S29GL064N90TFI020 [INFINEON]

High Performance Page Mode;
S29GL064N90TFI020
型号: S29GL064N90TFI020
厂家: Infineon    Infineon
描述:

High Performance Page Mode

光电二极管 内存集成电路 闪存
文件: 总79页 (文件大小:1871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
S29GL064N, S29GL032N  
64 Mbit, 32 Mbit 3 V Page Mode  
MirrorBit Flash  
Distinctive Characteristics  
Low power consumption  
Architectural Advantages  
25 mA typical initial read current,  
1 mA typical page read current  
Single power supply operation  
50 mA typical erase/program current  
1 µA typical standby mode current  
Manufactured on 110 nm MirrorBit process technology  
Secured SiliconSector region  
128-word/256-byte sector for permanent, secure identifica-  
tion through an 8-word/16-byte random Electronic Serial  
Number, accessible through a command sequence  
Package options  
48-pin TSOP  
56-pin TSOP  
Programmed and locked at the factory or by the customer  
64-ball Fortified BGA  
48-ball fine-pitch BGA  
Flexible sector architecture  
64Mb (uniform sector models): One hundred twenty-eight 32  
Kword (64 KB) sectors  
Software and Hardware Features  
64 Mb (boot sector models): One hundred twenty-seven 32  
Software features  
Advanced Sector Protection: offers Persistent Sector Protec-  
tion and Password Sector Protection  
Program Suspend & Resume: read other sectors before pro-  
gramming operation is completed  
Erase Suspend & Resume: read/program other sectors be-  
fore an erase operation is completed  
Kword (64 KB) sectors + eight 4Kword (8KB) boot sectors  
32 Mb (uniform sector models): Sixty-four 32Kword (64 KB)  
sectors  
32 Mb (boot sector models): Sixty-three 32Kword (64 KB)  
sectors + eight 4Kword (8KB) boot sectors  
Enhanced VersatileI/O™ Control  
Data# polling & toggle bits provide status  
CFI (Common Flash Interface) compliant: allows host system  
to identify and accommodate multiple flash devices  
All input levels (address, control, and DQ input levels) and  
outputs are determined by voltage on VIO input. VIO range is  
1.65 to VCC  
Unlock Bypass Program command reduces overall multi-  
Compatibility with JEDEC standards  
Provides pin out and software compatibility for single-power  
supply flash, and superior inadvertent write protection  
ple-word programming time  
Hardware features  
WP#/ACC input accelerates programming time (when high  
voltage is applied) for greater throughput during system pro-  
duction. Protects first or last sector regardless of sector pro-  
tection settings on uniform sector models  
100,000 erase cycles typical per sector  
20-year data retention typical  
Hardware reset input (RESET#) resets device  
Ready/Busy# output (RY/BY#) detects program or erase cy-  
cle completion  
Performance Characteristics  
High performance  
90 ns access time  
8-word/16-byte page read buffer  
25 ns page read time  
16-word/32-byte write buffer which reduces overall program-  
ming time for multiple-word updates  
Cypress Semiconductor Corporation  
Document Number: 001-98525 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 26, 2017  
S29GL064N, S29GL032N  
General Description  
The S29GL-N family of devices are 3.0-Volt single-power Flash  
memory manufactured using 110 nm MirrorBit technology. The  
S29GL064N is a 64-Mb device organized as 4,194,304 words  
or 8,388,608 bytes. The S29GL032N is a 32-Mb device  
organized as 2,097,152 words or 4,194,304 bytes. Depending  
on the model number, the devices have 16-bit wide data bus  
only, or a 16-bit wide data bus that can also function as an 8-bit  
wide data bus by using the BYTE# input. The devices can be  
programmed either in the host system or in standard EPROM  
programmers.  
Device programming and erasure are initiated through  
command sequences. Once a program or erase operation  
begins, the host system need only poll the DQ7 (Data# Polling)  
or DQ6 (toggle) status bits or monitor the Ready/Busy#  
(RY/BY#) output to determine whether the operation is  
complete. To facilitate programming, an Unlock Bypass mode  
reduces command sequence overhead by requiring only two  
write cycles to program data instead of four.  
Hardware data protection measures include a low VCC  
detector that automatically inhibits write operations during  
power transitions. The hardware sector protection feature  
disables both program and erase operations in any combination  
of sectors of memory. This can be achieved in-system or via  
programming equipment.  
Access times as fast as 90 ns are available. Note that each  
access time has a specific operating voltage range (VCC) as  
specified in the Product Selector Guide and the Ordering  
Information–S29GL032N, and Ordering Information–  
S29GL064N. Package offerings include 48-pin TSOP, 56-pin  
TSOP, 48-ball fine-pitch BGA and 64-ball Fortified BGA,  
depending on model number. Each device has separate chip  
enable (CE#), write enable (WE#) and output enable (OE#)  
controls.  
The Erase Suspend/Erase Resume feature allows the host  
system to pause an erase operation in a given sector to read or  
program any other sector and then complete the erase  
operation. The Program Suspend/Program Resume feature  
enables the host system to pause a program operation in a  
given sector to read any other sector and then complete the  
program operation.  
Each device requires only a single 3.0-Volt power supply for  
both read and write functions. In addition to a VCC input, a  
high-voltage accelerated program (ACC) feature provides  
shorter programming times through increased voltage on the  
WP#/ACC or ACC input. This feature is intended to facilitate  
factory throughput during system production, but may also be  
used in the field if desired.  
The hardware RESET# pin terminates any operation in  
progress and resets the device, after which it is then ready for a  
new operation. The RESET# pin may be tied to the system  
reset circuitry. A system reset would thus also reset the device,  
enabling the host system to read boot-up firmware from the  
Flash memory device.  
The device is entirely command set compatible with the JEDEC  
single-power-supply Flash standard. Commands are written  
to the device using standard microprocessor write timing. Write  
cycles also internally latch addresses and data needed for the  
programming and erase operations.  
The device reduces power consumption in the standby mode  
when it detects specific voltage levels on CE# and RESET#, or  
when addresses are stable for a specified period of time.  
The Write Protect (WP#) feature protects the first or last sector  
by asserting a logic low on the WP#/ACC pin or WP# pin,  
depending on model number. The protected sector is still  
protected even during accelerated programming.  
The sector erase architecture allows memory sectors to be  
erased and reprogrammed without affecting the data contents  
of other sectors. The device is fully erased when shipped from  
the factory.  
The Secured Silicon Sector provides a 128-word/256-byte  
area for code or data that can be permanently protected. Once  
this sector is protected, no further changes within the sector can  
occur.  
The Advanced Sector Protection features several levels of  
sector protection, which can disable both the program and  
erase operations in certain sectors. Persistent Sector  
Protection is a method that replaces the previous 12-volt  
controlled protection method. Password Sector Protection is a  
highly sophisticated protection method that requires a  
password before changes to certain sectors are permitted.  
Cypress MirrorBit flash technology combines years of Flash  
memory manufacturing experience to produce the highest  
levels of quality, reliability and cost effectiveness. The device  
electrically erases all bits within a sector simultaneously via  
hot-hole assisted erase. The data is programmed using hot  
electron injection.  
Document Number: 001-98525 Rev. *B  
Page 2 of 78  
S29GL064N, S29GL032N  
Contents  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Product Selector Guide............................................... 4  
10.9 Command Definitions.................................................... 47  
10.10Write Operation Status ................................................. 52  
10.11DQ7: Data# Polling....................................................... 53  
10.12RY/BY#: Ready/Busy# ................................................. 54  
10.13DQ6: Toggle Bit I.......................................................... 54  
10.14DQ2: Toggle Bit II......................................................... 55  
10.15Reading Toggle Bits DQ6/DQ2 .................................... 55  
10.16DQ5: Exceeded Timing Limits...................................... 55  
10.17DQ3: Sector Erase Timer ............................................. 55  
10.18DQ1: Write-to-Buffer Abort ........................................... 56  
Block Diagram.............................................................. 4  
Connection Diagrams.................................................. 5  
Pin Description............................................................. 9  
Logic Symbols ........................................................... 10  
Ordering Information–S29GL032N........................... 12  
Ordering Information–S29GL064N........................... 14  
7.1 Valid Combinations...................................................... 15  
11. Absolute Maximum Ratings....................................... 57  
12. Operating Ranges....................................................... 58  
13. DC Characteristics...................................................... 58  
8. Device Bus Operations.............................................. 16  
8.1 Word/Byte Configuration.............................................. 16  
8.2 Requirements for Reading Array Data......................... 16  
8.3 Writing Commands/Command Sequences.................. 17  
8.4 Standby Mode.............................................................. 18  
8.5 Automatic Sleep Mode................................................. 18  
8.6 RESET#: Hardware Reset Pin..................................... 18  
8.7 Output Disable Mode ................................................... 18  
8.8 Autoselect Mode .......................................................... 29  
8.9 Advanced Sector Protection ........................................ 30  
8.10 Lock Register............................................................... 30  
8.11 Persistent Sector Protection ........................................ 31  
8.12 Password Sector Protection......................................... 33  
8.13 Password and Password Protection Mode Lock Bit .... 33  
8.14 Persistent Protection Bit Lock (PPB Lock Bit).............. 33  
8.15 Secured Silicon Sector Flash Memory Region ............ 34  
8.16 Write Protect (WP#/ACC) ............................................ 35  
8.17 Hardware Data Protection............................................ 35  
14. Test Conditions........................................................... 60  
14.1 Key to Switching Waveforms........................................ 60  
15. AC Characteristics...................................................... 61  
16. Erase And Programming Performance..................... 70  
17. Data Integrity............................................................... 71  
17.1 Erase Endurance.......................................................... 71  
17.2 Data Retention.............................................................. 71  
18. Physical Dimensions.................................................. 72  
18.1 TS048—48-Pin Standard Thin Small  
Outline Package (TSOP) .............................................. 72  
18.2 TS056—56-Pin Standard Thin Small  
Outline Package (TSOP) .............................................. 73  
18.3 VBK048—Ball Fine-pitch Ball Grid Array  
9.  
Common Flash Memory Interface (CFI)................... 36  
(BGA) 8.15x 6.15 mm Package.................................... 74  
18.4 LAA064—64-Ball Fortified Ball Grid Array  
(BGA) 13 x 11 mm Package......................................... 75  
18.5 LAE064-64-Ball Fortified Ball Grid Array  
10. Command Definitions................................................ 39  
10.1 Reading Array Data ..................................................... 39  
10.2 Reset Command.......................................................... 39  
10.3 Autoselect Command Sequence ................................. 40  
10.4 Enter/Exit Secured Silicon Sector  
Command Sequence ................................................... 40  
10.5 Program Suspend/Program Resume  
Command Sequence ................................................... 43  
10.6 Chip Erase Command Sequence ................................ 44  
10.7 Sector Erase Command Sequence ............................. 45  
10.8 Erase Suspend/Erase Resume Commands ................ 46  
(BGA) 9 x 9 mm Package............................................. 76  
19. Revision History.......................................................... 77  
Sales, Solutions, and Legal Information ..........................78  
Worldwide Sales and Design Support ...........................78  
Products ........................................................................78  
PSoC® Solutions ..........................................................78  
Cypress Developer Community .....................................78  
Technical Support .........................................................78  
Document Number: 001-98525 Rev. *B  
Page 3 of 78  
S29GL064N, S29GL032N  
1. Product Selector Guide  
Part Number  
S29GL064N  
90  
S29GL032N  
90  
VIO = 2.7–3.6 V  
VIO = 1.65–3.6 V  
Speed Option  
VCC = 2.7–3.6 V  
110  
110  
Max. Access Time (ns)  
90  
90  
25  
25  
110  
110  
30  
90  
90  
25  
25  
110  
110  
30  
Max. CE# Access Time (ns)  
Max. Page Access Time (ns)  
Max. OE# Access Time (ns)  
30  
30  
2. Block Diagram  
DQ15DQ0 (A-1)  
RY/BY#  
V
CC  
Sector Switches  
V
SS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
WE#  
WP#/ACC  
BYTE#  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
V
Detector  
CC  
Timer  
Cell Matrix  
X-Decoder  
A
**–A0  
Max  
Note  
**A  
GL064N = A21, GL032N = A20.  
MAX  
Document Number: 001-98525 Rev. *B  
Page 4 of 78  
S29GL064N, S29GL032N  
3. Connection Diagrams  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages (TSOP and BGA). The package and/or data integrity  
may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.  
Figure 1. 48-Pin Standard TSOP  
S29GL064N, S29GL032N (Models 03, 04 only)  
S29GL064N (Models 06, 07, V6, V7 only)  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A19  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A21  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
A16  
BYTE#  
V
V
IO  
SS  
V
SS  
DQ15/A-1 DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
9
A20  
A20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DQ12  
DQ4  
WE#  
RESET#  
A21  
WE#  
RESET#  
ACC  
WP#  
DQ4  
V
V
CC  
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
A19  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A6  
A5  
A4  
A3  
A2  
A1  
V
V
SS  
SS  
CE#  
A0  
CE#  
A0  
NC on S29GL032N  
Document Number: 001-98525 Rev. *B  
Page 5 of 78  
S29GL064N, S29GL032N  
Figure 2. 56-Pin Standard TSOP  
NC  
NC  
1
2
3
4
5
6
7
8
9
56 NC  
55 NC  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
54 A16  
53 BYTE#  
52 VSS  
S29GL064N, S29GL032N  
(Models 01, 02, V1, V2 only)  
51 DQ15/A-1  
50 DQ7  
49 DQ14  
48 DQ6  
47 DQ13  
46 DQ5  
45 DQ12  
44 DQ4  
43 VCC  
42 DQ11  
41 DQ3  
40 DQ10  
39 DQ2  
38 DQ9  
37 DQ1  
36 DQ8  
35 DQ0  
34 OE#  
33 VSS  
A8 10  
A19 11  
A20 12  
WE# 13  
RESET# 14  
A21 15  
WP#/ACC 16  
RY/BY# 17  
A18 18  
A17 19  
A7 20  
NC on S29GL032N  
A6 21  
A5 22  
A4 23  
A3 24  
A2 25  
32 CE#  
31 A0  
30 NC  
29 VIO  
A1 26  
NC 27  
NC 28  
Document Number: 001-98525 Rev. *B  
Page 6 of 78  
S29GL064N, S29GL032N  
Figure 3. 64-ball Fortified BGA  
S29GL064N, S29GL032N (Models 01, 02, 03, 04, V1, V2 only)  
Top View, Balls Facing Down  
NC on S29GL032N  
NC on 03, 04 options  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
NC  
H8  
NC  
NC  
NC  
NC  
VIO  
VSS  
NC  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
H7  
VSS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
A6  
A9  
B6  
A8  
C6  
D6  
E6  
F6  
G6  
H6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A5  
B5  
C5  
D5  
E5  
F5  
G5  
H5  
VCC  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
DQ4  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A3  
A7  
B3  
C3  
A6  
D3  
A5  
E3  
F3  
G3  
H3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
A3  
B2  
A4  
C2  
A2  
D2  
A1  
E2  
A0  
F2  
G2  
H2  
VSS  
CE#  
OE#  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
NC  
H1  
NC  
NC  
NC  
NC  
NC  
VIO  
NC  
Document Number: 001-98525 Rev. *B  
Page 7 of 78  
S29GL064N, S29GL032N  
Figure 4. 48-ball Fine-pitch BGA (VBK 048)  
S29GL064N, S29GL032N (Models 03, 04 only)  
Top View, Balls Facing Down  
NC on S29GL032N  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
V
SS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
V
CC  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
DQ4  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
V
SS  
CE#  
OE#  
Document Number: 001-98525 Rev. *B  
Page 8 of 78  
S29GL064N, S29GL032N  
4. Pin Description  
Pin  
Description  
A21–A0  
A20–A0  
DQ7–DQ0  
DQ14–DQ0  
DQ15/A-1  
CE#  
22 Address inputs (S29GL064N)  
21 Address inputs (S29GL032N)  
8 Data inputs/outputs  
15 Data inputs/outputs  
DQ15 (Data input/output, word mode), A-1 (LSB Address input, byte mode)  
Chip Enable input  
OE#  
Output Enable input  
WE#  
Write Enable input  
WP#/ACC  
ACC  
Hardware Write Protect input/Programming Acceleration input  
Acceleration input  
WP#  
Hardware Write Protect input  
RESET#  
RY/BY#  
BYTE#  
VCC  
Hardware Reset Pin input  
Ready/Busy output  
Selects 8-bit or 16-bit mode  
3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances)  
VIO  
Output Buffer Power  
Device Ground  
VSS  
NC  
Pin Not Connected Internally  
Document Number: 001-98525 Rev. *B  
Page 9 of 78  
S29GL064N, S29GL032N  
5. Logic Symbols  
Figure 5. S29GL064N Logic Symbol (Models 01, 02, V1, V2)  
22  
A21–A0  
CE#  
16 or 8  
DQ15–DQ0  
(A-1)  
OE#  
WE#  
WP#/ACC  
RESET#  
V
RY/BY#  
IO  
BYTE#  
Figure 6. S29GL064N Logic Symbol (Models 03, 04)  
22  
A21–A0  
CE#  
16 or 8  
DQ15–DQ0  
(A-1)  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
Figure 7. S29GL064N Logic Symbol (Models 06, 07, V6, V7)  
22  
A21–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#  
ACC  
RESET#  
RY/BY#  
V
IO  
Document Number: 001-98525 Rev. *B  
Page 10 of 78  
S29GL064N, S29GL032N  
Figure 8. S29GL032N Logic Symbol (Models 01, 02, V1, V2)  
21  
A20–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
V
IO  
RY/BY#  
BYTE#  
Figure 9. S29GL032N Logic Symbol (Models 03, 04)  
21  
A20–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
Document Number: 001-98525 Rev. *B  
Page 11 of 78  
S29GL064N, S29GL032N  
6. Ordering Information–S29GL032N  
S29GL032N Standard Products  
Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by  
a combination of the following:  
S29GL032N  
90  
T
F
I
01  
0
PACKING TYPE  
0 = Tray  
2 = 7-inch Tape and Reel  
3 = 13-inch Tape and Reel  
MODEL NUMBER  
01 = x8/x16, V = V = 2.7 – 3.6 V, Uniform sector, WP#/ACC = V protects highest addressed sector  
CC  
IO  
IL  
02 = x8/x16, V = V = 2.7 – 3.6 V, Uniform sector, WP#/ACC = V protects lowest addressed sector  
CC  
IO  
IL  
03 = x8/x16, V = 2.7 – 3.6 V, Top boot sector, WP#/ACC = V protects top two addressed sectors  
CC  
IL  
04 = x8/x16, V = 2.7 – 3.6 V, Bottom boot sector, WP#/ACC = V protects bottom two addressed sectors  
CC  
IL  
V1 = x8/x16, V = 2.7 – 3.6 V, V = 1.65 - 3.6 V, Uniform sector, WP#/ACC = V protects highest addressed sector  
CC  
IO  
IL  
V2 = x8/x16, V = 2.7 – 3.6 V, V = 1.65 - 3.6 V, Uniform sector, WP#/ACC = V protects lowest addressed sector  
CC  
IO  
IL  
TEMPERATURE RANGE  
I = Industrial (–40°C to +85°C)  
A = Automotive, AEC-Q100 Grade 3 (–40°C to +85°C)  
PACKAGE MATERIAL SET  
A = Standard (Note 4)  
F = Pb-Free  
PACKAGE TYPE  
B = Fine-pitch Ball-Grid Array Package  
D = Fortified Ball-Grid Array Package(LAE064), 9 mm x 9 mm  
F = Fortified Ball-Grid Array Package (LAA064), 13 mm x 11 mm  
T = Thin Small Outline Package (TSOP) Standard Pinout  
SPEED OPTION  
See Product Selector Guide and Valid Combinations (90 = 90 ns, 11 = 110 ns)  
DEVICE NUMBER/DESCRIPTION  
S29GL032N  
32 Megabit Page-Mode Flash Memory  
®
Manufactured using 110 nm MirrorBit Process Technology, 3.0 Volt-only Read, Program, and Erase  
Document Number: 001-98525 Rev. *B  
Page 12 of 78  
S29GL064N, S29GL032N  
Table 1. S29GL032N Ordering Options (Note 4)  
S29GL032N Valid Combinations  
Package Description  
Device  
Number  
Speed  
Option  
Package, Material,  
and Temperature Range  
Model  
Number  
Packing  
Type  
90  
90  
11  
90  
90  
11  
90  
11  
03, 04  
01, 02  
TS048 (Note 2)  
TFI, TFA  
TSOP  
TS056 (Note 2)  
V1, V2  
BFI, BFA  
FFI, FFA  
03, 04  
VBK048 (Note 3)  
LAA064 (Note 3)  
Fine-Pitch BGA  
Fortified BGA  
S29GL032N  
0,2,3 (Note 1)  
01, 02, 03, 04  
V1, V2  
01, 02, 03, 04  
V1, V2  
DFI, DFA  
LAE064 (Note 3)  
Notes  
1. Type 0 is standard. Specify others as required: TSOPs can be packed in Types 0 and 3; BGAs can be packed in Types 0, 2, or 3.  
2. TSOP package marking omits packing type designator from ordering part number.  
3. BGA package marking omits leading S29 and packing type designator from ordering part number.  
4. Contact local sales for availability for Leaded lead-frame parts.Valid Combinations.  
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm  
availability of specific valid combinations and to check on newly released combinations.  
The table also lists configurations that are Automotive Grade / AEC-Q100 qualified and are planned to be available in volume.  
Contact your local sales representative to confirm availability of specific combinations and to check on newly released combinations.  
Production Part Approval Process (PPAP) support is only provided for AEC-Q100 grade products.  
Products to be used in end-use applications that require ISO/TS-16949 compliance must be AEC-Q100 grade products in  
combination with PPAP. Non–AEC-Q100 grade products are not manufactured or documented in full compliance with  
ISO/TS-16949 requirements.  
AEC-Q100 grade products are also offered without PPAP support for end-use applications that do not require ISO/TS-16949  
compliance.  
Document Number: 001-98525 Rev. *B  
Page 13 of 78  
S29GL064N, S29GL032N  
7. Ordering Information–S29GL064N  
S29GL064N Standard Products  
Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a  
combination of the following:  
S29GL064N 90  
T
F
I
02  
2
PACKING TYPE  
0 = Tray  
2 = 7-inch Tape and Reel  
3 = 13-inch Tape and Reel  
MODEL NUMBER  
01 = x8/x16, V = V = 2.7 – 3.6 V, Uniform sector, WP#/ACC = V protects highest addressed sector  
CC  
IO  
IL  
02 = x8/x16, V = V = 2.7 – 3.6 V, Uniform sector, WP#/ACC = V protects lowest addressed sector  
CC  
IO  
IL  
03 = x8/x16, V = 2.7 – 3.6 V, Top boot sector, WP#/ACC = V protects top two addressed sectors  
CC  
IL  
04 = x8/x16, V = 2.7 – 3.6 V, Bottom boot sector, WP#/ACC = V protects bottom two addressed sectors  
CC  
IL  
06 = x16, V = 2.7 – 3.6 V, Uniform sector, WP# = V protects highest addressed sector  
CC  
IL  
07 = x16, V = 2.7 – 3.6 V, Uniform sector, WP# = V protects lowest addressed sector  
CC  
IL  
V1 = x8/x16, V = 2.7 – 3.6 V, V = 1.65 - 3.6 V, Uniform sector, WP#/ACC = V protects highest addressed sector  
CC  
IO  
IL  
V2 = x8/x16, V = 2.7 – 3.6 V, V = 1.65 - 3.6 V, Uniform sector, WP#/ACC = V protects lowest addressed sector  
CC  
IO  
IL  
V6 = x16, V = 2.7 – 3.6 V, V = 1.65 - 3.6 V, Uniform sector, WP# = V protects highest addressed sector  
CC  
IO  
IL  
V7 = x16, V = 2.7 – 3.6 V, V = 1.65 - 3.6 V, Uniform sector, WP# = V protects lowest addressed sector  
CC  
IO  
IL  
TEMPERATURE RANGE  
I = Industrial (–40°C to +85°C)  
A = Automotive, AEC-Q100 Grade 3 (–40°C to +85°C)  
PACKAGE MATERIAL SET  
A = Standard (Note 4)  
F = Pb-Free  
PACKAGE TYPE  
B = Fine-pitch Ball-Grid Array Package  
D = Fortified Ball-Grid Array Package(LAE064), 9 mm x 9 mm  
F = Fortified Ball-Grid Array Package (LAA064), 13 mm x 11 mm  
T = Thin Small Outline Package (TSOP) Standard Pinout  
SPEED OPTION  
See Product Selector Guide and Valid Combinations (90 = 90 ns, 11 = 110 ns)  
DEVICE NUMBER/DESCRIPTION  
S29GL064N, 64 Megabit Page-Mode Flash Memory  
®
Manufactured using 110 nm MirrorBit Process Technology, 3.0 Volt-only Read, Program, and Erase  
Document Number: 001-98525 Rev. *B  
Page 14 of 78  
S29GL064N, S29GL032N  
7.1  
Valid Combinations  
S29GL064N Valid Combinations  
Package Description  
Speed Package, Material, and  
Device Number  
Model Number  
Packing Type  
Option  
Temperature Range  
90  
03, 04, 06, 07  
V6, V7  
TS048 (Note 2)  
TS056 (Note 2)  
11  
TFI, TFA  
TSOP  
90  
01, 02  
11  
V1, V2  
S29GL064N  
90  
BFI, BFA  
FFI, FFA  
03, 04  
0,2,3 (Note 1)  
VBK048 (Note 3) Fine-Pitch BGA  
90  
01, 02, 03, 04  
V1, V2  
LAA064 (Note 3)  
Fortified BGA  
11  
90  
01, 02, 03, 04  
V1, V2  
DFI, DFA  
LAE064 (Note 3)  
11  
Notes  
1. Type 0 is standard. Specify others as required: TSOPs can be packed in Types 0 and 3; BGAs can be packed in Types 0, 2, or 3.  
2. TSOP package marking omits packing type designator from ordering part number.  
3. BGA package marking omits leading S29 and packing type designator from ordering part number.  
4. Contact local sales for availability for Leaded lead-frame parts.  
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm  
availability of specific valid combinations and to check on newly released combinations.  
The table also lists configurations that are Automotive Grade / AEC-Q100 qualified and are planned to be available in volume.  
Contact your local sales representative to confirm availability of specific combinations and to check on newly released combinations.  
Production Part Approval Process (PPAP) support is only provided for AEC-Q100 grade products.  
Products to be used in end-use applications that require ISO/TS-16949 compliance must be AEC-Q100 grade products in  
combination with PPAP. Non–AEC-Q100 grade products are not manufactured or documented in full compliance with  
ISO/TS-16949 requirements.  
AEC-Q100 grade products are also offered without PPAP support for end-use applications that do not require ISO/TS-16949  
compliance.  
Document Number: 001-98525 Rev. *B  
Page 15 of 78  
S29GL064N, S29GL032N  
8. Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated through the internal command  
register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the  
commands, along with the address and data information needed to execute the command. The contents of the register serve as  
inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 2 lists the device bus  
operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these  
operations in further detail.  
Table 2. Device Bus Operations  
DQ8–DQ15  
DQ0–  
DQ7  
Operation  
CE#  
OE# WE# RESET#  
WP#  
ACC Addresses  
BYTE#  
= VIH  
BYTE#  
= VIL  
Read  
L
L
H
H
X
H
X
H
L
H
X
X
X
AIN  
AIN  
AIN  
X
DOUT  
DOUT  
DQ8–DQ14  
= High-Z,  
DQ15 = A-1  
Write (Program/Erase)  
Accelerated Program  
Standby  
L
H
(Note 1)  
(Note 2) (Note 2)  
(Note 2) (Note 2)  
L
L
H
(Note 1) VHH  
VCC 0.3V  
X
H
X
VCC 0.3V  
X
X
X
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
H
L
X
X
X
Legend  
L = Logic Low = V  
IL  
H = Logic High = V  
IH  
V
= 11.5–12.5V  
HH  
X = Don’t Care  
A
= Address In  
= Data In  
IN  
D
D
IN  
= Data Out  
OUT  
Notes  
1. If WP# = V , the first or last sector remains protected (for uniform sector devices), and the two outer boot sectors are protected (for boot sector devices). If WP# = VIH,  
IL  
the first or last sector, or the two outer boot sectors are protected or unprotected as determined by the method described in Write Protect (WP#). All sectors are  
unprotected when shipped from the factory (The Secured Silicon Sector may be factory protected depending on version ordered.)  
2.  
D
or D  
as required by command sequence, data polling, or sector protect algorithm (see Figure 14 on page 53).  
IN  
OUT  
8.1  
Word/Byte Configuration  
The BYTE# pin controls whether the device data I/O pins operate in the byte or word configuration. If the BYTE# pin is set at logic 1,  
the device is in word configuration, DQ0–DQ15 are active and controlled by CE#, WE# and OE#.  
If the BYTE# pin is set at logic 0, the device is in byte configuration, and only data I/O pins DQ0–DQ7 are active and controlled by  
CE#, WE# and OE#. The data I/O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address  
function.  
8.2  
Requirements for Reading Array Data  
All memories require access time to output array data. In a read operation, data is read from one memory location at a time.  
Addresses are presented to the device in random order, and the propagation delay through the device causes the data on its outputs  
to arrive with the address on its inputs.  
The device defaults to reading array data after device power-up or hardware reset. To read data from the memory array, the system  
must first assert a valid address on Amax-A0, while driving OE# and CE# to VIL. WE# must remain at VIH. All addresses are latched  
on the falling edge of CE#. Data will appear on DQ15-DQ0 after address access time (tACC), which is equal to the delay from stable  
addresses to valid output data. The OE# signal must be driven to VIL. Data is output on DQ15-DQ0 pins after the access time (tOE  
)
has elapsed from the falling edge of OE#.  
See Reading Array Data on page 39 for more information. Refer to Table 25 on page 61 for timing specifications and the timing  
diagram. Refer to Table 23 on page 58 for the active current specification on reading array data.  
Document Number: 001-98525 Rev. *B  
Page 16 of 78  
S29GL064N, S29GL032N  
8.2.1 Page Mode Read  
The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides  
faster read access speed for random locations within a page. The page size of the device is 8 words/16 bytes. The appropriate page  
is selected by the higher address bits A(max)–A3. Address bits A2–A0 in word mode (A2–A-1 in byte mode) determine the specific  
word within a page. This is an asynchronous operation; the microprocessor supplies the specific word location.  
The random or initial page access is equal to tACC or tCE and subsequent page read accesses (as long as the locations specified by  
the microprocessor falls within that page) is equivalent to tPACC. When CE# is deasserted and reasserted for a subsequent access,  
the access time is tACC or tCE. Fast page mode accesses are obtained by keeping the read-page addresses constant and changing  
the intra-read page addresses.  
8.3  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the  
system must drive WE# and CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode,  
only two write cycles are required to program a word, instead of four. The Word Program Command Sequence on page 40 contains  
details on programming data to the device using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device. Tables 3 9 indicate the address space that each  
sector occupies.  
Refer to the DC Characteristics table for the active current specification for the write mode. The AC Characteristics section contains  
timing specification tables and timing diagrams for write operations.  
8.3.1 Write Buffer  
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in  
faster effective programming time than the standard programming algorithms.  
8.3.2 Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP#/ACC  
or ACC pin, depending on model number. This function is primarily intended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the Unlock Bypass mode, temporarily unprotects any protected  
sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a  
two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the WP#/ACC or ACC pin,  
depending on model number, returns the device to normal operation. Note that the WP#/ACC or ACC pin must not be at VHH for  
operations other than accelerated programming, or device damage may result. WP# contains an internal pull-up; when  
unconnected, WP# is at VIH.  
8.3.3 Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read  
autoselect codes from the internal register (which is separate from the memory array) on DQ7-DQ0. Standard read cycle timings  
(tACC) apply in this mode. Refer to Autoselect Mode on page 29 and Autoselect Command Sequence on page 39 for more  
information.  
Document Number: 001-98525 Rev. *B  
Page 17 of 78  
S29GL064N, S29GL032N  
8.4  
Standby Mode  
When the system is not reading or writing to the device, it can be placed in to standby mode. In this mode, current consumption is  
greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VIO ± 0.3 V. (Note that this is a more  
restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device is in the standby mode,  
but the standby current is greater. The device requires standard access time (tACC/tCE) for read access when the device is in either  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until the operation is completed.  
Refer to the DC Characteristics on page 58 for the standby current specification.  
8.5  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when  
addresses remain stable for tACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals.  
Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and  
always available to the system. Refer to the DC Characteristics on page 58 for the automatic sleep mode current specification.  
8.6  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for  
at least a period of tRP, the device immediately terminates any operation in progress, output pins go to Hi-Z, and all read/write  
commands are ignored for the duration of the RESET# pulse. Program/Erase operations that were interrupted should be reinitiated  
once the device is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS ±0.3 V, the device draws CMOS standby  
current (ICC5).  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the  
system to read the boot-up firmware from the Flash memory.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 23 on page 63 for the timing diagram.  
8.7  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins are placed in a high impedance state.  
Document Number: 001-98525 Rev. *B  
Page 18 of 78  
S29GL064N, S29GL032N  
Table 3. S29GL032N (Models 01, 02, V1, V2) Sector Addresses  
Sector Size  
(KB/Kwords)  
8-bit Address  
Range  
16-bit Address  
Range  
Sector Size  
(KB/Kwords)  
8-bit Address  
Range  
16-bit Address  
Range  
Sector A20-A15  
Sector  
A20-A15  
SA0  
SA1  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh 000000h–007FFFh  
010000h–01FFFFh 008000h–00FFFFh  
020000h–02FFFFh 010000h–017FFFh  
030000h–03FFFFh 018000h–01FFFFh  
040000h–04FFFFh 020000h–027FFFh  
050000h–05FFFFh 028000h–02FFFFh  
060000h–06FFFFh 030000h–037FFFh  
070000h–07FFFFh 038000h–03FFFFh  
080000h–08FFFFh 040000h–047FFFh  
090000h–09FFFFh 048000h–04FFFFh  
0A0000h–0AFFFFh 050000h–057FFFh  
0B0000h–0BFFFFh 058000h–05FFFFh  
0C0000h–0CFFFFh 060000h–067FFFh  
0D0000h–0DFFFFh 068000h–06FFFFh  
0E0000h–0EFFFFh 070000h–077FFFh  
0F0000h–0FFFFFh 078000h–07FFFFh  
100000h–10FFFFh 080000h–087FFFh  
110000h–11FFFFh 088000h–08FFFFh  
120000h–12FFFFh 090000h–097FFFh  
130000h–13FFFFh 098000h–09FFFFh  
140000h–14FFFFh 0A0000h–0A7FFFh  
150000h–15FFFFh 0A8000h–0AFFFFh  
160000h–16FFFFh 0B0000h–0B7FFFh  
170000h–17FFFFh 0B8000h–0BFFFFh  
180000h–18FFFFh 0C0000h–0C7FFFh  
190000h–19FFFFh 0C8000h–0CFFFFh  
1A0000h–1AFFFFh 0D0000h–0D7FFFh  
1B0000h–1BFFFFh 0D8000h–0DFFFFh  
1C0000h–1CFFFFh 0E0000h–0E7FFFh  
1D0000h–1DFFFFh 0E8000h–0EFFFFh  
1E0000h–1EFFFFh 0F0000h–0F7FFFh  
1F0000h–1FFFFFh 0F8000h–0FFFFFh  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
200000h–20FFFFh 100000h–107FFFh  
210000h–21FFFFh 108000h–10FFFFh  
220000h–22FFFFh 110000h–117FFFh  
230000h–23FFFFh 118000h–11FFFFh  
240000h–24FFFFh 120000h–127FFFh  
250000h–25FFFFh 128000h–12FFFFh  
260000h–26FFFFh 130000h–137FFFh  
270000h–27FFFFh 138000h–13FFFFh  
280000h–28FFFFh 140000h–147FFFh  
290000h–29FFFFh 148000h–14FFFFh  
2A0000h–2AFFFFh 150000h–157FFFh  
2B0000h–2BFFFFh 158000h–15FFFFh  
2C0000h–2CFFFFh 160000h–167FFFh  
2D0000h–2DFFFFh 168000h–16FFFFh  
2E0000h–2EFFFFh 170000h–177FFFh  
2F0000h–2FFFFFh 178000h–17FFFFh  
300000h–30FFFFh 180000h–187FFFh  
310000h–31FFFFh 188000h–18FFFFh  
320000h–32FFFFh 190000h–197FFFh  
330000h–33FFFFh 198000h–19FFFFh  
340000h–34FFFFh 1A0000h–1A7FFFh  
350000h–35FFFFh 1A8000h–1AFFFFh  
360000h–36FFFFh 1B0000h–1B7FFFh  
370000h–37FFFFh 1B8000h–1BFFFFh  
380000h–38FFFFh 1C0000h–1C7FFFh  
390000h–39FFFFh 1C8000h–1CFFFFh  
3A0000h–3AFFFFh 1D0000h–1D7FFFh  
3B0000h–3BFFFFh 1D8000h–1DFFFFh  
3C0000h–3CFFFFh 1E0000h–1E7FFFh  
3D0000h–3DFFFFh 1E8000h–1EFFFFh  
3E0000h–3EFFFFh 1F0000h–1F7FFFh  
3F0000h–3FFFFFh 1F8000h–1FFFFFh  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
Document Number: 001-98525 Rev. *B  
Page 19 of 78  
S29GL064N, S29GL032N  
Table 4. S29GL032N (Model 03) Top Boot Sector Addresses  
Sector Size  
(KB/ Kwords)  
8-bit Address  
Range  
16-bit Address  
Range  
Sector Size  
(KB/ Kwords)  
8-bit Address  
Range  
16-bit Address  
Range  
Sector A20–A12  
Sector  
A20–A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
00000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
100100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
240000h–24FFFFh  
120000h–127FFFh  
250000h–25FFFFh 128000h–12FFFFh  
260000h–26FFFFh 130000h–137FFFh  
270000h–27FFFFh 138000h–13FFFFh  
280000h–28FFFFh 140000h–147FFFh  
290000h–29FFFFh 148000h–14FFFFh  
2A0000h–2AFFFFh 150000h–157FFFh  
2B0000h–2BFFFFh 158000h–15FFFFh  
2C0000h–2CFFFFh 160000h–167FFFh  
2D0000h–2DFFFFh 168000h–16FFFFh  
2E0000h–2EFFFFh 170000h–177FFFh  
2F0000h–2FFFFFh 178000h–17FFFFh  
SA10 001010xxx  
SA11 001011xxx  
SA12 001100xxx  
SA13 001101xxx  
SA14 001110xxx  
SA15 001111xxx  
SA16 010000xxx  
SA17 010001xxx  
SA18 010010xxx  
SA19 010011xxx  
SA20 010100xxx  
SA21 010101xxx  
SA22 010110xxx  
SA23 010111xxx  
SA24 011000xxx  
SA25 011001xxx  
SA26 011010xxx  
SA27 011011xxx  
SA28 011100xxx  
SA29 011101xxx  
SA30 011110xxx  
SA31 011111xxx  
SA32 100000xxx  
SA33 100001xxx  
SA34 100010xxx  
SA35 100011xxx  
0A0000h–0AFFFFh 50000h–57FFFh  
0B0000h–0BFFFFh 58000h–5FFFFh  
0C0000h–0CFFFFh 60000h–67FFFh  
0D0000h–0DFFFFh 68000h–6FFFFh  
0E0000h–0EFFFFh 70000h–77FFFh  
0F0000h–0FFFFFh 78000h–7FFFFh  
300000h–30FFFFh  
310000h–31FFFFh 188000h–18FFFFh  
320000h–32FFFFh 190000h–197FFFh  
180000h–187FFFh  
330000h–33FFFFh 198000h–19FFFFh  
340000h–34FFFFh 1A0000h–1A7FFFh  
350000h–35FFFFh 1A8000h–1AFFFFh  
360000h–36FFFFh 1B0000h–1B7FFFh  
370000h–37FFFFh 1B8000h–1BFFFFh  
380000h–38FFFFh 1C0000h–1C7FFFh  
390000h–39FFFFh 1C8000h–1CFFFFh  
3A0000h–3AFFFFh 1D0000h–1D7FFFh  
3B0000h–3BFFFFh 1D8000h–1DFFFFh  
3C0000h–3CFFFFh 1E0000h–1E7FFFh  
3D0000h–3DFFFFh 1E8000h–1EFFFFh  
3E0000h–3EFFFFh 1F0000h–1F7FFFh  
3F0000h–3F1FFFh 1F8000h–1F8FFFh  
3F2000h–3F3FFFh 1F9000h–1F9FFFh  
3F4000h–3F5FFFh 1FA000h–1FAFFFh  
3F6000h–3F7FFFh 1FB000h–1FBFFFh  
3F8000h–3F9FFFh 1FC000h–1FCFFFh  
3FA000h–3FBFFFh 1FD000h–1FDFFFh  
3FC000h–3FDFFFh 1FE000h–1FEFFFh  
3FE000h–3FFFFFh 1FF000h–1FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
140000h–14FFFFh A0000h–A7FFFh  
150000h–15FFFFh A8000h–AFFFFh  
160000h–16FFFFh B0000h–B7FFFh  
170000h–17FFFFh B8000h–BFFFFh  
180000h–18FFFFh C0000h–C7FFFh  
190000h–19FFFFh C8000h–CFFFFh  
1A0000h–1AFFFFh D0000h–D7FFFh  
1B0000h–1BFFFFh D8000h–DFFFFh  
1C0000h–1CFFFFh E0000h–E7FFFh  
1D0000h–1DFFFFh E8000h–EFFFFh  
1E0000h–1EFFFFh F0000h–F7FFFh  
1F0000h–1FFFFFh F8000h–FFFFFh  
200000h–20FFFFh 100000h–107FFFh  
210000h–21FFFFh 108000h–10FFFFh  
220000h–22FFFFh 110000h–117FFFh  
230000h–23FFFFh 118000h–11FFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Document Number: 001-98525 Rev. *B  
Page 20 of 78  
S29GL064N, S29GL032N  
Table 5. S29GL032N (Model 04) Bottom Boot Sector Addresses  
Sector  
Size  
(KB/  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A20–A12  
Sector  
A20–A12  
Kwords)  
Kwords)  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
8/4  
000000h–001FFFh  
002000h–003FFFh  
004000h–005FFFh  
006000h–007FFFh  
008000h–009FFFh  
00A000h–00BFFFh  
00C000h–00DFFFh  
00E000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
8/4  
SA2  
8/4  
F0000h–F7FFFh  
SA3  
8/4  
F8000h–FFFFFh  
SA4  
8/4  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
3A0000h–3AFFFFh 1D0000h–1D7FFFh  
3B0000h–3BFFFFh 1D8000h–1DFFFFh  
3C0000h–3CFFFFh 1E0000h–1E7FFFh  
3D0000h–3DFFFFh 1E8000h–1EFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Document Number: 001-98525 Rev. *B  
Page 21 of 78  
S29GL064N, S29GL032N  
Table 6. S29GL064N (Models 01, 02, V1, V2) Sector Addresses  
Sector  
Size  
(KB/  
Sector  
Size  
(KB/  
8-bit  
Address  
Range  
16-bit  
Address  
Range  
8-bit  
Address  
Range  
16-bit  
Address  
Range  
Sector A21–A15  
Sector A21–A15  
Kwords)  
Kwords)  
SA0  
SA1  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
0D0000h–0DFFFFh 068000h–06FFFFh  
4D0000h–4DFFFFh 268000h–26FFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
190000h–19FFFFh 0C8000h–0CFFFFh  
1A0000h–1AFFFFh 0D0000h–0D7FFFh  
1B0000h–1BFFFFh 0D8000h–0DFFFFh  
1C0000h–1CFFFFh 0E0000h–0E7FFFh  
1D0000h–1DFFFFh 0E8000h–0EFFFFh  
590000h–59FFFFh 2C8000h–2CFFFFh  
5A0000h–5AFFFFh 2D0000h–2D7FFFh  
5B0000h–5BFFFFh 2D8000h–2DFFFFh  
5C0000h–5CFFFFh 2E0000h–2E7FFFh  
5D0000h–5DFFFFh 2E8000h–2EFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
Document Number: 001-98525 Rev. *B  
Page 22 of 78  
S29GL064N, S29GL032N  
Table 6. S29GL064N (Models 01, 02, V1, V2) Sector Addresses (Continued)  
Sector  
Size  
(KB/  
Sector  
Size  
(KB/  
8-bit  
Address  
Range  
16-bit  
Address  
Range  
8-bit  
Address  
Range  
16-bit  
Address  
Range  
Sector A21–A15  
Sector A21–A15  
Kwords)  
Kwords)  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
158000h–15FFFFh  
160000h–167FFFh  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
358000h–35FFFFh  
360000h–367FFFh  
2D0000h–2DFFFFh 168000h–16FFFFh  
6D0000h–6DFFFFh 368000h–36FFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
390000h–39FFFFh 1C8000h–1CFFFFh  
3A0000h–3AFFFFh 1D0000h–1D7FFFh  
3B0000h–3BFFFFh 1D8000h–1DFFFFh  
3C0000h–3CFFFFh 1E0000h–1E7FFFh  
3D0000h–3DFFFFh 1E8000h–1EFFFFh  
790000h–79FFFFh 3C8000h–3CFFFFh  
7A0000h–7AFFFFh 3D0000h–3D7FFFh  
7B0000h–7BFFFFh 3D8000h–3DFFFFh  
7C0000h–7CFFFFh 3E0000h–3E7FFFh  
7D0000h–7DFFFFh 3E8000h–3EFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
7E0000h–7EFFFFh  
7F0000h–7FFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
Table 7. S29GL064N (Model 03) Top Boot Sector Addresses  
Sector  
Size  
(KB/  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A21–A12  
Sector  
A21–A12  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
0000000xxx  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh 000000h–007FFFh  
010000h–01FFFFh 008000h–00FFFFh  
020000h–02FFFFh 010000h–017FFFh  
030000h–03FFFFh 018000h–01FFFFh  
040000h–04FFFFh 020000h–027FFFh  
050000h–05FFFFh 028000h–02FFFFh  
060000h–06FFFFh 030000h–037FFFh  
070000h–07FFFFh 038000h–03FFFFh  
080000h–08FFFFh 040000h–047FFFh  
090000h–09FFFFh 048000h–04FFFFh  
0A0000h–0AFFFFh 050000h–057FFFh  
0B0000h–0BFFFFh 058000h–05FFFFh  
0C0000h–0CFFFFh 060000h–067FFFh  
0D0000h–0DFFFFh 068000h–06FFFFh  
0E0000h–0EFFFFh 070000h–077FFFh  
0F0000h–0FFFFFh 078000h–07FFFFh  
100000h–10FFFFh 080000h–087FFFh  
110000h–11FFFFh 088000h–08FFFFh  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
4A0000h–4AFFFFh 250000h–257FFFh  
4B0000h–4BFFFFh 258000h–25FFFFh  
4C0000h–4CFFFFh 260000h–267FFFh  
4D0000h–4DFFFFh 268000h–26FFFFh  
4E0000h–4EFFFFh 270000h–277FFFh  
4F0000h–4FFFFFh 278000h–27FFFFh  
SA10 0001010xxx  
SA11  
SA12  
SA13  
SA14  
SA15  
0001011xxx  
0001100xxx  
0001101xxx  
0001110xxx  
0001111xxx  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
SA16 0010000xxx  
SA17 0010001xxx  
540000h–54FFFFh 2A0000h–2A7FFFh  
550000h–55FFFFh 2A8000h–2AFFFFh  
Document Number: 001-98525 Rev. *B  
Page 23 of 78  
S29GL064N, S29GL032N  
Table 7. S29GL064N (Model 03) Top Boot Sector Addresses (Continued)  
Sector  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A21–A12  
Sector  
A21–A12  
Kwords)  
Kwords)  
SA18 0010010xxx  
SA19 0010011xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
120000h–12FFFFh 090000h–097FFFh  
130000h–13FFFFh 098000h–09FFFFh  
140000h–14FFFFh 0A0000h–0A7FFFh  
150000h–15FFFFh 0A8000h–0AFFFFh  
160000h–16FFFFh 0B0000h–0B7FFFh  
170000h–17FFFFh 0B8000h–0BFFFFh  
180000h–18FFFFh 0C0000h–0C7FFFh  
190000h–19FFFFh 0C8000h–0CFFFFh  
1A0000h–1AFFFFh 0D0000h–0D7FFFh  
1B0000h–1BFFFFh 0D8000h–0DFFFFh  
1C0000h–1CFFFFh 0E0000h–0E7FFFh  
1D0000h–1DFFFFh 0E8000h–0EFFFFh  
1E0000h–1EFFFFh 0F0000h–0F7FFFh  
1F0000h–1FFFFFh 0F8000h–0FFFFFh  
200000h–20FFFFh 100000h–107FFFh  
210000h–21FFFFh 108000h–10FFFFh  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
560000h–56FFFFh 2B0000h–2B7FFFh  
570000h–57FFFFh 2B8000h–2BFFFFh  
580000h–58FFFFh 2C0000h–2C7FFFh  
590000h–59FFFFh 2C8000h–2CFFFFh  
5A0000h–5AFFFFh 2D0000h–2D7FFFh  
5B0000h–5BFFFFh 2D8000h–2DFFFFh  
5C0000h–5CFFFFh 2E0000h–2E7FFFh  
5D0000h–5DFFFFh 2E8000h–2EFFFFh  
5E0000h–5EFFFFh 2F0000h–2F7FFFh  
5F0000h–5FFFFFh 2F8000h–2FFFFFh  
SA20 0010100xxx  
SA21 0010101xxx  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011100xxx  
0011101xxx  
0011110xxx  
0011111xxx  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
SA32 0100000xxx  
SA33 0100001xxx  
SA34 0100010xxx  
SA100 1100100xxx  
SA101 1100101xxx  
SA102 1100110xxx  
SA103 1100111xxx  
SA104 1101000xxx  
SA105 1101001xxx  
SA106 1101010xxx  
SA107 1101011xxx  
SA108 1101100xxx  
220000h–22FFFFh  
110000h–117FFFh  
SA35  
0101011xxx  
230000h–23FFFFh 118000h–11FFFFh  
240000h–24FFFFh 120000h–127FFFh  
250000h–25FFFFh 128000h–12FFFFh  
260000h–26FFFFh 130000h–137FFFh  
270000h–27FFFFh 138000h–13FFFFh  
280000h–28FFFFh 140000h–147FFFh  
SA36 0100100xxx  
SA37 0100101xxx  
SA38  
SA39  
0100110xxx  
0100111xxx  
6A0000h–6AFFFFh 350000h–357FFFh  
6B0000h–6BFFFFh 358000h–35FFFFh  
6C0000h–6CFFFFh 360000h–367FFFh  
SA40 0101000xxx  
Document Number: 001-98525 Rev. *B  
Page 24 of 78  
S29GL064N, S29GL032N  
Table 7. S29GL064N (Model 03) Top Boot Sector Addresses (Continued)  
Sector  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A21–A12  
Sector  
A21–A12  
Kwords)  
Kwords)  
SA41 0101001xxx  
SA42 0101010xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
290000h–29FFFFh 148000h–14FFFFh  
2A0000h–2AFFFFh 150000h–157FFFh  
2B0000h–2BFFFFh 158000h–15FFFFh  
2C0000h–2CFFFFh 160000h–167FFFh  
2D0000h–2DFFFFh 168000h–16FFFFh  
2E0000h–2EFFFFh 170000h–177FFFh  
2F0000h–2FFFFFh 178000h–17FFFFh  
300000h–30FFFFh 180000h–187FFFh  
310000h–31FFFFh 188000h–18FFFFh  
320000h–32FFFFh 190000h–197FFFh  
330000h–33FFFFh 198000h–19FFFFh  
340000h–34FFFFh 1A0000h–1A7FFFh  
350000h–35FFFFh 1A8000h–1AFFFFh  
360000h–36FFFFh 1B0000h–1B7FFFh  
370000h–37FFFFh 1B8000h–1BFFFFh  
380000h–38FFFFh 1C0000h–1C7FFFh  
390000h–39FFFFh 1C8000h–1CFFFFh  
3A0000h–3AFFFFh 1D0000h–1D7FFFh  
3B0000h–3BFFFFh 1D8000h–1DFFFFh  
3C0000h–3CFFFFh 1E0000h–1E7FFFh  
3D0000h–3DFFFFh 1E8000h–1EFFFFh  
3E0000h–3EFFFFh 1F0000h–1F7FFFh  
3F0000h–3FFFFFh 1F8000h–1FFFFFh  
400000h–40FFFFh 200000h–207FFFh  
410000h–41FFFFh 208000h–20FFFFh  
420000h–42FFFFh 210000h–217FFFh  
430000h–43FFFFh 218000h–21FFFFh  
SA109 1101101xxx  
SA110 1101110xxx  
SA111 1101111xxx  
SA112 1110000xxx  
SA113 1110001xxx  
SA114 1110010xxx  
SA115 1110011xxx  
SA116 1110100xxx  
SA117 1110101xxx  
SA118 1110110xxx  
SA119 1110111xxx  
SA120 1111000xxx  
SA121 1111001xxx  
SA122 1111010xxx  
SA123 1111011xxx  
SA124 1111100xxx  
SA125 1111101xxx  
SA126 1111110xxx  
SA127 1111111000  
SA128 1111111001  
SA129 1111111010  
SA130 1111111011  
SA131 1111111100  
SA132 1111111101  
SA133 1111111110  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
6D0000h–6DFFFFh 368000h–36FFFFh  
6E0000h–6EFFFFh 370000h–377FFFh  
6F0000h–6FFFFFh 378000h–37FFFFh  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0110100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
740000h–74FFFFh 3A0000h–3A7FFFh  
750000h–75FFFFh 3A8000h–3AFFFFh  
760000h–76FFFFh 3B0000h–3B7FFFh  
770000h–77FFFFh 3B8000h–3BFFFFh  
780000h–78FFFFh 3C0000h–3C7FFFh  
790000h–79FFFFh 3C8000h–3CFFFFh  
7A0000h–7AFFFFh 3D0000h–3D7FFFh  
7B0000h–7BFFFFh 3D8000h–3DFFFFh  
7C0000h–7CFFFFh 3E0000h–3E7FFFh  
7D0000h–7DFFFFh 3E8000h–3EFFFFh  
7E0000h–7EFFFFh 3F0000h–3F7FFFh  
7F0000h–7F1FFFh 3F8000h–3F8FFFh  
7F2000h–7F3FFFh 3F9000h–3F9FFFh  
7F4000h–7F5FFFh 3FA000h–3FAFFFh  
7F6000h–7F7FFFh 3FB000h–3FBFFFh  
7F8000h–7F9FFFh 3FC000h–3FCFFFh  
7FA000h–7FBFFFh 3FD000h–3FDFFFh  
7FC000h–7FDFFFh 3FE000h–3FEFFFh  
7FE000h–7FFFFFh 3FF000h–3FFFFFh  
8/4  
8/4  
8/4  
8/4  
SA64 1000000xxx  
SA65 1000001xxx  
SA66 1000010xxx  
8/4  
8/4  
SA134  
1111111111  
8/4  
SA67  
1000011xxx  
Table 8. S29GL064N (Model 04) Bottom Boot Sector Addresses  
Sector  
Size  
(KB/  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A21–A12  
Sector  
A21–A12  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
8/4  
8/4  
000000h–001FFFh  
002000h–003FFFh  
004000h–005FFFh  
006000h–007FFFh  
008000h–009FFFh  
00A000h–00BFFFh  
00C000h–00DFFFh  
00E000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
260000h–26FFFFh 130000h–137FFFh  
270000h–27FFFFh 138000h–13FFFFh  
280000h–28FFFFh 140000h–147FFFh  
290000h–29FFFFh 148000h–14FFFFh  
2A0000h–2AFFFFh 150000h–157FFFh  
2B0000h–2BFFFFh 158000h–15FFFFh  
2C0000h–2CFFFFh 160000h–167FFFh  
2D0000h–2DFFFFh 168000h–16FFFFh  
2E0000h–2EFFFFh 170000h–177FFFh  
2F0000h–2FFFFFh 178000h–17FFFFh  
300000h–30FFFFh 180000h–187FFFh  
310000h–31FFFFh 188000h–18FFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
64/32  
64/32  
64/32  
64/32  
Document Number: 001-98525 Rev. *B  
Page 25 of 78  
S29GL064N, S29GL032N  
Table 8. S29GL064N (Model 04) Bottom Boot Sector Addresses (Continued)  
Sector  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A21–A12  
Sector  
A21–A12  
Kwords)  
Kwords)  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001110xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011100xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
0100010xxx  
0100011xxx  
0100100xxx  
0100101xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
0110010xxx  
0110011xxx  
0110100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1101001xxx  
1101010xxx  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
320000h–32FFFFh 190000h–197FFFh  
330000h–33FFFFh 198000h–19FFFFh  
340000h–34FFFFh 1A0000h–1A7FFFh  
350000h–35FFFFh 1A8000h–1AFFFFh  
360000h–36FFFFh 1B0000h–1B7FFFh  
370000h–37FFFFh 1B8000h–1BFFFFh  
380000h–38FFFFh 1C0000h–1C7FFFh  
390000h–39FFFFh 1C8000h–1CFFFFh  
3A0000h–3AFFFFh 1D0000h–1D7FFFh  
3B0000h–3BFFFFh 1D8000h–1DFFFFh  
3C0000h–3CFFFFh 1E0000h–1E7FFFh  
3D0000h–3DFFFFh 1E8000h–1EFFFFh  
3E0000h–3EFFFFh 1F0000h–1F7FFFh  
3F0000h–3FFFFFh 1F8000h–1FFFFFh  
400000h–40FFFFh 200000h–207FFFh  
410000h–41FFFFh 208000h–20FFFFh  
420000h–42FFFFh 210000h–217FFFh  
430000h–43FFFFh 218000h–21FFFFh  
440000h–44FFFFh 220000h–227FFFh  
450000h–45FFFFh 228000h–22FFFFh  
460000h–46FFFFh 230000h–237FFFh  
470000h–47FFFFh 238000h–23FFFFh  
480000h–48FFFFh 240000h–247FFFh  
490000h–49FFFFh 248000h–24FFFFh  
4A0000h–4AFFFFh 250000h–257FFFh  
4B0000h–4BFFFFh 258000h–25FFFFh  
4C0000h–4CFFFFh 260000h–267FFFh  
4D0000h–4DFFFFh 268000h–26FFFFh  
4E0000h–4EFFFFh 270000h–277FFFh  
4F0000h–4FFFFFh 278000h–27FFFFh  
500000h–50FFFFh 280000h–28FFFFh  
510000h–51FFFFh 288000h–28FFFFh  
520000h–52FFFFh 290000h–297FFFh  
690000h–69FFFFh 348000h–34FFFFh  
6A0000h–6AFFFFh 350000h–357FFFh  
6B0000h–6BFFFFh 358000h–35FFFFh  
6C0000h–6CFFFFh 360000h–367FFFh  
6D0000h–6DFFFFh 368000h–36FFFFh  
6E0000h–6EFFFFh 370000h–377FFFh  
6F0000h–6FFFFFh 378000h–37FFFFh  
700000h–70FFFFh 380000h–387FFFh  
710000h–71FFFFh 388000h–38FFFFh  
720000h–72FFFFh 390000h–397FFFh  
730000h–73FFFFh 398000h–39FFFFh  
1A0000h–1AFFFFh 0D0000h–0D7FFFh  
1B0000h–1BFFFFh 0D8000h–0DFFFFh  
1C0000h–1CFFFFh 0E0000h–0E7FFFh  
1D0000h–1DFFFFh 0E8000h–0EFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
5A0000h–5AFFFFh 2D0000h–2D7FFFh  
5B0000h–5BFFFFh 2D8000h–2DFFFFh  
5C0000h–5CFFFFh 2E0000h–2E7FFFh  
5D0000h–5DFFFFh 2E8000h–2EFFFFh  
SA100 1011101xxx  
Document Number: 001-98525 Rev. *B  
Page 26 of 78  
S29GL064N, S29GL032N  
Table 8. S29GL064N (Model 04) Bottom Boot Sector Addresses (Continued)  
Sector  
Sector  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Size  
(KB/  
8-bit Address  
Range  
16-bit Address  
Range  
Sector  
A21–A12  
Sector  
A21–A12  
Kwords)  
Kwords)  
SA101  
SA102  
1011110xxx  
1011111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
740000h–74FFFFh 3A0000h–3A7FFFh  
750000h–75FFFFh 3A8000h–3AFFFFh  
760000h–76FFFFh 3B0000h–3B7FFFh  
770000h–77FFFFh 3B8000h–3BFFFFh  
780000h–78FFFFh 3C0000h–3C7FFFh  
790000h–79FFFFh 3C8000h–3CFFFFh  
7A0000h–7AFFFFh 3D0000h–3D7FFFh  
7B0000h–7BFFFFh 3D8000h–3DFFFFh  
7C0000h–7CFFFFh 3E0000h–3E7FFFh  
7D0000h–7DFFFFh 3E8000h–3EFFFFh  
7E0000h–7EFFFFh 3F0000h–3F7FFFh  
7F0000h–7FFFFFh 3F8000h–3FFFFFh  
SA103 1100000xxx  
SA104 1100001xxx  
SA105 1100010xxx  
SA106 1100011xxx  
SA107 1100100xxx  
SA108 1100101xxx  
SA109 1100110xxx  
SA110  
SA111  
1100111xxx  
1101000xxx  
Table 9. S29GL064N (Models 06, 07, V6, V7) Sector Addresses  
Sector  
SA0  
A21–A15  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
16-bit Address Range  
000000–007FFF  
008000–00FFFF  
010000–017FFF  
018000–01FFFF  
020000–027FFF  
028000–02FFFF  
030000–037FFF  
038000–03FFFF  
040000–047FFF  
048000–04FFFF  
050000–057FFF  
058000–05FFFF  
060000–067FFF  
068000–06FFFF  
070000–077FFF  
078000–07FFFF  
080000–087FFF  
088000–08FFFF  
090000–097FFF  
098000–09FFFF  
0A0000–0A7FFF  
0A8000–0AFFFF  
0B0000–0B7FFF  
0B8000–0BFFFF  
0C0000–0C7FFF  
0C8000–0CFFFF  
0D0000–0D7FFF  
0D8000–0DFFFF  
Sector  
A21–A15  
16-bit Address Range  
100000–107FFF  
108000–10FFFF  
110000–117FFF  
118000–11FFFF  
120000–127FFF  
128000–12FFFF  
130000–137FFF  
138000–13FFFF  
140000–147FFF  
148000–14FFFF  
150000–157FFF  
158000–15FFFF  
160000–167FFF  
168000–16FFFF  
170000–177FFF  
178000–17FFFF  
180000–187FFF  
188000–18FFFF  
190000–197FFF  
198000–19FFFF  
1A0000–1A7FFF  
1A8000–1AFFFF  
1B0000–1B7FFF  
1B8000–1BFFFF  
1C0000–1C7FFF  
1C8000–1CFFFF  
1D0000–1D7FFF  
1D8000–1DFFFF  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
Document Number: 001-98525 Rev. *B  
Page 27 of 78  
S29GL064N, S29GL032N  
Table 9. S29GL064N (Models 06, 07, V6, V7) Sector Addresses (Continued)  
Sector  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
A21–A15  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
16-bit Address Range  
0E0000–0E7FFF  
0E8000–0EFFFF  
0F0000–0F7FFF  
0F8000–0FFFFF  
200000–207FFF  
208000–20FFFF  
210000–217FFF  
218000–21FFFF  
220000–227FFF  
228000–22FFFF  
230000–237FFF  
238000–23FFFF  
240000–247FFF  
248000–24FFFF  
250000–257FFF  
258000–25FFFF  
260000–267FFF  
268000–26FFFF  
270000–277FFF  
278000–27FFFF  
280000–287FFF  
288000–28FFFF  
290000–297FFF  
298000–29FFFF  
2A0000–2A7FFF  
2A8000–2AFFFF  
2B0000–2B7FFF  
2B8000–2BFFFF  
2C0000–2C7FFF  
2C8000–2CFFFF  
2D0000–2D7FFF  
2D8000–2DFFFF  
2E0000–2E7FFF  
2E8000–2EFFFF  
2F0000–2F7FFF  
2F8000–2FFFFF  
Sector  
SA92  
A21–A15  
16-bit Address Range  
1E0000–1E7FFF  
1E8000–1EFFFF  
1F0000–1F7FFF  
1F8000–1FFFFF  
300000–307FFF  
308000–30FFFF  
310000–317FFF  
318000–31FFFF  
320000–327FFF  
328000–32FFFF  
330000–337FFF  
338000–33FFFF  
340000–347FFF  
348000–34FFFF  
350000–357FFF  
358000–35FFFF  
360000–367FFF  
368000–36FFFF  
370000–377FFF  
378000–37FFFF  
380000–387FFF  
388000–38FFFF  
390000–397FFF  
398000–39FFFF  
3A0000–3A7FFF  
3A8000–3AFFFF  
3B0000–3B7FFF  
3B8000–3BFFFF  
3C0000–3C7FFF  
3C8000–3CFFFF  
3D0000–3D7FFF  
3D8000–3DFFFF  
3E0000–3E7FFF  
3E8000–3EFFFF  
3F0000–3F7FFF  
3F8000–3FFFFF  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
Document Number: 001-98525 Rev. *B  
Page 28 of 78  
S29GL064N, S29GL032N  
8.8  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes  
output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be  
programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system  
through the command register.  
When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins A6, A3, A2, A1, and A0  
must be as shown in Table 10 on page 29. In addition, when verifying sector protection, the sector address must appear on the  
appropriate highest order address bits (see Table 3 - Table 9). Table 10 shows the remaining address bits that are don’t care. When  
all necessary bits are set as required, the programming equipment may then read the corresponding identifier code on DQ7–DQ0.  
To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown  
in Table 17 on page 47 and Table 19 on page 50. This method does not require VID. Refer to the Autoselect Command Sequence  
section for more information.  
Table 10. Autoselect Codes, (High Voltage Method)  
DQ7 to DQ0  
DQ8 to DQ15  
A14  
to  
A10  
A
A8  
A5 A3  
to A1 A0  
A4 A2  
max  
to  
Model Number  
03, 04  
Description  
CE# OE# WE#  
A9 to A6 to  
A15  
A7  
BYTE# BYTE#  
01, 02  
V1, V2  
06, 07,  
V6, V7  
= V  
= V  
IH  
IL  
Manufacturer ID:  
Cypress Products  
L
L
L
L
H
H
X
X
X
V
V
X
L
L
X
X
L
L
L
00  
X
01h  
01h  
01h  
ID  
ID  
Cycle 1  
Cycle 2  
L
L
H
L
22  
22  
X
X
7Eh  
0Ch  
7Eh  
10h  
7Eh  
13h  
H
H
X
X
X
X
00h (04, bottom boot)  
01h (03, top boot)  
Cycle 3  
H
H
H
22  
X
01h  
01h  
Cycle 1  
Cycle 2  
L
L
H
L
22  
22  
X
X
7Eh  
1Dh  
7Eh  
1Ah  
H
H
L
L
H
X
V
L
X
ID  
00h (04, bottom boot)  
01h (03, top boot)  
Cycle 3  
H
L
H
H
H
L
22  
X
X
X
00h  
Sector Protection  
Verification  
01h (protected),  
00h (unprotected)  
L
L
L
L
H
H
SA  
X
X
X
V
V
X
X
L
L
X
X
ID  
ID  
Secured Silicon Sector  
Indicator Bit (DQ7),  
WP# protects highest  
address sector  
For S29GL064N and S29GL032N:  
L
L
H
H
H
H
X
X
X
X
9A (factory locked),  
1A (not factory locked)  
Secured Silicon Sector  
Indicator Bit (DQ7),  
WP# protects lowest  
address sector  
For S29GL064N and S29GL032N:  
L
L
H
X
X
V
X
L
X
8A (factory locked),  
0A (not factory locked)  
ID  
Legend  
L = Logic Low = V  
IL  
H = Logic High = V  
IH  
SA = Sector Address  
X = Don’t care  
Document Number: 001-98525 Rev. *B  
Page 29 of 78  
S29GL064N, S29GL032N  
8.9  
Advanced Sector Protection  
The device features several levels of sector protection, which can disable both the program and erase operations in certain sectors:  
8.9.1 Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled protection method.  
8.9.2 Password Sector Protection  
A highly sophisticated protection method that requires a password before changes to certain sectors are permitted  
8.9.3 WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in the outermost sectors.  
The WP# Hardware Protection feature is always available, independent of the software managed protection method chosen.  
8.9.4 Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The user must then choose if the Persistent or Password  
Protection method is most desirable. There are two one-time programmable non-volatile bits that define which sector protection  
method is used. If the user decides to continue using the Persistent Sector Protection method, they must set the Persistent Sector  
Protection Mode Locking Bit. This permanently sets the part to operate only using Persistent Sector Protection. If the user decides  
to use the password method, they must set the Password Mode Locking Bit. This permanently sets the part to operate only using  
password sector protection.  
It is important to remember that setting either the Persistent Sector Protection Mode Locking Bit or the Password Mode  
Locking Bit permanently selects the protection mode. It is not possible to switch between the two methods once a locking bit is set.  
It is important that one mode is explicitly selected when the device is first programmed, rather than relying on the default  
mode alone. This is so that it is not possible for a system program or virus to later set the Password Mode Locking Bit, which would  
cause an unexpected shift from the default Persistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. Cypress offers the option of programming and protecting sectors at the factory  
prior to shipping the device through the ExpressFlash™ Service. Contact your sales representative for details.  
It is possible to determine whether a sector is protected or unprotected. See Autoselect Command Sequence on page 39 for details.  
8.10 Lock Register  
The Lock Register consists of 3 bits (DQ2, DQ1, and DQ0). These DQ2, DQ1, DQ0 bits of the Lock Register are programmable by  
the user. Users are not allowed to program both DQ2 and DQ1 bits of the Lock Register to the 00 state. If the user tries to program  
DQ2 and DQ1 bits of the Lock Register to the 00 state, the device aborts the Lock Register back to the default 11 state. The  
programming time of the Lock Register is same as the typical word programming time (tWHWH1) without utilizing the Write Buffer of  
the device. During a Lock Register programming sequence execution, the DQ6 Toggle Bit I toggles until the programming of the  
Lock Register has completed to indicate programming status. All Lock Register bits are readable to allow users to verify Lock  
Register statuses.  
The Customer Secured Silicon Sector Protection Bit is DQ0, Persistent Protection Mode Lock Bit is DQ1, and Password Protection  
Mode Lock Bit is DQ2 are accessible by all users. Each of these bits are non-volatile. DQ15-DQ3 are reserved and must be 1's when  
the user tries to program the DQ2, DQ1, and DQ0 bits of the Lock Register. The user is not required to program DQ2, DQ1 and DQ0  
bits of the Lock Register at the same time. This allows users to lock the Secured Silicon Sector and then set the device either  
permanently into Password Protection Mode or Persistent Protection Mode and then lock the Secured Silicon Sector at separate  
instances and time frames.  
Secured Silicon Sector Protection allows the user to lock the Secured Silicon Sector area  
Persistent Protection Mode Lock Bit allows the user to set the device permanently to operate in the Persistent Protection Mode  
Password Protection Mode Lock Bit allows the user to set the device permanently to operate in the Password Protection Mode  
Document Number: 001-98525 Rev. *B  
Page 30 of 78  
S29GL064N, S29GL032N  
Table 11. Lock Register  
DQ15-3  
DQ2  
DQ1  
DQ0  
Password Protection Mode Lock  
Bit  
Persistent Protection Mode  
Lock Bit  
Secured Silicon Sector  
Protection Bit  
Don’t Care  
8.11 Persistent Sector Protection  
The Persistent Sector Protection method replaces the old 12 V controlled protection method while at the same time enhancing  
flexibility by providing three different sector protection states.  
Dynamically Locked  
Persistently Locked  
Unlocked  
The sector is protected and can be changed by a simple command  
A sector is protected and cannot be changed  
The sector is unprotected and can be changed by a simple command  
To achieve these states, three types of “bits” are used:  
8.11.1 Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware reset, the contents of all DYB bits are in the  
“unprotected state”. Each DYB is individually modifiable through the DYB Set Command and DYB Clear Command. The DYB bits  
and Persistent Protect Bits (PPB) Lock bit are defaulted to power up in the cleared state or unprotected state - meaning the all PPB  
bits are changeable.  
The Protection State for each sector is determined by the logical OR of the PPB and the DYB related to that sector. For the sectors  
that have the PPB bits cleared, the DYB bits control whether or not the sector is protected or unprotected. By issuing the DYB Set  
and DYB Clear command sequences, the DYB bits is protected or unprotected, thus placing each sector in the protected or  
unprotected state. These are the so-called Dynamic Locked or Unlocked states. They are called dynamic states because it is very  
easy to switch back and forth between the protected and un-protected conditions. This allows software to easily protect sectors  
against inadvertent changes yet does not prevent the easy removal of protection when changes are needed.  
The DYB bits maybe set or cleared as often as needed. The PPB bits allow for a more static, and difficult to change, level of  
protection. The PPB bits retain their state across power cycles because they are Non-Volatile. Individual PPB bits are set with a  
program command but must all be cleared as a group through an erase command.  
The PPB Lock Bit adds an additional level of protection. Once all PPB bits are programmed to the desired settings, the PPB Lock Bit  
may be set to the “freeze state”. Setting the PPB Lock Bit to the “freeze state” disables all program and erase commands to the  
Non-Volatile PPB bits. In effect, the PPB Lock Bit locks the PPB bits into their current state. The only way to clear the PPB Lock Bit  
to the “unfreeze state” is to go through a power cycle, or hardware reset. The Software Reset command does not clear the PPB Lock  
Bit to the “unfreeze state”. System boot code can determine if any changes to the PPB bits are needed e.g. to allow new system  
code to be downloaded. If no changes are needed then the boot code can set the PPB Lock Bit to disable any further changes to the  
PPB bits during system operation.  
The WP# write protect pin adds a final level of hardware protection. When this pin is low it is not possible to change the contents of  
the WP# protected sectors. These sectors generally hold system boot code. So, the WP# pin can prevent any changes to the boot  
code that could override the choices made while setting up sector protection during system initialization.  
It is possible to have sectors that have been persistently locked, and sectors that are left in the dynamic state. The sectors in the  
dynamic state are all unprotected. If there is a need to protect some of them, a simple DYB Set command sequence is all that is  
necessary. The DYB Set and DYB Clear commands for the dynamic sectors switch the DYB bits to signify protected and  
unprotected, respectively. If there is a need to change the status of the persistently locked sectors, a few more steps are required.  
First, the PPB Lock Bit must be disabled to the “unfreeze state” by either putting the device through a power-cycle, or hardware  
reset. The PPB bits can then be changed to reflect the desired settings. Setting the PPB Lock Bit once again to the “freeze state”  
locks the PPB bits, and the device operates normally again.  
To achieve the best protection, execute the PPB Lock Bit Set command early in the boot code, and protect the boot code by holding  
WP# = VIL.  
Document Number: 001-98525 Rev. *B  
Page 31 of 78  
S29GL064N, S29GL032N  
8.11.2 Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to each sector. If a PPB is programmed to the protected state through the  
“PPB Program” command, that sector is protected from program or erase operations and is therefor read-only. If a PPB requires  
erasure, all of the sector PPB bits must first be erased in parallel through the “All PPB Erase” command. The “All PPB Erase”  
command preprograms all PPB bits prior to PPB erasing. All PPB bits erase in parallel, unlike programming where individual PPB  
bits are programmable. The PPB bits are limited to the same number of cycles as a flash memory sector.  
Programming the PPB bit requires the typical word programming time without utilizing the Write Buffer. During a PPB bit  
programming and all PPB bit erasing sequence executions, the DQ6 Toggle Bit I toggles until the programming of the PPB bit or  
erasing of all PPB bits has completed to indicate programming and erasing status. Erasing all of the PPB bits at once requires  
typical sector erase time. During the erasing of all PPB bits, the DQ3 Sector Erase Timer bit outputs a 1 to indicate the erasure of all  
PPB bits are in progress. When the erasure of all PPB bits has completed, the DQ3 Sector Erase Timer bit outputs a 0 to indicate  
that all PPB bits have been erased. Reading the PPB Status bit requires the initial access time of the device.  
8.11.3 Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. When set to the “freeze state”, the PPB bits cannot be changed. When cleared to the “unfreeze state”, the PPB  
bits are changeable. There is only one PPB Lock Bit per device. The PPB Lock Bit is cleared to the “unfreeze state” at power-up or  
hardware reset. There is no command sequence to unlock or “unfreeze” the PPB Lock Bit.  
Configuring the PPB Lock Bit to the freeze state requires approximately 100ns. Reading the PPB Lock Status bit requires the initial  
access time (tACC) of the device.  
Table 12. Sector Protection Schemes  
Protection States  
DYB Bit  
Unprotect  
Unprotect  
Unprotect  
Unprotect  
Protect  
PPB Bit  
Unprotect  
Unprotect  
Protect  
PPB Lock Bit  
Unfreeze  
Freeze  
Sector State  
Unprotected – PPB and DYB are changeable  
Unprotected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Unfreeze  
Freeze  
Protect  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Unprotect  
Unprotect  
Protect  
Unfreeze  
Freeze  
Protect  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Protect  
Unfreeze  
Freeze  
Protect  
Protect  
Protected – PPB not changeable, DYB is changeable  
Table 12 contains all possible combinations of the DYB bit, PPB bit, and PPB Lock Bit relating to the status of the sector. In  
summary, if the PPB bit is set, and the PPB Lock Bit is set, the sector is protected and the protection cannot be removed until the  
next power cycle or hardware reset clears the PPB Lock Bit to “unfreeze state”. If the PPB bit is cleared, the sector can be  
dynamically locked or unlocked. The DYB bit then controls whether or not the sector is protected or unprotected. If the user attempts  
to program or erase a protected sector, the device ignores the command and returns to read mode. A program command to a  
protected sector enables status polling for approximately 1 µs before the device returns to read mode without having modified the  
contents of the protected sector. An erase command to a protected sector enables status polling for approximately 50 µs after which  
the device returns to read mode without having erased the protected sector. The programming of the DYB bit, PPB bit, and PPB  
Lock Bit for a given sector can be verified by writing a DYB Status Read, PPB Status Read, and PPB Lock Status Read commands  
to the device.  
The Autoselect Sector Protection Verification outputs the OR function of the DYB bit and PPB bit per sector basis. When the OR  
function of the DYB bit and PPB bit is a 1, the sector is either protected by DYB or PPB or both. When the OR function of the DYB bit  
and PPB bit is a 0, the sector is unprotected through both the DYB and PPB.  
Document Number: 001-98525 Rev. *B  
Page 32 of 78  
S29GL064N, S29GL032N  
8.12 Password Sector Protection  
The Password Sector Protection method allows an even higher level of security than the Persistent Sector Protection method. There  
are two main differences between the Persistent Sector Protection and the Password Sector Protection methods:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock Bit is set to the locked state, or the freeze state,  
rather than cleared to the unlocked state, or the unfreeze state.  
The only means to clear and unfreeze the PPB Lock Bit is by writing a unique 64-bit Password to the device.  
The Password Sector Protection method is otherwise identical to the Persistent Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
The password is stored in a one-time programmable (OTP) region outside of the flash memory. Once the Password Protection Mode  
Lock Bit is set, the password is permanently set with no means to read, program, or erase it. The password is used to clear and  
unfreeze the PPB Lock Bit. The Password Unlock command must be written to the flash, along with a password. The flash device  
internally compares the given password with the pre-programmed password. If they match, the PPB Lock Bit is cleared to the  
unfreezed state, and the PPB bits can be altered. If they do not match, the flash device does nothing. There is a built-in 2 µs delay  
for each password check after the valid 64-bit password is entered for the PPB Lock Bit to be cleared to the “unfreezed state”. This  
delay is intended to thwart any efforts to run a program that tries all possible combinations in order to crack the password.  
8.13 Password and Password Protection Mode Lock Bit  
In order to select the Password Sector Protection method, the user must first program the password. Cypress recommends that the  
password be somehow correlated to the unique Electronic Serial Number (ESN) of the particular flash device. Each ESN is different  
for every flash device; therefore each password should be different for every flash device. While programming in the password  
region, the customer may perform Password Read operations. Once the desired password is programmed in, the customer must  
then set the Password Protection Mode Lock Bit. This operation achieves two objectives:  
1. It permanently sets the device to operate using the Password Protection Mode. It is not possible to reverse this function.  
2. It also disables all further commands to the password region. All program, and read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead to unrecoverable errors. The user must be sure that  
the Password Sector Protection method is desired when programming the Password Protection Mode Lock Bit. More importantly,  
the user must be sure that the password is correct when the Password Protection Mode Lock Bit is programmed. Due to the fact that  
read operations are disabled, there is no means to read what the password is afterwards. If the password is lost after programming  
the Password Protection Mode Lock Bit, there is no way to clear and unfreeze the PPB Lock Bit. The Password Protection Mode  
Lock Bit, once programmed, prevents reading the 64-bit password on the DQ bus and further password programming. The  
Password Protection Mode Lock Bit is not erasable. Once Password Protection Mode Lock Bit is programmed, the Persistent  
Protection Mode Lock Bit is disabled from programming, guaranteeing that no changes to the protection scheme are allowed.  
8.13.1 64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through the use of the Password Program and Password  
Read commands. The password function works in conjunction with the Password Protection Mode Lock Bit, which when  
programmed, prevents the Password Read command from reading the contents of the password on the pins of the device.  
8.14 Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. The PPB Lock Bit is a volatile bit that reflects the state of the Password Protection Mode Lock Bit after power-up  
reset. If the Password Protection Mode Lock Bit is also programmed after programming the Password, the Password Unlock  
command must be issued to clear and unfreeze the PPB Lock Bit after a hardware reset (RESET# asserted) or a power-up reset.  
Successful execution of the Password Unlock command clears and unfreezes the PPB Lock Bit, allowing for sector PPB bits to be  
modified. Without issuing the Password Unlock command, while asserting RESET#, taking the device through a power-on reset, or  
issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a the “freeze state”.  
If the Password Protection Mode Lock Bit is not programmed, the device defaults to Persistent Protection Mode. In the Persistent  
Protection Mode, the PPB Lock Bit is cleared to the unfreeze state after power-up or hardware reset. The PPB Lock Bit is set to the  
freeze state by issuing the PPB Lock Bit Set command. Once set to the freeze state the only means for clearing the PPB Lock Bit to  
the “unfreeze state” is by issuing a hardware or power-up reset. The Password Unlock command is ignored in Persistent Protection  
Mode.  
Reading the PPB Lock Bit requires a 200 ns access time.  
Document Number: 001-98525 Rev. *B  
Page 33 of 78  
S29GL064N, S29GL032N  
8.15 Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables permanent part identification through an Electronic  
Serial Number (ESN). The Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector Indicator Bit (DQ7) to  
indicate whether or not the Secured Silicon Sector is locked when shipped from the factory. This bit is permanently set at the factory  
and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is  
shipped to the field.  
The factory offers the device with the Secured Silicon Sector either customer lockable (standard shipping option) or factory locked  
(contact an AMD sales representative for ordering information). The customer-lockable version is shipped with the Secured Silicon  
Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the  
Secured Silicon Sector Indicator Bit permanently set to a 0. The factory-locked version is always protected when shipped from the  
factory, and has the Secured Silicon Sector Indicator Bit permanently set to a 1. Thus, the Secured Silicon Sector Indicator Bit  
prevents customer-lockable devices from being used to replace devices that are factory locked.  
The Secured Silicon sector address space in this device is allocated as follows:  
Secured Silicon Sector Address  
Range  
ExpressFlash Factory  
Locked  
Customer Lockable  
ESN Factory Locked  
ESN or determined by  
customer  
000000h–000007h  
000008h–00007Fh  
ESN  
Determined by customer  
Unavailable  
Determined by customer  
The system accesses the Secured Silicon Sector through a command sequence (see Write Protect (WP#/ACC) on page 35). After  
the system has written the Enter Secured Silicon Sector command sequence, it may read the Secured Silicon Sector by using the  
addresses normally occupied by the first sector (SA0). This mode of operation continues until the system issues the Exit Secured  
Silicon Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the  
device reverts to sending commands to sector SA0.  
8.15.1 Customer Lockable: Secured Silicon Sector NOT Programmed or Protected At the  
Factory  
Unless otherwise specified, the device is shipped such that the customer may program and protect the 256-byte Secured Silicon  
sector.  
The system may program the Secured Silicon Sector using the write-buffer, accelerated and/or unlock bypass methods, in addition  
to the standard programming command sequence. See Command Definitions on page 39.  
Programming and protecting the Secured Silicon Sector must be used with caution since, once protected, there is no procedure  
available for unprotecting the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be  
modified in any way.  
The Secured Silicon Sector area can be protected using one of the following procedures:  
Write the three-cycle Enter Secured Silicon Sector Region command.  
To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm.  
Once the Secured Silicon Sector is programmed, locked and verified, the system must write the Exit Secured Silicon Sector Region  
command sequence to return to reading and writing within the remainder of the array.  
8.15.2 Factory Locked: Secured Silicon Sector Programmed and Protected At the Factory  
In devices with an ESN, the Secured Silicon Sector is protected when the device is shipped from the factory. The Secured Silicon  
Sector cannot be modified in any way. An ESN Factory Locked device has an 16-byte random ESN at addresses 000000h–000007h.  
Please contact your sales representative for details on ordering ESN Factory Locked devices.  
Customers may opt to have their code programmed by the factory through the ExpressFlash service (Express Flash Factory  
Locked). The devices are then shipped from the factory with the Secured Silicon Sector permanently locked. Contact your sales  
representative for details on using the ExpressFlash service.  
Document Number: 001-98525 Rev. *B  
Page 34 of 78  
S29GL064N, S29GL032N  
8.16 Write Protect (WP#/ACC)  
The Write Protect function provides a hardware method of protecting the first or last sector without using VID. Write Protect is one of  
two functions provided by the WP#/ACC input.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and erase functions in the first or last sector  
independently of whether those sectors were protected or unprotected. Note that if WP#/ACC is at VIL when the device is in the  
standby mode, the maximum input load current is increased. See the table in DC Characteristics on page 58.  
If the system asserts VIH on the WP#/ACC pin, the device reverts to whether the first or last sector was previously set to be  
protected or unprotected using the method described in Advanced Sector Protection on page 30. Note that WP#/ACC  
contains an internal pull-up; when unconnected, WP#/ACC is at VIH.  
8.17 Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent  
writes (refer to Table 17 on page 47 and Table 19 on page 50 for command definitions). In addition, the following hardware data  
protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals  
during VCC power-up and power-down transitions, or from system noise.  
8.17.1 Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down.  
The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent  
unintentional writes when VCC is greater than VLKO  
.
8.17.2 Write Pulse Glitch Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
8.17.3 Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be  
a logical zero while OE# is a logical one.  
8.17.4 Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands on the rising edge of WE#. The internal  
state machine is automatically reset to the read mode on power-up.  
Document Number: 001-98525 Rev. *B  
Page 35 of 78  
S29GL064N, S29GL032N  
9. Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows  
specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be  
device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash  
vendors can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device  
is ready to read array data. The system can read CFI information at the addresses given in Table 13 on page 36 Table 16  
on page 38. To terminate reading CFI data, the system must write the reset command.  
The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query  
mode, and the system can read CFI data at the addresses given in  
Table 13 on page 36 Table 16 on page 38. The system must write the reset command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication 100. Alternatively, contact your sales representative  
for copies of these documents.  
Table 13. CFI Query Identification String  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 14. System Interface String  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
36h  
0027h  
0036h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
38h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0007h  
0007h  
000Ah  
0000h  
0003h  
0005h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Reserved for future use  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word program 2N times typical.  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Note  
CFI data related to V and time-outs may differ from actual V and time-outs of the product. Please consult the Ordering Information tables to obtain the V range for  
CC  
CC  
CC  
particular part numbers. Please consult the Erase and Programming Performance table for typical timeout specifications.  
Document Number: 001-98525 Rev. *B  
Page 36 of 78  
S29GL064N, S29GL032N  
Table 15. Device Geometry Definition  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
Device Size = 2N byte  
27h  
4Eh  
00xxh  
0017h = 64 Mb, 0016h = 32 Mb  
Flash Device Interface description (refer to CFI publication 100)  
0001h = x16-only bus devices  
28h  
29h  
50h  
52h  
000xh  
0000h  
0002h = x8/x16 bus devices  
2Ah  
2Bh  
54h  
56h  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device, 02h =  
boot device)  
2Ch  
58h  
00xxh  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
00xxh  
000xh  
00x0h  
000xh  
007Fh, 0000h, 0000h, 0001h = 64 Mb (01, 02, 06, 07, V1, V2, V6, V7)  
0007h, 0000h, 0020h, 0000h = 64 Mb (03, 04)  
003Fh, 0000h, 0000h, 0001h = 32 Mb (01, 02, V1, V2)  
0007h, 0000h, 0020h, 0000h = 32 Mb (03, 04)  
Erase Block Region 2 Information (refer to CFI publication 100)  
0000h, 0000h, 0000h, 0000h = 64 Mb (01, 02, 06, 07, V1, V2, V6, V7)  
007Eh, 0000h, 0000h, 0001h = 64 Mb (03, 04)  
31h  
32h  
33h  
34h  
60h  
64h  
66h  
68h  
00xxh  
0000h  
0000h  
000xh  
0000h, 0000h, 0000h, 0000h = 32 Mb (01, 02, V1, V2)  
003Eh, 0000h, 0000h, 0001h = 32 Mb (03, 04)  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Document Number: 001-98525 Rev. *B  
Page 37 of 78  
S29GL064N, S29GL032N  
Table 16. Primary Vendor-Specific Extended Query  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
00xxh  
Process Technology (Bits 7-2) 0100b = 110 nm MirrorBit  
0011h = x8-only bus devices  
0010h = all other devices  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
0002h  
0001h  
0000h  
0008h  
0000h  
0000h  
0002h  
Sector Protect  
0 = Not Supported, X = Number of sectors in smallest sector  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
0008h = Advanced sector Protection  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
4Fh  
50h  
9Eh  
A0h  
00xxh  
0001h  
02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Uniform sectors  
bottom WP# protect, 05h = Uniform sectors top WP# protect  
Program Suspend  
00h = Not Supported, 01h = Supported  
Document Number: 001-98525 Rev. *B  
Page 38 of 78  
S29GL064N, S29GL032N  
10. Command Definitions  
Writing specific address and data commands or sequences into the command register initiates device operations. Table 17  
on page 47 and Table 19 on page 50 define the valid register command sequences. Writing incorrect address and data values or  
writing them in the improper sequence may place the device in an unknown state. A reset command is then required to return the  
device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE#  
or CE#, whichever happens first. Refer to the AC Characteristics section for timing diagrams.  
10.1 Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device  
is ready to read array data after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the erase-suspend-read mode, after which the system can  
read data from any non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the  
system may once again read array data with the same exception. See Erase Suspend/Erase Resume Commands on page 46 for  
more information.  
The system must issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during  
an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more  
information.  
See also Requirements for Reading Array Data in the Device Bus Operations section for more information. The Read-Only  
Operations–AC Characteristics on page 61 provide the read parameters, and Figure 21 on page 62 shows the timing diagram.  
10.2 Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don’t cares for this  
command.  
The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This  
resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is  
complete.  
The reset command may be written between the sequence cycles in a program command sequence before programming begins.  
This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend  
mode, writing the reset command returns the device to the erase-suspend-read mode. Once programming begins, however, the  
device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect  
mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase  
Suspend mode, writing the reset command returns the device to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or  
erase-suspend-read mode if the device was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the Write-to-Buffer-Abort Reset  
command sequence to reset the device for the next operation.  
10.3 Autoselect Command Sequence  
The autoselect command sequence allows the host system to read several identifier codes at specific addresses.  
Identifier Code  
Manufacturer ID  
A7:A0 (x16)  
00h  
A6:A-1 (x8)  
00h  
Device ID, Cycle 1  
01h  
02h  
Device ID, Cycle 2  
0Eh  
1Ch  
Device ID, Cycle 3  
0Fh  
1Eh  
Secured Silicon Sector Factory Protect  
Sector Protect Verify  
03h  
06h  
(SA)02h  
(SA)04h  
Note  
The device ID is read over three cycles. SA = Sector Address  
Document Number: 001-98525 Rev. *B  
Page 39 of 78  
S29GL064N, S29GL032N  
The autoselect command sequence is initiated by first writing on unlock cycle (two cycles). This is followed by a third write cycle that  
contains the autoselect command. The device then enters the autoselect mode. The system may read at any address any number of  
times without initiating another autoselect command sequence:  
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in  
Erase Suspend).  
10.4 Enter/Exit Secured Silicon Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing an 8-word/16-byte random Electronic Serial Number  
(ESN). The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon Sector command  
sequence. The device continues to access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured  
Silicon Sector command sequence. The Exit Secured Silicon Sector command sequence returns the device to normal operation.  
Table 17 on page 47 and Table 19 on page 50 show the address and data requirements for both command sequences. See also  
Secured Silicon Sector Flash Memory Region on page 34 for further information. Note that the ACC function and unlock bypass  
modes are not available when the Secured Silicon Sector is enabled.  
10.4.1 Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed  
by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program  
algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated  
program pulses and verifies the programmed cell margin. Table 17 on page 47 and Table 19 on page 50 show the address and data  
requirements for the word program command sequence, respectively.  
When the Embedded Program algorithm is complete, the device then returns to the read mode and addresses are no longer latched.  
The system can determine the status of the program operation by using DQ7 or DQ6. Refer to the Write Operation Status section for  
information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note  
that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when a program operation is in progress. Note that a  
hardware reset immediately terminates the program operation. The program command sequence should be reinitiated once the  
device returns to the read mode, to ensure data integrity.  
Programming is allowed in any sequence of address locations and across sector boundaries. Programming to the same word  
address multiple times without intervening erases (incremental bit programming) requires a modified programming method. For such  
application requirements, please contact your local Cypress representative. Word programming is supported for backward  
compatibility with existing Flash driver software and for occasional writing of individual words. Use of write buffer programming (see  
below) is strongly recommended for general programming use when more than a few words are to be programmed. The effective  
word programming time using write buffer programming is approximately four times shorter than the single word programming time.  
Any bit in a word cannot be programmed from 0 back to a 1. Attempting to do so may cause the device to set DQ5=1, or cause  
DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read shows that the data is still 0. Only  
erase operations can convert a 0 to a 1.  
10.4.2 Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program words to the device faster than using the standard program command  
sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle  
containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass mode  
command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass  
program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same  
manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in  
faster total programming time. Table 17 on page 47 and Table 19 on page 50 show the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock  
bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. The first cycle must contain the data  
90h. The second cycle must contain the data 00h. The device then returns to the read mode.  
Document Number: 001-98525 Rev. *B  
Page 40 of 78  
S29GL064N, S29GL032N  
10.4.3 Write Buffer Programming  
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in  
faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is  
initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at  
the Sector Address in which programming occurs. The fourth cycle writes the sector address and the number of word locations,  
minus one, to be programmed. For example, if the system programs six unique address locations, then 05h should be written to the  
device. This tells the device how many write buffer addresses are loaded with data and therefore when to expect the Program Buffer  
to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation aborts.  
The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits AMAX  
A4. All subsequent address/data pairs must fall within the selected-write-buffer-page. The system then writes the remaining  
address/data pairs into the write buffer. Write buffer locations may be loaded in any order.  
The write-buffer-page address must be the same for all address/data pairs loaded into the write buffer. (This means Write Buffer  
Programming cannot be performed across multiple write-buffer pages.) This also means that Write Buffer Programming cannot be  
performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer page, the  
operation aborts.  
Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter is decremented for every data  
load operation. The host system must therefore account for loading a write-buffer location more than once. The counter decrements  
for each data load operation, not for each unique write-buffer-address location. Note also that if an address location is loaded more  
than once into the buffer, the final data loaded for that address is programmed.  
Once the specified number of write buffer locations are loaded, the system must then write the Program Buffer to Flash command at  
the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then  
begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer. DQ7, DQ6,  
DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming.  
The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon  
successful completion of the Write Buffer Programming operation, the device is ready to execute the next command.  
The Write Buffer Programming Sequence can be aborted in the following ways:  
Load a value that is greater than the page buffer size during the Number of Locations to Program step.  
Write to an address in a sector different than the one specified during the Write-Buffer-Load command.  
Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer  
data loading stage of the operation.  
Write data other than the Confirm Command after the specified number of data load cycles.  
The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location loaded), DQ6 = toggle, and DQ5= 0. A  
Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation.  
Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when a program operation is in progress. This  
flash device is capable of handling multiple write buffer programming operations on the same write buffer address range without  
intervening erases. For applications requiring incremental bit programming, a modified programming method is required; please  
contact your local Cypress representative. Any bit in a write buffer address range cannot be programmed from 0 back to a 1.  
Attempting to do so may cause the device to set DQ5=1, of cause the DQ7 and DQ6 status bits to indicate the operation was  
successful. However, a succeeding read shows that the data is still 0. Only erase operations can convert a 0 to a 1.  
Document Number: 001-98525 Rev. *B  
Page 41 of 78  
S29GL064N, S29GL032N  
10.4.4 Accelerated Program  
The device offers accelerated program operations through the WP#/ACC or ACC pin depending on the particular product. When the  
system asserts VHH on the WP#/ACC or ACC pin. The device uses the higher voltage on the WP#/ACC or ACC pin to accelerate the  
operation. Note that the WP#/ACC pin must not be at VHH for operations other than accelerated programming, or device damage  
may result. WP# contains an internal pull-up; when unconnected, WP# is at VIH.  
Figure 10 on page 42 illustrates the algorithm for the program operation. Refer to the Erase and Program Operations–AC  
Characteristics on page 61 for parameters, and Figure 22 on page 62 for timing diagrams.  
Figure 10. Write Buffer Programming Operation  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
(Note 1)  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Read DQ7 - DQ0 at  
Last Loaded Address  
Yes  
DQ7 = Data?  
No  
No  
No  
DQ1 = 1?  
DQ5 = 1?  
Yes  
Yes  
Read DQ7 - DQ0 with  
address = Last Loaded  
Address  
Yes  
(Note 2)  
DQ7 = Data?  
No  
FAIL or ABORT  
PASS  
(Note 3)  
Notes  
1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses  
must fall within the selected Write-Buffer Page.  
2. DQ7 may change simultaneously with DQ5. Therefore, DQ7 should be verified.  
3. If this flowchart location was reached because DQ5= 1, then the device FAILED. If this flowchart location was reached because DQ1= 1, then the Write to Buffer  
operation was ABORTED. In either case, the proper reset command must be written before the device can begin another operation. If DQ1= 1, write the  
Write-Buffer-Programming-Abort-Reset command. if DQ5= 1, write the Reset command.  
4. See Table 17 on page 47 and Table 19 on page 50 for command sequences required for write buffer programming.  
Document Number: 001-98525 Rev. *B  
Page 42 of 78  
S29GL064N, S29GL032N  
Figure 11. Program Operation  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note  
See Table 17 on page 47 and Table 19 on page 50 for program command sequence.  
10.5 Program Suspend/Program Resume Command Sequence  
The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming  
operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a  
programming process, the device halts the program operation within 20 s maximum and updates the status bits. Addresses are not  
required when writing the Program Suspend command.  
After the programming operation is suspended, the system can read array data from any non-suspended sector. The Program  
Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be  
read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area  
(One-time Program area), then user must use the proper command sequences to enter and exit this region. Note that the Secured  
Silicon Sector, autoselect, and CFI functions are unavailable when a program operation is in progress.  
The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can  
read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend  
mode, and is ready for another valid operation. See Autoselect Command Sequence on page 39 for more information.  
After the Program Resume command is written, the device reverts to programming. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See Write Operation Status  
on page 52 for more information.  
The system must write the Program Resume command (address bits are don’t care) to exit the Program Suspend mode and  
continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can  
be written after the device resumes programming.  
Document Number: 001-98525 Rev. *B  
Page 43 of 78  
S29GL064N, S29GL032N  
Figure 12. Program Suspend/Program Resume  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 20 μs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
No  
reading?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
10.6 Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a  
set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the  
Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not  
required to provide any controls or timings during these operations. Table 17 on page 47 and Table 19 on page 50 show the  
address and data requirements for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The  
system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. Refer to Write Operation Status on page 52 for  
information on these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a hardware reset immediately terminates  
the erase operation. If this occurs, the chip erase command sequence should be reinitiated once the device returns to reading array  
data, to ensure data integrity.  
Figure 13 on page 45 illustrates the algorithm for the erase operation. Refer to Table 27 on page 64 for parameters, and Figure 26  
on page 66 for timing diagrams.  
Document Number: 001-98525 Rev. *B  
Page 44 of 78  
S29GL064N, S29GL032N  
10.7 Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by  
a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and  
the sector erase command. Table 17 on page 47 and Table 19 on page 50 shows the address and data requirements for the sector  
erase command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and  
verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or  
timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector  
addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the  
number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs,  
otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be  
accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector Erase command is written. Any command other than Sector Erase or Erase  
Suspend during the time-out period resets the device to the read mode. Note that the Secured Silicon Sector, autoselect,  
and CFI functions are unavailable when an erase operation is in progress. The system must rewrite the command sequence  
and any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3: Sector Erase Timer.).  
The time-out begins from the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched.  
The system can determine the status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector. Refer to the Write  
Operation Status section for information on these status bits.  
Once the sector erase operation begins, only the Erase Suspend command is valid. All other commands are ignored. However, note  
that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should be  
reinitiated once the device returns to reading array data, to ensure data integrity.  
Figure 13 on page 45 illustrates the algorithm for the erase operation. Refer to Table 27 on page 64 for parameters, and Figure 26  
on page 66 for timing diagrams.  
Figure 13. Erase Operation  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes  
1. See Table 17 and Table 19 for program command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Document Number: 001-98525 Rev. *B  
Page 45 of 78  
S29GL064N, S29GL032N  
10.8 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program  
data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50 µs  
time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip  
erase operation or Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device requires a typical of 5 smaximum of  
20 s) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the  
device immediately terminates the time-out period and suspends the erase operation.  
After the erase operation is suspended, the device enters the erase-suspend-read mode. The system can read data from or program  
data to any sector not selected for erasure. (The device erase suspends all sectors selected for erasure.) Reading at any address  
within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to  
determine if a sector is actively erasing or is erase-suspended. Refer to Write Operation Status on page 52 for information on these  
status bits.  
After an erase-suspended program operation is complete, the device returns to the erase-suspend-read mode. The system can  
determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard word program operation.  
Refer to Write Operation Status on page 52 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence. Refer to the Autoselect Mode  
on page 29 and Autoselect Command Sequence on page 39 sections for details.  
To resume the sector erase operation, the system must write the Erase Resume command. Further writes of the Resume command  
are ignored. Another Erase Suspend command can be written after the chip resumes erasing.  
During an erase operation, this flash device performs multiple internal operations which are invisible to the system. When an erase  
operation is suspended, any of the internal operations that were not fully completed must be restarted. As such, if this flash device is  
continually issued suspend/resume commands in rapid succession, erase progress is impeded as a function of the number of  
suspends. The result is a longer cumulative erase time than without suspends. Note that the additional suspends do not affect  
device reliability or future performance. In most systems rapid erase/suspend activity occurs only briefly. In such cases, erase  
performance is not significantly impacted.  
Document Number: 001-98525 Rev. *B  
Page 46 of 78  
S29GL064N, S29GL032N  
10.9 Command Definitions  
Table 17. Command Definitions (x16 Mode, BYTE# = VIH)  
Bus Cycles (Notes 25)  
Third Fourth  
Command Sequence (Note 1)  
First  
Second  
Fifth  
Sixth  
Read (Note 5)  
Reset (Note 6)  
1
1
4
6
RA RD  
XXX F0  
Manufacturer ID  
555 AA 2AA 55 555 90  
555 AA 2AA 55 555 90  
X00  
X01  
0001  
Device ID (Note 8)  
227E X0E (Note 18) X0F (Note 18)  
(Note 17  
)
Device ID  
4
4
4
3
4
555 AA 2AA 55 555 90  
555 AA 2AA 55 555 90  
555 AA 2AA 55 555 90  
555 AA 2AA 55 555 88  
555 AA 2AA 55 555 90  
X01  
X03  
Secured Silicon Sector  
Factory Protect  
(Note 9)  
00/01  
Sector Protect Verify  
(Note 10)  
(SA)X0  
2
Enter Secured Silicon Sector  
Region  
Exit Secured Silicon Sector  
Region  
XXX  
00  
Program  
4
3
1
555 AA 2AA 55 555 A0  
555 AA 2AA 55 SA 25  
SA 29  
PA  
SA  
PD  
Write to Buffer (Note 11)  
Program Buffer to Flash  
WC  
PA  
PD  
WBL  
PD  
Write to Buffer Abort Reset  
(Note 12)  
3
555 AA 2AA 55 555 F0  
555 AA 2AA 55 555 20  
Unlock Bypass  
3
2
2
6
6
Unlock Bypass Program (Note 13)  
Unlock Bypass Reset (Note 14)  
Chip Erase  
XXX A0  
PA  
PD  
XXX 90 XXX 00  
555 AA 2AA 55 555 80  
555 AA 2AA 55 555 80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend  
(Note 15)  
1
XXX B0  
Program/Erase Resume (Note 16)  
CFI Query (Note 17)  
1
1
XXX 30  
55  
98  
Document Number: 001-98525 Rev. *B  
Page 47 of 78  
S29GL064N, S29GL032N  
Legend  
X = Don’t care  
PD = Program Data for location PA. Data latches on rising edge of WE# or CE#  
pulse, whichever happens first.  
RA = Read Address of memory location to be read.  
RD = Read Data read from location RA during read operation.  
PA = Program Address. Addresses latch on falling edge of WE# or CE# pulse,  
whichever happens later.  
SA = Sector Address of sector to be verified (in autoselect mode) or erased.  
Address bits A21–A15 uniquely select any sector.  
WBL = Write Buffer Location. Address must be within same write buffer page as  
PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes  
1. See Table 2 on page 16 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells indicate read cycles. All others are write cycles.  
4. During unlock and command cycles, when lower address bits are 555 or 2AA as shown in table, address bits above A11 and data bits above DQ7 are don’t care.  
5. No unlock or command cycles required when device is in read mode.  
6. Reset command is required to return to read mode (or to erase-suspend-read mode if previously in Erase Suspend) when device is in autoselect mode, or if DQ5  
goes high while device is providing status information.  
7. Fourth cycle of the autoselect command sequence is a read cycle. Data bits DQ15–DQ8 are don’t care. Except for RD, PD and WC. See Autoselect Command  
Sequence on page 39 for more information.  
8. For S29GL064N and S29GL032N, Device ID must be read in three cycles.  
9. Refer to Table 10 on page 29 for data indicating Secured Silicon Sector factory protect status.  
10. Data is 00h for an unprotected sector and 01h for a protected sector.  
11. Total number of cycles in command sequence is determined by number of words written to write buffer. Maximum number of cycles in command sequence is 21,  
including Program Buffer to Flash command.  
12. Command sequence resets device for next command after aborted write-to-buffer operation.  
13. Unlock Bypass command is required prior to Unlock Bypass Program command.  
14. Unlock Bypass Reset command is required to return to read mode when device is in unlock bypass mode.  
15. System may read and program in non-erasing sectors, or enter autoselect mode, when in Erase Suspend mode. Erase Suspend command is valid only during a  
sector erase operation.  
16. Erase Resume command is valid only during Erase Suspend mode.  
17. Command is valid when device is ready to read array data or when device is in autoselect mode.  
18. Refer to Table 10 on page 29, for individual Device IDs per device density and model number.  
Document Number: 001-98525 Rev. *B  
Page 48 of 78  
S29GL064N, S29GL032N  
Table 18. Sector Protection Commands (x16)  
Bus Cycles (Notes 24)  
Fourth  
Command Sequence (Notes)  
First  
Data  
Second  
Third  
Fifth  
Sixth  
Seventh  
Addr  
555  
XX  
Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr Data  
Command Set Entry (Note 5)  
Program (Note 6)  
3
2
1
2
3
2
4
7
2
3
2
AA  
A0  
2AA  
XXX  
55  
555  
40  
Data  
Read (Note 6)  
00  
Data  
90  
Command Set Exit (Note 7)  
Command Set Entry (Note 5)  
Program (Note 8)  
XX  
XX  
00  
55  
555  
XX  
AA  
2AA  
555  
60  
A0  
PWAx PWDx  
Read (Note 9)  
XXX  
00  
PWD0  
25  
01  
00  
PWD1  
03  
02  
00  
PWD2  
PWD0  
03  
01  
PWD3  
PWD1  
Unlock (Note 10)  
02  
PWD2  
03  
PWD3  
00  
29  
Command Set Exit (Note 7)  
Command Set Entry (Note 5)  
PPB Program (Note 11)  
XX  
90  
XX  
2AA  
SA  
00  
555  
XX  
AA  
55  
555  
C0  
A0  
00  
All PPB Erase  
(Notes 11, 12)  
2
XX  
80  
00  
30  
PPB Status Read  
1
2
3
2
1
SA  
XX  
RD(0)  
90  
Command Set Exit (Note 7)  
Command Set Entry (Note 5)  
PPB Lock Bit Set  
XX  
2AA  
XX  
00  
55  
00  
555  
XX  
AA  
555  
555  
50  
A0  
PPB Lock Bit Status Read  
XXX  
RD(0)  
Command Set Exit (Note 7)  
2
XX  
90  
XX  
00  
Command Set Entry (Note 5)  
DYB Set  
3
2
2
1
2
555  
XX  
XX  
SA  
XX  
AA  
A0  
2AA  
SA  
55  
00  
01  
E0  
DYB Clear  
A0  
SA  
DYB Status Read  
Command Set Exit (Note 7)  
RD(0)  
90  
XX  
00  
Legend  
X = Don’t care.  
RA = Address of the memory location to be read.  
PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit  
portion of the 64-bit entity.  
PWD = Password Data.  
SA = Sector Address. Any address that falls within a specified sector. See Tables  
39 for sector address ranges.  
RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0. If unprotected,  
DQ0 = 1.  
Notes  
1. All values are in hexadecimal.  
2. Shaded cells indicate read cycles.  
3. Address and data bits not specified in table, legend, or notes are don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset  
command to return the device to reading array data.  
5. Entry commands are required to enter a specific mode to enable instructions only available within that mode.  
6. No unlock or command cycles required when bank is reading array data.  
7. Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state.  
8. Entire two bus-cycle sequence must be entered for each portion of the password.  
9. Full address range is required for reading password.  
10. Password may be unlocked or read in any order. Unlocking requires the full password (all seven cycles).  
11. ACC must be at V when setting PPB or DYB.  
IH  
12. “All PPB Erase” command pre-programs all PPBs before erasure to prevent over-erasure.  
Document Number: 001-98525 Rev. *B  
Page 49 of 78  
S29GL064N, S29GL032N  
Table 19. Command Definitions (x8 Mode, BYTE# = VIL)  
Bus Cycles (Notes 25)  
Fourth  
Command Sequence  
First  
Second  
Third  
Fifth  
Data  
Sixth  
Data  
(Note 1)  
Addr Data Addr Data Addr Data  
Addr  
Data  
Addr  
Addr  
Read (Note 6)  
Reset (Note 7)  
1
1
4
6
4
4
RA  
RD  
F0  
XXX  
AAA  
AAA  
AAA  
AAA  
Manufacturer ID  
AA  
AA  
AA  
AA  
555  
555  
555  
555  
55  
55  
55  
55  
AAA  
AAA  
AAA  
AAA  
90  
90  
90  
90  
X00  
X02  
X02  
X06  
01  
Device ID (Note 9)  
7E  
X1C  
(Note 17)  
X1E  
(Note 17)  
Device ID  
(Note 10)  
00/01  
Secured Silicon Sector Factory Protect  
Sector Protect Verify  
(Note 11)  
4
AAA  
AA  
555  
55  
AAA  
90  
(SA)X04  
Enter Secured Silicon Sector Region  
Exit Secured Silicon Sector Region  
Program  
3
4
4
3
1
3
6
6
AAA  
AAA  
AAA  
AAA  
SA  
AA  
AA  
AA  
AA  
29  
555  
555  
555  
555  
55  
55  
55  
55  
AAA  
AAA  
AAA  
SA  
88  
90  
A0  
25  
XXX  
PA  
00  
PD  
BC  
Write to Buffer (Note 12)  
Program Buffer to Flash  
Write to Buffer Abort Reset (Note 13)  
Chip Erase  
SA  
PA  
PD  
WBL  
PD  
AAA  
AAA  
AAA  
AAA  
XXX  
XXX  
XXX  
XXX  
AA  
AA  
AA  
AA  
AA  
A0  
90  
555  
555  
555  
555  
PA  
55  
55  
55  
55  
PD  
00  
AAA  
AAA  
AAA  
AAA  
F0  
80  
80  
20  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
SA  
10  
30  
Sector Erase  
Unlock Bypass  
Unlock Bypass Program  
Unlock Bypass RESET  
Program/Erase Suspend (Note 14)  
Program/Erase Resume (Note 15)  
CFI Query (Note 16)  
XXX  
1
1
1
B0  
30  
98  
Document Number: 001-98525 Rev. *B  
Page 50 of 78  
S29GL064N, S29GL032N  
Legend  
X = Don’t care  
PD = Program Data for location PA. Data latches on rising edge of WE# or  
CE# pulse, whichever happens first.  
RA = Read Address of memory location to be read.  
RD = Read Data read from location RA during read operation.  
PA = Program Address. Addresses latch on falling edge of WE# or CE# pulse,  
whichever happens later.  
SA = Sector Address of sector to be verified (in autoselect mode) or erased.  
Address bits A21–A15 uniquely select any sector.  
WBL = Write Buffer Location. Address must be within same write buffer page  
as PA.  
BC = Byte Count. Number of write buffer locations to load minus 1.  
Notes  
1. See Table 2 on page 16 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells indicate read cycles. All others are write cycles.  
4. During unlock and command cycles, when lower address bits are 555 or AAA as shown in table, address bits above A11 are don’t care.  
5. Unless otherwise noted, address bits A21–A11 are don’t cares.  
6. No unlock or command cycles required when device is in read mode.  
7. Reset command is required to return to read mode (or to erase-suspend-read mode if previously in Erase Suspend) when device is in autoselect mode, or if  
DQ5 goes high while device is providing status information.  
8. Fourth cycle of autoselect command sequence is a read cycle. Data bits DQ15–DQ8 are don’t care. See Autoselect Command Sequence on page 39 for more  
information.  
9. For S29GL064N and S29GL032A Device ID must be read in three cycles.  
10. Refer to Table 10 on page 29, for data indicating Secured Silicon Sector factory protect status.  
11. Data is 00h for an unprotected sector and 01h for a protected sector.  
12. Total number of cycles in command sequence is determined by number of bytes written to write buffer. Maximum number of cycles in command sequence is 37,  
including Program Buffer to Flash command.  
13. Command sequence resets device for next command after aborted write-to-buffer operation.  
14. System may read and program in non-erasing sectors, or enter autoselect mode, when in Erase Suspend mode. Erase Suspend command is valid only during  
a sector erase operation.  
15. Erase Resume command is valid only during Erase Suspend mode.  
16. Command is valid when device is ready to read array data or when device is in autoselect mode.  
17. Refer to Table 10 on page 29, for individual Device IDs per device density and model number.  
Table 20. Sector Protection Commands (x8)  
Bus Cycles (Notes 25)  
Command Sequence  
1st/8th  
2nd/9th  
3rd/10th  
4th/11th  
5th  
6th  
7th  
(Notes)  
Addr  
Data  
Addr  
Data  
55  
Addr  
Data  
Addr Data Addr Data Addr Data Addr Data  
Command Set Entry  
(Note 5)  
3
AAA  
AA  
555  
AAA  
40  
Program (Note 6)  
Read (Note 6)  
2
1
XXX  
00  
A0  
XXX  
Data  
Data  
Command Set Exit  
(Note 7)  
2
XXX  
AAA  
90  
XXX  
555  
00  
55  
Command Set Entry  
(Note 5)  
3
2
AA  
AAA  
02  
60  
Program (Note 8)  
XXX  
00  
A0  
PWAx  
01  
PWDx  
PWD1  
PWD0  
PWD7  
25  
PWD2  
03  
PWD3 04  
PWD4  
PWD2  
05  
03  
PWD5  
PWD3  
06  
04  
PWD6  
PWD4  
Read (Note 9)  
8
07  
00  
00  
06  
03  
00  
07  
PWD0  
PWD7  
01  
00  
PWD1 02  
29  
Unlock (Note 10)  
11  
2
05  
PWD5  
PWD6  
Command Set Exit  
(Note 7)  
XX  
90  
XX  
00  
Document Number: 001-98525 Rev. *B  
Page 51 of 78  
S29GL064N, S29GL032N  
Table 20. Sector Protection Commands (x8) (Continued)  
Bus Cycles (Notes 25)  
3rd/10th 4th/11th  
Addr Data Addr Data Addr Data Addr Data  
Command Sequence  
1st/8th  
2nd/9th  
5th  
6th  
7th  
(Notes)  
Addr  
Data  
AA  
Addr  
Data  
55  
Addr  
Data  
Command Set Entry  
(Note 5)  
3
2
2
1
2
AAA  
XXX  
XXX  
SA  
555  
SA  
00  
AAA  
C0  
PPB Program (Note 11)  
A0  
00  
All PPB Erase  
(Notes 11, 12)  
80  
30  
PPB Status Read  
RD(0)  
90  
Command Set Exit  
(Note 7)  
XXX  
XXX  
00  
Command Set Entry  
(Note 5)  
3
AAA  
AA  
555  
55  
00  
AAA  
AAA  
50  
PPB Lock Bit Set  
2
1
XXX  
XXX  
A0  
XXX  
PPB Lock Bit Status Read  
RD(0)  
Command Set Exit  
(Note 7)  
2
3
XXX  
AAA  
90  
XX  
00  
55  
Command Set Entry  
(Note 5)  
AA  
555  
E0  
DYB Set  
2
2
1
XXX  
XXX  
SA  
A0  
A0  
SA  
SA  
00  
01  
DYB Clear  
DYB Status Read  
RD(0)  
Command Set Exit  
(Note 7)  
2
XXX  
90  
XXX  
00  
Legend  
X = Don’t care.  
RA = Address of the memory location to be read.  
PWA = Password Address. Address bits A1 and A0 are used to select each  
16-bit portion of the 64-bit entity.  
PWD = Password Data.  
SA = Sector Address. Any address that falls within a specified sector. See  
Tables 39 for sector address ranges.  
RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0. If unprotected,  
DQ0 = 1.  
Notes  
1. All values are in hexadecimal.  
2. Shaded cells indicate read cycles.  
3. Address and data bits not specified in table, legend, or notes are don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset  
command to return the device to reading array data.  
5. Entry commands are required to enter a specific mode to enable instructions only available within that mode.  
6. No unlock or command cycles required when bank is reading array data.  
7. Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state.  
8. Entire two bus-cycle sequence must be entered for each portion of the password.  
9. Full address range is required for reading password.  
10. Password may be unlocked or read in any order. Unlocking requires the full password (all seven cycles).  
11. ACC must be at V when setting PPB or DYB.  
IH  
12. “All PPB Erase” command pre-programs all PPBs before erasure to prevent over-erasure.  
10.10 Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 22  
on page 56 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining  
whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal,  
RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or is completed.  
Document Number: 001-98525 Rev. *B  
Page 52 of 78  
S29GL064N, S29GL032N  
10.11 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or  
completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the  
command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7  
status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs  
the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program  
address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then the device returns to the read  
mode.  
During the Embedded Erase algorithm, Data# Polling produces a 0 on DQ7. When the Embedded Erase algorithm is complete, or if  
the device enters the Erase Suspend mode, Data# Polling produces a 1 on DQ7. The system must provide an address within any of  
the sectors selected for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for  
approximately 100 µs, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at  
an address within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ0–DQ6 while  
Output Enable (OE#) is asserted low. That is, the device may change from providing status information to valid data on DQ7.  
Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device completed the  
program or erase operation and DQ7 has valid data, the data outputs on DQ0–DQ6 may be still invalid. Valid data on DQ0–DQ7  
appears on successive read cycles.  
Table 22 on page 56 shows the outputs for Data# Polling on DQ7. Figure 14 on page 53 shows the Data# Polling algorithm.  
Figure 27 on page 66 shows the Data# Polling timing diagram.  
Figure 14. Data# Polling Algorithm  
START  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid  
address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = 1 because DQ7 may change simultaneously with DQ5.  
Document Number: 001-98525 Rev. *B  
Page 53 of 78  
S29GL064N, S29GL032N  
10.12 RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The  
RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output,  
several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.)  
If the output is high (Ready), the device is in the read mode, the standby mode, or in the erase-suspend-read mode. Table 22  
on page 56 shows the outputs for RY/BY#.  
10.13 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device  
entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# pulse  
in the command sequence (prior to the program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The  
system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 µs,  
then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the  
device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase  
Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or  
erase-suspended. Alternatively, the system can use DQ7 (see DQ7: Data# Polling on page 53).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program command sequence is  
written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete.  
Table 22 on page 56 shows the outputs for Toggle Bit I on DQ6. Figure 15 on page 54 shows the toggle bit algorithm. Figure 28  
on page 67 shows the toggle bit timing diagrams. Figure 29 on page 67 shows the differences between DQ2 and DQ6 in graphical  
form. See also the subsection on DQ2: Toggle Bit II on page 55.  
Figure 15. Toggle Bit Algorithm  
START  
Read DQ7–DQ0  
Read DQ7–DQ0  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note  
The system should recheck the toggle bit even if DQ5 = 1 because the toggle bit may stop toggling as DQ5 changes to 1. See the subsections on DQ6 and DQ2 for more  
information.  
Document Number: 001-98525 Rev. *B  
Page 54 of 78  
S29GL064N, S29GL032N  
10.14 DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded  
Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE#  
pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that were selected for erasure. (The system may use either  
OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended.  
DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors  
are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 22 on page 56 to  
compare outputs for DQ2 and DQ6. Figure 15 on page 54 shows the toggle bit algorithm in flowchart form. Figure 28 on page 67  
shows the toggle bit timing diagram. Figure 29 on page 67 shows the differences between DQ2 and DQ6 in graphical form.  
10.15 Reading Toggle Bits DQ6/DQ2  
Refer to Figure 15 on page 54 for the following discussion. Whenever the system initially begins reading toggle bit status, it must  
read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the  
value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device completed the program or erase operation. The system can read array data on DQ7–  
DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note  
whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is  
toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device  
successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully,  
and the system must write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system  
may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous  
paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the  
algorithm when it returns to determine the status of the operation (top of Figure 15 on page 54).  
10.16 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or write-to-buffer time exceeded a specified internal pulse count limit. Under these  
conditions DQ5 produces a 1. indicating that the program or erase cycle was not successfully completed.  
The device may output a 1 on DQ5 if the system tries to program a 1 to a location that was previously programmed to 0. Only an  
erase operation can change a 0 back to a 1. Under this condition, the device halts the operation, and when the timing limit is  
exceeded, DQ5 produces a 1.  
In all these cases, the system must write the reset command to return the device to the reading the array (or to erase-suspend-read  
if the device was previously in the erase-suspend-program mode).  
10.17 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure began. (The sector  
erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies  
after each additional sector erase command. When the time-out period is complete, DQ3 switches from a 0 to a 1. If the time  
between additional sector erase commands from the system can be assumed to be less than 50 µs, the system need not monitor  
DQ3. See also the Sector Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure  
that the device accepted the command sequence, and then read DQ3. If DQ3 is 1, the Embedded Erase algorithm has begun; all  
further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is 0, the device accepts  
additional sector erase commands. To ensure the command is accepted, the system software should check the status of DQ3 prior  
to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not  
have been accepted. Table 22 on page 56 shows the status of DQ3 relative to the other status bits.  
Document Number: 001-98525 Rev. *B  
Page 55 of 78  
S29GL064N, S29GL032N  
10.18 DQ1: Write-to-Buffer Abort  
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1 produces a 1. The system must issue  
the Write-to-Buffer-Abort-Reset command sequence to return the device to reading array data. See Write Buffer on page 17 for  
more details.  
Table 21. Write Operation Status  
Status  
DQ7 (Note 2)  
DQ6  
DQ5 (Note 1) DQ3 DQ2 (Note 2) DQ1 RY/BY#  
Embedded Program  
Algorithm  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A  
1
No toggle  
Toggle  
0
0
0
1
Standard Mode  
Embedded Erase Algorithm  
Program-Suspend  
N/A  
Invalid (not allowed)  
Data  
Program-  
ed Sector  
Program Suspend  
Mode  
Suspend  
Read  
Non-Program  
Suspended Sector  
1
1
1
0
Erase-Suspended  
Sector  
1
No toggle  
0
Data  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Suspend  
Read  
Erase Suspend  
Mode  
Non-Erase  
Suspended Sector  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
Toggle  
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-Buffer  
Table 22. Write Operation Status  
Status  
DQ7  
DQ5  
(Note 1)  
DQ2  
(Note 2)  
DQ6  
DQ3  
DQ1  
RY/BY#  
(Note 2)  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A No toggle  
0
0
0
Embedded Program Algorithm  
Standard Mode  
1
Toggle  
N/A  
Embedded Erase Algorithm  
Program-Suspended  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program-  
Sector  
Program Suspend  
Mode  
Suspend  
Non-Program  
Suspended Sector  
Read  
Erase-Suspended  
Sector  
1
No toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Suspend  
Read  
Non-Erase Suspended  
Sector  
Erase Suspend Mode  
Data  
0
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
Toggle  
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes  
1. DQ5 switches to 1 when an Embedded Program, Embedded Erase, or Write-to-Buffer operation exceeded the maximum timing limits. Refer to the section on DQ5 for  
more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to 1 when the device aborts the write-to-buffer operation.  
Document Number: 001-98525 Rev. *B  
Page 56 of 78  
S29GL064N, S29GL032N  
11. Absolute Maximum Ratings  
Parameter  
Rating  
–65°C to +150°C  
–65°C to +125°C  
–0.5 V to +4.0 V  
–0.5 V to +12.5 V  
–0.5 V to VCC+0.5 V  
200 mA  
Storage Temperature, Plastic Packages  
Ambient Temperature with Power Applied  
VCC (Note 1)  
Voltage with Respect to Ground  
A9, ACC and RESET# (Note 2)  
All other pins (Note 1)  
(Note 3)  
Output Short Circuit Current  
Notes  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs or I/Os may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 16.  
SS  
Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions, input or I/O pins may overshoot to V + 2.0 V for periods up to 20 ns. See Figure 17.  
CC  
CC  
2. Minimum DC input voltage on pins A9, ACC, and RESET# is –0.5 V. During voltage transitions, A9, ACC, and RESET# may overshoot V to –2.0 V for periods of up  
SS  
to 20 ns. See Figure 16. Maximum DC input voltage on pin A9, ACC, and RESET# is +12.5 V which may overshoot to +14.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
4. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Figure 16. Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2.0 V  
20 ns  
Figure 17. Maximum Positive Overshoot Waveform  
20 ns  
V
CC  
+2.0 V  
V
CC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Document Number: 001-98525 Rev. *B  
Page 57 of 78  
S29GL064N, S29GL032N  
12. Operating Ranges  
Parameter  
Ambient Temperature (TA), Industrial (I) Devices  
Range  
–40°C to +85°C  
+2.7 V to +3.6 V  
+1.65 to +3.6 V  
VCC for full voltage range  
VIO  
Supply Voltages  
Notes  
1. Operating ranges define those limits between which the functionality of the device is guaranteed.  
2. input voltage always must be lower than V input voltage.  
V
IO  
CC  
13. DC Characteristics  
Table 23. DC Characteristics, CMOS Compatible  
Parameter  
Parameter Description (Notes)  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
WP#/ACC: ±2.0 µA  
VIN = VSS to VCC  
CC = VCC max  
,
ILI  
Input Load Current (Note 1)  
µA  
V
Others: ±1.0 µA  
ILIT  
ILO  
A9 Input Load Current  
Output Leakage Current  
VCC = VCC max; A9 = 12.5 V  
35  
µA  
µA  
VOUT = VSS to VCC, VCC = VCC max  
±1.0  
CE# = VIL, OE# = VIH, VCC = VCC max  
f = 1 MH  
,
6
25  
45  
1
10  
30  
50  
10  
20  
60  
CE# = VIL, OE# = VIH, VCC = VCC max,  
f = 5 MHz  
ICC1  
VCC Initial Read Current (Note 1)  
mA  
mA  
CE# = VIL, OE# = VIH, VCC = VCC max,  
f = 10 MHz  
CE# = VIL, OE# = VIH, VCC = VCC max  
f = 10 MHz  
VCC Intra-Page Read Current  
(Note 1)  
ICC2  
CE# = VIL, OE# = VIH, VCC = VCC max  
f = 33 MH  
5
VCC Active Erase/Program Current  
(Notes 2, 3)  
ICC3  
CE# = VIL, OE# = VIH, VCC = VCC max  
50  
mA  
µA  
V
CC = VCC max; VIO = VCC; OE# = VIH;  
ICC4  
VCC Standby Current  
VCC Reset Current  
VIL = (VSS+0.3V) / –0.1V;  
CE#, RESET# = VCC 0.3 V  
1
1
5
5
VCC = VCCmax, VIO = VCC  
IL = (VSS+0.3V) / –0.1V;  
RESET# = VSS 0.3 V  
,
ICC5  
V
µA  
V
V
V
CC = VCCmax, VIO = VCC  
IH = VCC 0.3 V;  
IL = (VSS+0.3V) / –0.1V;  
,
ICC6  
Automatic Sleep Mode (Note 4)  
1
5
µA  
WP#/ACC = VIH  
WP#/AC  
C
CE# = VIL, OE# = VIH,  
ACC Accelerated Program Current VCC = VCCmax,  
WP#/ACC = VIH  
10  
50  
20  
mA  
IACC  
VCC  
60  
mA  
V
VIL  
VIH  
Input Low Voltage 1 (Note 5)  
Input High Voltage 1 (Note 5)  
–0.1  
0.3 x VIO  
VIO + 0.3  
0.7 VIO  
V
Voltage for ACC Program  
VCC = 2.7 –3.6 V  
Acceleration  
VHH  
VID  
11.5  
11.5  
12.5  
12.5  
V
V
Voltage for Autoselect  
VCC = 2.7 –3.6 V  
Document Number: 001-98525 Rev. *B  
Page 58 of 78  
S29GL064N, S29GL032N  
Table 23. DC Characteristics, CMOS Compatible (Continued)  
Parameter  
Parameter Description (Notes)  
Test Conditions  
Min  
Typ  
Max  
Unit  
Symbol  
VOL  
Output Low Voltage (Note 5)  
IOL = 100 µA  
0.15 x VIO  
V
VOH1  
VOH2  
0.85  
VIO  
Output High Voltage (Note 5)  
IOH = –100 µA  
V
V
Low VCC Lock-Out Voltage  
(Note 3)  
VLKO  
2.3  
2.5  
Notes  
1.  
I
current listed is typically less than 5.5 mA/MHz, with OE# at V .  
IH  
CC  
CC  
2.  
I
active while Embedded Erase, Embedded Program, or Write Buffer Programming is in progress.  
3. Not 100% tested.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for t  
+ 30 ns.  
ACC  
5.  
6.  
V
V
= 1.65–1.95 V or 2.7–3.6 V.  
IO  
= 3 V and V = 3 V or 1.8 V. When V is at 1.8 V, I/Os cannot operate at 3 V.  
CC  
IO  
IO  
Document Number: 001-98525 Rev. *B  
Page 59 of 78  
S29GL064N, S29GL032N  
14. Test Conditions  
Figure 18. Test Setup  
3.3 V  
2.7 k  
Device  
Under  
Test  
C
L
6.2 k  
Note  
Diodes are IN3064 or equivalent.  
Table 24. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
Unit  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
Input Rise and Fall Times  
30  
5
pF  
ns  
V
Input Pulse Levels  
0.0 or VIO  
0.5 VIO  
0.5 VIO  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
14.1 Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change  
Permitted  
Changing, State Unknown  
Center Line is High Impedance State  
(High Z)  
Does Not Apply  
Figure 19. Input Waveforms and Measurement Levels  
V
CC  
0.5 VIO  
Input  
0.5 VIO  
Measurement Level  
Output  
0.0 V  
Document Number: 001-98525 Rev. *B  
Page 60 of 78  
S29GL064N, S29GL032N  
15. AC Characteristics  
Table 25. Read-Only Operations  
Parameter  
Speed Options  
Description  
Test Setup  
Unit  
JEDEC  
tAVAV  
Std.  
90  
90  
90  
90  
25  
25  
110  
110  
110  
110  
25  
tRC Read Cycle Time (Note 1)  
tACC Address to Output Delay  
tCE Chip Enable to Output Delay  
Min  
Max  
Max  
ns  
ns  
ns  
tAVQV  
tELQV  
CE#, OE# = VIL  
OE# = VIL  
VIO = VCC = 3 V  
IO = 1.8 V, VCC = 3 V  
VIO = VCC = 3 V  
IO = 1.8 V, VCC = 3 V  
tPACC Page Access Time  
Max  
Max  
ns  
ns  
V
V
30  
25  
tGLQV  
tOE Output Enable to Output Delay  
30  
tEHQZ  
tGHQZ  
tDF Chip Enable to Output High Z (Note 1)  
tDF Output Enable to Output High Z (Note 1)  
Max  
Max  
20  
20  
ns  
ns  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
0
ns  
Read  
Min  
Min  
0
ns  
ns  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and Data# Polling  
10  
Notes  
1. Not 100% tested.  
2. See Figure 18 on page 60 and Table 24 on page 60 for test specifications.  
Figure 20. VCC Power-up Diagram  
tVCS  
VCC  
VCC min  
VIH  
RESET#  
CE#  
t
RH  
Document Number: 001-98525 Rev. *B  
Page 61 of 78  
S29GL064N, S29GL032N  
Figure 21. Read Operation Timings  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 22. Page Read Timings  
Same Page  
A23-A2  
A1-A0*  
Ad  
Aa  
Ab  
Ac  
tPACC  
tPACC  
tPACC  
tACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Note  
* Figure shows device in word mode. Addresses are A1–A-1 for byte mode.  
Document Number: 001-98525 Rev. *B  
Page 62 of 78  
S29GL064N, S29GL032N  
Table 26. Hardware Reset (RESET#)  
Parameter  
Description  
All Speed Options Unit  
JEDEC  
Std.  
RESET# Pin Low (During Embedded Algorithms) to Read Mode  
(See Note)  
tReady  
Max  
Max  
20  
s  
RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode  
(See Note)  
tReady  
500  
ns  
tRP RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
tRH Reset High Time Before Read (See Note)  
tRPD RESET# Input Low to Standby Mode (See Note)  
tRB RY/BY# Output High to CE#, OE# pin Low  
Note  
Not 100% tested.  
Figure 23. Reset Timings  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRH  
tRP  
Notes  
1. Not 100% tested.  
2. See the Erase And Programming Performance on page 70 for more information.  
3. For 1–16 words/1–32 bytes programmed.  
Document Number: 001-98525 Rev. *B  
Page 63 of 78  
S29GL064N, S29GL032N  
Table 27. Erase and Program Operations  
Parameter  
Speed  
Options  
Description  
Unit  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
90  
110  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
90  
110  
ns  
ns  
ns  
ns  
tAVWL  
0
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
45  
tWLAX  
Address Hold Time From CE# or OE# high during toggle bit  
polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Min  
Min  
Min  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
tCEPH  
tOEPH  
tGHWL  
tCS  
CE# High during toggle bit polling  
OE# High during toggle bit polling  
Read Recovery Time Before Write (OE# High to WE# Low)  
CE# Setup Time  
20  
20  
0
tGHWL  
tELWL  
0
tWHEH  
tWLWH  
tWHDL  
tCH  
CE# Hold Time  
0
tWP  
Write Pulse Width  
35  
30  
240  
60  
54  
0.5  
250  
50  
tWPH  
Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
VHH Rise and Fall Time (Note 1)  
VCC Setup Time (Note 1)  
tWHWH1  
tWHWH1  
µs  
tWHWH2  
tWHWH2  
tVHH  
sec  
ns  
tVCS  
µs  
tBUSY  
WE# High to RY/BY# Low  
90  
110  
ns  
Notes  
1. Not 100% tested.  
2. See the Erase And Programming Performance on page 70 for more information.  
3. For 1–16 words/1–32 bytes programmed.  
Document Number: 001-98525 Rev. *B  
Page 64 of 78  
S29GL064N, S29GL032N  
Figure 24. Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWP  
WE#  
Data  
tWPH  
tCS  
tWHWH1  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 25. Accelerated Program Timing Diagram  
V
HH  
V
or V  
IL
IH  
V
or V  
IL  
IH  
ACC  
t
t
VHH  
VHH  
Document Number: 001-98525 Rev. *B  
Page 65 of 78  
S29GL064N, S29GL032N  
Figure 26. Chip/Sector Erase Operation Timings  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
VA  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status on page 52.)  
2. Illustration shows device in word mode.  
Figure 27. Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tDF  
tOH  
tOEH  
High Z  
DQ7  
Valid Data  
Valid Data  
Complement  
Complement  
True  
High Z  
DQ0–DQ6  
Status Data  
True  
Status Data  
tBUSY  
RY/BY#  
Note  
VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle.  
Document Number: 001-98525 Rev. *B  
Page 66 of 78  
S29GL064N, S29GL032N  
Figure 28. Toggle Bit Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tCE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6 / DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note  
VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle.  
Figure 29. DQ2 vs. DQ6  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note  
DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.  
Document Number: 001-98525 Rev. *B  
Page 67 of 78  
S29GL064N, S29GL032N  
Table 28. Alternate CE# Controlled Erase and Program Operations  
Speed  
Options  
Parameter  
Description  
Unit  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
90  
110  
Write Cycle Time (Note 1)  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Min  
90  
110  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tGHEL  
tWLEL  
tEHWH  
tELEH  
tEHEL  
Address Setup Time  
0
45  
35  
0
tAH  
Address Hold Time  
tDS  
Data Setup Time  
tDH  
Data Hold Time  
tGHEL  
tWS  
tWH  
tCP  
Read Recovery Time Before Write (OE# High to CE# Low)  
WE# Setup Time  
0
0
WE# Hold Time  
0
CE# Pulse Width  
35  
25  
240  
60  
54  
0.5  
50  
tCPH  
CE# Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
RESET# High Time Before Write  
tWHWH1  
tWHWH1  
µs  
tWHWH2  
tWHWH2  
tRH  
sec  
ns  
Notes  
1. Not 100% tested.  
2. See the Erase And Programming Performance on page 70 for more information.  
3. For 1–16 words/1–32 bytes programmed.  
Document Number: 001-98525 Rev. *B  
Page 68 of 78  
S29GL064N, S29GL032N  
Figure 30. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
PBA for program  
2AA for erase  
SA for program buffer to flash  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
PBD for program 29 for program buffer to flash  
55 for erase  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
4. Illustration shows device in word mode.  
is the data written to the device.  
OUT  
Document Number: 001-98525 Rev. *B  
Page 69 of 78  
S29GL064N, S29GL032N  
16. Erase And Programming Performance  
Max  
(Note 2)  
Parameter  
Typ (Note 1)  
Unit  
Comments  
Sector Erase Time  
Chip Erase Time  
0.5  
32  
3.5  
64  
Excludes 00h programming  
prior to erasure  
S29GL032N  
S29GL064N  
sec  
(Note 6)  
64  
128  
Total Write Buffer Program Time (Notes 3, 5)  
240  
µs  
Total Accelerated Effective Write Buffer Program Time (Notes  
4, 5)  
Excludes system level  
overhead  
200  
(Note 7)  
S29GL032N  
31.5  
63  
Chip Program Time  
S29GL064N  
sec  
Notes  
1. Typical program and erase times assume the following conditions: 25C, V = 3.0V, 10,000 cycles; checkerboard data pattern.  
CC  
2. Under worst case conditions of 90C; Worst case V , 100,000 cycles.  
CC  
3. Programming time (typ) is 15 s (per word), 7.5 s (per byte).  
4. Accelerated programming time (typ) is 12.5 s (per word), 6.3 s (per byte).  
5. Write buffer Programming time is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer operation.  
6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
7. System-level overhead is the time required to execute the command sequence(s) for the program command. See Table 17 on page 47 and Table 19 on page 50 for  
further information on command definitions.  
Table 29. TSOP Pin and BGA Package Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
Typ  
6
Max  
10  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
TSOP  
BGA  
CIN  
Input Capacitance  
VIN = 0  
TBD  
6
TBD  
12  
TSOP  
BGA  
COUT  
CIN2  
CIN3  
Output Capacitance  
VOUT = 0  
VIN = 0  
VIN = 0  
TBD  
6
TBD  
10  
TSOP  
BGA  
Control Pin Capacitance  
TBD  
27  
TBD  
30  
TSOP  
BGA  
#RESET, WP#/ACC Pin  
Capacitance  
TBD  
TBD  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
Document Number: 001-98525 Rev. *B  
Page 70 of 78  
S29GL064N, S29GL032N  
17. Data Integrity  
17.1 Erase Endurance  
Table 17.1 Erase Endurance  
Parameter  
Minimum  
100K  
Unit  
Program/Erase cycles per main Flash array sectors  
PE cycle  
PE cycle  
Program/Erase cycles per PPB array or non-volatile register array (1)  
100K  
Note:  
1. Each write command to a non-volatile register causes a PE cycle on the entire non-volatile register array.  
17.2 Data Retention  
Table 17.2 Data Retention  
Parameter  
Test Conditions  
10K Program/Erase Cycles  
100K Program/Erase Cycles  
Minimum Time  
Unit  
Years  
Years  
20  
2
Data Retention Time  
Contact Cypress Sales and FAE for further information on the data integrity. An application note is available at:  
www.cypress.com/appnotes.  
Document Number: 001-98525 Rev. *B  
Page 71 of 78  
S29GL064N, S29GL032N  
18. Physical Dimensions  
18.1 TS048—48-Pin Standard Thin Small Outline Package (TSOP)  
A2  
2
0.10 C  
1
N
SEE DETAIL B  
-A-  
-B-  
5
E
e
9
N
2
N
2
+1  
5
A1  
D1  
4
C
D
SEATING  
PLANE  
B
A
0.08MM (0.0031")  
M
C
A-B  
6
S
B
b
7
SEE DETAIL A  
WITH PLATING  
c1  
(c)  
7
b1  
BASE METAL  
R
SECTION B-B  
e/2  
c
GAGE LINE  
0.25MM (0.0098") BSC  
0˚  
-X-  
X = A OR B  
PARALLEL TO  
SEATING PLANE  
L
DETAIL A  
DETAIL B  
NOTES:  
Package  
TS 048  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (MM).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)  
MO-142 (B) EC  
Jedec  
1
2
3
4
MIN  
NOM MAX  
1.20  
Symbol  
PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
NOT APPLICABLE.  
A
A1  
A2  
b1  
b
0.15  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
1.00  
0.20  
1.05  
0.23  
0.27  
0.16  
0.21  
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS DEFINED AS THE PLANE OF  
CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT  
HORIZONTAL SURFACE.  
0.22  
5
6
c1  
c
D
D1  
E
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTUSION IS  
0.15MM (.0059") PER SIDE.  
19.80 20.00 20.20  
18.30 18.40 18.50  
11.90 12.00 12.10  
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE  
0.08 (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 (0.0028").  
7
8
e
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10MM (.0039") AND  
0.25MM (0.0098") FROM THE LEAD TIP.  
0.50 BASIC  
L
0
0.50  
0˚  
0.60  
3˚  
0.70  
5˚  
LEAD COPLANARITY SHALL BE WITHIN 0.10MM (0.004") AS MEASURED FROM THE SEATING PLANE.  
Document Number: 001-98525 Rev. *B  
Page 72 of 78  
S29GL064N, S29GL032N  
18.2 TS056—56-Pin Standard Thin Small Outline Package (TSOP)  
2X  
0.10  
STANDARD PIN OUT (TOP VIEW)  
2X (N/2 TIPS)  
0.10  
2X  
2
0.10  
5
A2  
1
N
REVERSE PIN OUT (TOP VIEW)  
3
SEE DETAIL B  
A
B
1
N
E
N
2
N
2
+1  
e
9
5
D1  
A1  
N
+1  
N
2
4
2
D
0.25  
B
C
2X (N/2 TIPS)  
SEATING  
PLANE  
A
B
SEE DETAIL A  
0.08MM (0.0031")  
M
C
A - B S  
b
6
7
WITH PLATING  
c1  
(c)  
7
b1  
BASE METAL  
SECTION B-B  
R
(c)  
e/2  
GAUGE PLANE  
0.25MM (0.0098") BSC  
θ°  
PARALLEL TO  
SEATING PLANE  
X
C
L
X = A OR B  
DETAIL A  
DETAIL B  
NOTES:  
Package  
Jedec  
TS 056  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)  
MO-142 (D) EC  
1
2
3
4
MIN  
NOM MAX  
1.20  
Symbol  
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN), INK OR LASER MARK.  
0.15  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
1.00  
0.20  
1.05  
0.23  
0.27  
0.16  
0.21  
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS DEFINED AS THE PLANE OF  
CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT  
HORIZONTAL SURFACE.  
0.22  
5
6
c1  
c
D
D1  
E
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTUSION IS  
0.15mm (.0059") PER SIDE.  
19.80 20.00 20.20  
18.30 18.40 18.50  
13.90 14.00 14.10  
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE  
0.08 (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 (0.0028").  
7
e
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10MM (.0039") AND  
0.25MM (0.0098") FROM THE LEAD TIP.  
0.50 BASIC  
L
0
R
N
0.50  
0˚  
0.60  
0.70  
8˚  
8
9
LEAD COPLANARITY SHALL BE WITHIN 0.10mm (0.004") AS MEASURED FROM THE SEATING PLANE.  
DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
0.20  
56  
3356 \ 16-038.10c  
Document Number: 001-98525 Rev. *B  
Page 73 of 78  
S29GL064N, S29GL032N  
18.3 VBK048—Ball Fine-pitch Ball Grid Array (BGA) 8.15x 6.15 mm Package  
0.10 (4X)  
D1  
A
D
6
5
4
3
2
1
7
e
SE  
E1  
E
H
G
F
E
D
C
B
A
INDEX MARK  
10  
6
B
A1 CORNER  
PIN A1  
CORNER  
7
φb  
φ 0.08  
φ 0.15  
SD  
M
M
C
TOP VIEW  
C A B  
BOTTOM VIEW  
0.10  
C
A2  
A
SEATING PLANE  
SIDE VIEW  
0.08  
C
C
A1  
NOTES:  
PACKAGE  
JEDEC  
VBK 048  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
8.15 mm x 6.15 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
8.15 BSC.  
6.15 BSC.  
5.60 BSC.  
4.00 BSC.  
8
0.76  
BODY THICKNESS  
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
6
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
48  
φb  
0.35  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
---  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3338 \ 16-038.25 \ 10.05.04  
Document Number: 001-98525 Rev. *B  
Page 74 of 78  
S29GL064N, S29GL032N  
18.4 LAA064—64-Ball Fortified Ball Grid Array (BGA) 13 x 11 mm Package  
NOTES:  
PACKAGE  
JEDEC  
LAA 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
13.00 mm x 11.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
PROFILE HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.40  
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.40  
0.60  
---  
STANDOFF  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
---  
BODY THICKNESS  
D
13.00 BSC.  
11.00 BSC.  
7.00 BSC.  
7.00 BSC.  
8
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
N
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
φb  
0.50  
0.60  
0.70  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
eD  
eE  
1.00 BSC.  
1.00 BSC.  
0.50 BSC.  
NONE  
BALL PITCH - D DIRECTION  
BALL PITCH - E DIRECTION  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
SD / SE  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
3354 \ 16-038.12d  
Document Number: 001-98525 Rev. *B  
Page 75 of 78  
S29GL064N, S29GL032N  
18.5 LAE064-64-Ball Fortified Ball Grid Array (BGA) 9 x 9 mm Package  
NOTES:  
PACKAGE  
JEDEC  
LAE 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
9.00 mm x 9.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010  
EXCEPT AS NOTED).  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
PROFILE HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.40  
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.40  
0.60  
---  
STANDOFF  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
---  
BODY THICKNESS  
D
9.00 BSC.  
9.00 BSC.  
7.00 BSC.  
7.00 BSC.  
8
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
N
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
φb  
0.50  
0.60  
0.70  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
eD  
eE  
1.00 BSC.  
1.00 BSC.  
0.50 BSC.  
NONE  
BALL PITCH - D DIRECTION  
BALL PITCH - E DIRECTION  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
SD / SE  
9. "+" INDICATES THE THEORETICAL CENTER OF  
DEPOPULATED BALLS.  
3623 \ 16-038.12 \ 1.16.07  
Document Number: 001-98525 Rev. *B  
Page 76 of 78  
S29GL064N, S29GL032N  
19. Revision History  
Document Title: S29GL064N, S29GL032N, 64 Mbit, 32 Mbit 3 V Page Mode MirrorBit Flash  
Document Number: 001-98525  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
Initial release.  
Global: Replaced LAE064 package with LAA064.  
Page Mode Read: Corrected bit ranges in first paragraph.  
Erase And Programming Performance: Modified maximum sector erase time  
in table.  
Connection Diagrams: 64-ball Fortified BGA(LAA064) figure - Changed inputs  
for balls F1 and F7.  
Ordering Information: Removed regulated VCC range and replaced 90 ns with  
110 ns for low VIO option  
Added Note 4 to PACKAGE MATERIAL SET Standard option  
Sector Addresses table: Corrected a table  
TSOP Pin and BGA Package Capacitance: Added values for TSOP  
Ordering Information: Removed leaded parts  
CFI Table: Altered Erase Block Region 1 & 2  
Global: Change document status to Full Production  
Removed 70ns access speed  
Command Definitions (x16 mode) Table: Corrected addresses for Program  
operation  
Command Definitions (x8 mode) Table: Corrected addresses for Program  
operation  
GlobalRemoved VID (12V) Sector protect & unprotect features  
Primary Vendor-Specific Extended Query Table: Updated the data of CFI  
02/12/2007 to address 45hex  
10/29/2008 Primary Vendor-Specific Extended Query Table: Updated the data of CFI  
address 2D hex thru 34 hex.  
**  
RYSU  
S29GL064N (Model 04) Bottom Boot Sector Addresses Table: Updated  
S29GL064N (Model 04) Bottom Boot Sector Addresses  
Erase and Program Operations TableChanged tDS from 45 ns to 35 ns  
Absolute Maximum Rating: Removed OE# form table and notes  
Alternate CE# Controlled Erase and Program Operations: Changed tDS from  
45 ns to 35 ns  
Changed tCPH from 30 ns to 25 ns  
Requirements for Reading Array DataEntire section is re-written to explain  
requirements for reading array data  
Sector ProtectionTitle changed to Advanced Sector Protection  
Advanced Sector ProtectionSection removed  
Erase and Program OperationsRemoved note 4  
Alternate CE# Controlled Erase and Program OperationsRemoved note 4  
GlobalCorrected minor typos  
AC Characteristics: Updated Data#Polling Timing  
DC Characteristics: Changed Note 1 in Table DC Characteristics- CMOS  
Compatible  
Ordering Information: Added LAE064 package option  
Connection Diagram: Figure 3.3; Title changed to 64ball Fortified BGA  
Physical Dimensions: Added LAE064 package option  
Ordering Information: Updated Valid Combinations Table  
*A  
*B  
4968016  
5737059  
RYSU  
RYSU  
10/16/2015 Updated to Cypress template.  
Updated Cypress logo.  
Added Automotive part numbers.  
05/26/2017  
Added Section 17.1 Erase Endurance on page 71 and Section 17.2 Data  
Retention on page 71.  
Document Number: 001-98525 Rev. *B  
Page 77 of 78  
S29GL064N, S29GL032N  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-98525 Rev. *B  
Revised May 26, 2017  
Page 78 of 78  

相关型号:

S29GL064N90TFI022

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI030

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI032

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI040

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI042

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI060

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI062

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI063

Flash, 4MX16, 90ns, PDSO48, LEAD FREE, MO-142EC, TSOP-48
SPANSION

S29GL064N90TFI070

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI072

64 Megabit, 32 Megabit 3.0-Volt only Page Mode Flash Memory Featuring 110 nm MirrorBit Process Technology
SPANSION

S29GL064N90TFI073

Flash, 4MX16, 90ns, PDSO48, LEAD FREE, MO-142EC, TSOP-48
SPANSION

S29GL064N90TFIR10

Flash, 4MX16, 90ns, PDSO56, LEAD FREE, MO-142EC, TSOP-56
SPANSION