Q-67106-H6514 [INFINEON]

PLL-Frequency Synthesizer PMB2306R/PMB2306T Version 2.2; PLL频率合成器PMB2306R / PMB2306T 2.2版
Q-67106-H6514
型号: Q-67106-H6514
厂家: Infineon    Infineon
描述:

PLL-Frequency Synthesizer PMB2306R/PMB2306T Version 2.2
PLL频率合成器PMB2306R / PMB2306T 2.2版

文件: 总35页 (文件大小:760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
PLL-Frequency Synthesizer  
PMB2306R/PMB2306T Version 2.2  
Data Sheet 02.97  
T2306-0V22-D1-7600  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
5HYLVLRQꢀ+LVWRU\ꢍꢀ  
&XUUHQWꢀ9HUVLRQꢍꢀꢁꢂꢃꢄꢅ  
Previous Version: 01.94  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in new  
Version)  
14-15  
Version)  
19-20  
$&ꢌ'&ꢀ&KDUDFWHULVWLFV  
H-input current ,H: is changed from 10µA to 30µA and  
L-input current ,L: is changed from -10µA to -30µA  
26  
26  
&ORFNꢀIUHTXHQF\ ICL max. is changed from 10MHz to 12MHz;  
+ꢉSXOVHZLGWKꢀꢎ&/ꢏ WWHCL min. is changed from 60ns to 40ns;  
+ꢉSXOVHZLGWKꢀꢎHQDEOHꢏ WWHENmin. is changed from 60ns to 40ns;  
18  
19  
18  
19  
Input reference frequency ICRIis changed from 20MHz to 22MHz  
,QSXWꢀ6LJQDOꢀ5,  
Input voltage 9I: is changed from 20MHz to 22MHz  
(GLWLRQꢀꢁꢂꢃꢄꢅ  
This edition was realized using the software system FrameMaker .  
3XEOLVKHGꢀE\ 6LHPHQVꢀ$*ꢆ  
+/ꢀ,7  
‹ꢀ6LHPHQVꢀ$*ꢀꢇꢄꢄꢅꢃ  
$OOꢀ5LJKWVꢀ5HVHUYHGꢃ  
$WWHQWLRQꢀSOHDVHꢈ  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for  
applications, processes and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or  
the Siemens Companies and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
3DFNLQJ  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales  
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice  
you for any costs incurred.  
&RPSRQHQWVꢀXVHGꢀLQꢀOLIHꢉVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢀPXVWꢀEHꢀH[SUHVVO\ꢀDXWKRUL]HGꢀIRUꢀVXFKꢀSXUSRVHꢈ  
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or  
systems2 with the express written approval of the Semiconductor Group of Siemens AG.  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
3DJH  
7DEOHꢀRIꢀ&RQWHQWV  
2YHUYLHZꢀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.1  
1.2  
1.3  
1.4  
&LUFXLWꢀꢀ'HVFULSWLRQꢀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
(OHFWULFDOꢀ&KDUDFWHULVWLFVꢀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Typical Supply Current ,DD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.1  
3.2  
3.3  
4.1  
4.2  
3DFNDJHꢀ2XWOLQHVꢀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Plastic-Package, P-TSSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Plastic-Package, P-DSO-14-1(SMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Semiconductor Group  
3
02.97  
3//ꢉ)UHTXHQF\ꢀ6\QWKHVL]HU  
9HUVLRQꢀꢂꢃꢂ  
ꢀ30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
%LSRODUꢀ,&  
2YHUYLHZ  
)HDWXUHV  
30%ꢂꢊꢁꢋ7  
ꢇꢃꢇ  
• Low operating current consumption  
(typically 3.5 mA)  
• High input sensitivity, high input frequencies  
(220 MHz)  
• Extremely fast phase detector without dead zone  
• Linearization of the phase detector output by current  
sources  
3ꢉ'62ꢉꢇꢐ  
30%ꢀꢂꢊꢁꢋ5  
• Synchronous programming of the counters  
(n-, n/a-, r-counters) and system parameters  
• Fast modulus switchover for 65-MHz operation  
• Switchable modulus trigger edge  
• Large dividing ratios for small channel spacing  
A scaler 0 to 127  
3ꢉ76623ꢉꢇꢋ  
N scaler 3 to 16.380  
R scaler 3 to 65.535  
• Serial control (3-wire bus: data, clock, enable) for fast programming (Imax ~ 10 MHz)  
• Switchable polarity and phase detector current programmable  
• 2 Multifunction outputs  
• Digital phase detector output signals (e.g. for external charge pump)  
Irn, Ivn outputs of the R and N scalers  
• Port 1 output (e.g. for standby of the prescaler)  
• External current setting for PD output  
• Lock detect output with gated anti-backlash pulse (quasi digital lock detect)  
7\SH  
9HUVLRQ  
V2.2  
2UGHULQJꢀ&RGH  
Q67100-H6423  
3DFNDJH  
PMB 2306T  
PMB 2306T  
PMB 2306R  
P-DSO-14 (SMD)  
V2.2  
Q67106-H6423  
P-DSO-14 (SMD, Tape & Reel)  
P-TSSOP-16 (SMD, T&R)  
V2.2  
Q-67106-H6514 (T&R)  
The PMB 2306T PLL is a high speed CMOS IC, especially designed for use in battery powered  
radio equipment and mobile telephones. The primary applications will be in digital systems e.g.  
GSM, PCN, ADC, JDC and DECT systems. The wide range of dividing ratios also allows application  
in modern analog systems  
Semiconductor Group  
4
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
2YHUYLHZ  
ꢇꢃꢂ  
3LQꢀ&RQILJXUDWLRQ  
(top view)  
3ꢉ'62ꢉꢇꢐ  
RI  
LD  
ꢇꢋ  
ꢇꢑ  
V
MFO2  
SS  
EN  
ꢇꢐ  
ꢇꢊ  
ꢇꢂ  
MFO1  
DA  
V
DD1  
CLK  
PD  
V
V
ꢇꢇ  
ꢇꢁ  
DD  
SS1  
FI  
MOD  
NC  
NC  
3ꢉ76623ꢉꢇꢋ  
Semiconductor Group  
5
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
2YHUYLHZ  
ꢇꢃꢊ  
3LQꢀ'HILQLWLRQVꢀDQGꢀ)XQFWLRQVꢀ  
7DEOHꢀꢇ  
'62ꢉꢇꢐ 76623ꢉꢇꢋ 6\PERO )XQFWLRQ  
9DD  
9SS  
9DD  
Positive supply voltage for serial control logic.  
6
6
Ground for serial control logic.  
2
2
Positive supply voltage for the preamplifiers, counters, phase  
detector and charge pump.  
11  
13  
1
9SS  
Ground for the preamplifiers, counters, phase detector and  
charge pump.  
9
3
11  
3
1
(1RWHꢍꢀ7KHꢀSLQVꢀ9 ꢀDQGꢀ9 ꢀUHVSHFWLYHO\ꢀ9 ꢀDQG9  
KDYHꢀWRꢀKDYHꢀWKHꢀVDPHꢀVXSSO\ꢀYROWDJH.)  
EN  
DA  
ꢊꢉ/LQHꢀ%XVꢍꢀ(QDEOH  
Enable line of the serial control with internal pull-up resistor.  
When EN = H the input signals CLK and DA are disabled  
internally. When EN = L the serial control is activated. The  
received data are transferred into the latches with the positive  
edge of the EN-signal.  
ꢊꢉ/LQHꢀ%XVꢍꢀ'DWD  
4
4
Serial data input with internal pull-up resistor. The last two bits  
before the EN-signal define the destination address. In a byte-  
oriented data structure the transmitted data have to end with  
the EN-signal, i.e. bits to be filled in (don’t care) are transmitted  
first.  
CLK  
ꢊꢉ/LQHꢀ%XVꢍꢀ&ORFN  
5
7
5
7
Clock line with internal pull-up resistor. The serial data are read  
into the internal shift register with the positive edge (see pulse  
diagram for serial data control).  
MOD  
0RGXOXVꢀ&RQWUROꢀ2XWSXW for external dual modulus prescaler.  
The modulus output is low at the beginning of the cycle. When  
the a-counter has reached its set value, MOD switches to high.  
When the n-counter has reached its set value, MOD switches to  
low again, and the cycle starts from the top. When the prescaler  
has the counter factor P or P+1 (P for MOD = H, P +1 for MOD  
= L), the overall scaling factor is NP + A. The value of the a-  
counter must be smaller than that of the n-counter. The trigger  
edge of the modulus signal to the input signal can be selected  
(see programming tables and MOD  
A, B) according to the needs of the prescaler. In single modulus  
operation and for standby operation in dual modulus operation,  
the output is low.  
Semiconductor Group  
6
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
2YHUYLHZ  
7DEOHꢀꢇ  
'62ꢉꢇꢐ 76623ꢉꢇꢋ 6\PERO )XQFWLRQ  
FI  
9&2ꢉ)UHTXHQF\  
8
10  
Input with highly sensitive preamplifier for 14-bit n-counter and  
7-bit a-counter. With small input signals AC coupling must be  
set up, where DC coupling can be used for large input signals.  
RI  
PD  
5HIHUHQFHꢀ)UHTXHQF\  
1
1
Input with highly sensitive preamplifier for 16-bit r-counter. With  
small input signals AC coupling must be set up, where DC  
coupling can be used for large input signals.  
3KDVHꢀ'HWHFWRU  
10  
12  
Tristate charge pump output. The integrated, positive and  
negative current sources can be programmed with respect to  
their current density by means of the serial control. Activation  
and deactivation depend on the phase relationship of the  
scaled-down input signals FI:N, RI:R. (See phase detector  
output waveforms.)  
frequency IV <IR orIV lagging:  
p-channel current source  
active  
frequency IV > IR orIR leading:  
n-channel current source  
active  
frequency IV = IR and PLL locked: current sources are  
switched off, PD-output is tristate  
In standby mode the PD-output is set to tristate. The  
assignment of the current sources to the output signals of the  
phase detector can be swapped in it’s polarity, i.e. the sign of  
the phase detector constant can be controlled.  
LD  
/RFNꢀ'HWHFWRUꢀ2XWSXW (open drain). Unipolar output of the  
phase detector in the form of a pulse-width modulated signal.  
The L-pulse width corresponds to the phase difference. Phase  
differences < 20 ns are not indicated due to gating of the  
antibacklash impuls. In the locked state the LD-signal is at  
H-level. In standby mode the output is resistive.  
14  
16  
Only for ABL status 11 no gating of ABL impulse is performed.  
Semiconductor Group  
7
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
2YHUYLHZ  
7DEOHꢀꢇ  
'62ꢉꢇꢐ 76623ꢉꢇꢋ 6\PERO )XQFWLRQ  
MFO1  
MFO2  
0XOWLIXQFWLRQꢀ2XWSXW for the signalsIRN, ΦV, ΦVN and port 1.  
12  
13  
14  
15  
0XOWLIXQFWLRQꢀ,ꢌ2ꢉ3LQ for the output signals IVN, ΦRN and the  
input signal ,REF  
.
– The signals ΦR and ΦV are the digital output signals of the  
phase and frequency detector for use in external active  
current sources (see phase detector output wave forms).  
– The signals IRN and IVN are the scaled down signals of the  
reference frequency and VCO-frequency. The L-time  
corresponds to 1/IRI and 1/IFI respectively.  
– In the port function the port 1 output signal is assigned to the  
information of the status program. The output switches with  
the rising edge of the  
EN-signal. The standby mode does not affect the port  
function.  
– In the internal charge pump mode the input signal ,REF  
determines the value of the PD-output current.  
Reference current for charge pump:  
,REF = (9DD 9REF)/R1  
= 100µA (tolerance of ±20% or less is recommended)  
R1:see application circuit  
ꢀꢀꢀꢀ9REF:see AC/DC characteristics  
Semiconductor Group  
8
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
2YHUYLHZ  
ꢇꢃꢐ  
)XQFWLRQDOꢀ%ORFNꢀ'LDJUDP  
Semiconductor Group  
9
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
&LUFXLWꢀꢀ'HVFULSWLRQ  
*HQHUDOꢀ'HVFULSWLRQ  
The circuit consists of a reference-, a- and n-counter, a dual modulus control logic, a  
phase detector with charge pump output and a serial control logic. The setting of the  
operating mode and the selection of the counter ratios is done serially at the ports CLK,  
DA and EN.  
The operating modes allow the selection of single or dual operation, asynchronous or  
synchronous data acquisition, 4 different antibacklash-impulse times, 8 different PD-  
output current modes, polarity setting of the PD-output signal, adjustment of the trigger-  
edge of the MOD-output signal, 2 standby modes and the control of the multifunction  
outputs MFO1 and MFO2.  
The reference frequency is applied at the RI-input and scaled down by the r-counter. It’s  
maximum value is 100 MHz. The VCO-frequency is applied at the FI-input and scaled  
down by the n- or n/a-counter according to single or dual mode operation. The maximum  
value at FI is 220 MHz at single-, and 65 MHz at dual mode operation.  
The phase and frequency sensitive phase detector produces an output signal with  
adjustable anti-backlash impulses in order to prevent a dead zone for very small phase  
deviations. Phase differences of less than 100 ps can be resolved. In general the  
shortest anti-backlash pulse gives the best system performance.  
3URJUDPPLQJ  
Programming of the IC is done by a serial data control. The contents of the message are  
assigned to the functional units according to the address.ꢀ 6LQJOHꢀ RUꢀ GXDOꢀ PRGH  
RSHUDWLRQꢀ DVꢀ ZHOOꢀ DVꢀ DV\QFKURQRXVꢀ RUꢀ V\QFKURQRXVꢀ GDWDꢀ DFTXLVLWLRQꢀ LVꢀ VHWꢀ E\  
VWDWXVꢀꢂꢀDQGꢀVKRXOGꢀWKHUHIRUHꢀSUHFHGHꢀWKHꢀSURJUDPPLQJꢀRIꢀWKHꢀFRXQWHUVꢃ  
'DWDꢀDFTXLVLWLRQ  
The PMB 2306T offers the possibility of synchronous data acquisition to avoid error  
signals at the phase detector due to non-corresponding dividing factors in the counters  
produced by asynchronous loading.  
Synchronous programming guarantees control during changes of frequency or channel.  
That means that the state of the phase detector or the phase difference is kept  
maintained, and in case of “lock in”, the control process starts with the phase difference  
“zero”.  
Semiconductor Group  
10  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
This is done as follows:  
1.Setting of synchronous data acquisition by status 2.  
2.Programming of the r-counter, status 1 (optional)-data is being loaded into shadow  
registers.  
3.Programming of the n- or n/a-counter-data is being loaded into shadow registers, the  
EN-signal starts the synchronous loading procedure.  
4.Synchronous programming – which means data transfer of all data from the shadow  
registers to the data registers – takes place at that point in time when the respective  
counter reaches “zero + 1”, the maximum repetition rate for channel change is  
therefore IFI:N.  
5.Transfer of status 1 information into the corresponding data register is tied to the n-  
counter loading, but follows the loading of the n-data register in the distance of one n-  
counter dividing ratio, this guarantees that for example a new PD-current value  
becomes valid at the same time when the counters are loaded with the new data.  
Synchronous avoids additional phase error caused by programming. Synchronous data  
acquisition is of especial advantage, when large steps in frequency are to be made in a  
short time. For this purpose a high reference frequency can be programmed in order to  
achieve rapid – “rough” – transient response. This method increases the fundamental  
frequency nearly by the square route of the reference frequency relation. When rough  
lock is achieved, another synchronous data transfer is needed to switch back to the  
original channel spacing. A “fine” lock in will finish the total step response. It may not be  
necessary to change reference frequency, but it make sense to perform synchronous  
data acquisition in any case. Especially for GSM, PCN, DECT, DAMPS, JDC, PHP  
systems the synchronous mode should be used to get best performance of the PMB  
2306T.  
6WDQGE\ꢀ&RQGLWLRQ  
The PMB 2306T has two standby modes (standby 1, 2) to reduce the current  
consumption.  
Standby 1 switches off the whole circuit, the current consumption is reduced below 1 µA.  
Standby 2 switches off the counters, the charge pump and the outputs, only the  
preamplifiers stay active.  
The standby modes do not affect the port output signal. For the influence on the other  
output signals VHHꢀVWDQGE\ꢀWDEOHꢃ  
1RWHꢁ I ꢂꢀI ꢂꢀ Φ DQGꢀΦ ꢀDUHꢀWKHꢀLQYHUWHGꢀVLJQDOVꢀRIꢀI ꢂꢀI ꢂꢀΦ ꢀDQGꢀΦ ꢃ  
Semiconductor Group  
11  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
3URJUDPPLQJꢀ7DEOHVꢀꢀꢀꢀ  
6WDWXVꢀ%LWV  
0XOWLIXQFWLRQꢀ2XWSXWV  
0RGHꢀꢂ  
0RGHꢀꢇ  
0)2ꢀꢇ  
IRN  
0)2ꢀꢂ  
IVN  
5HPDUNV  
0
0
1
1
0
1
0
1
test mode  
ΦV  
ΦRN  
external charge pump mode 1  
external charge pump mode 2  
internal charge pump mode  
ΦVN  
ΦRN  
Port 1  
,
REF  
ꢀꢀꢀ  
6WDWXVꢀ%LWV  
3'ꢉ&XUUHQWꢀ0RGH  
3'ꢉ&XUUHQWꢀꢊ  
3'ꢉ&XUUHQWꢀꢂ  
3'ꢉ&XUUHQWꢀꢇ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.175  
0.25  
0.35  
0.5  
0.7  
1
1.4  
2
3URJUDPPLQJꢀ7DEOHVꢀ(cont’d)  
6WDWXVꢀ%LWV  
$QWLꢉ%DFNODVK  
3XOVHꢀ:LGWKꢀꢂ  
$QWLꢉ%DFNODVK  
3XOVHꢀ:LGWKꢀꢇ  
W ꢀꢎW\Sꢃꢏ  
>QV@  
$SSOLFDWLRQ  
0
0
1
1
0
1
0
1
1.3*  
5
9DD = 5 V  
10  
not recommended  
13**  
any application where  
continuous lock detect required  
*
In general the shortest anti-backlash pulse gives the best system performance.  
** No ABL (Anti-Backlash-Pulse) gating performed. This means, that at the LD output the anti-backlash pulse  
will appear. In the other cases the anti-backlash pulse will be surpressed at the LD output.  
Semiconductor Group  
12  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
6WDWXVꢀ%LWV  
3UHDPSOLILHUꢀ)XQFWLRQꢀ0RGH  
6LQJOHꢌꢀ'XDOꢀ  
0RGH  
3UHDPSOLILHUꢀ  
6HOHFW  
0
0
1
1
0
1
0
1
FI-input frequency, single HF-mode  
FI-input frequency, single LF-mode  
FI-input frequency, dual mode, FI-trigger edge LH, MOD A  
FI-input frequency, dual mode, FI-trigger edge HL, MOD B  
6WDQGE\ꢀ7DEOHꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
6WDWXV  
2XWSXWꢀ3LQV  
0)2ꢀꢇ  
Φ
0)2ꢀꢂ  
/'  
3'  
02'  
Φ
Standby 1  
Standby 2  
low  
high  
high  
high  
high  
resistive  
resistive  
tristate  
tristate  
low  
low  
low  
Semiconductor Group  
13  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
6HULDOꢀ&RQWUROꢀ'DWDꢀ)RUPDWꢀꢎVWDWXVꢀꢇꢆꢀꢂꢏ  
6WDWXVꢀꢇ  
6WDWXVꢀꢂꢀꢀꢀꢀꢀꢀꢀꢀ  
0
1
Data acquisition mode  
Mode 1  
1
2
asynchronous synchronous  
see table  
Mode 2  
3
see table  
PD-polarity  
4
negative  
standby  
standby  
positive  
active  
active  
Standby 1  
5
Standby 2  
6
Anti-backlash pulse width 1  
Anti-backlash pulse width 2  
Preamplifier select  
Single / dual mode  
7
see table  
8
see table  
see table  
9
10  
11  
12  
13  
14  
15  
16  
EN  
single  
low  
dual  
high  
1
2
Port 1  
PD-current 1  
PD-current 2  
PD-current 3  
see table  
see table  
see table  
3
4
5
0
0
Address  
0
1
6
EN  
6LQJOHꢀRUꢀGXDOꢀPRGHꢀRSHUDWLRQꢀDVꢀZHOOꢀDVꢀDV\QFKURQRXVꢀRUꢀV\QFKURQRXVꢀGDWDꢀ  
DFTXLVLWLRQꢀLVꢀVHWꢀE\ꢀVWDWXVꢀꢂꢀDQGꢀVKRXOGꢀWKHUHIRUHꢀSUHFHGHꢀWKHꢀSURJUDPPLQJꢀRIꢀ  
WKHꢀFRXQWHUVꢃꢀꢎVHHꢀDOVRꢀSDJHꢀꢇꢁꢏ  
Semiconductor Group  
14  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
6HULDOꢀ&RQWUROꢀ'DWDꢀ)RUPDWꢀꢎQꢉꢆꢀQꢌDꢉFRXQWHUꢏ  
'XDOꢀ0RGH  
6LQJOHꢀ0RGHꢀꢀꢀꢀꢀꢀꢀꢀ  
1
2
MSB  
3
a-Counter  
4
5
6
7
LSB  
8
MSB  
MSB  
1
2
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
EN  
3
4
5
6
7
n-Counter  
8
9
10  
11  
12  
13  
14  
15  
16  
EN  
LSB  
LSB  
1
0
1
0
Address  
Semiconductor Group  
15  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
6HULDOꢀ&RQWUROꢀ'DWDꢀ)RUPDWꢀꢎUꢉFRXQWHUꢏ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀ  
1
2
MSB  
3
4
5
6
7
8
r-Counter  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
LSB  
1
1
Address  
EN  
Semiconductor Group  
16  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
&LUFXLWꢀ'HVFULSWLRQ  
3KDVHꢀ'HWHFWRUQꢀ2XWSXWꢀ:DYHIRUPV  
Semiconductor Group  
17  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
$EVROXWHꢀ0D[LPXPꢀ5DWLQJV  
ꢊꢃꢇ  
7A = – 40 to 85 °C  
3DUDPHWHU  
6\PERO  
/LPLWꢀ9DOXHV  
8QLW 5HPDUNV  
PLQꢃ  
PD[ꢃ  
6
Supply voltage  
9DD  
9I  
– 0.3  
– 0.3  
GND  
V
Input voltage  
9DD + 0.3  
V
Output voltage  
9Q  
3Q  
3tot  
7A  
9DD  
10  
V
Power dissipation per output  
Total power dissipation  
Ambient temperature  
Storage temperature  
mW  
mW  
°C  
300  
85  
– 40  
– 50  
in operation  
7stg  
125  
°C  
2SHUDWLQJꢀ5DQJH  
Supply voltage  
9DD  
IFI  
3.0  
5.5  
V
Input frequency dual mode  
Input frequency single HF-mode IFI  
Input frequency single LF-mode IFI  
Input reference frequency  
Input frequency dual mode  
Input frequency single HF-mode IFI  
Input frequency single LF-mode IFI  
Input reference frequency  
0.1  
0.1  
0.1  
65  
220  
90  
100  
30  
120  
35  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
9
9
9
9
9
9
9
9
DD = 4.5 … 5.5 V  
DD = 4.5 … 5.5 V  
DD = 4.5 … 5.5 V  
DD = 4.5 … 5.5 V  
DD = 3.3 V  
DD = 3.3 V  
DD = 3.3 V  
DD = 3.3 V  
IRI  
IFI  
0.1  
0.1  
0.1  
IRI  
22  
PD-output current  
PD-output voltage  
PD-output voltage  
/ ,PD  
9PD  
9PD  
/
4
9
9
mA  
V
V
0.5  
0.5  
DD – 0.5  
DD – 0.5  
9
9
DD = 4.5 – 5.5 V  
DD = 3.3 V  
Ambient temperature  
7A  
– 40  
85  
°C  
All pins are protected against ESD. Unused inputs without pullup resistors must be connected to either 9DD or 9SS  
.
ꢊꢃꢂ  
7\SLFDOꢀ6XSSO\ꢀ&XUUHQWꢀ, ꢀ  
Supply voltage 9DD  
3.3  
5
5.5  
V
Test conditions:  
Supply current  
I
I
,
= 50 MHz, 9 = 150 mVrms  
FI  
FI  
singlemode HF  
dual mode  
standby 2  
,
DD  
,
DD  
,
DD  
,
DD  
1.63  
1.76  
0.11  
2.6  
2.80  
0.62  
2.94  
3.17  
0.75  
1
mA  
mA  
mA  
µA  
= 10 MHz, 9 = 150 mVrms  
RI  
RI  
= 0.25 mA, , = 100 µA  
PD  
ref  
standby 1  
Semiconductor Group  
18  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
ꢊꢃꢊ  
$&ꢌ'&ꢀ&KDUDFWHULVWLFV  
6\PERO  
3DUDPHWHU  
/LPLWꢀ9DOXHV  
PLQꢃ W\Sꢃ PD[ꢃ  
8QLW  
7HVWꢀ&RQGLWLRQ  
,QSXWꢀ6LJQDOVꢀ'$ꢆꢀ&/.ꢆꢀ(1ꢀꢎZLWKꢀLQWHUQDOꢀSXOOꢉXSꢀUHVLVWRUVꢏ  
H-input voltage  
L-input voltage  
Input capacity  
H-input current  
L-input current  
9IH  
9IL  
0.7 9D  
0
9DD  
0.3 9DD  
5
V
V
pF  
µA  
µA  
D
&
I
,
H
10  
9I = 9DD = 5.5 V  
9I = GND  
,
L
– 300  
Further information about timing see at page 25 and 26  
,QSXWꢀ6LJQDOꢀ5,  
Input voltage  
9I  
9I  
&
100  
mVrms I = 4 … 100 MHz,  
DD =4.5 V  
mVrms I = 4 … 22 MHz, 9DD = 3.3 V  
9
Input voltage  
Slew rate  
Input capacity  
H-input current  
L-input current  
100  
2.5  
V/µs  
9DD = 3.3 … 5.5 V  
3
30  
pF  
I
,
H
µA  
µA  
9I = 9DD = 5.5 V  
9I = GND  
,
L
– 30  
,QSXWꢀ6LJQDOꢀ),ꢀꢎGXDOꢀPRGHꢏ  
Input voltage  
Input voltage  
Input voltage  
Slew rate  
9I  
9I  
9I  
180  
180  
50  
mVrms I = 4 … 65 MHz, 9DD = 4.5 V  
mVrms I = 4 … 30 MHz, 9DD = 3.3 V  
mVrms I = 10 … 30 MHz, 9DD = 3.3 V  
4
V/µs  
9DD = 3.3 … 5.5 V  
Input capacity  
H-input current  
L-input current  
&
3
30  
pF  
µA  
µA  
I
,
,
9I = 9DD = 5.5 V  
9I = GND  
H
– 30  
L
,QSXWꢀ6LJQDOꢀ),ꢀꢎVLQJOHꢀ+)ꢉPRGHꢏ  
Input voltage  
Input voltage  
Input voltage  
Slew rate  
9I  
9I  
9I  
200  
20  
50  
mVrms I = 4 … 220 MHz, 9DD = 4.5 V  
mVrms I = 4 … 120 MHz, 9DD = 3.3 V  
mVrms I = 10 … 50 MHz, 9DD = 4.5 V  
2.5  
V/µs  
9DD = 3.3 … 5.5 V  
Input capacity  
H-input current  
L-input current  
&
3
30  
pF  
µA  
µA  
I
,
H
9I = 9DD = 5.5 V  
9I = GND  
,
L
– 30  
Semiconductor Group  
19  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
7HVWꢀ&RQGLWLRQ  
3DUDPHWHU  
6\PERO  
/LPLWꢀ9DOXHV  
8QLW  
PLQꢃ  
W\Sꢃ PD[ꢃ  
,QSXWꢀ6LJQDOꢀ),ꢀꢎVLQJOHꢀ/)ꢉPRGHꢏ  
Input voltage  
Input voltage  
Slew rate  
9I  
9I  
100  
100  
2.5  
mVrms I = 4 … 90 MHz, 9DD = 4.5 V  
mVrms I = 4 … 35 MHz, 9DD = 3.3 V  
V/µs  
9DD = 3.3 … 5.5 V  
Input capacity  
H-input current  
L-input current  
&
3
30  
pF  
µA  
µA  
I
,
H
9I = 9DD = 5.5 V  
9I = GND  
,
L
– 30  
2XWSXWꢀ&XUUHQWꢀ,  
Current mode  
“0.175 mA”  
“0.25 mA”  
“0.35 mA”  
“0.5 mA”  
,
,
,
,
,
,
,
,
– 20 %  
– 20 %  
– 20 %  
– 20 %  
– 20 %  
– 10 %  
– 10 %  
– 10 %  
+ 20 % mA  
PROG  
PROG  
PROG  
PROG  
PROG  
PROG  
PROG  
PROG  
+ 20 % mA  
+ 20 % mA  
+ 20 % mA  
+ 20 % mA  
+ 10 % mA  
+ 10 % mA  
+ 10 % mA  
9
DD = 4.5 … 5.5 V  
9PD = 9DD/2  
“0.7 mA”  
“1.0 mA”  
“1.4 mA”  
“2.0 mA”  
,REF = 100 µA  
“Standby”  
* guaranteed by  
design  
/ ,PD  
/
0.1* 50  
nA  
9DD = 5.5 V  
2XWSXWꢀ7ROHUDQFHVꢀ,  
,PD / ,PROG  
– 20 %  
+ 3 %  
9
PD = 9DD/2, 9DD = 3.3 V  
PD = 1 … 4 V, 9DD = 5 V  
,PD / ,PROG  
±4%  
9
,QSXWꢀ9ROWDJHꢀ0)2ꢂꢀꢎLQWHUQDOꢀFKDUJHꢀSXPSꢀPRGHꢏ  
Reference voltage 9REF  
0.9  
1.1 1.3  
V
9
DD = 4.5 … 5.5 V,  
,REF = 100 µA  
Semiconductor Group  
20  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
7HVWꢀ&RQGLWLRQ  
3DUDPHWHU  
6\PERO  
/LPLWꢀ9DOXHV  
8QLW  
PLQꢃ  
W\Sꢃ PD[ꢃ  
2XWSXWꢀ6LJQDOꢀ0)2ꢇꢀꢎSXVKꢀSXOOꢏ  
H-output voltage  
9QH  
9DD – 1  
V
9DD = 4.5 … 5.5 V,  
,
QH = 2 mA  
L-output voltage  
H-output voltage  
L-output voltage  
Rise time  
Fall time  
Rise time  
9QL  
9QH  
9QL  
WR  
WF  
WR  
1
V
V
V
ns  
ns  
ns  
ns  
9
9
9
9
9
9
9
DD = 4.5 … 5.5 V, ,QL = 2 mA  
DD = 3.3 V, ,QH = 1.2 mA  
DD = 3.3 V, ,QL = 1.2 mA  
DD = 4.5 … 5.5 V, &I = 10 pF  
DD = 4.5 … 5.5 V, &I = 10 pF  
DD = 3.3 V, &I = 10 pF  
DD = 3.3 V, &I = 10 pF  
9DD – 1  
1
2.5 10  
2.0 10  
4.0 10  
2.5 10  
Fall time  
WF  
2XWSXWꢀ6LJQDOꢀ0)2ꢂꢀꢎSXVKꢀSXOOꢏ  
H-output voltage  
9QH  
9DD – 1  
V
9DD = 4.5 … 5.5 V,  
,
QH = 2 mA  
L-output voltage  
H-output voltage  
L-output voltage  
Rise time  
Fall time  
Rise time  
9QL  
9QH  
9QL  
WR  
WF  
WR  
1
1
10  
10  
10  
10  
V
V
V
ns  
ns  
ns  
ns  
9
9
9
9
9
9
9
DD = 4.5 … 5.5 V, ,QL = 2 mA  
DD = 3.3 V, ,QH = 1.2 mA  
DD = 3.3 V, ,QL = 1.2 mA  
DD = 4.5 … 5.5 V, &I = 10 pF  
DD = 4.5 … 5.5 V, &I = 10 pF  
DD = 3.3 V, &I = 10 pF  
9DD – 1  
2
2
3
3
Fall time  
WF  
DD = 3.3 V, &I = 10 pF  
2XWSXWꢀ6LJQDOꢀ/'ꢀꢎQꢉFKDQQHOꢀRSHQꢀGUDLQꢏ  
L-output voltage  
9QL  
0.4  
V
9DD = 4.5 … 5.5 V,  
,
QL = 0.5 mA  
L-output voltage  
Fall time  
Fall time  
9QL  
WF  
WF  
0.4  
10  
4.5 10  
V
ns  
ns  
9
9
9
DD = 3.3 V, ,QL = 0.5 mA  
DD = 4.5 … 5.5 V, &I = 10 pF  
DD = 3.3 V, &I = 10 pF  
3
Semiconductor Group  
21  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
7HVWꢀ&RQGLWLRQ  
3DUDPHWHU  
6\PERO  
/LPLWꢀ9DOXHV  
8QLW  
PLQꢃ  
W\Sꢃ PD[ꢃ  
2XWSXWꢀ6LJQDOꢀ02'ꢀꢎSXVKꢉSXOOꢏ  
H-output voltage  
L-output voltage  
H-output voltage  
9QH  
9QL  
9QH  
9DD  
– 0.4  
V
V
V
9
,
9
DD = 4.5 … 5.5 V,  
QH = 0.5 mA  
DD = 4.5 … 5.5 V,  
QL = 0.5 mA  
0.4  
0.4  
3
3
12  
,
9
9DD  
– 0.4  
DD = 3.3 V, ,QH = 0.3 mA  
L-output voltage  
Rise time  
Fall time  
9QL  
WR  
WF  
V
9
9
9
9
DD = 3.3 V, ,QL = 0.3 mA  
1.5  
1.3  
8
ns  
ns  
ns  
DD = 4.5 … 5.5 V, &I = 5 pF  
DD = 4.5 … 5.5 V, &I = 5 pF  
DD = 4.5 … 5.5 V, &I = 5 pF  
Propagation delay WDQHL  
time H-L to FI  
Propagation delay WDQLH  
time L-H to FI  
8
12  
ns  
9DD = 4.5 … 5.5 V, &I = 5 pF  
Rise time  
Fall time  
Propagation delay WDQHL  
WR  
WF  
2.8  
1.6  
12  
4
4
ns  
ns  
ns  
9DD = 3.3 V, &I = 5 pF  
9DD = 3.3 V, &I = 5 pF  
9DD = 3.3 V, &I = 5 pF  
time H-L to FI  
Propagation delay WDQLH  
time L-H to FI  
12  
ns  
9DD = 3.3 V, &I = 5 pF  
Semiconductor Group  
22  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
(TXLYDOHQWꢀ,ꢌ2ꢀ6FKHPDWLFV  
Semiconductor Group  
23  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
(TXLYDOHQWꢀ,ꢌ2ꢀ6FKHPDWLFV (cont’d)  
500kΩ  
Semiconductor Group  
24  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
3XOVHꢀ'LDJUDP  
Semiconductor Group  
25  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
6HULDOꢀ&RQWUROꢀ'DWDꢀ,QSXWꢀ7LPLQJ  
3DUDPHWHU  
6\PERO  
/LPLWꢀ9DOXHV  
8QLW  
7HVWꢀ&RQGLWLRQ  
PLQꢃ  
PD[ꢃ  
Clock frequency  
ICL  
12  
MHz  
ns  
9DD=3.3V  
H-pulsewidth (CL)  
WWHCL  
WDS  
40  
20  
20  
20  
40  
Data setup  
ns  
Setup time clock-enable  
Setup time enable-clock  
H-pulsewidth (enable)  
Rise, fall time  
WCLE  
WECL  
WWHEN  
WRꢁꢀWF  
WDEP  
ns  
ns  
ns  
10  
1
µs  
Propagation delay time EN-PORT  
µs  
Semiconductor Group  
26  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
,QSXWꢀ6HQVLWLYLW\ꢀ6LJQDOꢀ),ꢀꢎVLQJOHꢀ+)ꢉPRGHꢏ  
Semiconductor Group  
27  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
T
4
*60ꢀ$SSOLFDWLRQꢀ&LUFXLW  
Semiconductor Group  
28  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
/LVWꢀRIꢀ&RPSRQHQWV  
,WHP  
4XDQWLW\ꢀ5HIHUHQFH  
3DUW  
1
2
3
4
5
6
7
8
1 57  
2 513, 514  
1 56  
1 58  
1 510  
1 512  
4 59, 53, 55, 511  
1 54  
1 52  
100 Ω  
150 Ω  
220 Ω  
330 Ω  
3.3 kΩ  
6.8 kΩ  
8.2 kΩ  
18 kΩ  
22 kΩ  
39 kΩ  
SMD/0805 B54102-A1101-K60  
SMD/0805 B54102-A1151-J60  
SMD/0805 B54102-A1221-J60  
SMD/0805 B54102-A1331-J60  
SMD/0805 B54102-A1332-J60  
SMD/0805 B54102-A1682-J60  
SMD/0805 B54102-A1822-J60  
SMD/0805 B54102-A1183-J60  
SMD/0805 B54102-A1223-J60  
SMD/0805 B54102-A1393-J60  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
9
10  
1 52  
11  
1 /1  
22 nH  
SIMID 01 B82412-A3220-M  
S+M  
12  
13  
14  
15  
1 &11  
1 &13  
1 &8  
6 &20, &10, &12,  
ꢀꢀꢀꢀ&14, &15, &16  
3 &17, &1, &2  
1 &9  
1 &3  
1 &5  
1.2 pF  
2.2 pF  
10 pF  
COG/0805 B37940-K5010-C262  
COG/0805 B37940-K5020-C262  
COG/0805 B37940-K5100-J62  
S+M  
S+M  
S+M  
22 pF  
33 pF  
COG/0805 B37940-K5220-J62  
COG/0805 B37940-K5330-J62  
COG/0805 B37940-K5101-J62  
COG/0805 B37940-K5331-J62  
COG/0805 B37940-K5561-J62  
COG/1210 B37949-K5562-J62  
X7R/1210 B37950-K5104-K62  
B45196-E3226-+409  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
S+M  
16  
17  
18  
19  
20  
21  
22  
100 pF  
330 pF  
560 pF  
5.6 nF  
100 nF  
22 µF  
1 &7  
1 &6  
1 &19  
23  
24  
25  
1 D1  
2 T3, T2  
1 T1  
BBY 51  
BFR 280  
BFT 92  
Q62702-B631  
Q62702-F1298  
Q62702-F1062  
SIEMENS  
SIEMENS  
SIEMENS  
26  
27  
28  
29  
1 &  
2 X2, X1  
1 RX  
1,0 nF  
SMA  
1.3 GHz  
PMB 2306T P-DSO-14  
PMB 2306T P-DSO-14  
PMB 2314 P-DSO-8  
PMB 2314 P-DSO-8  
COG/1210 B37949-K5102-J62  
Connector  
S+M  
4
B69610-G1307-A412  
Q67100-H6423  
Q67106-H6423(T+R)  
Q67000-A6121  
Q67006-A6121(T+R)  
S+M  
1 IC1  
SIEMENS  
SIEMENS  
SIEMENS  
SIEMENS  
30  
1 IC2  
Semiconductor Group  
29  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
3KDVHꢀ1RLVHꢀ&ORVHꢀWRꢀWKHꢀ&DUULHUꢀ  
Semiconductor Group  
30  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
6SHFWUXPꢀDWꢀ/RZHUꢀ(QGꢀRIꢀ*60ꢀ7;ꢀ%RDUGꢀꢎ0RELOHꢏ  
Semiconductor Group  
31  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
/RFNꢉ,Qꢀ7LPHꢀIRUꢀ*60ꢀ$SSOLFDWLRQ  
Semiconductor Group  
32  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
(OHFWULFDOꢀ&KDUDFWHULVWLFV  
0HDVXUHPHQWꢀ6HWꢉ8SꢀIRUꢀ/RFNꢉꢀ,Qꢀ7LPH  
Semiconductor Group  
33  
02.97  
30%ꢀꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
3DFNDJHꢀ2XWOLQHV  
3DFNDJHꢀ2XWOLQHV  
ꢐꢃꢇ  
3ODVWLFꢉ3DFNDJHꢆꢀ3ꢉ76623ꢉꢇꢋ  
Semiconductor Group  
34  
02.97  
30%ꢂꢊꢁꢋ5ꢌ30%ꢂꢊꢁꢋ7  
3DFNDJHꢀ2XWOLQHV  
ꢐꢃꢂ  
3ODVWLFꢉ3DFNDJHꢆꢀ3ꢉ'62ꢉꢇꢐꢉꢇꢎ60'ꢏ  
6RUWVꢀRIꢀ3DFNLQJ  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
35  
02.97  

相关型号:

Q-710

NEMA 5-15P STRAIGHT BLADE DEVICE
QUALTEK

Q-710-BW

NEMA 5-15P STRAIGHT BLADE DEVICE
QUALTEK

Q-712

NEMA 5-15R STRAIGHT BLADE DEVICE
QUALTEK

Q-712-BW

NEMA 5-15R STRAIGHT BLADE DEVICE
QUALTEK

Q-716

NEMA 5-20P STRAIGHT BLADE DEVICE
QUALTEK

Q-716-BW

NEMA 5-20P STRAIGHT BLADE DEVICE
QUALTEK

Q-718

NEMA 5-20R STRAIGHT BLADE DEVICE
QUALTEK

Q-718-BW

NEMA 5-20R STRAIGHT BLADE DEVICE
QUALTEK

Q-720

NEMA 6-15P STRAIGHT BLADE DEVICE
QUALTEK

Q-720-BW

NEMA 6-15P STRAIGHT BLADE DEVICE
QUALTEK

Q-722

NEMA 6-15R STRAIGHT BLADE DEVICE
QUALTEK

Q-722-BW

NEMA 6-15R STRAIGHT BLADE DEVICE
QUALTEK