadLIUTM  
supports AMI, HDB3, CMI (with and without HDB3 precoding).  
PCD = ´0AH´  
LOS detection after 176 consecutive “zeros” (fulfills G.775).  
LOS recovery after 22 “ones” in the PCD interval. (fulfills G.775).  
LOS threshold of 0.6 V (fulfills G.775).  
PCR = ´15H´  
LIM1.RIL(2:0) = ´02H´  
Attention: After the device configuration a software reset should be executed by setting of bits  
CMDR.XRES/RRES.  
7.5  
Device Configuration in T1/J1 Mode  
After reset, the QuadLIUTM is initialized for E1 doubleframe format. To configure T1/J1 mode, bit MR1.PMOD has  
to be set high. After the internal clocking is settled to T1/J1mode (takes up to 20 µs), the following register values  
are initialized:  
T1/J1 Initialization  
For a correct start up of the primary access interface a set of parameters specific to the system and hardware  
environment must be programmed after RES goes inactive (high). Both the basic and the operational parameters  
Data Sheet  
245  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Operational Description  
must be programmed before the activation procedure of the PCM line starts. Such procedures are specified in  
ITU-T recommendations (e.g. fault conditions and consequent actions). Setting optional parameters primarily  
makes sense when basic operation via the PCM line is guaranteed. Table 77 gives an overview of the most  
important parameters in terms of signals and control bits which are to be programmed in one of the above steps.  
The sequence is recommended but not mandatory. Accordingly, parameters for the basic and operational set up,  
for example, can be programmed simultaneously. The bit MR1.PMOD must always be kept high (otherwise E1  
mode is selected). J1 mode is selected by additionally setting RC0.SJR = ´1´.  
Features like channel loop-back, idle channel activation, clear channel activation, extensions for signaling support,  
alarm simulation, etc. are activated later. Transmission of alarms (e.g. AIS, remote alarm) and control of  
synchronization in connection with consequent actions to remote end and internal system depend on the activation  
procedure selected.  
Table 77  
Configuration Parameters (T1/J1)  
Basic Set Up  
T1  
GCM(6:1) according to external MCLK clock frequency  
MR1.PMOD = ´1´, MR1.PMOD = ´1´,  
J1  
Master clocking mode  
T1/J1 mode select  
Clock system configuration  
Specification of line interface  
CMR(3:1), GPC1; CMR(6:4) and GPC(6:2)  
LIM0, LIM1,  
Specification of transmit pulse mask XPM(2:0) or TXP(16:1)  
Line interface coding  
MR0.XC(1:0), MR0.RC(1:0)  
PCD, PCR, LIM1, LIM2  
Loss-of-signal detection/recovery  
conditions  
AIS to framer interface  
MR2.XAIS  
PC(3:1)  
Multi Function Port selection  
Note:Read access to unused register addresses: value should be ignored. Write access to unused register  
addresses: should be avoided, or set to ´00H´. All control registers (except XS(12:1), CMDR, DEC) are of  
type read/write  
Specific T1/J1 Configuration  
The following is a suggestion for a basic configuration to meet most of the T1/J1 requirements. Depending on  
different applications and requirements any other configuration can be used.  
Table 78  
Register  
Line Interface Configuration (T1/J1)  
Function  
GPC6.COMP_DIS = ´1´ Sets the QuadLIUTM into a defined mode (necessary for proper operation)  
MR2.DAIS = ´1´  
LOOP.RTM = ´1´  
Disables AIS insertion into the data stream (necessary for proper operation)  
Sets the receive dual elastic store in a “free running” mode (necessary for proper  
operation)  
MR4.TM = ´1´  
Enables transparent mode (necessary for proper operation)  
MR5.XTM = ´1´  
CCB(3:1) = ´FFH‘  
Sets the transmitter in a “free running” mode (necessary for proper operation)  
“Clear Channel” mode is selected (necessary for proper operation only if AMI code is  
selected)  
MR0.XC0/1  
MR0.RC0/1  
LIM1.DRS  
CCB(3:1)  
The QuadLIUTM supports requirements for the analog line interface as well as the  
digital line interface. For the analog line interface the codes AMI (with and without bit  
7stuffing) and B8ZS are supported. For the digital line interface modes (dual- or  
single-rail) the QuadLIUTM supports AMI (with and without bit 7 stuffing), B8ZS (with  
and without B8ZS precoding).  
DIC3.CMI  
Data Sheet  
246  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Operational Description  
Table 78  
Line Interface Configuration (T1/J1) (cont’d)  
Register  
Function  
PCD = ´0AH´  
PCR = ´15H´  
LIM1.RIL(2:0) = ´02H´  
GCR.SCI = ´1´  
LOS detection after 176 consecutive “zeros” (fulfills G.775/Telcordia (Bellcore)/AT&T)  
LOS recovery after 22 “ones” in the PCD interval (fulfills G.775, Bellcore/AT&T).  
LOS threshold of 0.6 V (fulfills G.775).  
Additional Recovery Interrupts. Help to meet alarm activation and deactivation  
conditions in time.  
LIM2.LOS1 = ´1´  
Automatic pulse-density check on 15 consecutive zeros for LOS recovery condition  
(Bellcore requirement)  
Note:After the device configuration a software reset should be executed by setting of bits CMDR.XRES/RRES.  
Data Sheet  
247  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Operational Description  
7.6  
Device Configuration for Digital Clock Interface Mode (DCIM)  
The following table shows the necessary configuration for the Digital Clock Interface Mode (DCIM), see ITU-T  
G.703 11/2001, chapter 13. The receive clock at RL1/RL2 (2.048 MHz) is supported at multi function port RPC.  
The transmit clock at FCLKX (2.048 MHz) is transmitted at XL1/XL2.  
DCIM mode is standardized only for 2.048 MHz (E1 mode, MR1.PMOD = ´0´). The QuadLIUTM can handle also  
1.544 MHz if MR1.PMOD = ´1´.  
Table 79  
Device Configuration for DCIM Mode  
GPC6.COMP_DIS = ´1´  
MR1.PMOD  
Sets the QuadLIUTM into a defined mode (necessary for proper operation)  
Selects 2.048 MHz or 1.544 MHz, see text above  
Selects DCIM mode.  
LIM0.DCIM = ´1´  
LIM1.RL = ´0´  
TX clock mode.  
CMR1.DXSS = ´0´  
CMR1.DXJA = ´0´  
LIM1.DRS = ´0´  
Line interface mode RX  
MR0.RC(1:0) = ´10b´  
MR0.XC(1:0) = ´10b´  
PC1.RPC1(3:0) = ´1111b´  
PC5.CRP = ´1´  
Line interface mode TX  
Select RCLK as output  
CMR1.DRSS(1:0) or  
RX clock mode  
CMR5.DRSS(2:0) : select the  
appropriate channel  
CMR1.DCS = ´1´  
LIM0.MAS = ´0´  
CMR1.RS(1:0) = ´10b´ or  
CMR4.RS(2:0) = ´010b´  
GCM(1:8) see Chapter 3.5.5 and  
Configure clock system  
GCM6  
LIM2.SCF, CMR6.SCFX,  
Configure DCO-X and DCO-R  
CMR2.ECFAX, CMR2.ECFAR,  
CMR3:CFAX(3:0), CMR3.CFAR(3:0),  
CMR4.IAR(4:0), CMR5.IAX(4:0): see  
Chapter 3.7.8 and Table 23  
DIC1.RBS(1:0) = ´10b´  
DIC1.XBS(1:0) = ´11b´  
Configure elastic buffers  
Data Sheet  
248  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Appendix  
8
Appendix  
8.1  
Protection Circuitry  
The design in Figure 68 shows an example of how to build up a generic E1/T1/J1 platform. The circuit shown has  
been successfully checked against ITU-T K.20 and K.21 lightning surge tests (basic level). For values of R1 see  
Table 28.  
1:1  
RL1  
PTC  
B
A
A
Fuse  
1.25 A  
VDD  
VSS  
RL2  
PTC  
Fuse  
1.25 A  
RJ45  
QuadLIU  
1:2.4  
XL1  
R1  
R1  
PTC  
B
Fuse  
A
A
1.25 A  
VDD  
VSS  
XL2  
PTC  
Fuse  
1.25 A  
A
B
SMP 100LC-35 (~65 pF)  
SMP P3500SC (~60 pF)  
QLIU_F0262_2  
Figure 68 Protection Circuitry Examples (shown for one channel)  
8.2  
Application Notes  
Several application notes and technical documentation provide additional information. Online access to supporting  
information is available on the internet page:  
http://www.infineon.com/octalliu  
On the same page you find as well the  
Boundary Scan File for QuadLIUTM Version 2.1 (BSDL File)  
8.3  
Software Support  
The following software package is provided together with the QuadLIUTM Reference System EASY 2256:  
E1 and T1 driver functions supporting different ETSI, AT&T and Telcordia (former: Bellcore) requirements  
IBIS model for QuadLIUTM Version 2.1 (according to ANSI/EIA-656)  
“Flexible Master Clock Calculator”, which calculates the required settings for the registers GCM(1:8)  
depending on the external master clock frequency (MCLK)  
“External Line Front End Calculator”, which provides an easy method to optimize the external components  
depending on the selected application type.r  
The both calculators run under a Win9x/NT environment. Calculation results are traced an can be stored in a file  
or printed out for documentation.  
Screen shots of both programs are shown in Figure 69 and Figure 70 below.  
Data Sheet  
249  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Appendix  
F0126  
Figure 69 Screen Shot of the “Master Clock Frequency Calculator”  
Data Sheet  
250  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Appendix  
F0198_2256  
Figure 70 Screen Shot of the “External Line Frontend Calculator”  
Data Sheet  
251  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
Terminology  
A
A/D  
Analog to digital  
ADC  
AIS  
Analog to Digital Converter  
Alarm Indication Signal (blue alarm)  
Automatic Gain Control  
AGC  
ALOS  
AMI  
Analog Loss Of Signal  
Alternate Mark Inversion  
American National Standards Institute  
Asynchronous Transfer Mode  
AUXiliary Pattern  
ANSI  
ATM  
AUXP  
B
B8ZS  
Bellcore  
BPV  
BSN  
C
Binary 8 Zero Supression (Line coding to avoid too long strings of consecutive "0")  
Bell Communications Research  
BiPolar Violation  
Backward Sequence Number  
CDR  
CIS  
Clock and Data Recovery  
Channel Interrupt Status  
CMI  
D
Coded Mark Inversion code (also known as 1T2B code)  
D/A  
Digital to Analog  
DAC  
DCIM  
DCO  
DCO-R  
DCO-X  
DL  
Digital to Analog Converter  
Digital Clock Interface Mode  
Digitally Controlled Oscillator  
DCO of receiver  
DCO of transmitter  
Digital Loop  
DPLL  
DS1  
E
Digitally controlled Phase Locked Loop  
Digital Signal level 1  
ESD  
EASY  
EQ  
ElectroStatic Discharge  
Evaluation system for FALC and LIU products  
EQualizer  
ETSI  
F
European Telecommunication Standards Institute  
FALC®  
FCC  
FCS  
G
Framing And Line interface Component  
US Federal Communication Commission  
Frame Check Sequence (used in PPR)  
Data Sheet  
252  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
GIS  
H
Global Interrupt Status  
HBM  
HDB3  
I
Human body model for ESD classification  
High density bipolar of order 3  
IBIS  
IBL  
I/O buffer information specification (ANSI/EIA-656)  
In Band Loop  
ISDN  
ITU  
Integrated Services Digital Network  
International Telecommunications Group  
J
JATT  
JTAG  
L
Jitter ATTenuator  
Joined Test Action Group  
LBO  
LCV  
LIU  
Line Build Out  
Line Code Violation  
Line Interface Unit  
Local Loop  
LL  
LLB  
LOS  
LSB  
M
Line Loop Back  
Loss of Signal (red alarm)  
Least Significant Bit  
MFP  
MSB  
MUX  
N
Multi Function Port  
Most Significant Bit  
MUltipleXer  
NRZ  
P
Non Return to Zero signal  
PCM  
PD  
Pulse Code Modulation  
Pull Down resistor  
PDV  
PLB  
PLL  
PMQFP  
PRBS  
PTQFP  
PU  
Pulse Density Violation  
Payload Loop Back  
Phase Locked Loop  
Plastic Metric Quad Flat Pack (device package)  
Pseudo Random Binary Sequence  
Plastic Thin Metric Quad Flat Pack (device package)  
Pull Up resistor  
R
RAI  
RAM  
RDI  
RL  
Remote Alarm Indication (yellow alarm)  
Random Access Memory  
Remote Defect Indication  
Remote Loop  
RLM  
ROM  
Receive Line Monitoring  
Read-Only Memory  
Data Sheet  
253  
Rev. 1.3, 2006-01-25  
QuadLIUTM  
PEF 22504  
RX  
S
Receiver  
SAPI  
SCI  
SPI  
Sidactor  
T
Service Access Point Identifier (special octet in PPR)  
Serial ControlInterface  
Serial Peripheral Interface  
Overvoltage protection device for transmission lines  
TAP  
TEI  
TX  
Test Access Port  
Terminal Endpoint Identifier (special octet in PPR)  
Transmitter  
U
UI  
Unit Interval  
Z
ZCS  
Zero Code Suppression  
Data Sheet  
254  
Rev. 1.3, 2006-01-25  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

PEF22504HT

Quad E1/T1/J1 Line Interface Component for Long- and Short-Haul Applications
INFINEON

PEF22552

Two-channel E1/T1/J1 Framer and Line Interface Component
INFINEON

PEF22552E

Two-channel E1/T1/J1 Framer and Line Interface Component
INFINEON

PEF22554

Quad E1/T1/J1 Framer and Line Interface Component for Long and Short Haul Applications
INFINEON

PEF22554E

Quad E1/T1/J1 Framer and Line Interface Component for Long and Short Haul Applications
INFINEON

PEF22554EV3.1

Four - channel E1 / T1 / J1 Frame randLine
INFINEON

PEF22554HT

Quad E1/T1/J1 Framer and Line Interface Component for Long and Short Haul Applications
INFINEON

PEF22558E

Framer, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, LBGA-256
INFINEON

PEF2256

E1/T1/J1 Framer and Line Interface Component for Long- and Short-Haul Applications
INFINEON

PEF2256E

E1/T1/J1 Framer and Line Interface Component for Long- and Short-Haul Applications
INFINEON

PEF2256EV2.2-G

Telecom IC, CMOS, PBGA81
INFINEON

PEF2256EV22

Framer, PBGA81, LBGA-81
INTEL