RHN7150 [INFINEON]

TRANSISTOR N-CHANNEL; 晶体管N沟道
RHN7150
型号: RHN7150
厂家: Infineon    Infineon
描述:

TRANSISTOR N-CHANNEL
晶体管N沟道

晶体 晶体管
文件: 总14页 (文件大小:461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Previous Datasheet  
Index  
Next Data Sheet  
ProvisionaData Sheet No. PD-9.720A  
REPETITIVE AVALANCHE AND dv/dt RATED  
HEXFET® TRANSISTOR  
IRHN7150  
IRHN8150  
N-CHANNEL  
MEGA RAD HARD  
Product Summary  
100 Volt, 0.055, MEGA RAD HARD HEXFET  
Part Number  
IRHN7150  
BVDSS  
100V  
RDS(on)  
0.055Ω  
0.055Ω  
ID  
International Rectifier’s MEGA RAD HARD technology  
HEXFETs demonstrate excellent threshold voltage sta-  
bility and breakdown voltage stability at total radiation  
doses as high as 1 x 106 Rads (Si). Under identical pre-  
and post-radiation test conditions, International Rectifier’s  
34A  
34A  
IRHN8150  
100V  
RAD HARD HEXFETs retain identical electrical specifi- Features:  
cations up to 1 x 105 Rads (Si) total dose.At 1 x 106 Rads  
(Si) total dose, under the same pre-dose conditions, only  
minor shifts in the electrical specifications are observed  
and are so specified in table 1. No compensation in gate  
drive circuitry is required. In addition, these devices are  
capable of surviving transient ionization pulses as high  
as 1 x 1012 Rads (Si)/Sec, and return to normal operation  
within a few microseconds. Single Event Effect (SEE)  
testing of International Rectifier RAD HARD HEXFETs  
has demonstrated virtual immunity to SEE failure. Since  
the MEGA RAD HARD process utilizes International  
Rectifier’s patented HEXFET technology, the user can  
expect the highest quality and reliability in the industry.  
Radiation Hardened up to 1 x 106 Rads (Si)  
Single Event Burnout (SEB) Hardened  
Single Event Gate Rupture (SEGR) Hardened  
Gamma Dot (Flash X-Ray) Hardened  
Neutron Tolerant  
Identical Pre- and Post-Electrical Test Conditions  
Repetitive Avalanche Rating  
Dynamic dv/dt Rating  
Simple Drive Requirements  
Ease of Paralleling  
Hermetically Sealed  
Surface Mount  
Light-weight  
RAD HARD HEXFET transistors also feature all of the  
well-established advantages of MOSFETs, such as volt-  
age control, very fast switching, ease of paralleling and  
temperature stability of the electrical parameters.  
They are well-suited for applications such as switching  
power supplies, motor controls, inverters, choppers, au-  
dio amplifiers and high-energy pulse circuits in space and  
weapons environments.  
Absolute Maximum Ratings  
Pre-Radiation  
Parameter  
IRHN7150, IRHN8150  
Units  
I
@ V  
= 12V, T = 25°C Continuous Drain Current  
34  
D
GS  
C
A
I
D
@ V  
= 12V, T = 100°C Continuous Drain Current  
C
21  
GS  
I
Pulsed Drain Current ➀  
136  
DM  
@ T = 25°C  
P
Max. Power Dissipation  
150  
W
W/K ➄  
V
D
C
Linear Derating Factor  
1.2  
V
GS  
Gate-to-Source Voltage  
±20  
E
Single Pulse Avalanche Energy ➁  
Avalanche Current ➀  
500  
mJ  
AS  
I
34  
A
AR  
E
Repetitive Avalanche Energy ➀  
Peak Diode Recovery dv/dt ➂  
Operating Junction  
15  
mJ  
AR  
dv/dt  
5.5  
V/ns  
T
-55 to 150  
J
oC  
g
T
Storage Temperature Range  
Package Mounting Surface Temperature  
STG  
(for 5 sec.)  
300  
Weight  
2.6 (typical)  
To Order  
 
 
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)  
Parameter  
Min. Typ. Max. Units  
Test Conditions  
BV  
Drain-to-Source Breakdown Voltage  
100  
V
V
= 0V, I = 1.0 mA  
D
DSS  
GS  
V/°C Reference to 25°C, I = 1.0 mA  
BV  
/T  
Temperature Coefficient of Breakdown  
Voltage  
0.13  
DSS  
J
D
R
Static Drain-to-Source  
On-State Resistance  
GateThreshold Voltage  
Forward Transconductance  
Zero Gate Voltage Drain Current  
2.0  
8.0  
0.055  
0.066  
4.0  
25  
V
V
= 12V, I = 21A  
D
DS(on)  
GS  
GS  
V
S ( )  
= 12V, I = 34A  
D
V
g
V
V
= V , I = 1.0 mA  
GS(th)  
fs  
DS  
DS  
GS  
D
15V, I  
= 21A ➃  
DS  
I
V
= 0.8 x Max Rating,V  
V
DS  
= 0V  
DSS  
DS  
GS  
= 0.8 x Max Rating  
µA  
250  
V
= 0V, T = 125°C  
J
GS  
I
Gate-to-Source Leakage Forward  
Gate-to-Source Leakage Reverse  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain (‘Miller’) Charge  
Turn-On Delay Time  
Rise Time  
Turn-Off Delay Time  
Fall Time  
Internal Drain Inductance  
0.8  
100  
-100  
160  
35  
65  
45  
190  
170  
130  
V
= 20V  
= -20V  
GSS  
GS  
nA  
nC  
I
V
GS  
GSS  
Q
Q
Q
t
V
=12V, I = 34A  
g
gs  
gd  
d(on)  
GS  
D
V
= Max. Rating x 0.5  
(see figures 23 and 31)  
DS  
V
= 50V, I = 34A,  
DD D  
t
R = 2.35Ω  
G
(see figure 28)  
r
ns  
t
d(off)  
t
f
Measured from the  
drain lead, 6mm (0.25  
in.) from package to  
center of die.  
Modified MOSFET  
symbol showing the  
internal inductances.  
L
D
S
nH  
pF  
Measured from the  
source lead, 6mm  
(0.25 in.) from package  
to source bonding pad.  
L
Internal Source Inductance  
2.8  
C
C
C
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
4300  
1200  
200  
V
= 0V, V = 25V  
DS  
f = 1.0 MHz  
(see figure 22)  
iss  
oss  
rss  
GS  
Source-Drain Diode Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Test Conditions  
I
I
Continuous Source Current (Body Diode)  
Pulse Source Current (Body Diode) ➀  
34  
136  
Modified MOSFET symbol showing the  
integral reverse p-n junction rectifier.  
S
SM  
A
V
t
Q
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
1.9  
570  
5.8  
V
ns  
µC  
T = 25°C, I = 34A, V  
= 0V ➃  
j
SD  
rr  
RR  
S
GS  
T = 25°C, I = 34A, di/dt 100A/µs  
j
F
V
50V ➃  
DD  
t
Forward Turn-On Time  
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L + L .  
S D  
on  
Thermal Resistance  
Parameter  
Min. Typ. Max. Units  
Test Conditions  
R
R
Junction-to-Case  
0.83  
thJC  
K/W➄  
Junction-to-PC board  
TBD  
soldered to a copper-clad PC board  
thJ-PCB  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
IRHN7150, IRHN8150 Devices  
Radiation Characteristics  
Radiation Performance of Mega Rad Hard HEXFETs  
International Rectifier Radiation Hardened HEX-FETs  
are tested to verify their hardness capability.  
The hardness assurance program at International  
Rectifier uses two radiation environments.  
Both pre- and post-radiation performance are tested  
and specified using the same drive circuitry and test  
conditions in order to provide a direct comparison. It  
should be noted that at a radiation level of 1 x 105  
Rads (Si), no change in limits are specified in DC  
parameters. At a radiation level of 1 x106 Rads (Si),  
leakage remains low and the device is usable with  
no change in drive circuitry required.  
Every manufacturing lot is tested in a low dose rate  
(total dose) environment per MlL-STD-750, test  
method 1019. International Rectifier has imposed a  
standard gate voltage of 12 volts per note 6 and  
figure 8a and a V  
bias condition equal to 80%  
High dose rate testing may be done on a special  
request basis, using a dose rate up to 1 x 1012 Rads  
(Si)/Sec. Photocurrent and transient voltage wave-  
forms are shown in figure 7, and the recommended  
test circuit to be used is shown in figure 9.  
DSS  
of the device rated voltage per note 7 and figure  
8b. Pre- and post-radiation limits of the devices irra-  
diated to 1 x 105 Rads (Si) are identical and are pre-  
sented in Table 1, column 1, IRHN7150. Device  
performance limits at a post radiation level of 1 x  
106 Rads (Si) are presented in Table 1, column 2,  
IRHN8150. The values in Table 1 will be met for ei-  
ther of the two low dose rate test circuits that are  
used. Typical delta curves showing radiation re-  
sponse appear in figures 1 through 5. Typical post-  
radiation curves appear in figures 10 through 17.  
International Rectifier radiation hardened HEXFETs  
have been characterized in neutron and heavy ion  
Single Event Effects (SEE) environments. The ef-  
fects on bulk silicon of the type used by Interna-  
tional Rectifier on RAD HARD HEXFETs are shown  
in figure 6. Single Event Effects characterization is  
shown in Table 3.  
Table 1. Low Dose Rate ➅ ➆  
IRHN7150 IRHN8150  
100K Rads (Si) 1000K Rads (Si) Units  
min. max. min. max.  
Parameter  
Test Conditions ➉  
BV  
V
Drain-to-Source Breakdown Voltage 100  
4.0  
100  
1.25  
4.5  
V
= 0V, I = 1.0 mA  
GS D  
DSS  
V
Gate Threshold Voltage ➃  
Gate-to-Source Leakage Forward  
Gate-to-Source Leakage Reverse  
Zero Gate Voltage Drain Current  
Static Drain-to-Source ➃  
2.0  
V
= V , I = 1.0 mA  
GS  
DS D  
GS(th)  
I
100  
-100  
25  
100  
-100  
50  
V
= +20V  
= -20V  
GSS  
GS  
nA  
I
V
GS  
GSS  
I
µA  
V
= 0.8 x Max Rating, V = 0  
DS GS  
DSS  
R
0.055  
0.075  
V
= 12V, I = 21A  
GS  
D
DS(on)1  
On-State Resistance One  
V
SD  
Diode Forward Voltage ➃  
1.9  
1.9  
V
T
C
= 25°C, I = 34A,V  
= 0V  
GS  
S
Table 2. High Dose Rate ➇  
1011 Rads (Si)/sec 1012 Rads (Si)/sec  
Min. Typ Max. Min. Typ. Max. Units  
Parameter  
Test Conditions  
Applied drain-to-source voltage  
during gamma-dot  
V
DSS  
Drain-to-Source Voltage  
80  
80  
V
I
0.1  
100  
1000  
0.5  
100  
A
Peak radiation induced photo-current  
PP  
di/dt  
150 A/µsec Rate of rise of photo-current  
µH Circuit inductance required to limit di/dt  
L
1
Table 3. Single Event Effects ➈  
LET (Si)  
Fluence Range  
V
Bias  
(V)  
100  
V
Bias  
GS  
(V)  
-5  
DS  
Parameter  
Typ.  
100  
Units  
V
Ion  
Ni  
(MeV/mg/cm2) (ions/cm2) (µm)  
BV  
28  
1 x 105  
~41  
DSS  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
Post-Radiation  
IRHN7150, IRHN8150 Devices  
V
= 12V  
GS  
= 21A  
I
D
Figure 1. – Typical Response of GateThreshold Voltage  
Vs.Total Dose Exposure.  
Figure 2. – Typical Response of On-State Resistance  
Vs. Total Dose Exposure.  
V
15V  
GS  
= 21A  
I
D
Figure 4. – Typical Response of Drain-to-Source  
Breakdown Vs. Total Dose Exposure.  
Figure 3. – Typical Response of Transconductance  
Vs. Total Dose Exposure.  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
Post-Radiation  
IRHN7150, IRHN8150 Devices  
Figure 5. – Typical Zero Gate Voltage Drain Current  
Vs. Total Dose Exposure.  
Figure 6. Typical On-State Resistance Vs.  
Neutron Fluence Level  
Figure 8a – Gate Stress  
of V Equals 12  
GSS  
Volts During Radiation.  
Figure 8b – V  
Stress  
Figure 7. – Typical Transient Response of  
Rad Hard HEXFET During 1 x 1012  
Rad (Si)/Sec Exposure.  
Figure 9. – High Dose Rate (Gamma Dot)  
Test Circuit  
DSS  
Equals 80% of B  
VDSS  
During Radiation.  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
IRHN7150, IRHN8150 Devices  
Radiation Characteristics  
Note: Bias Conditions during radiation; V  
= 12 V , V = 0 V  
dc DS dc  
GS  
Figure 10. – Typical Output Characteristics Pre-Radiation.  
Figure 11. – Typical Output Characteristics, Post radiation  
100K Rads (Si).  
Figure 13. – Typical Output Characteristics  
Post-Radiation 1 Mega Rads (Si)  
Figure 12. – Typical Output Characteristics Post-Radiation  
300K Rads (Si).  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
IRHN7150, IRHN8150 Devices  
Radiation Characteristics  
Note: Bias Conditions during radiation; V  
= 12 V , V = 0 V  
dc DS dc  
GS  
Figure 14. – Typical Output Characteristics Pre-Radiation.  
Figure 15. – Typical Output Characteristics, Post-Radiation  
100K Rads (Si).  
Figure 16. – Typical Output Characteristics, Post-Radiation  
300K Rads (Si).  
Figure 17. – Typical Output Characteristics, Post-Radiation  
1 Mega Rads (Si).  
To Order  
 
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
Figure 18. – Typical Output Characteristics, T = 25°C  
Figure 19. – Typical Output Characteristics, T = 150°C  
C
C
I
= 34A  
D
Figure 20. – Typical Transfer Characteristics  
Figure 21. – Normalized On-Resistance Vs. Temperature  
To Order  
 
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
I
D
= 34A  
Figure 22. – Typical Capacitance Vs. Drain-to-Source  
Voltage.  
Figure 23. – Typical Gate Charge Vs. Gate-to-Source  
Voltage.  
1000  
OPERATION IN THIS AREA LIMITED  
BY R  
DS(on)  
100  
100us  
1ms  
10  
10ms  
T
T
= 25 oC  
C
J
= 150 oC  
Single Pulse  
1
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
Figure 24. – Typical Source-Drain Diode Forward Voltage  
Figure 25. – Maximum Safe Operating Area  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
1
0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
0.01  
SINGLE PULSE  
(THERMAL RESPONSE)  
P
DM  
0.01  
t
1
t
2
Notes:  
1. Duty factor D = t / t  
1
2
2. Peak T = P  
J
x Z  
+ T  
thJC C  
DM  
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
t , Rectangular Pulse Duration (sec)  
1
Figure 26. – Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Dura ion.  
35  
30  
25  
20  
15  
10  
5
0
25  
50  
T
75  
100  
125  
°
150  
, Case Temperature ( C)  
C
Figure 27. – Maximum Drain Current Vs.  
Case Temperature.  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
Figure 28a – Switching Time Test Circuit  
Figure 28b – Switching Time Waveforms  
Figure 29a – Unclamped Inductive Test Circuit  
Figure 29b – Unclamped Inductive Waveforms  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
PEAK I = 34  
L
V
DD  
= 50V  
Figure 29c – Maximum Avalanche Energy Vs. Starting  
Junction Temperature.  
Figure 30. – Peak Diode Recovery dv/dt Test Circuit  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
Pre-Radiation  
IRHN7150, IRHN8150 Devices  
Figure 31a – Basic Gate Waveform  
Figure 31b – Gate Charge Test Circuit  
Figure 32. – Typical Time toAccumulated 1% Failure  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
IRHN7150, IRHN8150 Devices  
Radiation Characteristics  
per MIL-STD-750, method 1019. (figure 8a)  
Total Dose Irradiation with V Bias.  
Repetitive Rating; Pulse width limited by  
maximum junction temperature. (figure 26)  
Refer to current HEXFET reliability report.  
DS  
(pre-radiation)  
V
= 0.8 x rated BV  
DS  
applied and V  
DSS  
= 0 during irradiation per  
GS  
MlL-STD-750, method 1019. (figure 8b)  
@ V  
= 25V, StartingT = 25°C, Peak I = 34A  
J L  
DD  
= [0.5  
2
E
V
L
(I ) [BV  
/(BV  
DSS  
-V )]  
DSS DD  
AS  
GS  
*
*
*
L
This test is performed using a flash x-ray  
source operated in the e-beam mode (energy  
~2.5 MeV), 30 nsec pulse. (figure 9)  
= 12V, 25 R 200Ω  
G
I  
V
34A, di/dt140 A/µs,  
BV , T 150°C  
SD  
DD  
DSS  
J
Study sponsored by NASA. Evaluation performed  
at Brookhaven National Labs.  
Suggested RG = 2.35Ω  
Pulse width 300 µs; Duty Cycle 2%  
All Pre-Radiation and Post-Radiation test  
conditions are identical to facilitate direct  
comparison for circuit applications.  
K/W = °C/W  
W/K = W/°C  
Total Dose Irradiation with V  
Bias.  
= 0 during irradiation  
GS  
+12 volt V  
applied and V  
DS  
GS  
Case Outline and Dimensions – SMD-1  
Not
1
2
3
4
5
Dimension does not include metallization flash  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331  
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020  
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897  
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590  
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111  
IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086  
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371  
http://www.irf.com/  
Data and specifications subject to change without notice.  
9/96  
To Order  

相关型号:

RHP

KILOVOLT HIGH CURRENT RECTIFIER ASSEMBLIES
EDI

RHP-100A-100FNR

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100FNT

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100FYR

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100FYT

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100FZR

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100FZT

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100JNR

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100JNT

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100JYR

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100JYT

HIGH POWER RESISTOR - 20W to 140W
AAC

RHP-100A-100JZR

HIGH POWER RESISTOR - 20W to 140W
AAC