Q67040-S4505 [INFINEON]

FAST IGBT IN NPT TECHNOLOGY; 快速IGBT在不扩散核武器条约科技
Q67040-S4505
型号: Q67040-S4505
厂家: Infineon    Infineon
描述:

FAST IGBT IN NPT TECHNOLOGY
快速IGBT在不扩散核武器条约科技

双极性晶体管
文件: 总12页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGP02N60,  
SGB02N60  
SGD02N60  
Fast IGBT in NPT-technology  
75% lower Eoff compared to previous generation  
combined with low conduction losses  
Short circuit withstand time – 10 µs  
Designed for:  
C
E
- Motor controls  
- Inverter  
G
NPT-Technology for 600V applications offers:  
- very tight parameter distribution  
- high ruggedness, temperature stable behaviour  
- parallel switching capability  
P-TO-252-3-1 (D-PAK) P-TO-220-3-1  
P-TO-263-3-2 (D²-PAK)  
(TO-263AB)  
(TO-252AA)  
(TO-220AB)  
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/  
Type  
VCE  
IC  
VCE(sat)  
Tj  
Package  
Ordering Code  
SGP02N60  
SGB02N60  
SGD02N60  
600V  
2A  
2.2V  
TO-220AB  
Q67040-S4504  
Q67040-S4505  
Q67041-A4707  
150°C  
TO-263AB  
TO-252AA(DPAK)  
Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
Collector-emitter voltage  
DC collector current  
TC = 25°C  
VCE  
IC  
600  
V
A
6.0  
2.9  
TC = 100°C  
Pulsed collector current, tp limited by Tjmax  
ICpul s  
-
12  
12  
Turn off safe operating area  
VCE 600V, Tj 150°C  
Gate-emitter voltage  
VG E  
EAS  
V
±20  
Avalanche energy, single pulse  
IC = 2 A, VCC = 50 V, RGE = 25 ,  
start at Tj = 25°C  
13  
mJ  
Short circuit withstand time1)  
VGE = 15V, VCC 600V, Tj 150°C  
Power dissipation  
tSC  
10  
30  
µs  
Pt ot  
W
TC = 25°C  
Operating junction and storage temperature  
Tj , Tstg  
-55...+150  
°C  
1) Allowed number of short circuits: <1000; time between short circuits: >1s.  
1
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
Thermal Resistance  
Parameter  
Symbol  
Conditions  
Max. Value  
Unit  
Characteristic  
IGBT thermal resistance,  
junction – case  
Rt hJC  
Rt hJA  
Rt hJA  
4.2  
62  
K/W  
Thermal resistance,  
junction – ambient  
SMD version, device on PCB1)  
TO-220AB  
TO-252AA  
TO-263AB  
50  
40  
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified  
Value  
Typ.  
Parameter  
Symbol  
Conditions  
Unit  
min.  
max.  
Static Characteristic  
Collector-emitter breakdown voltage V( BR)CES  
600  
-
-
V
VG E=0V, IC =500µA  
Collector-emitter saturation voltage  
VC E( sat ) VG E = 15V, IC =2A  
Tj =25°C  
1.7  
-
1.9  
2.2  
2.4  
2.7  
Tj =150°C  
Gate-emitter threshold voltage  
VG E(t h)  
ICES  
3
4
5
IC =150µA,VCE=VGE  
VCE=600V,VGE=0V  
Tj =25°C  
Zero gate voltage collector current  
µA  
-
-
-
-
20  
250  
Tj =150°C  
Gate-emitter leakage current  
Transconductance  
IGES  
gfs  
VCE=0V,VG E=20V  
VCE=20V, IC =2A  
-
-
-
100  
-
nA  
S
1.6  
Dynamic Characteristic  
Input capacitance  
Ciss  
VCE=25V,  
VG E=0V,  
-
-
-
-
142  
18  
170  
22  
pF  
Output capacitance  
Coss  
Crss  
f=1MHz  
Reverse transfer capacitance  
Gate charge  
10  
12  
QGate  
VCC =480V, IC =2A  
VG E=15V  
14  
18  
nC  
nH  
A
Internal emitter inductance  
LE  
TO-220AB  
-
-
7
-
-
measured 5mm (0.197 in.) from case  
Short circuit collector current2)  
IC( SC)  
20  
VG E=15V,tSC10µs  
VCC 600V,  
Tj 150°C  
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for  
collector connection. PCB is vertical without blown air.  
2) Allowed number of short circuits: <1000; time between short circuits: >1s.  
2
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
Switching Characteristic, Inductive Load, at Tj=25 °C  
Value  
Unit  
Parameter  
Symbol  
Conditions  
min.  
typ.  
max.  
IGBT Characteristic  
Turn-on delay time  
Rise time  
Tj =25°C,  
CC =400V,IC =2A,  
VG E=0/15V,  
td(on)  
tr  
td( off)  
tf  
-
-
-
-
-
-
-
20  
13  
24  
16  
ns  
V
Turn-off delay time  
Fall time  
259  
311  
62  
RG=118,  
1)  
Lσ =180nH,  
52  
1)  
Cσ =180pF  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Et s  
0.036  
0.028  
0.064  
0.041 mJ  
0.036  
Energy losses include  
“tail” and diode  
reverse recovery.  
0.078  
Switching Characteristic, Inductive Load, at Tj=150 °C  
Value  
typ.  
Parameter  
Symbol  
Conditions  
Unit  
min.  
max.  
IGBT Characteristic  
Turn-on delay time  
Rise time  
Tj =150°C,  
td(on)  
tr  
td( off)  
tf  
-
-
-
-
-
-
-
20  
14  
24  
17  
ns  
V
V
CC =400V, IC =2A,  
G E=0/15V,  
Turn-off delay time  
Fall time  
287  
344  
80  
RG=118,  
1)  
Lσ =180nH,  
67  
1)  
Cσ =180pF  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Et s  
0.054  
0.043  
0.097  
0.062 mJ  
0.056  
Energy losses include  
“tail” and diode  
reverse recovery.  
0.118  
1) Leakage inductance Lσ and Stray capacity Cσ due to dynamic test circuit in Figure E.  
3
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
16A  
14A  
12A  
10A  
8A  
Ic  
tp=2µs  
10A  
1A  
15µs  
50µs  
200µs  
TC=80°C  
6A  
0.1A  
0.01A  
TC=110°C  
1ms  
DC  
4A  
Ic  
2A  
0A  
10Hz  
1V  
10V  
100V  
1000V  
100Hz  
1kHz  
10kHz 100kHz  
f, SWITCHING FREQUENCY  
VCE, COLLECTOR-EMITTER VOLTAGE  
Figure 1. Collector current as a function of  
switching frequency  
Figure 2. Safe operating area  
(D = 0, TC = 25°C, Tj 150°C)  
(Tj 150°C, D = 0.5, VCE = 400V,  
VGE = 0/+15V, RG = 118)  
35W  
30W  
25W  
20W  
15W  
10W  
5W  
7A  
6A  
5A  
4A  
3A  
2A  
1A  
0A  
0W  
25°C  
25°C  
50°C  
75°C 100°C 125°C  
50°C  
75°C 100°C 125°C  
TC, CASE TEMPERATURE  
TC, CASE TEMPERATURE  
Figure 3. Power dissipation (IGBT) as a  
function of case temperature  
(Tj 150°C)  
Figure 4. Collector current as a function of  
case temperature  
(VGE 15V, Tj 150°C)  
4
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
7A  
6A  
5A  
4A  
3A  
2A  
1A  
0A  
7A  
6A  
5A  
VGE=20V  
15V  
13V  
11V  
9V  
VGE=20V  
15V  
13V  
11V  
9V  
4A  
3A  
2A  
1A  
0A  
7V  
7V  
5V  
5V  
0V  
1V  
2V  
3V  
4V  
5V  
0V  
1V  
2V  
3V  
4V  
5V  
VCE, COLLECTOR-EMITTER VOLTAGE  
VCE, COLLECTOR-EMITTER VOLTAGE  
Figure 5. Typical output characteristics  
Figure 6. Typical output characteristics  
(Tj = 25°C)  
(Tj = 150°C)  
8A  
4.0V  
Tj=+25°C  
7A  
6A  
5A  
4A  
3A  
2A  
1A  
0A  
3.5V  
-55°C  
+150°C  
IC = 4A  
3.0V  
2.5V  
IC = 2A  
2.0V  
1.5V  
1.0V  
0V  
2V  
4V  
6V  
8V  
10V  
-50°C  
0°C  
50°C 100°C 150°C  
VGE, GATE-EMITTER VOLTAGE  
Tj, JUNCTION TEMPERATURE  
Figure 7. Typical transfer characteristics  
Figure 8. Typical collector-emitter  
(VCE = 10V)  
saturation voltage as a function of junction  
temperature  
(VGE = 15V)  
5
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
td(off)  
td(off)  
tf  
tf  
100ns  
100ns  
td(on)  
td(on)  
tr  
tr  
10ns  
0A  
10ns  
0  
100Ω  
200Ω  
300Ω  
400Ω  
1A  
2A  
3A  
4A  
5A  
IC, COLLECTOR CURRENT  
RG, GATE RESISTOR  
Figure 9. Typical switching times as a  
function of collector current  
Figure 10. Typical switching times as a  
function of gate resistor  
(inductive load, Tj = 150°C, VCE = 400V,  
(inductive load, Tj = 150°C, VCE = 400V,  
VGE = 0/+15V, IC = 2A,  
VGE = 0/+15V, RG = 118,  
Dynamic test circuit in Figure E)  
Dynamic test circuit in Figure E)  
5.5V  
5.0V  
4.5V  
4.0V  
td(off)  
100ns  
max.  
tf  
3.5V  
3.0V  
2.5V  
2.0V  
td(on)  
typ.  
min.  
tr  
10ns  
0°C  
50°C  
100°C  
150°C  
-50°C  
0°C  
50°C 100°C 150°C  
Tj, JUNCTION TEMPERATURE  
Tj, JUNCTION TEMPERATURE  
Figure 11. Typical switching times as a  
function of junction temperature  
(inductive load, VCE = 400V, VGE = 0/+15V,  
IC = 2A, RG = 118,  
Figure 12. Gate-emitter threshold voltage  
as a function of junction temperature  
(IC = 0.15mA)  
Dynamic test circuit in Figure E)  
6
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
0.2mJ  
*) Eon and Ets include losses  
*) Eon and Ets include losses  
due to diode recovery.  
due to diode recovery.  
0.2mJ  
0.1mJ  
0.0mJ  
Ets*  
Ets*  
0.1mJ  
Eon  
*
Eon  
*
Eoff  
Eoff  
0.0mJ  
0Ω  
100Ω  
200Ω  
300Ω  
400Ω  
0A  
1A  
2A  
3A  
4A  
5A  
IC, COLLECTOR CURRENT  
RG, GATE RESISTOR  
Figure 13. Typical switching energy losses  
as a function of collector current  
Figure 14. Typical switching energy losses  
as a function of gate resistor  
(inductive load, Tj = 150°C, VCE = 400V,  
(inductive load, Tj = 150°C, VCE = 400V,  
VGE = 0/+15V, IC = 2A,  
VGE = 0/+15V, RG = 118,  
Dynamic test circuit in Figure E)  
Dynamic test circuit in Figure E)  
0.2mJ  
*) Eon and Ets include losses  
due to diode recovery.  
D=0.5  
0.2  
100K/W  
Ets*  
0.1  
0.05  
Eon  
*
0.1mJ  
0.02  
R , ( K / W )  
1.026  
1.3  
1.69  
0.183  
τ , ( s )  
10-1K/W  
0.035  
3.62*10-3  
4.02*10-4  
4.21*10-5  
0.01  
Eoff  
R1  
R2  
10-2K/W  
single pulse  
C1=τ1/R1 C2=τ2/R2  
0.0mJ  
0°C  
50°C  
100°C  
150°C  
1µs  
10µs 100µs 1ms 10ms 100ms 1s  
tp, PULSE WIDTH  
Tj, JUNCTION TEMPERATURE  
Figure 15. Typical switching energy losses  
as a function of junction temperature  
(inductive load, VCE = 400V, VGE = 0/+15V,  
IC = 2A, RG = 118,  
Figure 16. IGBT transient thermal  
impedance as a function of pulse width  
(D = tp / T)  
Dynamic test circuit in Figure E)  
7
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
25V  
20V  
15V  
10V  
5V  
Ciss  
100pF  
120V  
480V  
Coss  
10pF  
Crss  
0V  
0nC  
5nC  
10nC  
15nC  
0V  
10V  
20V  
30V  
QGE, GATE CHARGE  
VCE, COLLECTOR-EMITTER VOLTAGE  
Figure 17. Typical gate charge  
(IC = 2A)  
Figure 18. Typical capacitance as a  
function of collector-emitter voltage  
(VGE = 0V, f = 1MHz)  
25µs  
40A  
30A  
20A  
10A  
0A  
20µs  
15µs  
10µs  
5µs  
0µs  
10V  
11V  
12V  
13V  
14V  
15V  
10V  
12V  
14V  
16V  
18V  
20V  
VGE, GATE-EMITTER VOLTAGE  
VGE, GATE-EMITTER VOLTAGE  
Figure 19. Short circuit withstand time as a  
function of gate-emitter voltage  
(VCE = 600V, start at Tj = 25°C)  
Figure 20. Typical short circuit collector  
current as a function of gate-emitter voltage  
(VCE 600V,Tj = 150°C)  
8
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
dimensions  
[mm]  
TO-220AB  
symbol  
[inch]  
min  
9.70  
14.88  
0.65  
3.55  
2.60  
6.00  
13.00  
4.35  
0.38  
0.95  
max  
10.30  
15.95  
0.86  
3.89  
3.00  
6.80  
14.00  
4.75  
0.65  
1.32  
min  
max  
A
B
C
D
E
F
0.3819  
0.5858  
0.0256  
0.1398  
0.1024  
0.2362  
0.5118  
0.1713  
0.0150  
0.0374  
0.4055  
0.6280  
0.0339  
0.1531  
0.1181  
0.2677  
0.5512  
0.1870  
0.0256  
0.0520  
G
H
K
L
M
N
P
T
2.54 typ.  
0.1 typ.  
4.30  
4.50  
1.40  
2.72  
0.1693  
0.0461  
0.0906  
0.1772  
0.0551  
0.1071  
1.17  
2.30  
TO-263AB (D2Pak)  
dimensions  
symbol  
[mm]  
[inch]  
min  
9.80  
0.70  
1.00  
1.03  
max  
10.20  
1.30  
1.60  
1.07  
min  
max  
A
B
C
D
E
F
0.3858  
0.0276  
0.0394  
0.0406  
0.4016  
0.0512  
0.0630  
0.0421  
2.54 typ.  
0.65 0.85  
5.08 typ.  
0.1 typ.  
0.0256  
0.0335  
G
H
K
L
0.2 typ.  
4.30  
4.50  
1.37  
9.45  
2.50  
0.1693  
0.0461  
0.3563  
0.0906  
0.1772  
0.0539  
0.3720  
0.0984  
1.17  
9.05  
2.30  
M
N
P
Q
R
S
T
15 typ.  
0.5906 typ.  
0.00  
4.20  
0.20  
5.20  
0.0000  
0.1654  
0.0079  
0.2047  
8° max  
8° max  
2.40  
0.40  
3.00  
0.60  
0.0945  
0.0157  
0.1181  
0.0236  
U
V
W
X
Y
Z
10.80  
1.15  
6.23  
4.60  
9.40  
16.15  
0.4252  
0.0453  
0.2453  
0.1811  
0.3701  
0.6358  
9
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
dimensions  
P-TO252 (D-Pak)  
symbol  
[mm]  
inch]  
min  
6.40  
5.25  
(0.65)  
0.63  
max  
6.73  
5.50  
min  
max  
A
B
C
D
E
F
0.2520  
0.2067  
0.2650  
0.2165  
(1.15) (0.0256) (0.0453)  
0.89  
0.0248  
0.0350  
2.28  
0.2520  
2.19  
0.76  
0.90  
5.97  
9.40  
0.46  
0.87  
0.51  
5.00  
4.17  
0.26  
-
2.39  
0.98  
1.21  
6.23  
10.40  
0.58  
1.15  
-
0.0862  
0.0299  
0.0354  
0.2350  
0.3701  
0.0181  
0.0343  
0.0201  
0.1969  
0.1642  
0.0102  
-
0.0941  
0.0386  
0.0476  
0.2453  
0.4094  
0.0228  
0.0453  
-
G
H
K
L
M
N
P
R
S
T
-
-
-
-
1.02  
-
0.0402  
-
U
dimensions  
P-TO251 (I-Pak)  
symbol  
[mm]  
[inch]  
min  
6.47  
5.25  
4.19  
0.63  
max  
6.73  
5.41  
4.43  
0.89  
min  
max  
A
B
C
D
E
F
0.2547  
0.2067  
0.1650  
0.0248  
0.2650  
0.2130  
0.1744  
0.0350  
2.29 typ.  
2.18  
0.0902 typ.  
2.39  
0.86  
1.11  
6.23  
9.65  
0.56  
1.15  
0.0858  
0.0299  
0.0398  
0.2350  
0.3598  
0.0181  
0.0386  
0.0941  
0.0339  
0.0437  
0.2453  
0.3799  
0.0220  
0.0453  
G
H
K
L
0.76  
1.01  
5.97  
9.14  
0.46  
0.98  
M
N
10  
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
τ1  
r1  
τ2  
r 2  
τn  
r n  
T (t)  
j
p(t)  
r 2  
r1  
rn  
T
C
Figure D. Thermal equivalent  
circuit  
Figure A. Definition of switching times  
Figure B. Definition of switching losses  
Figure E. Dynamic test circuit  
Leakage inductance Lσ =180nH  
and Stray capacity Cσ =180pF.  
11  
Jul-02  
SGP02N60,  
SGB02N60  
SGD02N60  
Published by  
Infineon Technologies AG,  
Bereich Kommunikation  
St.-Martin-Strasse 53,  
D-81541 München  
© Infineon Technologies AG 2000  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,  
descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon  
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of  
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or  
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect  
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.  
12  
Jul-02  

相关型号:

Q67040-S4511

Silicon Carbide Schottky Diode
INFINEON

Q67040-S4514

LOW LOSS DUOPACK - IGBT IN TRENCH AND FIELDSTOP TECHNOLOGY WITH SOFT, FAST RECOVERY ANTI - PARALLEL EMCON HE DIODE
INFINEON

Q67040-S4516

LOW LOSS DUOPACK : IGBT IN TRENCH AND FIELDSTOP TECHNOLOGY WITH SOFT, FAST RECOVERY ANTI-PARALLEL EMCON HE DIODE
INFINEON

Q67040-S4518

TRENCHSTOP SERIES
INFINEON

Q67040-S4519

Low Loss IGBT in Trench and Fieldstop technology
INFINEON

Q67040-S4520

LOW LOSS DUOPACK : IGBT IN TRENCH AND FIELDSTOP TECHNOLOGY WITH SOFT, FAST RECOVERY ANTI-PARAALEL EMCON HE DIODE
INFINEON

Q67040-S4521

Low Loss IGBT in Trench and Fieldstop technology
INFINEON

Q67040-S4535

High Speed IGBT in NPT-technology
INFINEON

Q67040-S4540

Off-Line SMPS Current Mode Controller with integrated 650V/ 800V CoolMOS
INFINEON

Q67040-S4541

Off-Line SMPS Current Mode Controller with integrated 650V/ 800V CoolMOS
INFINEON

Q67040-S4542

Off-Line SMPS Current Mode Controller with integrated 650V/ 800V CoolMOS
INFINEON

Q67040-S4546

Off-Line SMPS Current Mode Controller with integrated 650V/ 800V CoolMOS
INFINEON