PSB2134 [INFINEON]

Two Channel Codec Filter for Terminal Applications SICOFI2-TE; 双通道编解码器过滤器为终端应用SICOFI2 -TE
PSB2134
型号: PSB2134
厂家: Infineon    Infineon
描述:

Two Channel Codec Filter for Terminal Applications SICOFI2-TE
双通道编解码器过滤器为终端应用SICOFI2 -TE

解码器 过滤器 编解码器
文件: 总95页 (文件大小:2576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
Two Channel Codec Filter for Terminal Applications  
SICOFI®2-TE  
PSB 2132 Version 1.2  
Four Channel Codec Filter for Terminal Applications  
SICOFI®4-TE  
PSB 2134 Version 1.2  
Data Sheet 09.97  
DS 1  
PSB 2132  
Revision History:  
Current Version: 09.97  
Previous Version:  
Preliminary Data Sheet 02.97  
Page  
(in previous (in current  
Version) Version)  
Page  
Subjects (major changes since last revision)  
Feature list updated  
IOM®, IOM®-1, IOM®-2, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC, SLICOFI®, ARCOFI® , ARCOFI®-BA,  
ARCOFI®-SP, EPIC®-1, EPIC®-S, ELIC®, IPAT®-2, ITAC®, ISAC®-S, ISAC®-S TE, ISAC®-P, ISAC®-P TE, IDEC®,  
SICAT®, OCTAT®-P, QUAT®-S are registered trademarks of Siemens AG.  
MUSAC-A, FALC54, IWE, SARE, UTPT, ASM, ASPare trademarks of Siemens AG.  
Edition 09.97  
This edition was realized using the software system FrameMaker .  
Published by Siemens AG,  
HL TS,  
Balanstraße 73,  
81541 München  
©
Siemens AG 1997.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes  
and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies  
and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact  
your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will  
take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs in-  
curred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express  
written approval of the Semiconductor Group of Siemens AG.  
1
A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the  
failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.  
2
Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain hu-  
man life. If they fail, it is reasonable to assume that the health of the user may be endangered.  
PSB 2132  
PSB 2134  
Table of Contents  
Page  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.1  
1.2  
1.3  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
SICOFI®2/4-TE Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
The IOM-2 PCM-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
The µ-Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
The Signaling Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Ring Generator and Special Purpose Pin . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
3
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.4  
Programming the SICOFI®-2/4-TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Types of Command and Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Examples for SICOFI®2/4-TE Commands . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
SOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
CR0 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
CR1 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
CR2 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
CR3 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
CR4 Configuration Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
CR5 Configuration Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
XOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
XR0 Extended Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
XR1 Extended Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
XR2 Extended Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
XR3 Extended Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
XR4 Extended Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
XR5 Extended Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
XR6 Extended Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
XR7 Extended Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Setting of Slopes in Register XR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
RESET (Basic Setting Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Active Mode (Power Up) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Programmable Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
QSICOS Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
3.5.8  
3.5.9  
3.6  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
4
4.1  
4.2  
Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Semiconductor Group  
3
09.97  
PSB 2132  
PSB 2134  
Table of Contents  
Page  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
Out-of-Band Signals at Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Out-of-Band Signals at Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Out of Band Idle Channel Noise at Analog Output . . . . . . . . . . . . . . . . . . . . .65  
Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Gain Tracking (receive or transmit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Total Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Single Frequency Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Transhybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
5
Proposed Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
6
Guidelines for Board-Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Board Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Filter Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Example of a SICOFI-2/4-TE-board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
6.1  
6.2  
6.3  
7
Programming the SICOFI2/4-TE Tone Generators . . . . . . . . . . . . . . . . . .72  
8
Application Note: Level Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Level Metering Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Measuring a Level via the Level Metering Function . . . . . . . . . . . . . . . . . . . .75  
Relative Measuring Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Generating Tests Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Tone Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
PCM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Analog Test Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
8.10.1 Supervision the State of a Subscriber Line . . . . . . . . . . . . . . . . . . . . . . . . . .78  
8.10.2 Improvement of Transhybrid Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
8.11  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Coupling Capacitors at the Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . .91  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
PCM-Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
µ-Controller Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Signaling Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
From the µC-interface to the SO/SB-pins (data downstream) . . . . . . . . . . . .94  
From the SI/SB-pins to the µC-interface (data upstream) . . . . . . . . . . . . . . .94  
9.1  
9.2  
9.3  
9.4  
9.5  
9.5.1  
9.5.2  
10  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Semiconductor Group  
4
09.97  
PSB 2132  
PSB 2134  
Overview  
1
Overview  
The Signal Processing Codec Filter for terminal applications PSB 2132/4 SICOFI2/4-TE  
is a special derivative of the SIEMENS programmable codec-filter-IC family designed for  
terminal applications featuring two or four POTS interfaces.  
It can be directly connected to the IOM-2 interface in terminal mode running at 1.536  
MHz clock rate. PCM data is transfered using the bit clock signal at 768 kHz.  
Programming of internal registers is done via the serial microcontroller interface.  
Only two external capacitors per channel are needed to complete the functionality of the  
PSB 2132/4. The internal level accuracy is based on a very accurate bandgap reference.  
The frequency behaviour is mainly determined by digital filters, which do not have any  
fluctuations. As a result of the new ADC- and DAC- concepts linearity is only limited by  
second order parasitic effects. Although the device works only from one single 5 V  
supply there is a very good dynamic range available.  
The PSB 2132/4 is a DSP based codec which allows the integration of filters and tone  
generators besides the regular A- or u-law conversion. In addition it integrates I/O  
extentions to the microcontroller and provides the necessary I/O pins to control the SLIC  
or discrete SLIC replacement. Interrupts are generated to the microcontroller if changes  
(e.g. Off-Hook detection) have been occured. The PSB 2132/4 provides a ring frequency  
output pin. This pin has a programmable clock frequency to meet the European and US  
ringing frequency requirements using only one external divider.  
The IOM-2 data lines DU and DD can both be used for transmitting or receiving voice  
data. The position of each receive and transmit timeslot is programmable. Internal  
communication between analog ports is supported by programming each channel to the  
same timeslot but reversing the data lines. Thus the transmitted PCM data is transmitted  
by one port and received by the second port via the same timeslot. An additional IC for  
switch matrix is eliminated.  
The PSB 2132/4 is specially of interest for applications, which need to serve different  
country specific characteristics on the POTS interface. Since all filters are  
programmable, adaptation to these country specific requirements may be done only by  
software parameters using the same hardware.  
Semiconductor Group  
5
09.97  
Two Channel Codec Filter for Terminal Applications  
SICOFI®2-TE  
PSB 2132  
PSB 2134  
CMOS  
Four Channel Codec Filter for Terminal Applications  
SICOFI®4-TE  
Preliminary Data  
1.1  
Features  
• Single chip programmable CODEC and FILTER to  
handle two or four POTS interfaces  
• IOM-2 compatible interface (1.536 MHz DCL, 768  
kHz Bit clock)  
• Internal communication between POTS interfaces  
• Programmable I/O lines for signaling information per  
channel  
• Programmable ring generator output  
• Two programmable tone generators per channel  
• Serial microcontroller interface  
P-MQFP-64  
• Digital signal processing technique  
• High analog driving capability (300 ) for direct  
driving of transformers  
• Programmable digital filters to adapt the transmission behaviour especially for  
– AC impedance matching  
– transhybrid balancing  
– frequency response  
– gain  
– A/µ-law conversion  
• Single 5 V power supply  
• Low power 0.9 µm analog CMOS technology  
• Advanced test capabilities  
• P-MQFP-64 package  
Semiconductor Group  
6
09.97  
PSB 2132  
PSB 2134  
Overview  
1.2  
Pin Configuration  
(top view)  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
VIN1  
BCL  
FSC  
DU  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GNDA1  
VOUT1  
VDDA12  
VOUT2  
DD  
N.U.  
DD  
GNDA2  
VIN2  
DU  
SICOFI R 2-TE  
PSB 2132 H  
VREF  
N.U.  
VDDREF  
VDDD  
N.U.  
RESET  
DCL  
GNDA  
N.U.  
GNDD  
DOUT  
DIN  
VDDA  
N.U.  
GNDA  
N.U.  
DCLK  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
ITP09767  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
VIN1  
BCL  
FSC  
DU  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GNDA1  
VOUT1  
VDDA12  
VOUT2  
DD  
N.U.  
DD  
GNDA2  
VIN2  
DU  
SICOFI R 4-TE  
PSB 2134 H  
VREF  
VDDREF  
VIN3  
N.U.  
VDDD  
RESET  
DCL  
GNDA3  
VOUT3  
GNDD  
DOUT  
DIN  
VDDA34  
VOUT4  
GNDA4  
VIN4  
DCLK  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
ITP09766  
Figure 1  
Semiconductor Group  
7
09.97  
PSB 2132  
PSB 2134  
Overview  
1.3  
Pin Definition and Functions  
Pin No. Symbol Input (I)  
Output (O)  
Function  
Common Pins for all Channels  
24  
21  
VDDD  
I
I
+ 5 V supply for the digital circuitry 1)  
GNDD  
Ground Digital, not internally connected to  
GNDA1,2,(3,4)  
All digital signals are referred to this pin  
52  
56  
VDDA12  
VREF  
I
+ 5 V Analog supply voltage for channel 1 and 2 1)  
I/O  
Reference voltage, has to be connected to a 220 nF  
cap. to ground, can also be used as virtual ground  
for analog inputs and outputs (high-ohmic buffer  
needed !!!)  
57  
31  
VDDREF  
I
I
+ 5 V Analog supply voltage (100 nF cap. required)  
FSC  
Frame synchronization clock, 8 kHz, identifies the  
beginning of the frame, individual time slots are  
referenced to this pin, FSC must be synchronous to  
DCL and BCL  
32  
BCL  
DU  
I
IOM-2 bit clock 768 kHz, determines the rate at  
which PCM data is shifted into or out of the  
PCM-ports  
26,30  
27,29  
I/O  
I/O  
IOM-2 Data Upstream interface. Transmits or  
receives PCM data in 8 bit bursts. Both pins must be  
connected together.  
DD  
IOM-2 Data Downstream interface. Transmits or  
receives PCM data in 8 bit bursts. Both pins must be  
connected together.  
23  
22  
17  
18  
RESET  
DCL  
I
I
I
I
Reset input - forces the device to default mode,  
active low  
Master clock input 1536 kHz, synchronous to FSC,  
must be available if the SICOFI2/4-TE is operating  
CS  
µ-Controller interface: chip select enable to read or  
write data, active low  
DCLK  
µ-Controller interface: data clock, shifts data from or  
to device, the maximum clock rate is 8192 kHz  
Semiconductor Group  
8
09.97  
PSB 2132  
PSB 2134  
Overview  
Pin No. Symbol Input (I)  
Output (O)  
Function  
19  
DIN  
I
µ-Controller interface: control data input pin, DCLK  
determines the data rate  
20  
DOUT  
O
µ-Controller interface: control data output pin, DCLK  
determines the data rate, DOUT is high ‘Z’ if no data  
is transmitted from the SICOFI2/4-TE  
33  
16  
34  
RGEN  
O
Ring generator output, provides a programmable  
(2 … 28 ms) output signal (synchronous to DCL)  
CHCLK2 O  
INT12  
Chopper Clock output, provides a 256, or 512 or  
16384 kHz signal, is synchronous to DCL  
O
Interrupt output pin for channel 1 and 2, active high  
Dedicated pins for PSB 2132  
61  
VDDA  
I
I
I
+ 5 V Analog supply voltage 1)  
59,63  
GNDA  
Ground analog for unused analog I/O pins  
None usable input, tie directly to GNDD  
1,2,13, N.U.I  
14  
3,4,5,  
10,11,  
12  
N.U.I.O  
I/O  
None usable input/output, tie via a pull-down-resistor  
to GNDD.  
6,7,8,9, N.U.  
15,25,  
None usable, leave unconnected  
28,58,  
60,62,  
64  
Dedicated pins for PSB 2134  
61  
15  
VDDA34  
I
+ 5 V Analog supply voltage for channel 3 and 41)  
Interrupt output pin for channel 3 and 4, active high  
INT34  
O
Semiconductor Group  
9
09.97  
PSB 2132  
PSB 2134  
Overview  
Pin No. Symbol Input (I)  
Output (O)  
Function  
Specific Pins for Channel 1  
50  
49  
51  
GNDA1  
VIN1  
I
Ground Analog for channel 1, not internally  
connected to GNDD or GNDA2,3,4  
I
Analog voice (voltage) input for channel 1, has to be  
connected to the SLIC by a 39 nF cap.  
VOUT1  
O
Analog voice (voltage) output for channel 1, has to  
be connected to the SLIC via a cap. 2)  
36  
35  
41  
40  
39  
38  
37  
SI1_0  
I
Signaling input pin 0 for channel 1  
SI1_1  
I
Signaling input pin 1 for channel 1  
SO1_0  
SO1_1  
SB1_0  
SB1_1  
SB1_2  
O
Signaling output pin 0 for channel 1  
Signaling output pin 1 for channel 1  
Bi-directional signaling pin 0 for channel 1  
Bi-directional signaling pin 1 for channel 1  
Bi-directional signaling pin 2 for channel 1  
O
I/O  
I/O  
I/O  
Specific Pins for Channel 2  
54  
55  
53  
GNDA2  
VIN2  
I
Ground Analog for channel 2, not internally  
connected to GNDD or GNDA 1,3,4  
I
Analog voice (voltage) input for channel 2, has to be  
connected to the SLIC by a 39 nF cap.  
VOUT2  
O
Analog voice (voltage) output for channel 2, has to  
be connected to the SLIC via a cap. 2)  
47  
48  
42  
43  
44  
45  
46  
SI2_0  
I
Signaling input pin 0 for channel 2  
SI2_1  
I
Signaling input pin 1 for channel 2  
SO2_0  
SO2_1  
SB2_0  
SB2_1  
SB2_2  
O
Signaling output pin 0 for channel 2  
Signaling output pin 1 for channel 2  
Bi-directional signaling pin 0 for channel 2  
Bi-directional signaling pin 1 for channel 2  
Bi-directional signaling pin 2 for channel 2  
O
I/O  
I/O  
I/O  
Semiconductor Group  
10  
09.97  
PSB 2132  
PSB 2134  
Overview  
Pin No. Symbol Input (I)  
Output (O)  
Function  
Specific Pins for Channel 3 (PSB 2134 only)  
59  
58  
60  
GNDA3  
VIN3  
I
Ground Analog for channel 3, not internally  
connected to GNDD or GNDA1,2,4  
I
Analog voice (voltage) input for channel 3, has to be  
connected to the SLIC by a 39 nF cap.  
VOUT3  
O
Analog voice (voltage) output for channel 3, has to  
be connected to the SLIC via a cap. 2)  
2
1
7
6
5
4
3
SI3_0  
I
Signaling input pin 0 for channel 3  
SI3_1  
I
Signaling input pin 1 for channel 3  
SO3_0  
SO3_1  
SB3_0  
SB3_1  
SB3_2  
O
Signaling output pin 0 for channel 3  
Signaling output pin 1 for channel 3  
Bi-directional signaling pin 0 for channel 3  
Bi-directional signaling pin 1 for channel 3  
Bi-directional signaling pin 2 for channel 3  
O
I/O  
I/O  
I/O  
Semiconductor Group  
11  
09.97  
PSB 2132  
PSB 2134  
Overview  
Pin No. Symbol Input (I)  
Output (O)  
Function  
Specific Pins for Channel 4 (PSB 2134 only)  
63  
64  
62  
GNDA4  
VIN4  
I
Ground Analog for channel 4, not internally  
connected to GNDD or GNDA1,2,3  
I
Analog voice (voltage) input for channel 4, has to be  
connected to the SLIC by a 39 nF cap.  
VOUT4  
O
Analog voice (voltage) output for channel 4, has to  
be connected to the SLIC via a cap. 2)  
13  
14  
8
SI4_0  
I
Signaling input pin 0 for channel 4  
SI4_1  
I
Signaling input pin 1 for channel 4  
SO4_0  
SO4_1  
SB4_0  
SB4_1  
SB4_2  
O
Signaling output pin 0 for channel 4  
Signaling output pin 1 for channel 4  
Bi-directional signaling pin 0 for channel 4  
Bi-directional signaling pin 1 for channel 4  
Bi-directional signaling pin 2 for channel 4  
9
O
10  
11  
12  
I/O  
I/O  
I/O  
1)  
A 100 nF cap. should be used for blocking these pins, see also on page 83  
2)  
The value for the capacitor needed, depends on the input impedance of the ‘SLIC’-circuitry. For choosing the  
appropriate values see figure on page 72.  
Semiconductor Group  
12  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
2
Functional Description  
System Integration  
2.1  
The SICOFI2/4-TE is connected to an IOM-2 compatible transceiver such as the PEB  
8191 INTC-Q for U-interface or NT-applications or the PSB 2186 ISAC-S TE or PSB  
2115 IPAC for S/T-interface applications. The FSC output is connected to the FSC input  
on the SICOFI2/4-TE. The DCL output of the transceiver is fed to the DCL input of the  
SICOFI2/4-TE which is used as master clock. For transferring PCM data, the bit clock  
signal of the transceiver (BCL, 768 kHz) is connected to the SICOFI2/4-TE.  
IOM R -2  
So  
BCL  
SICOFI R 2/4-TE  
PSB 2132/4  
ISAC R S-TE  
PSB 2186  
SLIC  
SLIC  
SLIC  
SLIC  
µ
C
Tip/  
Ring  
Tip/  
Ring  
Tip/  
Ring  
Tip/  
Ring  
ITS09785  
So  
U
INTC-Q  
PEB 8191  
IOM R-2  
BCL  
Tip/Ring  
Tip/Ring  
SLIC  
SICOFI R 2/4-TE  
PSB 2132/4  
µ
C
SLIC  
ITS09800  
IOM R -2  
BCL  
So  
SICOFI R 2/4-TE  
PSB 2132/4  
IPAC  
PSB 2115  
AUX  
INT  
SLIC  
SLIC  
ISA PnP IF  
Tip/  
Ring  
Tip/  
Ring  
ITS09801  
Figure 2  
Semiconductor Group  
13  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
The microcontroller interface is connected to a microcontroller. Since the data transfer  
does not require duplex operation it can be connected both to SPI compatible  
microcontrollers (Siemens C5xx series, C161 series) as well as to Intel C51 based ones.  
The SICOFI2/4-TE provides an high active interrupt output. The interrupts are caused by  
changes on the input lines of each channel. In order to operate it is necessary to keep  
DCL running all the time. If DCL is stopped in order to reduce the power consumption of  
the system, additional hardware is required. This hardware may be used to generate  
directly an interrupt to the microcontroller which may than request IOM-clocking.  
Each channel serves seven I/O lines (2xO, 2xI, 3xI/O) which are used to control the  
inputs of the SLIC or to fed the outputs of a SLIC to the microcontroller.  
The RGEN output can be used to generate the input signal of a ringing SLIC. Its  
frequency is programmable down to 35,7 Hz.  
2.2  
SICOFI®2/4-TE Principles  
The SICOFI2/4-TE is designed for terminal adapters and Intelligent NT (NT1plus)  
applications.  
It is designed to reduce the number of external components required for the integrated  
or discrete SLIC.  
The SICOFI-2/4 TE bridges the gap between analog and digital voice signal  
transmission in modern telecommunication systems. High performance oversampling  
Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC) provide the  
conversion accuracy required. Analog antialiasing prefilters (PREFI) and smoothing  
postfilters (POFI) are included. The connection between the ADC and the DAC (with high  
sampling rate) and the DSP, is done by specific Hardware Filters, for filtering like  
interpolation and decimation. The dedicated Digital Signal Processor (DSP) handles all  
the algorithms necessary e.g. for PCM bandpass filtering, sample rate conversion and  
PCM companding. The PCM-interface handles digital voice transmission, a serial  
µC-interface handles SICOFI2/4-TE feature control and transparent access to the  
SICOFI2/4-TE command and indication pins. To program the filters, precalculated sets  
of coefficients are downloaded from the system to the on-chip Coefficient-RAM (CRAM).  
Semiconductor Group  
14  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
Figure 3  
SICOFI®2/4-TE Signal Flow Graph (for any channel)  
Transmit Path  
The analog input signal has to be DC-free connected by an external capacitor because  
there is an internal virtual reference ground potential. After passing a simple antialiasing  
prefilter (PREFI) the voice signal is converted to a 1-bit digital data stream in the  
Sigma-Delta-converter. The first downsampling steps are done in fast running digital  
hardware filters. The following steps are implemented in the micro-code which has to be  
executed by the central Digital Signal Processor. This DSP-machine is able to handle  
the workload for all four channels. At the end the fully processed signal (flexibly  
programmed in many parameters) is transferred to the PCM- interface in a  
PCM-compressed signal representation.  
Receive Path  
The digital input signal is received via the PCM interface. Expansion,  
PCM-Law-pass-filtering, gain correction and frequency response correction are the next  
steps which are done by the DSP-machine. The upsampling interpolation steps are  
again processed by fast hardware structures to reduce the DSP-workload. The  
Semiconductor Group  
15  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
upsampled 1-bit data stream is then converted to an analog equivalent which is  
smoothed by a POST-Filter (POFI). As the signal VOUT is also referenced to an internal  
virtual ground potential, an external capacitor is required for DC-decoupling.  
Loops  
There are two loops implemented. The first is to generate the AC-input impedance (IM)  
and the second is to perform a proper hybrid balancing (TH). A simple extra path IM2  
(from the transmit to the receive path) supports the impedance matching function.  
Test Features  
There are four analog and five digital test loops implemented in the SICOFI-2/4 TE. For  
special tests it is possible to cut off the receive and the transmit path at two different  
points. In addition, external test loops including the subscriber line measurement are  
possible using the level meatering feature.  
Voice Data  
Ring  
Generator  
RGEN  
PCM Interface  
D
A
D
Analog OUT  
Analog IN  
Analog OUT  
Analog IN  
A
D
A
D
A
DSP  
D
A
D
A
Analog OUT  
Analog IN  
Analog OUT  
Analog IN  
A
D
A
D
Command  
Indication  
Command  
Indication  
Signaling  
µ
C Interface  
Signaling  
Command  
Indication  
Command  
Indication  
Signaling  
Signaling  
Control Data  
ITB09768  
Figure 4  
SICOFI2/4®-TE Block Diagram  
Semiconductor Group  
16  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
2.3  
The IOM-2 PCM-interface  
One serial PCM-interface is used for transfer of A- or µ-law compressed voice data. The  
PCM-interface consists of 4 pins:  
BCL:  
FSC:  
DU:  
IOM-2 bit clock, 768 kHz  
Frame Synchronization Clock, 8 kHz  
Data transmit or receive in data upstream direction  
Data receive or transmit in data downstream direction  
DD:  
The Frame Sync FSC pulse identifies the beginning of a receive and transmit frame for  
all of the two / four channels. The BCL clock is the signal to synchronize the data transfer  
on both lines DU and DD. Bytes in all channels are serialized to 8 bit width and MSB first.  
As a default setting, the rising edge indicates the start of the bit, while the falling edge is  
used to latch the contents of the received data.  
The data rate of the interface is fixed to 768 kHz. A frame consists of 12 time slots of 8  
bits each. In the Time Slot Configuration Registers CR5 and CR6 the user can select an  
individual time slot, and one of two data lines, for any of the voice channels. Receive and  
transmit time slots can also be programmed individually. An extra delay of up to 7 clocks,  
valid for all channels, as well as the sampling slope may be programmed (see XR6).  
A typical example is shown below.  
Semiconductor Group  
17  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
125 µs  
FSC  
B1  
B2  
MON0 D CI0  
MR  
IC1  
MX  
IC2  
MON1 CI1  
MR  
IC3  
MX  
IC4  
TIC  
DCL  
BCL  
DU/DD  
7
6
5
4
3
2
1
0
B1  
ITD09769  
Figure 5  
Example for IOM-2 Terminal Mode  
Semiconductor Group  
18  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
2.4  
The µ-Controller Interface  
The internal configuration registers, the signaling interface, and the Coefficient-RAM  
(CRAM) of the SICOFI-2/4-TE are programmable via a serial µ-Controller interface.  
The µ-Controller interface consists of four lines: CS, DCLK, DIN and DOUT:  
CS is used to start a serial access to the SICOFI-2/4-TE registers and Coefficient-RAM.  
Following a falling edge of CS, the first eight bits received on DIN specify the command.  
Subsequent data bytes (number depends on command) are stored in the selected  
configuration registers or the selected part of the Coefficient-RAM.  
CS  
DCLK  
DIN  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Control  
Data Byte 1  
High ’Z’  
Data Byte 2  
DOUT  
ITD09770  
Figure 6  
Example for a Write Access, with Two Data Bytes Transferred  
If the first eight bits received via DIN specify a read-command, the SICOFI-2/4 TE will  
start a response via DOUT with its specific address byte (81H). After transmitting this  
identification, the specified n data bytes (contents of configuration registers, or contents  
of the CRAM) will follow on DOUT.  
Semiconductor Group  
19  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
CS  
DCLK  
DIN  
7
6
5
4
3
2
1
0
Control  
High ’Z’  
High ’Z’  
DOUT  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Identification  
Data Byte 1  
ITD09771  
Figure 7  
Example for a Read Access, with One Data Byte Transferred via DOUT  
The data transfer is synchronized by the DCLK input. The contents of DIN is latched at  
the rising edge of DCLK, while DOUT changes with the falling edge of DCLK. During  
execution of commands that are followed by output data (read commands), the device  
will not accept any new command via DIN. The data transfer sequence is completed by  
setting CS to high.  
To reduce the number of connections to the µP DIN and DOUT may be strapped  
together, and form a bi-directional data-‘pin’.  
For special applications a byte by byte transfer is needed. This can be done by  
prolonging the high time of DCLK for a user defined ‘waiting time’ after transferring any  
byte.  
CS  
DCLK  
High ’Z’  
DATA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Control-Byte  
Identification  
Data Byte 1  
ITD09772  
Figure 8  
Example for a Write/Read Access, with a Byte by Byte Transfer, and DIN and DOUT  
Strapped Together  
The Identification Byte is “81H” for the PSB 2132/34.  
Semiconductor Group  
20  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
2.5  
The Signaling Interface  
The SICOFI-2/4 TE signaling interface is made up of 2 input pins (SIx_0, SIx_1), two  
output pins (SOx_0, SOx_1) and three bi-directional programmable pins (SBx_0, SBx_1,  
SBx_2) per channel.  
: 4  
RGEN  
RWG Input  
Tip  
ON/OFF Hook  
SI2_0  
SO2_1  
SLIC 2  
MODE  
Ring  
SO2_0  
SB2_0  
POL. REV.  
SICOFI R 2/4-TE  
PSB 2132  
PSB 2134  
RWG Input  
SI1_0  
Tip  
ON/OFF Hook  
SO1_1  
SO1_0  
SB1_0  
SLIC 1  
MODE  
Ring  
POL. REV.  
ITS09784  
Figure 9  
The purpose of these pins is to control the SLIC functions without additional ports on the  
host or microcontroller.  
Semiconductor Group  
21  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
SI4_1  
SI4_0  
CH4  
CH3  
CH4  
CH3  
SO4_1  
SO4_0  
SI3_1  
SI3_0  
XR0 (RD)  
XR0 (WR)  
SI4_1  
SI4_0  
SI3_1  
SI3_0  
SI2_1  
SI2_0  
SI1_1  
SI1_0  
SO4_1  
SO4_0  
SO3_1  
SO3_0  
SO2_1  
SO2_0  
SO1_1  
SO1_0  
SO3_1  
SO3_0  
SI2_1  
SI2_0  
CH2  
CH1  
CH2  
CH1  
SO2_1  
SO2_0  
SI1_1  
SI1_0  
SO1_1  
SO1_0  
ITS09781  
Figure 10  
The status bits of all SIx_0 and SIx_1 inputs are stored in the XR0 register (RD). Similar  
the control bits of SOx_0 and SOx_1 are stored in the XR0 register (WR).  
The bidirection status bits are arranged such that all SBx_1 and SBx_0 bits are  
controlled / read via the XR1 register. The correspondig direction register is the XR2  
register. The third bidirectional status bit of each channel is accessed via the four most  
significant bits of the XR3 register while the least significant four bits specify the  
corresponding direction.  
Semiconductor Group  
22  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
SB4_2  
SB4_1  
SB4_0  
CH4  
CH3  
XR2 (WR)  
XR1 (RD)  
XR1 (WR)  
SB3_2  
SB3_1  
SB3_0  
PSB4_1  
PSB4_0  
PSB3_1  
PSB3_0  
PSB2_1  
PSB2_0  
PSB1_1  
PSB1_0  
Direction  
SB4_1  
SB4_0  
SB3_1  
SB3_0  
SB2_1  
SB2_0  
SB1_1  
SB1_0  
Input  
SB4_1  
SB4_0  
SB3_1  
SB3_0  
SB2_1  
SB2_0  
SB1_1  
SB1_0  
Output  
XR3 (WR)  
XR3 (RD)  
XR3 (WR)  
PSB4_2  
PSB3_2  
PSB2_2  
PSB1_2  
Direction  
SB4_2  
SB3_2  
SB2_2  
SB1_2  
Input  
SB4_2  
SB3_2  
SB2_2  
SB1_2  
Output  
SB2_2  
SB2_1  
SB2_0  
CH2  
CH1  
SB1_2  
SB1_1  
SB1_0  
ITS09782  
Figure 11  
Depending on the application, the lines can be group individually to support the best  
software interface. E.g. if a DTMF receiver is connected to the SICOFI2/4-TE, the pins  
SB2_1, SB2_0,SB1_1,SB1_0 may be used for the data bus. This simplifies the software  
since the value can be read directly from the register.  
Semiconductor Group  
23  
09.97  
PSB 2132  
PSB 2134  
Functional Description  
: 4  
RGEN  
Tip  
ON/OFF Hook  
RING ENA  
SI2_0  
SLIC 2  
SLIC  
Ring  
SO2_1  
Tip  
ON/OFF Hook  
RING ENA  
SI1_0  
Ring  
SO1_1  
SO1_2  
SICOFI R 2/4-TE  
PSB 2132  
PSB 2134  
MUX  
SB2_1  
SB2_0  
SB1_1  
SB1_0  
DTMF  
REC  
ITS09783  
Figure 12  
Additional two interrupt pins (INT12, INT34) are provided. If one of the input pins for  
channel 1 or 2, or one of the bi-directional pins for channel 1 and 2 (if programmed as  
inputs) changes, and being stable for the debounce time specified in Register XR4,  
INT12 will go from ‘0’ to ‘1’. This interrupt is cleared if the appropriate registers (XR0,  
XR1 and XR3) are read via the serial µC-interface. Pin INT34 provides the same  
functionality for channel 3 and 4.  
2.6  
Ring Generator and Special Purpose Pin  
For special purposes two additional output signals are provided by the SICOFI-2/4 TE.  
RGEN (see also register XR4) will provide a programmable ring generator output of 2 to  
28 ms. The output of RGEN diveded by four can be used to drive the ring input of a ringin  
SLIC. RGEN delivers a square-wave signal (duty cycle 1:1).  
CHCLK will provide 3 different frequencies (256 kHz, 512 kHz or 16384 kHz). Both  
signals are only available if a valid signal is applied to the DCL-pin.  
Semiconductor Group  
24  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3
Programming the SICOFI®-2/4-TE  
With the appropriate commands, the SICOFI2/4-TE can be programmed and verified  
very flexibly via the µ-Controller interface.  
With the first byte received via DIN, one of 3 different types of commands (SOP, XOP  
and COP) is selected. Each of those can be used as a write or read command. Due to  
the extended SICOFI2/4-TE feature control facilities, SOP, COP and XOP commands  
contain additional information (e.g. number of subsequent bytes) for programming  
(write) and verifying (read) the SICOFI2/4-TE status.  
A write command is followed by up to 8 bytes of data. The SICOFI2/4-TE responds to a  
read command with its specific identification and the requested information, that is up to  
8 bytes of data.  
3.1  
Types of Command and Data Bytes  
The 8-bit bytes have to be interpreted as either commands or status information stored  
in Configuration Registers or the Coefficient-RAM. There are three different types of  
SICOFI -2/4-TE commands which are selected by bit 3 and 4 as shown below.  
SOP  
Bit 7  
STATUS OPERATION:  
SICOFI2/4-TE status setting/monitoring  
0
AD2  
AD1  
1
0
XOP  
Bit 7  
EXTENDED OPERATION:  
C/I1) channel configuration/evaluation  
0
0
1
1
COP  
Bit 7  
COEFFICIENT OPERATION:  
filter coefficient setting/monitoring  
0
AD2  
AD1  
0
1)  
Note: Command/Indication (signaling) channel.  
Semiconductor Group  
25  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Storage of Programming Information  
6 configuration registers per channel:  
CR0, CR1, CR2, CR3, CR4 and CR5  
accessed by SOP commands  
8 common configuration registers:  
1 Coefficient-RAM per channel:  
XR0 .. XR7 accessed by XOP commands,  
valid for all 4 channels  
CRAM accessed by COP commands  
3.2  
Examples for SICOFI®2/4-TE Commands  
SOP - Write Commands  
DIN  
SOP-Write 1 Byte  
CR0  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
0 1 0 0 0 0  
Data  
Idle  
Idle  
DIN  
SOP-Write 2 Bytes  
CR1  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
0 1 0 0 0 1  
Idle  
Idle  
Idle  
Data  
Data  
CR0  
DIN  
SOP-Write 3 Bytes  
CR2  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
0 1 0 0 1 0  
Idle  
Idle  
Idle  
Idle  
Data  
Data  
Data  
CR1  
CR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
SOP-Write 4 Bytes  
0 1 0 0 1 1  
Idle  
Idle  
Idle  
Idle  
Idle  
CR3  
CR2  
CR1  
CR0  
Data  
Data  
Data  
Data  
Semiconductor Group  
26  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
XOP - Write Commands  
DIN  
XOP-Write 2 Bytes  
XR1  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
0 1 1 0 0 1  
Idle  
Idle  
Idle  
Data  
Data  
XR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
XOP-Write 3 Bytes  
0 1 1 0 1 0  
Idle  
Idle  
Idle  
Idle  
XR2  
XR1  
XR0  
Data  
Data  
Data  
COP - Write Commands  
DIN  
COP-Write 4 Bytes  
Coeff. 3  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
0 0  
Data  
Idle  
Idle  
Idle  
Idle  
Idle  
Coeff. 2  
Data  
Data  
Data  
Coeff. 1  
Coeff. 0  
DIN  
COP-Write 8 Bytes  
Coeff. 7  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT  
0 0  
Data  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Coeff. 6  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Coeff. 5  
Coeff. 4  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Coeff. 0  
Semiconductor Group  
27  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
SOP - Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
SOP-Read 1 Byte  
1 1 0 0 0 0  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Data  
CR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
SOP-Read 2 Bytes  
1 1 0 0 0 1  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Idle  
Data  
Data  
CR1  
CR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
SOP-Read 3 Bytes  
1 1 0 0 1 0  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Idle  
Idle  
Data  
Data  
Data  
CR2  
CR1  
CR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
SOP-Read 4 Bytes  
1 1 0 0 1 1  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Idle  
Idle  
Idle  
Data  
Data  
Data  
Data  
CR3  
CR2  
CR1  
CR0  
Semiconductor Group  
28  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
XOP-Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
XOP-Read 1 Byte  
1 1 1 0 0 0  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Data  
XR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
XOP-Read 2 Bytes  
1 1 1 0 0 1  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Idle  
Data  
Data  
XR1  
XR0  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
XOP-Read 3 Bytes  
1 1 1 0 1 0  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Idle  
Idle  
Idle  
Data  
Data  
Data  
XR2  
XR1  
XR0  
Semiconductor Group  
29  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
COP-Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
COP-Read 4 Bytes  
1 0 1  
Idle  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Data  
Data  
Data  
Data  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Coeff. 0  
Idle  
Idle  
Idle  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
COP-Read 8 Bytes  
1 0 0  
Idle  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Coeff. 8  
Coeff. 7  
Coeff. 6  
Coeff. 5  
Coeff. 4  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Semiconductor Group  
30  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Example of a Mixed Command  
DIN  
7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0  
DOUT  
SOP-Write 4 Bytes  
CR3  
0 1 0 0 1 1  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Data  
CR2  
Data  
CR1  
Data  
CR0  
Data  
XOP-Write 2 Bytes  
XR1  
0 1 1 0 0 1  
Data  
XR0  
Data  
COP-Write 4 Bytes  
Coeff. 3  
0 0 1  
Data  
Coeff. 2  
Data  
Coeff. 1  
Data  
Coeff. 0  
Data  
SOP-Read 3 Bytes  
1 1 0 0 1 0  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Data  
Data  
Data  
Idle  
CR2  
CR1  
CR0  
Idle  
Idle  
COP-Read 4 Bytes  
1 0 1  
Idle  
1 0 0 0 0 0 0 1 Identification  
Idle  
Data  
Data  
Data  
Data  
Idle  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Coeff. 0  
Idle  
Idle  
Idle  
XOP-Read 1 Byte  
1 1 1 0 0 0  
Idle  
Idle  
1 0 0 0 0 0 0 1 Identification  
Data XR0  
Semiconductor Group  
31  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.3  
SOP Command  
To modify or evaluate the SICOFI2/4-TE status, the contents of up to 6 configuration  
registers CR0 .. CR5 may be transferred to or from the SICOFI2/4-TE. This is started by  
a SOP-Command (status operation command).  
Bit 7  
0
AD2  
AD1  
RW  
1
0
LSEL2  
LSEL1  
LSEL0  
AD  
Address Information  
AD = 00  
AD = 01  
AD = 10  
SICOFI2/4-TE - channel 1 is addressed with this command  
SICOFI2/4-TE - channel 2 is addressed with this command  
SICOFI2/4-TE - channel 3 is addressed with this command  
(PSB 2134 only)  
AD = 11  
SICOFI2/4-TE - channel 4 is addressed with this command  
(PSB 2134 only)  
RW  
Read/Write Information: Enables reading from the SICOFI2/4-TE or writing  
information to the SICOFI2/4-TE  
RW = 0  
RW = 1  
Write to SICOFI2/4-TE  
Read from SICOFI2/4-TE  
LSEL  
Length select information (see also programming procedure)  
This field identifies the number of subsequent data bytes  
LSEL = 000  
LSEL = 001  
LSEL = 010  
LSEL = 011  
LSEL = 100  
LSEL = 101  
1 byte of data is following (CR0)  
2 bytes of data are following (CR1, CR2)  
3 bytes of data are following (CR2, CR1, CR0)  
4 bytes of data are following (CR3, CR2, CR1, CR0)  
5 bytes of data are following (CR4, CR3, CR2, CR1, CR0)  
6 bytes of data are following (CR5, CR4, CR3, CR2, CR1,  
CR0)  
All other codes are reserved for future use !  
Note: If only one configuration register requires modification, for example CR5, this can  
be accomplished by setting LSEL = 101 and releasing pin CS after CR5 is written.  
Semiconductor Group  
32  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.3.1  
CR0 Configuration Register 0  
Configuration register CR0 defines the basic SICOFI2/4-TE settings, which are:  
enabling/disabling the programmable digital filters.  
Bit  
7
0
TH  
IM/R1  
FRX  
FRR  
AX  
AR  
TH-SEL  
TH  
Enable TH- (Trans Hybrid Balancing) Filter  
TH = 0:  
TH = 1:  
TH-filter disabled  
TH-filter enabled  
IM/R1  
FRX  
FRR  
AX  
Enable IM-(Impedance Matching) Filter and R1-Filter  
IM/R1 = 0:  
IM/R1 = 1:  
IM-filter and R1-filter disabled  
IM-filter and R1-filter enabled  
Enable FRX (Frequency Response Transmit)-Filter  
FRX = 0:  
FRX = 1:  
FRX-filter disabled  
FRX-filter enabled  
Enable FRR (Frequency Response Receive)-Filter  
FRR = 0:  
FRR = 1:  
FRR-filter disabled  
FRR-filter enabled  
Enable AX-(Amplification/Attenuation Transmit) Filter  
AX = 0:  
AX = 1:  
AX-filter disabled  
AX-filter enabled  
AR  
Enable AR-(Amplification/Attenuation Receive) Filter  
AR = 0:  
AR = 1:  
AX-filter disabled  
AX-filter enabled  
TH-SEL 2 bit field to select one of two/four programmed TH-filter coefficient sets  
TH-Sel = 0 0: TH-filter coefficient set 1 is selected  
TH-Sel = 0 1: TH-filter coefficient set 2 is selected  
TH-Sel = 1 0: TH-filter coefficient set 3 is selected (PSB 2134 only)  
TH-Sel = 1 1: TH-filter coefficient set 4 is selected (PSB 2134 only)  
Semiconductor Group  
33  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.3.2  
CR1 Configuration Register 1  
Configuration register CR1 selects tone generator modes and other operation modes.  
Bit  
7
0
ETG2  
ETG1  
PTG2  
PTG1  
LAW  
0
0
PU  
ETG2  
Enable programmable tone generator 2 1)  
ETG2 = 0:  
ETG2 = 1:  
Programmable tone generator 2 is disabled  
Programmable tone generator 2 is enabled  
ETG1  
PTG2  
PTG1  
LAW  
Enable programmable tone generator 1  
ETG1 = 0:  
ETG1 = 1:  
Programmable tone generator 1 is disabled  
Programmable tone generator 1 is enabled  
User programmed frequency or fixed frequency is selected  
PTG2 = 0:  
PTG2 = 1:  
Fixed frequency for tone generator 2 is selected (1 kHz)  
Programmed frequency for tone generator 2 is selected  
User programmed frequency or fixed frequency is selected  
PTG1 = 0:  
PTG1 = 1:  
Fixed frequency for tone generator 1 is selected (1 kHz)  
Programmed frequency for tone generator 1 is selected  
PCM - law selection  
LAW = 0:  
LAW = 1:  
A-Law is selected  
µ-Law (µ255 PCM) is selected  
PU  
Power UP, sets the addressed channel to Power Up / Down  
PU = 0:  
PU = 1:  
The addressed channel is set to Power Down (standby)  
The addressed channel is set to Power Up (operating)  
1)  
Tone generator 2 is not available if Level Metering Function is enabled!  
Semiconductor Group  
34  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.3.3  
CR2 Configuration Register 2  
COT/R  
Bit 7  
0
0
IDR  
LM  
LMR  
V+T  
COT/R  
Selection of Cut off Transmit/Receive Paths  
0 0 0:  
0 0 1:  
0 1 0:  
Normal Operation  
COT16  
COT8  
Cut Off Transmit Path at 16 kHz (input of TH-Filter)  
Cut Off Transmit Path at 8 kHz (input of  
compression, output is zero for µ-law, 1 LSB for  
A-law)  
1 0 1:  
1 1 0:  
COR4M  
COR64  
Cut Off Receive Path at 4 MHz (POFI-output)  
Cut Off Receive Path at 64 kHz (IM-filter input)  
IDR  
Initialize Data RAM  
IDR = 0: Normal operation is selected  
IDR = 1: Contents of Data RAM is set to 0  
(used for production test purposes)  
Level Metering function 1)  
LM  
LM = 0:  
LM = 1:  
Level metering function is disabled  
Level metering function is enabled  
LMR  
Result of Level Metering function (this bit can not be written)  
LMR = 0: Level detected was lower than the reference  
LMR = 1: Level detected was higher than the reference  
V+T  
Add Voice signal and Tone Generator signal  
V+T = 0: Voice or Tone Generator is fed to the DAC  
V+T = 1: Voice and Tone Generator Signals are added, and fed to  
the Digital to Analog Converter  
1)  
Explanation of the level metering function:  
A signal fed to A/µ-Law compression via AX- and HPX-filters (from a digital loop, or externally via VIN), is  
rectified, and the power is measured. If the power exceeds a certain value, loaded to XR7, bit LMR is set to  
‘1’. The power of the incoming signal can be adjusted by AX-filters.  
Semiconductor Group  
35  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Figure 13  
‘CUT OFF’s’ and Loops  
Semiconductor Group  
36  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.3.4  
CR3 Configuration Register 3  
Test-Loops  
Bit 7  
0
AGX  
AGR  
D-HPX D-HPR  
Test-Loops 4 bit field for selection of Analog and Digital Loop Backs  
0 0 0 0:  
0 0 0 1:  
0 0 1 1:  
0 1 0 0:  
No loop back is selected (normal operation)  
ALB-PFI  
ALB-4M  
ALB-PCM  
Analog loop back via PREFI-POFI is selected  
Analog loop back via 4 MHz is selected  
Analog loop back via 8 kHz (PCM) is selected  
(attention: special settings necessary)  
0 1 0 1:  
1 0 0 0:  
1 0 0 1:  
1 1 0 0:  
1 1 0 1:  
1 1 1 1:  
ALB-8K  
Analog loop back via 8 kHz (linear) is selected  
Digital loop back via analog port is selected  
Digital loop back via 4 MHz is selected  
Digital loop back via 128 kHz is selected  
Digital loop back via 64 kHz is selected  
Digital loop back via PCM-registers is selected  
DLB-ANA  
DLB-4M  
DLB-128K  
DLB-64K  
DLB-PCM  
AGX  
Analog gain in transmit direction  
AGX = 0:  
AGX = 1:  
Analog gain is disabled  
Analog gain is enabled (6.02 dB amplification)  
AGR  
Analog gain in receive direction  
AGR = 0:  
AGR = 1:  
Analog gain is disabled  
Analog gain is enabled (6.02 dB attenuation)  
D-HPX  
Disable highpass in transmit direction  
D-HPX = 0: Transmit high pass is enabled  
D-HPX = 1: Transmit high pass is disabled1)  
D-HPR  
Disable highpass in receive direction  
D-HPR = 0: Receive high pass is enabled  
D-HPR = 1: Receive high pass is disabled2)  
1)  
In this case the transmit-path signal is attenuated 0.06 dB  
In this case the receive-path signal is attenuated 0.12 dB  
2)  
Semiconductor Group  
37  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.3.5  
CR4 Configuration Register 4  
Configuration register CR4, sets the receiving time slot and the receiving PCM-highway.  
Bit 7  
0
RLINE  
0
0
0
RS3  
RS2  
RS1  
RS0  
RLINE  
Selects the data line for the receiving of PCM-data  
RLINE = 0:  
RLINE = 1:  
DD is selected  
DU is selected  
RS[3:0]  
Selects the time slot (0 to 11) used for receiving the PCM-data  
The time slot-number is binary coded.  
0 0 0 0:  
0 0 0 1:  
....  
Time slot 0 is selected  
Time slot 1 is selected  
1 0 1 0:  
1 0 1 1:  
Time slot 10 is selected  
Time slot 11 is selected  
3.3.6  
CR5 Configuration Register 5  
Configuration register CR5, sets the transmit time slot and the transmit PCM-highway.  
Bit 7  
0
XLINE  
0
0
0
XS3  
XS2  
XS1  
XS0  
XLINE  
Selects the data line for transmitting PCM-data  
XLINE = 0:  
XLINE = 1:  
DU is selected  
DD is selected  
XS[3:0]  
Selects the time slot (0 to 11) used for transmitting the PCM-data  
The time slot-number is binary coded.  
0 0 0 0:  
0 0 0 1:  
....  
Time slot 0 is selected  
Time slot 1 is selected  
1 01 0:  
1 01 1:  
Time slot 10 is selected  
Time slot 11 is selected  
Semiconductor Group  
38  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.4  
COP Command  
With a COP command coefficients for the programmable filters can be written to the  
SICOFI-2/4-TE coefficient-RAM or read from the Coefficient-RAM via the µ-Controller  
interface for verification  
Bit 7  
0
AD2  
AD1  
RW  
0
CODE3 CODE2 CODE1 CODE0  
AD2-1  
Address  
AD2-1 = 0 0  
AD2-1 = 0 1  
AD2-1 = 1 0  
SICOFI2/4-TE- channel 1 is addressed  
SICOFI2/4-TE- channel 2 is addressed  
SICOFI2/4-TE- channel 3 is addressed (PSB 2134  
only)  
AD2-1 = 1 1  
SICOFI2/4-TE- channel 4 is addressed (PSB 2134  
only)  
RW  
Read/Write  
RW = 0  
Subsequent data is written to the SICOFI2/4-TE  
Read data from SICOFI2/4-TE  
RW = 1  
CODE  
3-0  
Includes number of following bytes and filter-address  
0 0 0 0 TH-Filter coefficients (part 1)  
0 0 0 1 TH-Filter coefficients (part 2)  
0 0 1 0 TH-Filter coefficients (part 3)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
0 1 0 0 IM/R1-Filter coefficients (part 1) (followed by 8 bytes of data)  
0 1 0 1 IM/R1-Filter coefficients (part 2) (followed by 8 bytes of data)  
0 1 1 0 FRX-Filter coefficients  
0 1 1 1 FRR-Filter coefficients  
1 0 0 0 AX-Filter coefficients  
1 0 0 1 AR-Filter coefficients  
1 1 0 0 TG 1- coefficients  
1 1 0 1 TG 2- coefficients  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
Semiconductor Group  
39  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
How to Program the Filter Coefficients  
TH-Filter:  
Two (Four) sets of TH-filter coefficients can be loaded to the  
SICOFI2 (/4)-TE. Each sets can be selected for any of the two / four  
SICOFI2/4-TE channels, by setting the value of TH-Sel in  
configuration register CR0. Coefficient set 1 is loaded to the  
SICOFI2/4-TE via channel 1, set 2 is loaded via channel 2 and so  
on. For the SICOFI2-TE, only set 1 and 2 are available.  
AX, AR, IM/R1, FRX, FRR-Filter, Tone-Generators:  
An individual coefficient set is available for each of the two / four  
channels.  
Channel Registers  
Channel Registers  
Channel 1  
Channel 3  
IM Part 1 Filter  
IM Part 2 Filter  
FRX-Filter  
FRR-Filter  
AX-Filter  
AR-Filter  
TG1, TG2  
IM Part 1 Filter  
IM Part 2 Filter  
FRX-Filter  
FRR-Filter  
AX-Filter  
AR-Filter  
TG1, TG2  
SICOFI R 2/4-TE  
PSB 2132/4 H  
General Registers  
Chan.1  
Chan. 2  
Chan. 3  
Chan. 4  
TH Part 1  
TH Part 2  
TH Part 1  
TH Part 2  
TH Part 1  
TH Part 2  
TH Part 1  
TH Part 2  
Channel 2  
Channel 4  
IM Part 1 Filter  
IM Part 2 Filter  
FRX-Filter  
FRR-Filter  
AX-Filter  
IM Part 1 Filter  
IM Part 2 Filter  
FRX-Filter  
FRR-Filter  
AX-Filter  
AR-Filter  
AR-Filter  
TG1, TG2  
TG1, TG2  
ITS09773  
Figure 14  
Semiconductor Group  
40  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.5  
XOP Command  
With the XOP command the SICOFI2/4-TE digital command/indication interface to a  
SLIC is configured and evaluated. Also other common functions are assigned with this  
command.  
Bit 7  
0
RST  
0
RW  
1
1
LSEL2 LSEL1 LSEL0  
RST  
Software Reset  
(same as RESET-pin, valid for all 2/4 channels)  
RST = 1:  
RST = 0:  
Reset  
No operation  
RW  
Read / Write Information: Enables reading from the SICOFI-2/4-TE or  
writing information to the SICOFI2/4-TE  
RW = 0:  
RW = 1:  
Write to SICOFI2/4-TE  
Read from SICOFI2/4-TE  
LSEL  
Length select information, for setting the number of subsequent data bytes  
LSEL = 000: 1 byte of data is following (XR0)  
LSEL = 001: 2 bytes of data are following (XR1, XR0)  
:
LSEL = 111: 8 bytes of data are following (XR7, XR6, XR5, XR4, XR3,  
XR2, XR1, XR0)  
Note: All other codes are reserved for future use!  
If only one configuration register requires modification, for example XR5, this can  
be accomplished by setting LSEL =101 and releasing pin CS after XR5 is written.  
Semiconductor Group  
41  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.5.1  
XR0 Extended Register 0  
The signaling connection between SICOFI2/4-TE and a SLIC is performed by master  
device the SICOFI2/4-TE signaling input and output pins and Configuration Register  
XR0... XR4. Data received from the upstream master device are transferred to signaling  
output pins (SO, SB). Data at the signaling input pins are transferred to the upstream  
controller.  
In Connection with XOP-Read Commands  
Bit 7  
0
0
0
0
0
SI2_1  
SI2_1  
SI2_0  
SI2_0  
SI1_1  
SI1_1  
SI1_0  
SI1_0  
SI4_1  
SI4_0  
SI3_1  
SI3_0  
PSB 2134 only  
SI4_1  
Status of pin SI4_1 is transferred to the upstream master device  
Status of pin SI4_0 is transferred to the upstream master device  
Status of pin SI3_1 is transferred to the upstream master device  
Status of pin SI3_0 is transferred to the upstream master device  
SI4_0  
SI3_1  
SI3_0  
Common  
SI2_1  
Status of pin SI2_1 is transferred to the upstream master device  
Status of pin SI2_0 is transferred to the upstream master device  
Status of pin SI1_1 is transferred to the upstream master device  
Status of pin SI1_0 is transferred to the upstream master device  
SI2_0  
SI1_1  
SI1_0  
In Connection with XOP-Write Commands  
Bit 7  
0
0
0
0
0
SO2_1 SO2_0 SO1_1 SO1_0  
SO4_1 SO4_0 SO3_1 SO3_0 SO2_1 SO2_0 SO1_1 SO1_0  
PSB 2134 only  
SO4_1  
SO4_0  
SO3_1  
SO3_0  
Pin SO4_1 is set to the assigned value  
Pin SO4_0 is set to the assigned value  
Pin SO3_1 is set to the assigned value  
Pin SO3_0 is set to the assigned value  
Semiconductor Group  
42  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Common  
SO2_1  
SO2_0  
SO1_1  
SO1_0  
Pin SO2_1 is set to the assigned value  
Pin SO2_0 is set to the assigned value  
Pin SO1_1 is set to the assigned value  
Pin SO1_0 is set to the assigned value  
Semiconductor Group  
43  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.5.2  
XR1 Extended Register 1  
This register transfers information to or from the programmable signaling pins.  
Bit 7  
0
0
0
0
0
SB2_1 SB2_0 SB1_1 SB1_0  
SB4_1 SB4_0 SB3_1 SB3_0 SB2_1 SB2_0 SB1_1 SB1_0  
In Connection with a XOP-Read Command  
PSB 2134 only  
SB4_1  
SB4_0  
SB3_1  
SB3_0  
Common  
SB2_1  
SB2_0  
SB1_1  
SB1_0  
If input: status of pin SB4_1 is transferred upstream  
If input: status of pin SB4_0 is transferred upstream  
If input: status of pin SB3_1 is transferred upstream  
If input: status of pin SB3_0 is transferred upstream  
If input: status of pin SB2_1 is transferred upstream  
If input: status of pin SB2_0 is transferred upstream  
If input: status of pin SB1_1 is transferred upstream  
If input: status of pin SB1_0 is transferred upstream  
In Connection with a XOP-Write Command  
PSB 2134 only  
SB4_1  
SB4_0  
SB3_1  
SB3_0  
Common  
SB2_1  
SB2_0  
SB1_1  
SB1_0  
If output: pin SB4_1 is set to the assigned value  
If output: pin SB4_0 is set to the assigned value  
If output: pin SB3_1 is set to the assigned value  
If output: pin SB3_0 is set to the assigned value  
If output: pin SB2_1 is set to the assigned value  
If output: pin SB2_0 is set to the assigned value  
If output: pin SB1_1 is set to the assigned value  
If output: pin SB1_0 is set to the assigned value  
Note: After a ‘Reset’ of the device, all programmable pins are input pins!  
Semiconductor Group  
44  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.5.3  
XR2 Extended Register 2  
This register controls the direction of the programmable signaling pins.  
Bit 7  
0
0
0
0
0
PSB2_1 PSB2_0 PSB1_1 PSB1_0  
PSB4_1 PSB4_0 PSB3_1 PSB3_0 PSB2_1 PSB2_0 PSB1_1 PSB1_0  
PSB 2134 only  
PSB4_1  
Programmable bi-directional signaling pin SB4_1 is programmed  
Pin SB4_1 is indication input  
PSB4_1 = 0:  
PSB4_1 = 1:  
Pin SB4_1 is command output  
PSB4_0  
Programmable bi-directional signaling pin SB4_0 is programmed  
pin SB4_0 is indication input  
PSB4_0 = 0:  
PSB4_0 = 1:  
Pin SB4_0 is command output  
PSB3_1  
Programmable bi-directional signaling pin SB3_1 is programmed  
Pin SB3_1 is indication input  
PSB3_1 = 0:  
PSB3_1 = 1:  
Pin SB3_1 is command output  
PSB3_0  
Programmable bi-directional signaling pin SB3_0 is programmed  
Pin SB3_0 is indication input  
PSB3_0 = 0:  
PSB3_0 = 1:  
Pin SB3_0 is command output  
Common  
PSB2_1  
Programmable bi-directional signaling pin SB2_1 is programmed  
Pin SB2_1 is indication input  
PSB2_1 = 0:  
PSB2_1 = 1:  
Pin SB2_1 is command output  
PSB2_0  
Programmable bi-directional signaling pin SB2_0 is programmed  
Pin SB2_0 is indication input  
PSB2_0 = 0:  
PSB2_0 = 1:  
Pin SB2_0 is command output  
PSB1_1  
Programmable bi-directional signaling pin SB1_1 is programmed  
Pin SB1_1 is indication input  
PSB1_1 = 0:  
PSB1_1 = 1:  
Pin SB1_1 is command output  
PSB1_0  
Programmable bi-directional signaling pin SB1_0 is programmed  
Semiconductor Group  
45  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
PSB1_0 = 0:  
PSB1_0 = 1:  
Pin SB1_0 is indication input  
Pin SB1_0 is command output  
Note: After a ‘Reset’ of the device, all programmable pins are input pins!  
3.5.4 XR3 Extended Register 3  
This register transfers information to or from the programmable signaling pins and  
configures these pins.  
Bit 7  
0
0
0
SB2_2 SB1_2  
0
0
PSB2_2 PSB1_2  
SB4_2 SB3_2 SB2_2 SB1_2 PSB4_2 PSB3_2 PSB2_2 PSB1_2  
In Connection with a XOP-Read Command  
PSB 2134 only  
SB4_2  
SB3_2  
Common  
SB2_2  
SB1_2  
If input: status of pin SB4_2 is transferred upstream  
If input: status of pin SB3_2 is transferred upstream  
If input: status of pin SB2_2 is transferred upstream  
If input: status of pin SB1_2 is transferred upstream  
In Connection with a XOP-Write Command  
PSB 2134 only  
SB4_2  
SB3_2  
Common  
SB2_2  
SB1_2  
If output: pin SB4_2 is set to the assigned value  
If output: pin SB3_2 is set to the assigned value  
If output: pin SB2_2 is set to the assigned value  
If output: pin SB1_2 is set to the assigned value  
PSB 2134 only  
PSB4_2  
Programmable bi-directional signaling pin SB4_2 is programmed  
Pin SB4_2 is indication input  
PSB4_2 = 0:  
PSB4_2 = 1:  
Pin SB4_2 is command output  
PSB3_2  
Programmable bi-directional signaling pin SB3_2 is programmed  
Semiconductor Group  
46  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
PSB3_2 = 0:  
PSB3_2 = 1:  
Common  
Pin SB3_2 is indication input  
Pin SB3_2 is command output  
PSB2_2  
Programmable bi-directional signaling pin SB2_2 is programmed  
Pin SB2_2 is indication input  
PSB2_2 = 0:  
PSB2_2 = 1:  
Pin SB2_2 is command output  
PSB1_2  
Programmable bi-directional signaling pin SB1_2 is programmed  
Pin SB1_2 is indication input  
PSB1_2 = 0:  
PSB1_2 = 1:  
Pin SB1_2 is command output  
Note: After a ‘Reset’ of the device, all programmable pins are input pins!  
3.5.5 XR4 Extended Register 4  
Register XR4 provides two optional functions: debouncing of signaling input changes,  
and the configuration of the programmable ring generator output pin RGEN.  
Bit 7  
0
N
T
Signaling Debounce Interval N  
To restrict the rate of changes on signaling input pins transferred, deglitching of the  
status information from the SLIC may be applied. New status information will be read into  
registers XR0, XR1, XR2 and XR3, and an interrupt on pin INT12 (INT34) will be  
generated, after it has been stable for N milliseconds. N is programmable in the range of  
2 to 26ms in steps of 2 ms, with N = 0 the debouncing is disabled. The last two bit  
combinations are reserved for future use.  
Field N  
Debounce Interval Time  
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
Debounce and interrupt generation is disabled  
Debounce period 2 ms  
Debounce period 4 ms  
.
1
1
1
1
1
1
0
1
1
1
0
1
Debounce period 26 ms  
reserved  
reserved  
Semiconductor Group  
47  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Configuration of RGEN  
Field T Frequency applied to Pin RGEN  
0
0
0
.
0
0
0
1
.
0
1
0
.
RGEN is set to 1 permanently  
0
0
.
T is 2ms  
T is 4ms  
.
.
.
.
.
.
1
1
1
1
1
1
0
1
T is 28 ms  
RGEN is set to 0 permanently  
Semiconductor Group  
48  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.5.6  
XR5 Extended Register 5  
This register contains additional configuration items valid for all 2/4 channels  
Bit 7  
0
0
0
CR_DU CR_DD  
CHCLK  
Version  
CR_DU  
CR_DD  
Crash1) on DU (read only)  
0:  
1:  
No crash detected  
Crash detected (bad programming in CR5-registers)  
Crash on DD (read only)  
0:  
1:  
No crash detected  
Crash detected (bad programming in CR5-registers)  
CHCLK  
Enables Chopper Clock Output to pin CHCLK  
0 0:  
0 1:  
1 0:  
1 1:  
pin CHCLK is set to 1  
A 512 kHz signal is fed to pin CHCLK  
A 256 kHz signal is fed to pin CHCLK  
A 16384 kHz signal (internal masterclock) is fed to pin  
CHCLK  
(at least one of the two / four channels has to be set to  
‘POWER UP’ and DCL must be provided)  
VERSION  
This two bit field identifies the actual chip version,  
is ‘01’ for Version 1.2  
1)  
A crash occurs, if 2 or more channels are programed to transmit (talk) in the same time slot on the same line.  
In this case the crash-bit will be set, and transmission will be disabled for all affected channels.  
3.5.7  
XR6 Extended Register 6  
This register configures the operation of the PCM-interface  
Bit 7  
0
0
X-S  
R-S  
DRV_0  
0
PCM-OFFSET  
X-S  
Transmit Slope  
Semiconductor Group  
49  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
X-S = 0:  
X-S = 1:  
Transmission starts with rising edge of BCL  
Transmission starts with falling edge of BCL  
R-S  
Receive Slope  
R-S= 0:  
Data is sampled with falling edge of BCL  
Data is sampled with rising edge of BCL  
R-S= 1:  
DRV_0  
Driving Mode for Bit 0  
DRV_0 = 0:  
DRV_0 = 1:  
Bit 0 is driven the whole BCL-period  
Bit 0 is driven during the first half of the BCL-period  
only  
PCM-OFFSET  
Offset in number of data-clock periods added to Time slot  
0 0 0:  
0 0 1:  
...  
No offset is added  
One data clock period is added  
1 1 1  
Seven data clock periods are added  
3.5.8  
XR7 Extended Register 7  
This register contains the 8-bit offset value for the level metering function  
Bit 7  
0
OF7  
OF6  
OF5  
OF4  
OF3  
OF2  
OF1  
OF0  
Semiconductor Group  
50  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.5.9  
Setting of Slopes in Register XR6  
Transmit Slope  
Receive Slope  
FSC  
BCL  
Single Clock Mode  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
XR6:  
7
0
6
0
5
1
4
0
3
0
2
0
1
0
0
0
7
0
6
1
5
0
4
0
3
0
2
0
1
0
0
0
7
0
6
1
5
1
4
0
3
0
2
0
1
0
0
0
Bit 7  
Time-Slot  
0
ITD09774  
Figure 15  
Semiconductor Group  
51  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
3.6  
Operating Modes  
Power-ON, HW-Reset  
Reset  
(for all channels)  
*)  
*)  
Standby  
Ch. 1  
Standby  
Ch. 2  
Standby  
Ch. 3  
Standby  
Ch. 4  
*)  
*)  
Operating  
Ch. 1  
Operating  
Ch. 2  
Operating  
Ch. 3  
Operating  
Ch. 4  
ITD09775  
*)  
PSB 2134 only  
Figure 16  
3.6.1  
RESET (Basic Setting Mode)  
Upon initial application of VDD or resetting pin RESET to ‘0’ during operation, or by  
software-reset (see XOP command), the SICOFI2/4-TE enters a basic setting mode.  
Basic setting means, that the SICOFI2/4-TE configuration registers CR0... CR6 and  
XR0... XR7 are initialized to ‘0’ for all channels.  
All programmable filters are disabled, all programmable command/indication pins are  
inputs. The two tone generators as well as any testmodes are disabled. There is no  
persistence checking. Receive signaling registers are cleared. DOUT-pin is in high  
impedance state, the analog outputs and the signaling outputs are forced to ground.  
CR0.. CR6  
00H  
XR0.. XR7  
00H  
Coefficient-RAM  
Old value  
Semiconductor Group  
52  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Command Stack  
DIN-input  
Cleared  
Ignored  
DOUT-output  
VOUT1,2 or 1,2,3,4  
SBx_y  
High impedance  
GNDA1,2 or 1,2,3,4  
Input  
SOx_y  
GNDD  
If any voltage is applied to any input-pin before initial application of VDD, the SICOFI2/4-  
TE may not enter the basic setting mode. In this case it is necessary to reset the  
SICOFI2/4-TE or to initialize the SICOFI2/4-TE configuration registers to ‘0’.  
The SICOFI2/4-TE leaves this mode automatically after the RESET-pin is released.  
3.6.2  
Standby Mode  
After releasing the RESET-pin, (RESET-state), the SICOFI2/4-TE will enter the Standby  
mode. The SICOFI2/4-TE is forced to standby mode with the PU-bit set to ‘0’ in the  
CR1-register (POWERDOWN). All 2/4 channels must be programmed separately.  
During standby mode the serial SICOFI2/4-TE µ-Controller interface is ready to receive  
and transmit commands and data. Received voice data on DU, DD-pin will be ignored.  
SICOFI2/4-TE configuration registers and Coefficient-RAM can be loaded and read back  
in this mode. Data on signaling input pins can be read via the µ-Controller interface.  
DU, DD  
High ‘Z’  
VOUT1, 2, 3, 4  
GNDA1, 2, 3, 4  
3.6.3  
Active Mode (Power Up)  
The operating mode for any of the four channels is entered upon recognition of a PU-bit  
set to ‘1’ in a CR1-register for the specific channel.  
3.6.4  
Programmable Filters  
Based on an advanced digital filter concept, the SICOFI-2/4 TE provides excellent  
transmission performance and high flexibility. The new filter concept leads to a maximum  
independence between the different filter blocks.  
Semiconductor Group  
53  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Impedance Matching Filter  
• Realization by 3 different loops  
– 4 MHz:  
Multiplication by a constant  
(12 bit)  
(60 bit)  
– 128 kHz:  
Wave Digital Filter (IIR)  
Improves low frequency response  
FIR-Filter  
– 64 kHz:  
(48 bit)  
For fine-tuning  
• Improved stability behavior of feedback loops  
• Real part of termination impedance positive under all conditions  
• Improved overflow performance for transients  
• Return loss better 30 dB  
Transhybrid Balancing (TH) Filter  
• New concept: 2 loops at 16 kHz  
• Flexible realization allows optimization of wide impedance range  
• Consists of a fixed and a programmable part  
– 2nd order Wave Digital Filter (IIR)  
Improves low frequency response  
– 7-TAP FIR-Filter  
(106 bit)  
(84 bit)  
For fine-tuning  
• Trans-Hybrid-Loss better 30 dB (typically better 40 dB, device only)  
• Adaptation to different lines by:  
– Easy selection between four different downloaded coefficient sets  
Semiconductor Group  
54  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Filters for Frequency Response Correction  
• For line equalization and compensation of attenuation distortion  
• Improvement of Group-Delay-Distortion by using minimum phase filters  
(instead of linear phase filters)  
• FRR filter for correction of receive path distortion  
– 5 TAP programmable FIR filter operating at 8 kHz  
• FRX filter for correction of transmit path distortion  
– 5 TAP programmable FIR filter operating at 8 kHz  
• Frequency response better 0.1 dB  
(60 bit)  
(60 bit)  
Amplification/Attenuation -Filters AX1, AX2, AR1, AR2  
• Improved level adjustment for transmit and receive  
• Two separate filters at each direction for  
– Improved trans-hybrid balancing  
– Optimal adjustment of digital dynamic range  
– Gain adjustments independent of TH-filter  
Amplification/Attenuation Receive (AR1, AR2)-Filter  
Step size for AR-Filter  
range 3 .. – 14 dB:  
range – 14 .. – 24  
step size 0.02 .. 0.05 dB  
step size 0.5 dB  
Amplification/Attenuation Transmit (AX1, AX2)-Filter  
Step size for AX-Filter  
range – 3 .. 14 dB:  
range 14 .. 24 dB:  
step size 0.02 .. 0.05 dB  
step size 0.5 dB  
3.6.5  
QSICOS Software  
The QSICOS-software has been developed to help to obtain an optimized set of  
coefficients both quickly and easily. The QSICOS program runs on any PC with at least  
575 Kbytes of memory. This also requires MS-DOS Version 5.0 or higher, as well as  
extended memory.  
Semiconductor Group  
55  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
Calculation-Controlfile  
Country-Spec  
RD[dB]  
Simulation  
(PSPICE)  
f[Hz]  
Automatic K-Param Extraction  
Line  
Interface  
Line  
Interface  
SICOFIR  
Coefficients  
File  
QSICOS  
Software for  
Filter Coefficients-Optimization  
K-Parameter  
Interface  
File  
K11 = (ZIN-Zg) /(ZIN+Zg  
)
K12 = 2 V /V  
*
1
3
Line  
Interface  
Line  
Interface  
K21 =V2/Vg  
K22 =V2/V3  
ITD09611  
Figure 17  
QSICOS Supports:  
• Calculation of Coefficients for the SICOFI2/4-TE  
– Impedance Filter (IM) for return loss calculation (please note that the IM filter  
coefficients are different for the SICOFI2/4-TE and for the PEB 2465. QSICOS  
calculates the programming bytes for the SICOFI-4 IOM version PEB 2465. These  
bytes have to be converted with an additional tool to get the required SICOFI-2/4  
TE programming bytes. The conversion tool QSUCCONV.EXE is part of the  
QSICOS software package.)  
– FRR and FRX-filters for frequency response in receive and transmit path  
– AR1, AR2 and AX1, AX2-filter for level adjustment in receive and transmit path  
– Transhybrid Balancing Filter (TH) and  
– Two programmable tone generators (TG 1 and TG 2)  
Simulation of the SICOFI-2/4 TE and SLIC System with fixed filter coefficients  
allows simulations of tolerances which may be caused e.g. by discrete external  
components.  
Graphical Output of Transfer Functions to the Screen for  
– Return Loss  
– Frequency responses in receive and transmit path  
– Transhybrid Loss  
Calculation of the SICOFI-2/4 TE and SLIC system Stability. The IM-filter of the  
SICOFI-2/4 TE adjust the total system impedance by making a feedback loop.  
Because the line is also a part of the total system, a very robust method has to used  
to avoid oscillations and to ensure system stability. The input impedance of the  
Semiconductor Group  
56  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI®-2/4-TE  
SICOFI-2/4 TE and SLIC combination is calculated. If the real part of the system input  
impedance is positive, the total system stability can be guaranteed.  
In addition to the individual calculation of coefficient sets Siemens will provide ready to  
use coefficient sets for selected SLICs.  
Please contact your Siemens office for available information.  
Semiconductor Group  
57  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4
Transmission Characteristics  
The figures in this specification are based on the subscriber-line board requirements.  
The proper adjustment of the programmable filters (transhybrid balancing, impedance  
matching, frequency-response correction) requires a complete knowledge of the  
SICOFI-2/4 TE’s analog environment. Unless otherwise stated, the transmission  
characteristics are guaranteed within the test conditions.  
Test Conditions  
TA = 0 °C to 70 °C; VDD = 5 V ± 5%; GNDA1..4 = GNDD = 0 V  
RL1) > 300 ; CL < 50 pF; H(IM) = H(TH) = 0; H(R1) = H(FRX) = H(FRR) = 1;  
HPR and HPX enabled;  
AR2)= 0 to – 8 dB  
AX3)= 0 to 8 dB for A-Law, 0 to 6 dB for µ-Law  
f = 1014 Hz; 0 dBm0; A-Law or µ-Law;  
AGX = 0 dB, 6.02 dB, AGR = 0 dB, – 6.02dB;  
A-Law  
A 0 dBm0 signal is equivalent to 1.095 Vrms. A + 3.14 dBm0 signal is equivalent to  
1.57 Vrms which corresponds to the overload point of 2.223 V.  
When the gain in the receive path is set at 0 dB, an 1014 Hz PCM sinewave input with  
a level 0 dBm0 will correspond to a voltage of 1.095 Vrms at the analog output.  
When the gain in the transmit path is set at 0 dB, an 1014 Hz sine wave signal with a  
voltage of 1.095Vrms A-Law will correspond to a level of 0 dBm0 at the PCM output.  
µ-Law  
In transmit direction for µ-law an additional gain of 1.94 dB is implemented automatically,  
in the companding block (CMP). This additional gain has to be considered at all gain  
calculations, and reduces possible AX-gain from 8 dB (with A-Law) to 6 dB (with µ-Law)  
A 0 dBm04) signal is equivalent to 1.0906 Vrms. A + 3.17 dBm0 signal is equivalent to  
1.57 Vrms which corresponds to the overload point of 2.223 V.  
When the gain in the receive path is set at 0 dB, an 1014 Hz PCM sinewave input with  
a level 0 dBm0 will correspond to a voltage of 1.0906 Vrms at the analog output.  
When the gain in the transmit path is set at 0 dB, an 1014 Hz sine wave signal with a  
voltage of 1.0906 Vrms will correspond to a level of 1.94 dBm0 at the PCM output.  
1)  
RL, CL forms the load on VOUT  
Consider, in a complete system, AR = AR1 + AR2 + FRR + R1  
Consider, in a complete system, AX = AX1 + AX2 + FRX  
The absolute power level in decibels referred to (a point of zero relative level) the PCM interface levels.  
2)  
3)  
4)  
Semiconductor Group  
58  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
Transmission Characteristics  
Parameter  
Symbol  
Limit Values  
typ. max.  
Unit  
min.  
Gain absolute (AGX = AGR = 0)  
TA= 25 °C; VDD = 5 V  
TA = 0 – 70 °C; VDD = 5 V ± 5%  
G
– 0.80 ± 0.10 + 0.80 dB  
– 0.90 + 0.90 dB  
Gain absolute (AGX = 6.02 dB,  
AGR = – 6.02 dB)  
G
TA = 25°C; VDD = 5 V  
– 0.85 ± 0.10 + 0.85 dB  
TA = 0-70°C; VDD = 5 V ± 5%  
– 0.95  
+ 0.95 dB  
Harmonic distortion, 0 dBm0;  
– 44  
dB  
HD  
f = 1000 Hz; 2nd, 3rd order  
Intermodulation1) R2  
– 46  
– 56  
dB  
dB  
IMD  
IMD  
R3  
Crosstalk 0 dBm0; f = 200 Hz to 3400 Hz any  
combination of direction and channel  
– 80  
– 75  
dB  
CT  
Idle channel noise,  
Transmit, A-law, psophometric (VIN = 0 V) NTP  
Transmit, µ-law, C-message (VIN = 0V)  
Receive, A-law, psophometric (idle code + 0) NRP  
– 66.0 dBm0p  
19.0 dBrnc0  
– 77.0 dBm0p  
13.0 dBrnc0  
NTC  
– 85  
5
Receive, µ-law, C-message (idle code + 0) NRC  
1)  
Using equal-level, 4-tone method (EIA) at a composite level of – 13 dBm0 with frequencies in the range  
between 300 Hz and 3400 Hz.  
Semiconductor Group  
59  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.1  
Frequency Response  
Figure 18  
Receive: Reference Frequency 1014 Hz, Input Signal Level 0 dBm0  
Figure 19  
Transmit: Reference Frequency 1014 Hz, Input Signal Level 0 dBm0  
Semiconductor Group  
60  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.2  
Group Delay  
Maximum delays when the SICOFI2/4-TE is operating with H(TH) = H(IM) = 0 and  
H(FRR) = H(FRX) = 1 including delay through A/D- and D/A converters. Specific filter  
programming may cause additional group delays.  
Group delay deviations stay within the limits in the figures below.  
Group Delay Absolute Values: Input signal level 0 dBm0  
Parameter  
Symbol  
Limit Values  
typ. max.  
Unit  
Reference  
min.  
Transmit delay  
Receive delay  
DXA  
DRA  
300.  
250  
µs  
µs  
Figure 20  
Group Delay Distortion Transmit: Input Signal Level 0 dBm0  
Semiconductor Group  
61  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
Figure 21  
Group Delay Distortion Receive: Input Signal Level 0 dBm0 1)  
1)  
HPR is switched on: reference point is at tGmin  
HPR is switched off: reference is at 1.5 kHz  
Semiconductor Group  
62  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.3  
Out-of-Band Signals at Analog Input  
With an 0 dBm0 out-of-band sine wave signal with frequency f (<<100 Hz or 3.4 kHz to  
100 kHz) applied to the analog input, the level of any resulting frequency component at  
the digital output will stay at least X dB below a 0 dBm0, 1 kHz sine wave reference  
signal at the analog input.1)  
4000 f  
3.4 … 4.0 kHz: X = 14 sin π -------------------- 1  
1200  
4000 f  
4,0 … 4.6 kHz: X = 18 sin π --------------------  
1200  
7
--  
9
·
Figure 22  
1)  
Poles at 12 kHz ± 150 Hz and 16 kHz ± 150 Hz are provided  
Semiconductor Group  
63  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.4  
Out-of-Band Signals at Analog Output  
With a 0 dBm0 sine wave with frequency f (300 Hz to 3.99 kHz) applied to the digital  
input, the level of any resulting out-of-band signal at the analog output will stay at least  
X dB below a 0 dBm0, 1 kHz sine wave reference signal at the analog output.  
4000 f  
3.4 … 4.6 kHz: X = 14 sin π -------------------- 1  
1200  
Figure 23  
Semiconductor Group  
64  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.5  
Out of Band Idle Channel Noise at Analog Output  
With an idle code applied to the digital input, the level of any resulting out-of-band power  
spectral density (measured with 3 kHz bandwidth) at the analog output, will be not  
greater than the limit curve shown in the figure below.  
Figure 24  
Semiconductor Group  
65  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.6  
Overload Compression  
Figure 25  
µ-Law, Transmit: measured with sine wave f = 1014 Hz.  
Semiconductor Group  
66  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.7  
Gain Tracking (receive or transmit)  
The gain deviations stay within the limits in the figures below.  
Figure 26  
Gain Tracking: (measured with sine wave f = 1014 Hz, reference level is 0 dBm0)  
Semiconductor Group  
67  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
4.8  
Total Distortion  
The signal to distortion ratio exceeds the limits in the following figure (measured with sine  
wave).  
ITD09776  
40  
35.4  
dB  
34.5  
28.5  
S / D  
µ
-LAW  
30  
26  
23.5  
20  
A-LAW  
10  
0
-60  
-50  
-45  
-40  
-30  
-28  
-20  
-10 dBm0  
0
Input Level  
Figure 27  
Receive or Transmit: measured with sine wave f = 1014 Hz. (C-message weighted for  
µ-law, psophometricaly weighted for A-law)  
4.9  
Single Frequency Distortion  
An input signal with its frequency swept between 0.3 to 3 kHz for the receive path, or 0  
to 12 kHz for the transmit path, any generated output signal with other frequency than  
the input frequency will stay 28 dB below the maximum input level of 0 dBM0.  
Receive  
Transmit  
Max. Input Level  
0 dBm0  
Frequency  
300 Hz to 3.4 kHz  
Max Input Level  
Frequency  
0 dBm0  
0 to 12 kHz  
4.10  
Transhybrid Loss  
The quality of Transhybrid-Balancing is very sensitive to deviations in gain and group  
delay - deviations inherent to the SICOFI-2/4 TE A/D- and D/A-converters as well as to  
all external components used on a line card (SLIC, OP’s etc.)  
Measurement of SICOFI-2/4 TE Transhybrid-Loss: A 0 dBm0 sine wave signal and a  
frequency in the range between 300-3400 Hz is applied to the digital input. The resulting  
analog output signal at pin VOUT is directly connected to VIN, e.g. with the SICOFI-2/4 TE  
Semiconductor Group  
68  
09.97  
PSB 2132  
PSB 2134  
Transmission Characteristics  
testmode “Digital Loop Back via Analog Port”. The programmable filters FRR, AR, FRX,  
AX and IM are disabled, the balancing filter TH is enabled with coefficients optimized for  
this configuration (VOUT = VIN).  
The resulting echo measured at the digital output is at least X dB below the level of the  
digital input signal as shown in the table below. (Filter coefficients will be provided)  
Parameter  
Symbol Limit Values Unit Test Condition  
min. typ.  
Transhybrid Loss at 300 Hz THL300 19  
Transhybrid Loss at 500 Hz THL500 25  
Transhybrid Loss at 2500 Hz THL2500 21  
Transhybrid Loss at 3000 Hz THL3000 19  
Transhybrid Loss at 3400 Hz THL3400 19  
40  
45  
40  
35  
35  
dB  
dB  
dB  
dB  
dB  
TA = 25 °C; VDD = 5 V;  
TA = 25 °C; VDD = 5 V;  
TA = 25 °C; VDD = 5V;  
TA = 25 °C; VDD = 5V;  
TA = 25 °C; VDD = 5 V  
The listed values for THL correspond to a typical variation of the signal amplitude and  
delay in the analog blocks.  
amplitude = typ. ± 0.15 dB  
delay  
= typ ± 0.5 µs  
Semiconductor Group  
69  
09.97  
PSB 2132  
PSB 2134  
Proposed Test Circuit  
5
Proposed Test Circuit  
PC  
Printer-Port  
(25 pin SUB-D plug)  
(9-pol. SUB-D plug)  
GNDA4  
GNDA4  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CS  
1µF  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
17  
18  
19  
20  
21  
22  
23  
24  
VIN4  
VOUT4  
GNDA3  
VDDA34  
GNDA3  
VDDA34  
GNDA4  
VOUT4  
DCLK  
*
*
1 = SI3_1  
2 = SI3_0  
16 = CHCLK  
10  
µ
F
F
VIN4  
DIN  
DOUT  
GNDD  
DCL  
VDDA34  
10  
VDDA34  
µ
VOUT3  
VOUT3  
GNDA3  
VIN3  
DCL  
VDDD  
1
µF  
VIN3  
RESET  
VDDD  
VDDREF  
SICOFI R 2/4-TE  
PSB 2132/4  
+
*
*
220 nF  
1-10 µF  
25  
26  
27  
28  
29  
30  
31  
32  
VREF  
1
µF  
VIN2  
VIN2  
DU  
DD  
GNDD  
GNDA2  
VOUT2  
*
10  
µ
F
F
VOUT2  
VDDA12  
10  
VDDA12  
DD  
DU  
GNDA2  
GNDA2  
GNDA1  
VDDA12  
µ
VOUT1  
VOUT1  
GNDA1  
VDDA12  
48 = SI2_1  
47 = SI2_0  
*
33 = RGEN  
GNDA1  
VIN1  
FSC  
Ba  
1
µF  
VIN1  
VDDREF  
VDDREF  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
V
220 nF an VREF  
as near as possible  
to the pin  
Filter-Cs:  
100 nF SMD  
as near as possible  
to the pin  
+ 2.2 µF Ta-Cap.  
All resistors:  
app. 680 k Ω  
= Test-Point  
*
22  
61  
21  
20  
= Banana-Bush  
= BNC-Bush  
PCM4  
ITS09779  
Figure 28  
Semiconductor Group  
70  
09.97  
PSB 2132  
PSB 2134  
Guidelines for Board-Design  
6
Guidelines for Board-Design  
6.1  
Board Layout Recommendation  
Keep in mind that inside the SICOFI-2/4 TE all the different VDD-supplies are connected  
via the substrate of the chip, and the areas connected to different grounds are separated  
on chip.  
a) Separate all digital supply lines from analog supply lines as much as possible.  
b) Use a separate GND-connection for the capacitor which is filtering the reference  
voltage (220 nF ceramic-capacitor at VREF).  
c) Don’t use a common ground-plane under the SICOFI-2/4-TE.  
d) Use a large ground-plane (distant from the SICOFI-2/4-TE) and use three single  
ground lines for connecting the SICOFI-2/4-TE: one common analog ground, one  
digital ground, and a third for the 220 nF capacitor connected to VREF  
.
6.2  
Filter Capacitors  
a) To achieve a good filtering for the high frequency band, place SMD  
ceramic-capacitors with 100 nF from VDDA12, VDDA32 and VDDREF to GNDA.  
b) One 100 nF SMD ceramic-capacitor is needed to filter the digital supply  
(VDDD to GNDD).  
c) Place all filter capacitors as close as possible to the SICOFI-2/4-TE  
(most important!!!).  
d) Use one central Tantalum-capacitor with about 1 µF to 10 µF to block VDD to GND.  
Semiconductor Group  
71  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI2/4-TE Tone Generators  
6.3  
Example of a SICOFI-2/4-TE-board  
VDD  
VDDD  
Ceramic  
100 nF  
1-10  
µF Tantal  
GNDD  
32 31 30 29 28 27 26 25  
23 22 21 20 19 18 17  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
16  
15  
14  
13  
12  
11  
10  
9
VDD  
VDD  
R
SICOFI 2/4-TE  
PSB 2132/4  
8
7
6
5
4
VDD  
VDD  
3
2
1
V
V
V
V
49 50 51  
53 54 55 56  
58 59 60  
62 63 64  
GND  
100 nF  
Ceramic  
100 nF  
Ceramic  
100 nF  
Ceramic  
ITS09780  
Figure 29  
Programming the SICOFI2/4-TE Tone Generators  
7
Two independent tone generators are available per channel. Switching on/off the tone  
generators is done by a SOP-Command for CR1-register. The frequencies are  
programmed via a COP-Command, followed by the appropriate byte-sequence.  
When one or both tone generators are switched on, the voice signal is switched off, if  
V+T=0 (CR2) for the selected voice channel. To make the generated signal sufficient for  
DTMF, a programmable bandpass-filter is included. The default frequency for both tone  
Semiconductor Group  
72  
09.97  
PSB 2132  
PSB 2134  
Programming the SICOFI2/4-TE Tone Generators  
generators is 1000 Hz. The QSICOS-program contains a program for generating  
coefficients for variable frequencies.  
The following table shows sequences for programming both the tone generators and the  
bandpass-filters to select common used frequencies:  
Table 1  
Frequency  
350 Hz  
400 Hz  
425 Hz  
440 Hz  
445 Hz  
880 Hz  
950 Hz  
1000 Hz  
1400 Hz  
Tone Freq. Command  
Byte 1  
0C  
0B  
Byte 2  
33  
Byte 3  
59  
Byte 4  
23  
343,8 Hz  
406,3 Hz  
421,9 Hz  
439,5 Hz  
445,3 Hz  
879,9 Hz  
949,2  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
0C/0D 1)  
AB  
B6  
59  
2B  
0B  
59  
33  
0B  
CC  
D7  
23  
59  
3C  
3C  
D3  
C0  
87  
0B  
59  
14  
5B  
5C  
50  
1C  
1B  
F0  
984,4 Hz  
1406,3 Hz  
1812,5 Hz  
3B  
BA  
91  
AC  
B2  
51  
AB  
AB  
1800 Hz  
50  
1)  
0C is used for programming Tone Generator 1, in channel 1  
0D is used for programming Tone Generator 2, in channel 1  
The resulting signal amplitude can be set by transmitting the AR1 and AR2 filters. By  
switching a ‘digital loop’ the generated sine-wave signal can be fed to the transmit path.  
Semiconductor Group  
73  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
8
Application Note: Level Metering  
Introduction  
8.1  
The purpose of this application note is to describe the handling of the Level Metering  
Function and the facts that should be taken into account when using it.  
The Level Metering Function is a feature which allows a self test of the chip and also a  
test of the connected circuitry i.e. SLIC, subscriber line and analog telephone. No  
external components are needed for this function.  
8.2  
Level Metering Block  
Figure 33 shows the location of the Level Metering Function in the signal flow graph of  
one channel.  
Extended Register 7  
Transmit Path  
Receiv
e
P
a
t
h  
Figure 30  
Block diagram of one SICOFI2/4-TE channel  
The level metering function is always used together with a bandpass filter. The  
programming of this bandpass filter has to be done by programming the tone generator  
coefficients of the tone generator TG2. Due to of the bandpass filter only the power of a  
certain test signal is measured and disturbences originated from other signals are  
avoided.  
After passing the bandpass filter of the Level Metering Function the test signal in the  
transmit path is rectified and the power of this signal is compared to the programmable  
offset value of the Level Metering Function. The reading of the CR2-bit LMR shows if the  
measured level of the test signal was higher or lower than the programmed offset value.  
Semiconductor Group  
74  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
There is a single 8-bit offset register available for all 4 channels. This offset register can  
be accessed as XR7 with a XOP command. With the QSICOS utility program ’Calculate  
Level Metering Function’ the programming byte for the register XR7 can be calculated.  
Another way is to use the table of appendix A.  
By using the Level Metering Function in channel 2 (or 4) the channel 1 (or 3) has to be  
in operating mode.  
8.3  
Measuring a Level via the Level Metering Function  
To find the value of an unknown level as fast as possible, the offset register should be  
programmed with the byte in the middle of the measuring range. The reading of the  
configuration register 2 bit LMR shows if the measured level is higher or lower than the  
programmed level.  
If the measured level is higher than the reference, the offset register should be  
programmed with the byte in the middle between the highest valid byte and the previous  
used byte. Otherwise the byte in the middle between the lowest valid byte and the  
previous used byte should be programmed in the offset register.  
Figure 2 shows the last three steps of such a procedure.  
Level Metering Result  
Bit LMR (Meaning)  
Byte Range to Check  
Programmed  
Offset Byte  
Step n:  
13  
12  
11  
10  
0F  
0E  
0D  
0C  
0B  
0F  
1
higher  
Step n+1:  
Step n+2:  
13  
12  
11  
10  
12  
11  
0
1
lower  
11  
10  
higher  
The measured Level is between -9.95 dBm0 (byte 12) and -10.45 dBm0 (byte 11).  
Figure 31  
Procedure to find an unknown level with the Level Metering Function  
By repeating the interpolation again and again two consecutive bytes will be found where  
bit LMR is high for the lower and low for the higher byte. The value of the unknown level  
is between the levels assigned to these two consecutive bytes.  
Appendix B shows the programming file LMch1a.SUC with this procedure.  
Semiconductor Group  
75  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
The procedure to find an unknown level is predesigned to be carried out by software.  
The first valid LMR-bit is available 4 ms after enabling the level metering via setting bit  
LM. Then the LMR-bit is updated every 4 ms corresponding to the topical test signal and  
the stored offset byte. During the measurement time of 4ms the test signal has to be  
stable. That means for the above mentioned procedure to find an unknown level:  
1. After programming the offset register and enabling the Level Metering Function, the  
software has to wait for at least 4 ms before accessing the first valid LMR-bit.  
2. After programming the offset register again the software has to wait for at least 4 ms  
before accessing bit LMR.  
3 After a change of the test level the software has to wait for at least 8 ms before  
accessing bit LMR.  
8.4  
Relative Measuring Precision  
The bytes for the offset register are assigned to voltage values with a distance of about  
0,02 Vrms. Since a level is measured by determining the bytes below and above, the  
distance between two consecutive bytes defines the relative measuring precision.  
The maximum relative measuring error is about 0.02 Vrms.  
The absolute measuring precision is depending on the gain tracking and described in the  
SICOFI2/4-TE data sheet.  
8.5  
Generating Tests Signals  
In order to perform a measurement, an appropriate test signal is necessary.  
There are 3 different ways to create a test signal: built-in tone generators, test equipment  
PCM4 by Wandel and Goltermann or an external analog test source.  
8.6  
Tone Generators  
Only tone generator 1 is available for level metering. By setting the LM bit in CR2 tone  
generator 2 is automatically switched off. But it is necessary to program both bandpass  
filters with the same coefficients because the coefficients of tone generator 2 determine  
also the bandpass filter for the Level Metering Function. Only with identically adjusted  
bandpass filters a precise level metering is possible.  
A very simplified block diagram is shown in figure 35.  
C
Level Metering  
Function  
ZSLIC  
ZL  
C
Test Signal  
Tone Generator 1  
.
Analog  
Telephone  
Set  
Subscriber  
Line  
ZT  
SLIC  
SICOFI2/4-TE  
Figure 32  
Test signal generated by tone generator 1  
Semiconductor Group  
76  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
The attenuation and amplification filters of the SICOFI2/4-TE can be used to amplify or  
attenuate the level of the tone generator 1. With disabled filters the tone generator 1  
sends a level of -4.5 dBm0.  
In order to avoid test signal attenuation by the balancing filter TH, it has to be disabled.  
It is necesarry to switch off the voice in the respective channel during level metering with  
V+T bit of CR2.  
No external components are required to use the Level Metering Function with the built-in  
tone generators. This can be very helpful in digital exchange systems. It is a task of the  
exchange software to switch from time to time the tone generators on and to measure  
the level via the Level Metering Function. So the actual state of all SICOFI2/4-TE  
channels and connected circuitry can be supervised very comfortably.  
8.7  
PCM4  
For development of a new application the PCM4 by Wandel and Goltermann can also  
be very helpful to send and receive test signals. Please make sure that the configuration  
of the PCM4 corresponds to the SICOFI2/4-TE configuration, for instance that the same  
companding law is used.  
Figure 36 shows a test configuration with a PCM4 device.  
C
Level Metering  
Function  
ZSLIC  
ZL  
C
.
Analog  
Telephone  
Set  
Subscriber  
Line  
ZT  
SLIC  
SICOFI2/4-TE  
Test Signal  
PCM4  
Figure 33  
Test signal for level metering provided by PCM4  
For a digital exchange system it is possible to use a PCM4 as a test signal generator as  
well as a test signal receiver. To do this, the PCM4 has to be connected to a PCM  
highway and the exchange has to switch the test information from the PCM4 to the  
respective SICOFI2/4-TE and back.  
By using a PCM4 the expenditure for level metering measurement, level evaluating and  
preparation for software processing is higher and already done in the level metering  
block of the SICOFI2/4-TE. That is why the Level Metering Function is more helpful in  
digital exchange systems than a PCM4.  
8.8  
Analog Test Source  
For test purposes an analog test signal can be applied to the SICOFI2/4-TE analog input.  
Figure 37 shows such a configuration.  
Semiconductor Group  
77  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
To calculate the applied analog level, the gain settings of the SICOFI2/4-TE filters  
together with the 0 dBm0 reference voltage have to be taken into consideration.  
C
VIN  
Level Metering  
Function  
Analog  
Test Signal  
~
GNDA  
SICOFI2/4-TE  
Figure 34  
Measurement of an unknown level  
8.9  
Loops  
If the test signal is fed via tone generator 1 or via PCM4 in the receive path of the  
SICOFI2/4-TE a loop is necessary to feed the test signal back to the transmit path.  
Digital loops are implemented in the SICOFI2/4-TE and can be activated by writing  
register CR4. After switching an internal loop the measured level is a representation of  
the internal attenuation and amplification via the filter blocks. Such self tests show  
whether the SICOFI2/4-TE is working or not and how it is adjusted.  
In a line card application a SLIC is connected to each channel of the SICOFI2/4-TE. The  
SLIC together with a connected analog telephone creates a loop from the receive-path  
to the transmit path. SLIC, subscriber line and telephone have a special impedance  
according to their specification. If only one of them changes the value, the returned test  
signal will be changed und will indicate a change in the corresponding system condition.  
Therefore, changes of the telephone state, the subscriber line length or the SLIC can be  
supervised.  
8.10  
Application Examples  
8.10.1 Supervision the State of a Subscriber Line  
The configuration of an application example is shown in figure 38.  
VIN  
Level Metering  
Function  
tip  
ring  
tip  
Harris-SLIC  
HC3-5502B  
TAS 2100  
Loop Emulator  
ring  
Test Signal  
Tone Generator 1  
VOUT  
Analog  
Telephone  
Set  
Subscriber Line  
SLIC  
SICOFI2/4-TE  
Figure 35  
Test configuration  
Semiconductor Group  
78  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
The TAS 2100 emulates subscriber line lengths from 0 to 6 kft in 1 kft increments. 1 kft  
is equivalent to 0.3 km.  
The SICOFI2/4-TE is programmed with the file TEST.SUC for operation with the  
Harris-SLIC HC 5502 and the specification for Germany. The file TEST.SUC is a  
component part of the QSICOS software.  
After that the SICOFI2/4-TE is programmed with the file LMch1b.SUC of appendix C.  
The task of this file is to program the bandpass filters at 1516 Hz and to increase the  
amplification by programming the AR and AX filters. With the second part of the file  
LMch1b.SUC the Level Metering Function is activated and the offset register is loaded.  
The read command reads out CR2 with bit LMR. Bit LMR shows if the level detected is  
higher or lower than the reference stored in the offset register.  
By changing the line length with the Loop Emulator the levels of appendix D are  
measured by using the procedure described in paragraph 2.1. The values of the metered  
levels are depending on the line lengths.  
That means, that it is possible to determine the state of a connected telephone as well  
as the subscriber line length very comfortably due to the help of the Level Metering  
Function and the built-in tone generators.  
8.10.2 Improvement of Transhybrid Balancing  
The Level Metering Function can also be used for an improvement of transhybrid  
balancing. This can be very useful after calculating the filter coefficients via QSICOS  
software and getting a too low transhybrid loss because of too long (or too short)  
subscriber lines. With the knowledge of the subscriber line impedance and the telephone  
impedance an optimization of the transhybrid loss is possible.  
For it a configuration like in figure 38 is used. The transhybrid filter is enabled with bit  
TH=1 of configuration register 0.  
The tone generator 1 is programmed for sending a test frequency in the range between  
300 and 3400 Hz, e.g. 300 Hz. The via Level Metering Function measured level (dBm0)  
minus the send level (dBm0), minus the value RLR (dB) and plus the value RLX (dB) is  
equivalent to the negative transhybrid loss.  
Transhybrid loss/dB = send level/dBm0 + RLR/dB + RLX/dB - measured level/dBm0  
In order to get information about the transhybrid loss over the whole frequency band  
measurements at some other frequencies are necessary. In appendix E is a list of some  
frequencies and assigned tone generator coefficients.  
If the transhybrid loss measurement results are to low, another coefficient set has to be  
used for the respective channel. Either a transhybrid filter set of another channel can be  
used or a new coefficient set can be written to the coefficient RAM.  
For calculating a transhybrid filter coefficient set via QSICOS producing a high  
transhybrid loss the value of the subscriber line impedance und the telephone  
Semiconductor Group  
79  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
impedance has to be known. Figure 39 shows a simplified model of a subscriber line with  
an analog telephone set.  
RL  
RL  
tip  
.
.
.
tip  
.
.
=
CT  
RT  
CL  
RT  
C
ring  
ring  
.
analog  
subscriber line  
telephone  
set  
C=CL+CT  
SPEC-File of QSICOS software:  
ZL = 1 (circuit 1)  
ZLR1 = RL  
ZLR2 = RT  
ZLC = C  
Figure 36  
A simplified model of a subscriber line and an analog telephone set  
The subscriber line resistance and the subscriber line capacitance are depending on the  
cable type. Appendix F shows cable parameters of some cable types at 1 kHz. The cable  
parameters multiplied with the line length form the line resistance (RL) and the line  
capacitance (CL).  
The input impedance of the telephone can be measured with an impedance analyzer.  
With parallel measuring mode the telephone resistance (RT) and the telephone  
capacitance (CT) in the off-hook state can be determined.  
The sum of the telephone capacitance and the line capacitance forms the capacitance  
ZLC and is an input for QSICOS. The other inputs for QSICOS are RL (ZLR1) and RT  
(ZLR2). With these values QSICOS can calculate coefficients for a high transhybrid loss.  
Often the SICOFI2/4-TE is used with the same type of SLIC on all four channels.  
Therefore all four coefficient sets can be the same. But for different subscriber line  
lengths different transhybrid filter coefficients are necessary. For getting a high  
transhybrid loss it is useful to calculate TH-filter coefficient sets for 4 different subscriber  
line lengths and to store them in the coefficient RAM. With the help of the Level Metering  
Function the best coefficient set with the highest transhybrid loss can be selected for  
each channel.  
So an improving of the transhybrid balancing by measuring the transhybrid loss and  
loading or selecting another coefficient set is possible. No external measuring devices  
are necessary.  
Semiconductor Group  
80  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
8.11  
Appendix  
Appendix A: Assignment of measured level and byte for offset register XR7  
Level / dBm0  
3.11  
Hex-Code  
51  
Level / dBm0  
-3.02  
Hex-Code  
28  
3.00  
50  
-3.24  
27  
2.89  
2.78  
2.67  
2.56  
2.44  
2.33  
2.21  
4F  
4E  
4D  
4C  
4B  
4A  
49  
-3.46  
-3.69  
-3.93  
-4.18  
-4.43  
-4.69  
-4.96  
26  
25  
24  
23  
22  
21  
20  
2.09  
1.97  
1.84  
1.72  
1.59  
1.46  
1.33  
48  
47  
46  
45  
44  
43  
42  
-5.23  
-5.52  
-5.81  
-6.11  
-6.43  
-6.76  
-7.10  
1F  
1E  
1D  
1C  
1B  
1A  
19  
1.20  
41  
-7.45  
18  
1.07  
40  
-7.82  
17  
0.93  
0.79  
0.65  
0.50  
0.36  
0.21  
0.06  
-0.09  
-0.25  
-0.41  
-0.57  
-0.74  
-0.91  
-1.08  
-1.25  
-1.43  
-1.62  
-1.80  
-1.99  
-2.19  
-2.39  
-2.59  
3F  
3E  
3D  
3C  
3B  
3A  
39  
38  
37  
36  
35  
-8.21  
-8.61  
-9.04  
-9.48  
16  
15  
14  
13  
12  
11  
10  
0F  
0E  
0D  
0C  
0B  
0A  
09  
08  
07  
06  
05  
-9.95  
-10.45  
-10.98  
-11.54  
-12.14  
-12.78  
-13.47  
-14.23  
-15.06  
-15.97  
-17.00  
-18.16  
-19.50  
-21.08  
-23.02  
-25.52  
-29.04  
-35.06  
34  
33  
32  
31  
30  
2F  
2E  
2D  
2C  
2B  
2A  
04  
03  
02  
01  
Semiconductor Group  
81  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
Level / dBm0  
Hex-Code  
Level / dBm0  
Hex-Code  
-2.80  
29  
Appendix B: File LMch1a.SUC  
;SICOFI2/4-TE LEVEL METERING in channel 1, Version 1.0 by R.Kitze, January 1997  
;Configuration: SICOFI4-µC Board V1.1 STUT 2466, EVC50X Board, Harris SLIC-Board STUS  
;5502 V2.0.  
;Please run the file TEST.SUC (QSICOS package) first to configure the SICOFI2/4-TE.  
;-------------------------------------------------------------------------------------------------------------------------------  
;Programming of the tone generators 1 and 2, bandpass is set to 1516 Hz  
W 0 0C A5 53 61 56  
W 0 0D A5 53 61 56  
;-------------------------------------------------------------------------------------------------------------------------------  
W 0 13 00 04 71 7C ; power up channel 1, TH is disabled and level metering is enabled  
;The test level is -10.2 dBm0.  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1:  
W 0 1F 28 E0 80 0F FF FF FF FF ; LM offset byte = 28 (middle of the measuring range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=04 indicates that the measured level is lower than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2:  
W 0 1F 14 E0 80 0F FF FF FF FF ; LM offset byte = 14 (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=04 indicates that the measured level is lower than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 3:  
W 0 1F 0A E0 80 0F FF FF FF FF ; LM offset byte = 0A (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP n:  
W 0 1F 0F E0 80 0F FF FF FF FF ; LM offset byte = 0F (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP n+1:  
W 0 1F 12 E0 80 0F FF FF FF FF ; LM offset byte = 12 (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=04 indicates that the measured level is lower than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP n+2:  
W 0 1F 11 E0 80 0F FF FF FF FF ; LM offset byte = 11  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
Semiconductor Group  
82  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
;-------------------------------------------------------------------------------------------------------------------------------  
;Result: The measured level is between the levels -9.95 dBm0 (byte 12) and -10.45 dBm0 (byte 11).  
Appendix C: File LMch1b.SUC  
;Supervision the state of a subscriber line via LEVEL METERING in channel 1  
;Version 1.0 by R.Kitze, January 1997  
;Configuration: SICOFI4-µC Board V1.1 STUT 2466, EVC50X Board, Harris SLIC-Board STUS  
;5502 V2.0.  
;Please run the file TEST.SUC (QSICOS package) first to configure the SICOFI4-µC.  
;-------------------------------------------------------------------------------------------------------------------------------  
;programming of the tone generators 1 and 2, bandpass is set to 1516 Hz  
W 0 0C A5 53 61 56  
W 0 0D A5 53 61 56  
;programming the amplification/attenuation filters to 2.3 dBm0 at PCM output (test level)  
W 0 08 4B 53 2A 56  
W 0 09 DD B7 02 3A  
;-------------------------------------------------------------------------------------------------------------------------------  
W 0 13 00 04 71 7C ; power up channel 1, TH is disabled and level metering is enabled  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1: The Loop Emulator is set to 0 kft. The telephone is in the off-hook state.  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1.1:  
W 0 1F 28 E0 80 0F FF FF FF FF ; LM offset byte = 28 (middle of the measuring range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1.2:  
W 0 1F 3C E0 80 0F FF FF FF FF ; LM offset byte = 3C (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1.3:  
W 0 1F 46 E0 80 0F FF FF FF FF ; LM offset byte = 46 (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1.4:  
W 0 1F 4B E0 80 0F FF FF FF FF ; LM offset byte = 4B (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1.5:  
W 0 1F 4E E0 80 0F FF FF FF FF ; LM offset byte = 4E (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
Semiconductor Group  
83  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 1.6:  
W 0 1F 4F E0 80 0F FF FF FF FF ; LM offset byte = 4F  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=04 indicates that the measured level is lower than the reference  
;Result: The measured level is between the levels 2.89 dBm0 (byte 4F) and 2.78 dBm0 (byte 4E).  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2: The Loop Emulator is set to 1 kft  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2.1:  
W 0 1F 28 E0 80 0F FF FF FF FF ; LM offset byte = 28 (middle of the measuring range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2.2:  
W 0 1F 3C E0 80 0F FF FF FF FF ; LM offset byte = 3C (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2.3:  
W 0 1F 46 E0 80 0F FF FF FF FF ; LM offset byte = 46 (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2.4:  
W 0 1F 4B E0 80 0F FF FF FF FF ; LM offset byte = 4B (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=04 indicates that the measured level is lower than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2.5:  
W 0 1F 49 E0 80 0F FF FF FF FF ; LM offset byte = 49 (middle of the target range)  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=06 indicates that the measured level is higher than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 2.6:  
W 0 1F 4A E0 80 0F FF FF FF FF ; LM offset byte = 4A  
R 0 32 (5) ; Read CR2, CR1, CR0  
;CR2=04 indicates that the measured level is lower than the reference  
;-------------------------------------------------------------------------------------------------------------------------------  
;Result: The measured level is between the levels 2.33 dBm0 (byte 4A) and 2.21 dBm0 (byte 49).  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 3: The Loop Emulator is set to 2 kft  
;-------------------------------------------------------------------------------------------------------------------------------  
;STEP 3.1:  
W 0 1F 28 E0 80 0F FF FF FF FF ; LM offset byte = 28 (middle of the measuring range)  
.
Semiconductor Group  
84  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
.
.
Appendix D: Measured levels for different line lengths  
Subscriber Line: Cable configuration 0.4 mm = 26 AWG  
Subscriber Line  
Measured Level  
in dBm0, off-hook  
2.89/2.78  
Measured Level  
in dBm0, on-hook  
- 7.45/ - 7.82  
in kft  
0
1
2
3
4
5
6
2.33/2.21  
1.59/1.46  
1.20/1.07  
0.79/0.65  
0.65/0.50  
0.50/0.36  
- 6.76/ - 7.10  
- 4.96/ - 5.23  
- 3.02/ - 3.24  
- 1.62/ - 1.80  
- 0.57/ - 0.74  
0.21/0.06  
The measured level is between the lower/higher level.  
Semiconductor Group  
85  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
Appendix E: Tone generator coefficients (bandpass Q-factor = 2)  
Frequency / Hz  
300  
Bytes  
0C D3 19 30  
0A B4 19 C0  
14 A4 1B C0  
2A 27 12 C0  
AC E3 11 09  
8A AC 11 20  
82 40 10 40  
80 AD 10 98  
80 3C 10 20  
80 15 10 04  
80 0C 10 10  
600  
900  
1200  
1500  
1900  
2200  
2500  
2800  
3100  
3400  
Semiconductor Group  
86  
09.97  
PSB 2132  
PSB 2134  
Application Note: Level Metering  
Appendix F: Cable parameters at 1 kHz  
Cable type  
Distributed  
capacitance C’  
120 nF/km  
120 nF/km  
45 nF/km  
Resistance per  
unit length R’  
420 /km  
270 /km  
270 /km  
172 /km  
120 /km  
110 /km  
68 /km  
0.32 mm PVC  
0.40 mm PVC  
0.40 mm PE  
0.50 mm PE  
0.60 mm PE  
0.63 mm PVC  
0.80 mm PE  
25 nF/km  
56 nF/km  
120 nF/km  
38 nF/km  
Semiconductor Group  
87  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
9
Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Symbol Limit Values Unit Test Condition  
min. max.  
VDD referred to GNDD  
– 0.3 7.0  
– 0.6 0.6  
V
V
GNDA to GNDD  
Analog input and output voltage  
Referred to VDD = 5 V;  
Referred to GNDA = 0 V  
– 5.3 0.3  
– 0.3 5.3  
V
V
All digital input voltages  
Referred to GNDD = 0 V; (VDD = 5V)  
Referred to VDD = 5 V; (GNDD = 0 V)  
– 0.3 5.3  
– 5.3 0.3  
V
V
DC input and output current at any  
input or output pin (free from  
latch-up)  
10  
mA  
Storage temperature  
TSTG  
TA  
– 60  
– 10  
125  
80  
1
°C  
°C  
W
Ambient temperature under bias  
Power dissipation (package)  
PD  
Note: Stresses above those listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Semiconductor Group  
88  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
Operating Range  
TA = 0 to 70 °C; VDD = 5 V ± 5%; GNDD = 0 V; GNDA = 0 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
VDD supply current  
IDIN  
standby  
0.5 1.0 mA FSC,DCL,BCL active  
no loads  
VDD supply current  
IDIN  
FSC,DCL,BCL active  
Operating (1 channel)  
Operating (2 channels)  
PSB 2134 only:  
Operating (3 channels)  
Operating (4 channels)  
14  
18  
mA no loads, PCM idle  
mA code.  
30  
40  
22  
26  
mA  
mA  
Power supply rejection  
Of either supply/direction  
Receive VDD target value  
Ripple: 0 to 150 kHz,  
70 mVrms  
Measured: 300 Hz to  
3.4 kHz  
Measured: at f: = 3.4  
to 150 kHz  
PSRR  
30  
14  
dB  
dB  
Note: In the operating range the functions given in the circuit description are fulfilled.  
Digital Interface  
TA = 0 to 70 °C; VDD = 5 V ± 5%; GNDD = 0 V; GNDA = 0 V  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min. max.  
Low-input voltage  
High-input voltage  
Low-output voltage  
High-output voltage  
Input leakage current  
VIL  
– 0.3 0.8  
2.0  
V
VIH  
VOL  
VOH  
VIL  
V
0.45  
V
I0 = – 5mA  
4.4  
V
I0 = 5 mA  
± 1  
µA  
– 0.3 VIN VDD  
Semiconductor Group  
89  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
Analog Interface  
TA = 0 to 70 °C; VDD = 5 V ± 5%; GNDD = 0 V; GNDA = 0 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Analog input resistance  
Ri  
160  
270  
380  
kΩ  
Analog output resistance RO  
0.25  
Analog output load  
RL  
CL  
300  
pF  
50  
Input leakage current  
Input offset voltage  
Output offset voltage  
IIL  
± 0.1 ± 1.0  
± 50  
µA  
0 VIN VDD  
VIO  
VOO  
mV  
mV  
± 50  
Input voltage range (AC) VIN  
± 2.223 V  
Semiconductor Group  
90  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
9.1  
Coupling Capacitors at the Analog Interface  
In Transmit direction, a 39 nF capacitor has to be connected to VIN-pins. To fulfil the  
frequency response requirement in Receive direction, the value of the coupling capacitor  
(Cext1) needed, depends on the input resistance of the SLIC-circuitry (equals the  
Analog-Output-Load: RLoad).  
Figure 37  
9.2  
Reset Timing  
To reset the SICOFI-2/4 TE to basic setting mode, negative pulses applied to pin RESET  
have to be lower than 1.2 V (TTL-Schmitt-Trigger Input) and have to be longer than 3 µs.  
Spikes shorter than 1 µs will be ignored.  
Semiconductor Group  
91  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
9.3  
PCM-Interface Timing  
t BCL  
t BCLh  
50%  
BCL  
t FSC  
t FSC_S  
t FSC_H  
FSC  
t DR_S t DR_H  
DU/DD  
DU/DD  
tdDX  
tdDXhz  
High Imp.  
ITT09777  
Figure 38  
Single Clocking Mode  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ.  
max.  
Period of BCL  
BCL high time  
Period FSC  
tBCL  
1/768000  
tBCL/2  
125  
µs  
µs  
µs  
ns  
ns  
tBCLh  
tFSC  
tFSC_s  
tFSC_h  
FSC setup time  
FSC hold time  
10  
50  
(tBCL - t BCLh  
)
(tBCL - tBCLh)  
+ 10  
+ 50  
DU/DD setup time  
DU/DD hold time  
DU/DD delay time 1)  
tDR_s  
tDR_h  
tdDX  
10  
10  
25  
25  
50  
50  
ns  
ns  
ns  
ns  
50 (@ 200 pF)  
50  
DU/DD delay time to high Z tdDXhz  
1)  
All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings,  
and a second component caused by external circuitry (C-load)  
Semiconductor Group  
92  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
9.4  
µ-Controller Interface Timing  
t DCLK  
t DCLKh  
50%  
DCLK  
CS  
t CS_S  
t CS_h  
t DIN_S t DIN_H  
DIN  
tdDOUT  
tdDOUThz  
High Imp.  
DOUT  
ITT09778  
Figure 39  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ.  
max.  
Period of DCLK  
DCLK high time  
CS setup time  
CS hold time  
tDCLK  
tDCLKh  
tCS_s  
1/8192  
ms  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
tDCLK/2  
50  
10  
30  
10  
10  
30  
30  
tCS_h  
50  
DIN setup time  
tDIN_s  
tDIN_h  
tdDOUT  
50  
DIN hold time  
DOUT delay time 1)  
50  
100  
100  
DOUT delay time to high Z tdDOUThz  
1)  
All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings,  
and a second component caused by external circuitry (C-load)  
Semiconductor Group  
93  
09.97  
PSB 2132  
PSB 2134  
Electrical Characteristics  
9.5  
Signaling Interface  
From the µC-interface to the SO/SB-pins (data downstream)  
9.5.1  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
30  
typ.  
100  
100  
100  
max.  
SO/SB delay time 1)  
tdSout  
tdSBZ  
tdSBD  
ns  
ns  
ns  
SB to ‘Z’ - time  
40  
SB to ‘drive’-time  
40  
1)  
All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings,  
and a second component caused by external circuitry (C-load)  
9.5.2  
From the SI/SB-pins to the µC-interface (data upstream)  
There is no way specifying the time when data applied to SI-pins (and SB-pins if  
programmed as signaling input pins) is sampled by the SICOFI2/4-TE.  
The time only depends on internal signals (16 MHz masterclock, and status of various  
counters), and there is no link to a low frequency external signal.  
Semiconductor Group  
94  
09.97  
PSB 2132  
PSB 2134  
Package Outlines  
10  
Package Outlines  
P-MQFP-64  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
95  
09.97  

相关型号:

PSB2134H

A-Law/u-Law CODEC
ETC

PSB21373

Data Sheet, DS 3, May 2002
INFINEON

PSB21381

Siemens Codec with S/T Transceiver
INFINEON

PSB21382

Siemens Codec with S/T Transceiver
INFINEON

PSB21383

Siemens Codec with S/T Transceiver
INFINEON

PSB21383H

Siemens Codec with S/T Transceiver
INFINEON

PSB21384

Siemens Codec with S/T Transceiver
INFINEON

PSB21391

Siemens Codec with UPNTransceiver
INFINEON

PSB21393

Siemens Codec with UPNTransceiver
INFINEON

PSB21393HV1.3

Telecom Circuit,
INFINEON

PSB21483

Infineon Codec with S/T Transceiver and Embedded Microcontroller Featuring Acoustic Echo Cancellation
ETC

PSB21525-F

?High-Level Serial Communication Controller Extended?
ETC