S6E1C11B0AGN20000 [INFINEON]

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family;
S6E1C11B0AGN20000
型号: S6E1C11B0AGN20000
厂家: Infineon    Infineon
描述:

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family

微控制器
文件: 总111页 (文件大小:3276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
The following document contains information on Cypress products. The document has the  
ordering part numbering with the prefix “S”. Cypress will offer these products to new and existing  
customers with the updated ordering part number (updated last digit).  
How to Check the Ordering Part Number  
1. Go to www.cypress.com/pcn.  
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click  
Apply.  
3. Click the corresponding title from the search results.  
4. Download the Affected Parts List file, which has details of all changes  
For More Information  
Please contact your local sales office for additional information about Cypress products and  
solutions.  
About Cypress  
Cypress is the leader in advanced embedded system solutions for the world's most innovative  
automotive, industrial, smart home appliances, consumer electronics and medical products.  
Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable,  
high-performance memories help engineers design differentiated products and get them to market  
first. Cypress is committed to providing customers with the best support and development  
resources on the planet enabling them to disrupt markets by creating new product categories in  
record time. To learn more, go to www.cypress.com.  
S6E1C Series  
32-bit ARM® Cortex®-M0+  
FM0+ Microcontroller  
The FM0+ family of Flexible Microcontrollers is the industry’s most energy-efficient 32-bit ARM® Cortex®-M0+ based MCUs. This  
family of MCUs is designed for ultra-low-power and cost-sensitive applications such as white goods, sensors, meters, HMI systems,  
power tools and Internet of Things (IoT) battery-powered or wearable devices.  
This family of ultra-low-power MCUs features an industry-leading 35 µA/CoreMark® score and 40µA/MHz Active Power  
consumption.  
The S6E1C Series is a series of highly integrated 32-bit microcontrollers designed for embedded controllers aiming at low power  
consumption and low cost. This series has the ARM Cortex-M0+ Processor with on-chip Flash memory and SRAM, and consists of  
peripheral functions such as various timers, ADC and communication interfaces (UART, CSIO (SPI), I2C, I2S, Smart Card, and USB).  
The products which are described in this data sheet are placed into TYPE3-M0+ product categories in "FM0+ Family Peripheral  
Manual".  
Features  
Ultra Low Power MCU Subsystem  
Analog Subsystem  
40 MHz ARM Cortex-M0+ CPU with 1.65 V to 3.6 V  
1x 12-bit, 1-Msps ADCs with an 8-channel multiplexer input  
1% high precision internal oscillator  
operating voltage  
Maximum operating frequency: 40.8 MHz  
Package Options  
32-/48-/64-pin LQFP  
32-/48-/64-pin QFN  
30-pin WLCSP  
Nested Vectored Interrupt Controller (NVIC): 1 non-maskable  
interrupt (NMI) and 24 peripheral interrupt with 4 selectable  
interrupt priority levels  
24-bit System timer (Sys Tick): System timer for OS task  
management  
Up to 128 KB Flash, 16 KB SRAM  
Low-Power Consumption Modes  
Descriptor System Transfer Controller (DSTC)  
Industry's most efficient 35 µA/CoreMark Score  
This series has six low-power consumption modes:  
Sleep  
Timer  
RTC  
Stop  
Ultra-low-power consumption: Active 40 µA/MHz and  
Standby 0.6 µA  
Fast wake-up from standby mode (execute from Flash):  
20 µs (Typ)  
Deep standby RTC (selectable between keeping the value  
of RAM and not)  
Deep standby Stop (selectable between keeping the value  
of RAM and not)  
Digital Subsystem  
Up to 8x Base Timers  
1x Dual Timer, 1x Watch Counter  
Up to 6x Multi-Function Serial (MFS) interfaces configurable  
as SPI, UART, I2C  
Up to 1x USB, up to 2x I2S, up to 2x HDMI-CEC, up to 1x  
Smart Card interfaces  
Cypress Semiconductor Corporation  
Document Number: 002-00233 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 13, 2017  
 
 
 
S6E1C Series  
Ecosystem for Cypress FM0+ MCUs  
Cypress provides a wealth of data at www.cypress.com to help you to select the right MCU for your design, and to help you to  
quickly and effectively integrate the device into your design. Following is an abbreviated list for FM0+ MCUs:  
Overview: Product Portfolio, Product Roadmap  
AN205411 FM0+ IEC60730 Class B Self-Test Library :  
This document covers how to use and implement the  
Product Selectors: FM0+ MCUs  
Application notes: Cypress offers a large number of FM0+  
application notes covering a broad range of topics, from  
basic to advanced level. Recommended application notes  
for getting started with FM0+ family of MCUs are:  
library functions provided. It will first show the requirement  
of IEC60730 Class B, and then explain how it can be  
implemented. At last an example is given to show how to  
integrate test functions into a real system.  
AN210985 FM0+ Getting Started with FM0+  
AN202487 - Differences Among FM0+, FM3, and FM4  
32-Bit Microcontrollers: Highlights the peripheral  
differences in Cypress’s FM family MCUs. It provides  
dedicated sections for each peripheral and contains lists,  
tables, and descriptions of peripheral feature and register  
differences.  
Development: AN210985 introduces you to the FM0+  
family of 32-bit general-purpose microcontrollers. The  
FM0+ family is based on the ARM® Cortex®-M0+  
processor core, ideal for ultra-low-power designs. This  
note provides an overview of hardware features and  
capabilities, firmware development, and the multitude of  
technical resources available to you. This application note  
uses the FM0+ S6E1B8-Series Starter Kit as an example.  
AN204438 - How to Setup Flash Security for FM0+, FM3  
and FM4 Families: This application note describes how to  
setup the Flash Security for FM0+, FM3, and FM4 devices  
AN203277 - FM 32-Bit Microcontroller Family Hardware  
Design Considerations: This application note reviews  
several topics for designing a hardware system around  
FM0+, FM3, and FM4 family MCUs. Subjects include  
power system, reset, crystal, and other pin connections,  
and programming and debugging interfaces.  
Development kits:  
FM0-V48-S6E1A1 ARM® Cortex®-M0+ FM0+ MCU  
Evaluation Board  
FM0-64L-S6E1C3 - ARM® Cortex®-M0+ MCU Starter Kit  
with USB and Digital Audio Interface  
Peripheral Manuals  
Document Number: 002-00233 Rev. *D  
Page 2 of 109  
S6E1C Series  
11.9.2 Return Factor: Reset ................................................94  
12. Ordering Information...................................................96  
13. Acronyms.....................................................................97  
14. Package Dimensions...................................................99  
15. Errata..........................................................................106  
15.1 Part Numbers Affected ..........................................106  
15.2 Qualification Status................................................106  
15.3 Errata Summary.....................................................106  
Document History...........................................................108  
Sales, Solutions, and Legal Information.......................109  
Table of Contents  
Features...............................................................................1  
1. Block Diagram...............................................................4  
2. Product Lineup..............................................................5  
2.1  
2.2  
Package Dependent Features...................................6  
Packages...................................................................6  
3. Product Features in Detail............................................7  
4. Pin Assignment...........................................................10  
5. List of Pin Functions...................................................17  
6. I/O Circuit Type............................................................26  
7. Handling Precautions .................................................31  
7.1  
7.2  
7.3  
Precautions for Product Design...............................31  
Precautions for Package Mounting..........................32  
Precautions for Use Environment............................34  
8. Handling Devices ........................................................35  
9. Memory Map ................................................................38  
10. Pin Status in Each CPU State ....................................41  
11. Electrical Characteristics ...........................................44  
11.1 Absolute Maximum Ratings.....................................44  
11.2 Recommended Operating Conditions......................45  
11.3 DC Characteristics...................................................46  
11.3.1 Current Rating..........................................................46  
11.3.2 Pin Characteristics ...................................................51  
11.4 AC Characteristics...................................................52  
11.4.1 Main Clock Input Characteristics..............................52  
11.4.2 Sub Clock Input Characteristics ...............................53  
11.4.3 Built-in CR Oscillation Characteristics......................54  
11.4.4 Operating Conditions of Main PLL (In the Case of  
Using the Main Clock as the Input Clock of the PLL)55  
11.4.5 Operating Conditions of Main PLL (In the Case of  
Using the Built-in High-Speed CR Clock as the Input  
Clock of the Main PLL).............................................55  
11.4.6 Reset Input Characteristics ......................................56  
11.4.7 Power-on Reset Timing............................................56  
11.4.8 Base Timer Input Timing..........................................57  
11.4.9 CSIO/SPI/UART Timing...........................................58  
11.4.10 External Input Timing............................................75  
11.4.11 I2C Timing.............................................................76  
11.4.12 I2S Timing (MFS-I2S Timing)................................77  
11.4.13 Smart Card Interface Characteristics....................79  
11.4.14 SW-DP Timing......................................................80  
11.5 12-bit A/D Converter................................................81  
11.6 USB Characteristics ................................................84  
11.7 Low-Voltage Detection Characteristics....................89  
11.7.1 Low-Voltage Detection Reset...................................89  
11.7.2 Low-Voltage Detection Interrupt...............................90  
11.8 Flash Memory Write/Erase Characteristics .............91  
11.9 Return Time from Low-Power Consumption Mode..92  
11.9.1 Return Factor: Interrupt/WKUP ................................92  
Document Number: 002-00233 Rev. *D  
Page 3 of 109  
S6E1C Series  
1. Block Diagram  
SWCLK  
SWDIO  
SW-DP  
Fast  
GPIO  
On-Chip SRAM  
12/16Kbyte  
Cortex-M0+Core  
NVIC  
MTB  
Bit Band  
Wrapper  
On-Chip FLASH  
64/128Kbyte  
Flash I/F  
Security  
System ROM table  
Dual-Timer  
WatchDog Timer  
(Software)  
INITX  
Clock Reset  
Generator  
WatchDog Timer  
(Hardware)  
DSTC  
64ch.  
WatchDog Timer  
(CVS)  
Source Clock  
X0  
X1  
Main  
Osc  
Sub  
Osc  
UDP0,  
UDM0  
PLL  
PHY  
USB2.0  
(Host/Device)  
CR  
8MHz  
CR  
100KHz  
X0A  
X1A  
UHCONX0  
CROUT  
Power-On  
LVD Ctrl  
LVD  
AVRH  
AVRL  
12-bit A/D Converter  
C
Regulator  
IRQ-Monitor  
Watch Counter  
Real-Time Clock  
ANxx  
Unit 0  
ADTG  
Base Timer  
16-bit 8 ch.  
32-bit 4 ch.  
TIOAx  
TIOBx  
RTCCO  
External Interrupt  
Controller  
INTx  
12 pin(Max) + NMI  
NMIX  
MD0,  
MD1  
CRC Accelarator  
MODE-Ctrl  
Low-Speed CR  
Peripheral Clock  
Gating  
P0x,  
P1x,  
PIN-Function-Ctrl  
GPIO  
:
PEx  
SCKx  
SINx  
SOTx  
SCSx  
Multi-function Serial  
I/F  
MI2SCKx  
MI2SDIx  
6 ch. (Max)  
MI2SDOx  
MI2SMCKx  
MI2SWSx  
IC1_CLKx  
IC1_VCCx  
IC1_VPENx  
Smart Card I/F  
WKUPx  
Deep Standby Ctrl  
IC1_CINx  
IC1_DATAx  
Document Number: 002-00233 Rev. *D  
Page 4 of 109  
 
S6E1C Series  
2. Product Lineup  
Memory Size  
Product name  
S6E1C11  
S6E1C31  
S6E1C12  
S6E1C32  
On-chip Flash memory  
On-chip SRAM  
64 Kbytes  
12 Kbytes  
128 Kbytes  
16 Kbytes  
Function  
Function Name  
S6E1C1  
S6E1C3  
Cortex-M0+  
40.8 MHz  
CPU  
Frequency  
Power supply voltage range  
USB2.0 (Device/Host)  
DSTC  
1.65 V to 3.6 V  
-
1 unit  
64 ch.  
Base Timer  
(PWC/Reload timer/PWM/PPG)  
8 ch. (Max)  
Dual Timer  
1 unit  
Real-time Clock  
1 unit  
Watch Counter  
1 unit  
CRC Accelerator  
Yes  
1 ch. (SW) + 1 ch. (HW)  
Yes  
Watchdog timer  
CSV (Clock Supervisor)  
LVD (Low-voltage Detection)  
2 ch.  
High-speed  
Built-in CR  
8 MHz (Typ)  
100 kHz (Typ)  
SW-DP  
Low-speed  
Debug Function  
Unique ID  
Yes  
Note:  
Because of package pin limitations, not all functions within the device can be brought out to external pins. You must carefully  
work out the pin allocation needed for your design.  
You must use the port relocate function of the I/O port according to your function use.  
See "11. Electrical Characteristics 11.4 AC Characteristics 11.4.3 Built-in CR Oscillation Characteristics" for accuracy of built-in  
CR.  
Document Number: 002-00233 Rev. *D  
Page 5 of 109  
S6E1C Series  
2.1 Package Dependent Features  
Feature  
Package  
32 LQFP  
32 QFN  
48 LQFP  
48 QFN  
64 LQFP  
64 QFN  
30 WLCSP  
Pin count  
30  
32  
48  
64  
4 ch. (Max)  
4 ch. (Max)  
6 ch. (Max)  
6 ch. (Max)  
Ch.0/1/3 without FIFO Ch.0/1/3 without FIFO Ch.0/1/3 without FIFO Ch.0/1/3 without FIFO  
Multi-function Serial Interface  
(UART/CSIO/I2C/I2S)  
Ch. 6 with FIFO  
Ch. 6 with FIFO  
Ch.4/6/7 with FIFO  
Ch.4/6/7 with FIFO  
I2S: 1 ch (Max)  
Ch. 6 with FIFO  
I2S: 2 ch (Max)  
Ch. 4/6 with FIFO  
I2S: No  
7 pins (Max),  
NMI x 1  
9 pins (Max),  
NMI x 1  
12 pins (Max),  
NMI x 1  
External Interrupt  
I/O port  
24 pins (Max)  
6 ch. (1 unit)  
38 pins (Max)  
8 ch. (1 unit)  
54 pins (Max)  
8 ch. (1 unit)  
12-bit A/D converter  
Smart Card Interface  
No  
1 ch (Max)  
HDMI-CEC/ Remote Control  
Receiver  
1 ch.(Max)  
Ch.1  
2 ch (Max)  
Ch.0/1  
2.2 Packages  
Package Suffix  
B0A  
C0A  
D0A  
Package  
LQFP: LQB032 (0.80 mm pitch)  
QFN: WNU032 (0.50 mm pitch)  
WLCSP: U4M030 (0.40 mm pitch)  
LQFP: LQA048 (0.50 mm pitch)  
QFN: WNY048 (0.50 mm pitch)  
LQFP: LQD064 (0.50 mm pitch)  
  
-
-
-
-
  
  
  
-
-
-
-
-
  
-
  
  
-
-
QFN: WNS064 (0.50 mm pitch)  
: Available  
Note:  
See "14. Package Dimensions" for detailed information on each package.  
Document Number: 002-00233 Rev. *D  
Page 6 of 109  
 
 
 
S6E1C Series  
3. Product Features in Detail  
Multi-Function Serial Interface (Max 6channels)  
3 channels with 64Byte FIFO (Ch.4, 6 and 7), 3 channels  
without FIFO (Ch.0, 1 and 3)  
32-bit ARM Cortex-M0+ Core  
Maximum operating frequency: 40.8 MHz  
The operation mode of each channel can be selected from  
one of the following.  
Nested Vectored Interrupt Controller (NVIC): 1 NMI  
(non-maskable interrupt) and 24 peripheral interrupt with 4  
selectable interrupt priority levels  
UART  
CSIO (CSIO is known to many customers as SPI)  
I2C  
24-bit System timer (Sys Tick): System timer for OS task  
management  
UART  
Full duplex double buffer  
Bit Band Operation  
Compatible with Cortex-M3 bit band operation.  
Parity can be enabled or disabled.  
Built-in dedicated baud rate generator  
External clock available as a serial clock  
On-Chip Memory  
Hardware Flow control* : Automatically control the  
transmission by CTS/RTS (only ch.4)  
* : S6E1C32B0A/S6E1C31B0A and  
S6E1C32C0A/S6E1C31C0A do not support Hardware  
Flow control.  
Various error detection functions (parity errors, framing  
errors, and overrun errors)  
Flash memory  
Up to 128 Kbytes  
Read cycle: 0 wait-cycle  
Security function for code protection  
SRAM  
CSIO (also known as SPI)  
Full duplex double buffer  
Built-in dedicated baud rate generator  
Overrun error detection function  
Serial chip select function (ch1 and ch6 only)  
Data length: 5 to 16 bits  
The on-chip SRAM of this series has one independent SRAM.  
Up to 16 Kbytes  
4Kbytes: can retain value in Deep standby Mode  
USB Interface  
USB interface is composed of Device and Host  
With Main PLL, USB clock can be generated by multiplication  
of Main clock.  
I2C  
Standard-mode (Max: 100 kbps) supported / Fast-mode  
(Max 400 kbps) supported.  
USB Device  
I2S (MFS-I2S)  
USB 2.0 Full-Speed supported  
Max 6 EndPoint supported  
EndPoint 0 is control transfer  
EndPoint 1, 2 can be selected Bulk-transfer,  
Interrupt-transfer or Isochronous-transfer  
Using CSIO (Max 2 ch: ch.4, ch.6) and I2S clock generator  
Supports two transfer protocol  
I2S  
MSB-justified  
Master mode only  
EndPoint 3 to 5 can select Bulk-transfer or  
Interrupt-transfer  
EndPoint 1 to 5 comprise Double Buffer  
The size of each EndPoint is according to the follows  
EndPoint 0, 2 to 5 : 64 bytes  
Descriptor System Data Transfer Controller (DSTC)  
(64 Channels)  
The DSTC can transfer data at high-speed without going via  
the CPU. The DSTC adopts the Descriptor system and,  
following the specified contents of the Descriptor that has  
already been constructed on the memory, can access directly  
the memory / peripheral device and performs the data  
transfer operation.  
EndPoint 1 : 256 bytes  
USB host  
USB 2.0 Full/Low-Speed supported  
Bulk-transfer, Interrupt-transfer and Isochronous-transfer  
support  
USB Device connected/disconnected automatically detect  
IN/OUT token handshake packet automatically  
Max 256-byte packet-length supported  
It supports the software activation, the hardware activation,  
and the chain activation functions  
Wake-up function supported  
Document Number: 002-00233 Rev. *D  
Page 7 of 109  
S6E1C Series  
It can count leap years automatically.  
A/D Converter (Max: 8 Channels)  
Watch Counter  
12-bit A/D Converter  
The Watch Counter wakes up the microcontroller from the low  
power consumption mode. The clock source can be selected  
from the main clock, the sub clock, the built-in high-speed CR  
clock or the built-in low-speed CR clock.  
Successive approximation type  
Conversion time: 2.0 μs @ 2.7 V to 3.6 V  
Priority conversion available (2 levels of priority)  
Scan conversion mode  
Built-in FIFO for conversion data storage (for scan  
conversion: 16 steps, for priority conversion: 4 steps)  
Interval timer: up to 64 s (sub clock: 32.768 kHz)  
External Interrupt Controller Unit  
Up to 12 external interrupt input pins  
Non-maskable interrupt (NMI) input pin: 1  
Base Timer (Max: 8 Channels)  
The operation mode of each channel can be selected from one  
of the following.  
16-bit PWM timer  
16-bit PPG timer  
Watchdog Timer (2 Channels)  
The watchdog timer generates an interrupt or a reset when the  
counter reaches a time-out value.  
16/32-bit reload timer  
16/32-bit PWC timer  
This series consists of two different watchdogs, hardware  
watchdog and software watchdog.  
General-Purpose I/O Port  
The hardware watchdog timer is clocked by the built-in  
low-speed CR oscillator. Therefore, the hardware watchdog is  
active in any low-power consumption modes except RTC, Stop,  
Deep standby RTC and Deep standby Stop mode.  
This series can use its pin as a general-purpose I/O port when  
it is not used for an external bus or a peripheral function. All  
ports can be set to fast general-purpose I/O ports or slow  
general-purpose I/O ports. In addition, this series has a port  
relocate function that can set to which I/O port a peripheral  
function can be allocated.  
CRC (Cyclic Redundancy Check) Accelerator  
The CRC accelerator calculates the CRC which has a heavy  
software processing load, and achieves a reduction of the  
integrity check processing load for reception data and storage.  
All ports are Fast GPIO which can be accessed by 1cycle  
Capable of controlling the pull-up of each pin  
Capable of reading pin level directly  
CCITT CRC16 and IEEE-802.3 CRC32 are supported.  
CCITT CRC16 Generator Polynomial: 0x1021  
IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7  
Port relocate function  
HDMI-CEC/Remote Control Receiver (Up to 2  
Channels)  
Up to 54 fast general-purpose I/O ports @64-pin package  
Certain ports are 5 V tolerant.  
See 5.List of Pin Functions and 6.I/O Circuit Type for the  
corresponding pins.  
HDMI-CEC transmitter  
Header block automatic transmission by judging Signal  
free  
Dual Timer (32-/16-bit Down Counter)  
Generating status interrupt by detecting Arbitration lost  
The Dual Timer consists of two programmable 32-/16-bit down  
counters. The operation mode of each timer channel can be  
selected from one of the following.  
Generating START, EOM, ACK automatically to output  
CEC transmission by setting 1 byte data  
Generating transmission status interrupt when transmitting  
1 block (1 byte data and EOM/ACK)  
Free-running mode  
HDMI-CEC receiver  
Automatic ACK reply function available  
Line error detection function available  
Periodic mode (= Reload mode)  
One-shot mode  
Remote control receiver  
4 bytes reception buffer  
Real-Time Clock  
The Real-time Clock counts  
Repeat code detection function available  
Smart Card Interface (Max 1 Channel)  
Compliant with ISO7816-3 specification  
year/month/day/hour/minute/second/day of the week from year  
00 to year 99.  
The RTC can generate an interrupt at a specific time  
(year/month/day/hour/minute) and can also generate an  
interrupt in a specific year, in a specific month, on a specific  
day, at a specific hour or at a specific minute.  
Card Reader only/B class card only  
Available protocols  
Transmitter: 8E2, 8O2, 8N2  
Receiver: 8E1, 8O1, 8N2, 8N1, 9N1  
Inverse mode  
It has a timer interrupt function generating an interrupt upon  
a specific time or at specific intervals.  
It can keep counting while rewriting the time.  
TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes)  
Document Number: 002-00233 Rev. *D  
Page 8 of 109  
 
S6E1C Series  
Clock and Reset  
Low Power Consumption Mode  
This series has six low power consumption modes.  
Clocks  
A clock can be selected from five clock sources (two external  
oscillators, two built-in CR oscillator, and main PLL).  
Sleep  
Timer  
RTC  
Stop  
Main clock:  
Sub clock:  
Built-in high-speed CR clock: 8 MHz  
Built-in low-speed CR clock: 100 kHz  
8 MHz to 48 MHz  
32.768 kHz  
Main PLL clock  
8MHz to 16MHz (Input),  
75MHz to 150MHz (Output)  
Deep standby RTC (selectable between keeping the value of  
RAM and not)  
Resets  
Reset request from the INITX pin  
Power on reset  
Deep standby Stop (selectable between keeping the value of  
RAM and not)  
Software reset  
Peripheral Clock Gating  
Watchdog timer reset  
Low-voltage detection reset  
Clock supervisor reset  
The system can reduce the current consumption of the total  
system with gating the operation clocks of peripheral functions  
not used.  
Debug  
Clock Supervisor (CSV)  
The Clock Supervisor monitors the failure of external clocks  
with a clock generated by a built-in CR oscillator.  
Serial Wire Debug Port (SW-DP)  
Micro Trace Buffer (MTB)  
If an external clock failure (clock stop) is detected, a reset is  
asserted.  
Unique ID  
A 41-bit unique value of the device has been set.  
If an external frequency anomaly is detected, an interrupt or  
a reset is asserted.  
Power Supply  
Low-Voltage Detector (LVD)  
Wide voltage range:  
This series monitors the voltage on the VCC pin with a 2-stage  
mechanism. When the voltage falls below a designated voltage,  
the Low-voltage Detector generates an interrupt or a reset.  
VCC = 1.65V to 3.6 V  
VCC = 3.0V to 3.6V (when USB is used)  
LVD1: monitor VCC and error reporting via an interrupt  
LVD2: auto-reset operation  
Document Number: 002-00233 Rev. *D  
Page 9 of 109  
S6E1C Series  
4. Pin Assignment  
LQD064  
(TOP VIEW)  
Document Number: 002-00233 Rev. *D  
Page 10 of 109  
S6E1C Series  
WNS064  
(TOP VIEW)  
Document Number: 002-00233 Rev. *D  
Page 11 of 109  
S6E1C Series  
LQA048  
(TOP VIEW)  
Document Number: 002-00233 Rev. *D  
Page 12 of 109  
S6E1C Series  
WNY048  
(TOP VIEW)  
Document Number: 002-00233 Rev. *D  
Page 13 of 109  
S6E1C Series  
LQB032  
(TOP VIEW)  
Document Number: 002-00233 Rev. *D  
Page 14 of 109  
S6E1C Series  
WNU032  
(TOP VIEW)  
Document Number: 002-00233 Rev. *D  
Page 15 of 109  
S6E1C Series  
U4M030  
(BOTTOM VIEW)  
1
2
3
4
5
P50  
P01  
AVRH  
P81  
P80  
A
B
C
P22  
P12  
P51  
P52  
P23  
P11  
P05  
P03  
P21  
P13  
P60  
VSS  
C
P32  
P33  
X0A  
X1A  
P0F  
P31  
X0  
P10  
X1  
D
E
F
MD0  
INITX  
VCC  
Document Number: 002-00233 Rev. *D  
Page 16 of 109  
S6E1C Series  
5. List of Pin Functions  
List of Pin Numbers  
The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel  
on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select  
the pin to be used.  
Pin No.  
Alternate Functions  
1
2
1
2
2
3
4
-
A1  
P50  
P51  
P52  
P53  
P30  
P31  
P31  
P32  
P32  
P33  
P33  
P34  
P34  
P35  
P3A  
P3A  
P3B  
P3B  
P3C  
P3C  
P3D  
P3E  
P3F  
MD0  
PE2  
PE3  
P40  
P41  
P42  
P43  
P4C  
P4C  
P4D  
P4E  
VCC  
C
SIN3_1  
SOT3_1  
SCK3_1  
TIOA1_2  
SCS60_1  
SCK6_1  
SCK6_1  
SOT6_1  
SOT6_1  
ADTG_6  
ADTG_6  
SCS61_1  
INT00_0  
INT01_0  
INT02_0  
INT07_2  
TIOB0_1  
INT04_2  
INT04_2  
TIOB2_1  
TIOB2_1  
SIN6_1  
D
D
D
D
D
H
H
H
H
H
H
D
D
D
D
D
D
D
D
D
D
D
D
I
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
F
A
B
K
K
K
K
K
K
K
K
-
B1  
3
3
C1  
4
4
-
5
5
-
-
INT03_2  
MI2SWS6_1  
6
6
-
-
MI2SCK6_1  
-
-
5
-
E2  
7
7
-
INT05_2  
INT05_2  
MI2SDO6_1  
MI2SDI6_1  
-
-
6
-
D1  
8
8
-
INT04_0  
-
-
7
-
E1  
SIN6_1  
INT04_0  
9
-
-
TIOB4_1  
MI2SMCK6_1  
-
9
-
-
SCS61_1 MI2SMCK6_1  
10  
11  
-
-
-
-
SCS62_1  
TIOA0_1  
TIOA0_1  
TIOA1_1  
TIOA1_1  
TIOA2_1  
TIOA2_1  
TIOA3_1  
TIOA4_1  
TIOA5_1  
TIOB5_1  
INT03_0  
INT08_1  
RTCCO_2  
RTCCO_2  
-
-
-
-
SUBOUT_2  
SUBOUT_2  
IC1_CIN_0  
10  
-
-
INT03_0  
12  
-
-
-
IC1_DATA_0  
11  
-
-
-
13  
-
-
-
IC1_RST_0  
12  
-
-
-
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
-
-
-
IC1_VPEN_0  
IC1_VCC_0  
IC1_CLK_0  
-
-
-
-
-
-
13  
14  
15  
-
8
9
10  
-
F1  
F2  
E3  
-
X0  
A
A
D
D
D
D
D
D
D
D
-
X1  
TIOA0_0  
TIOA1_0  
TIOA2_0  
ADTG_7  
SCK7_1  
SCK7_1  
SOT7_1  
SIN7_1  
INT12_1  
INT13_1  
-
-
-
-
-
-
-
-
-
TIOA3_0  
TIOB3_0  
-
-
-
16  
17  
18  
19  
20  
21  
22  
-
-
25  
26  
27  
28  
29  
30  
-
-
-
-
INT06_2  
11  
12  
13  
14  
F3  
F4  
E4  
D5  
-
-
VSS  
P46  
-
-
X0A  
C
C
Document Number: 002-00233 Rev. *D  
Page 17 of 109  
 
 
S6E1C Series  
Pin No.  
Alternate Functions  
31  
32  
33  
34  
35  
36  
37  
-
23  
15  
16  
17  
-
E5  
F5  
D4  
-
P47  
INITX  
P60  
P1E  
P1D  
P1C  
P1B  
P1B  
P1A  
P1A  
P1F  
P10  
P11  
X1A  
C
B
H
D
D
D
D
D
H
H
D
F
G
F
F
F
F
F
F
-
D
E
K
K
K
K
K
K
K
K
K
J
24  
25  
-
TIOA2_2  
RTS4_1  
CTS4_1  
SCK4_1  
SOT4_1  
SOT4_1  
SIN4_1  
SIN4_1  
ADTG_5  
AN00  
INT15_1  
CEC1_0  
MI2SMCK4_1  
MI2SWS4_1  
MI2SCK4_1  
MI2SDO4_1  
-
-
-
-
-
-
-
-
-
26  
-
-
-
38  
-
-
-
INT05_1  
INT05_1  
CEC0_0  
CEC0_0  
MI2SDI4_1  
WKUP1  
27  
-
-
-
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
-
-
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
-
18  
19  
20  
21  
-
D3  
C5  
C4  
C3  
-
AN01  
SIN1_1  
SOT1_1  
SCK1_1  
SIN0_1  
INT02_1  
J
P12  
P13  
P14  
P15  
P23  
P22  
VCC  
AVRH1  
AVRL  
P21  
P00  
P01  
P02  
P03  
P05  
VCC  
P80  
P81  
VSS  
P61  
P0B  
P0C  
P0F  
AN02  
AN03  
AN04  
AN05  
AN06  
AN07  
J
RTCCO_1  
SCS10_1  
SCS11_1  
TIOA7_1  
SUBOUT_1  
INT03_1  
J
J
-
-
SOT0_1  
SCK0_0  
TIOB7_1  
J
22  
23  
24  
-
B5  
B4  
A5  
-
J
J
-
-
-
25  
26  
-
-
-
-
B3  
-
INT06_1  
WKUP4  
SWCLK  
WKUP5  
SWDIO  
MD1  
WKUP2  
SOT0_0  
E
E
D
E
D
E
-
K
K
K
K
K
K
-
40  
-
27  
-
A4  
-
41  
42  
43  
44  
45  
46  
47  
-
28  
29  
-
C2  
B2  
-
SIN0_0  
TIOB7_0  
INT00_1  
TIOA5_2  
WKUP3  
30  
31  
32  
-
A3  
A2  
-
UDM0  
UDP0  
J
G
G
-
J
-
-
UHCONX0  
TIOB6_1  
TIOA6_1  
NMIX  
TIOB2_2  
WKUP6  
WKUP7  
WKUP0  
H
E
E
K
K
K
I
-
-
-
-
-
48  
1
D2  
RTCCO_0  
SUBOUT_0  
CROUT_1  
E
1
In a 32-pin package, the AVRH pin is internally connected to the VCC pin.  
Document Number: 002-00233 Rev. *D  
Page 18 of 109  
S6E1C Series  
List of Pin Functions  
The number after the underscore ("_") in a function name such as XXX_1 and XXX_2 indicates one of the relocate options to route  
that function to a different pin. Use the Extended Port Function Register (EPFR) to disable or select the desired relocate option.  
Pin No.  
Pin Function  
Pin Name  
Function Description  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
QFN-64  
39  
8
QFN-48  
QFN-32  
30  
-
ADTG_5  
ADTG_6  
ADTG_7  
AN00  
-
8
-
7
ADC  
A/D converter external trigger input pin  
E1  
-
23  
40  
41  
42  
43  
44  
45  
46  
47  
20  
11  
5
-
-
28  
29  
30  
31  
32  
33  
34  
35  
-
18  
19  
20  
21  
-
D3  
C5  
C4  
C3  
-
AN01  
AN02  
AN03  
A/D converter analog input pin.  
ANxx describes ADC ch.xx.  
ADC  
AN04  
AN05  
-
-
AN06  
22  
23  
-
B5  
B4  
-
AN07  
TIOA0_0  
TIOA0_1  
TIOB0_1  
TIOA1_0  
TIOA1_1  
TIOA1_2  
TIOA2_0  
TIOA2_1  
TIOA2_2  
TIOB2_1  
TIOB2_2  
TIOA3_0  
TIOA3_1  
TIOB3_0  
TIOA4_1  
TIOB4_1  
TIOA5_1  
TIOA5_2  
TIOB5_1  
TIOA6_1  
TIOB6_1  
TIOA7_1  
TIOB7_0  
TIOB7_1  
SWCLK  
Base timer ch.0 TIOA pin  
Base timer ch.0 TIOB pin  
Base Timer 0  
Base Timer 1  
10  
5
-
-
-
-
21  
12  
4
-
-
-
Base timer ch.1 TIOA pin  
Base timer ch.2 TIOA pin  
11  
4
-
-
-
-
22  
13  
33  
7
-
-
-
12  
25  
7
-
-
Base Timer 2  
17  
6
D4  
D1  
-
Base timer ch.2 TIOB pin  
Base timer ch.3 TIOA pin  
61  
23  
14  
24  
15  
9
47  
-
-
-
-
Base Timer 3  
Base Timer 4  
Base Timer 5  
Base Timer 6  
Base Timer 7  
-
-
-
Base timer ch.3 TIOB pin  
Base timer ch.4 TIOA pin  
Base timer ch.4 TIOB pin  
-
-
-
-
-
-
-
-
-
16  
56  
10  
63  
62  
46  
55  
47  
53  
-
-
-
Base timer ch.5 TIOA pin  
42  
-
29  
-
B2  
-
Base timer ch.5 TIOB pin  
Base timer ch.6 TIOA pin  
Base timer ch.6 TIOB pin  
Base timer ch.7 TIOA pin  
-
-
-
-
-
-
34  
41  
35  
40  
22  
28  
23  
27  
B5  
C2  
B4  
A4  
Base timer ch.7 TIOB pin  
Serial wire debug interface clock input pin  
Serial wire debug interface data input /  
output pin  
Debugger  
SWDIO  
55  
41  
28  
C2  
Document Number: 002-00233 Rev. *D  
Page 19 of 109  
 
S6E1C Series  
Pin No.  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
Pin Function  
Pin Name  
Function Description  
QFN-64  
1
QFN-48  
1
QFN-32  
30  
A1  
B2  
B1  
C1  
C5  
-
INT00_0  
INT00_1  
INT01_0  
INT02_0  
INT02_1  
INT03_0  
INT03_1  
INT03_2  
INT04_0  
INT04_2  
INT05_1  
INT05_2  
INT06_1  
INT06_2  
INT07_2  
INT08_1  
INT12_1  
INT13_1  
INT15_1  
NMIX  
P00  
2
29  
3
External interrupt request 00 input pin  
External interrupt request 01 input pin  
External interrupt request 02 input pin  
56  
2
42  
2
3
3
4
41  
11  
44  
5
29  
10  
32  
5
19  
-
External interrupt request 03 input pin  
-
-
-
-
8
8
7
E1  
E2  
-
External interrupt request 04 input pin  
External interrupt request 05 input pin  
External interrupt request 06 input pin  
6
6
5
External  
Interrupt  
38  
7
27  
7
-
6
D1  
B3  
-
51  
26  
4
39  
18  
4
26  
-
External interrupt request 07 input pin  
External interrupt request 08 input pin  
External interrupt request 12 input pin  
External interrupt request 13 input pin  
External interrupt request 15 input pin  
Non-Maskable Interrupt input pin  
-
-
10  
20  
21  
33  
64  
52  
53  
54  
55  
56  
62  
63  
64  
40  
41  
42  
43  
44  
45  
38  
37  
36  
35  
34  
39  
51  
47  
46  
-
-
-
-
-
-
-
-
-
25  
48  
-
17  
1
D4  
D2  
-
-
P01  
40  
-
27  
-
A4  
-
P02  
P03  
41  
42  
-
28  
29  
-
C2  
B2  
-
GPIO  
General-purpose I/O port 0  
P05  
P0B  
P0C  
-
-
-
P0F  
48  
28  
29  
30  
31  
32  
33  
27  
26  
-
1
D2  
D3  
C5  
C4  
C3  
-
P10  
18  
19  
20  
21  
-
P11  
P12  
P13  
P14  
P15  
-
-
GPIO  
General-purpose I/O port 1  
P1A  
-
-
P1B  
-
P1C  
-
-
-
P1D  
-
-
P1E  
-
-
-
P1F  
-
-
-
P21  
39  
35  
34  
26  
23  
22  
B3  
B4  
B5  
GPIO  
P22  
General-purpose I/O port 2  
P23  
Document Number: 002-00233 Rev. *D  
Page 20 of 109  
S6E1C Series  
Pin No.  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
Pin Function  
Pin Name  
Function Description  
QFN-64  
5
QFN-48  
QFN-32  
30  
-
P30  
P31  
5
6
-
5
6
7
-
6
E2  
D1  
E1  
-
P32  
7
7
P33  
8
8
P34  
9
9
P35  
10  
11  
12  
13  
14  
15  
16  
20  
21  
22  
23  
30  
31  
24  
25  
26  
1
-
-
-
GPIO  
General-purpose I/O port 3  
P3A  
P3B  
P3C  
P3D  
P3E  
P3F  
10  
11  
12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P40  
-
-
-
P41  
-
-
-
P42  
-
-
-
P43  
-
-
-
GPIO  
GPIO  
P46  
General-purpose I/O port 4  
22  
23  
16  
17  
18  
1
14  
15  
-
D5  
E5  
-
P47  
P4C  
P4D  
P4E  
P50  
-
-
-
-
2
3
4
-
A1  
B1  
C1  
-
P51  
2
2
General-purpose I/O port 5  
P52  
3
3
P53  
4
4
P60  
33  
61  
58  
59  
18  
19  
55  
44  
25  
47  
44  
45  
14  
15  
41  
32  
17  
-
D4  
-
GPIO  
GPIO  
GPIO  
General-purpose I/O port 6  
General-purpose I/O port 8  
General-purpose I/O port E  
P61  
P80  
30  
31  
9
10  
28  
-
A3  
A2  
F2  
E3  
C2  
-
P81  
PE2  
PE3  
SIN0_0  
SIN0_1  
SOT0_0  
(SDA0_0)  
Multi-function serial interface ch.0 input  
pin  
Multi-function serial interface ch.0 output  
pin. This pin operates as SOT0 when  
used as a UART/CSIO/LIN pin (operation  
mode 0 to 3) and as SDA0 when used as  
an I2C pin (operation mode 4).  
53  
40  
27  
A4  
SOT0_1  
Multi-function  
Serial 0  
45  
33  
-
-
(SDA0_1)  
Multi-function serial interface ch.0 clock  
I/O pin. This pin operates as SCK0 when  
used as a CSIO pin (operation mode 2)  
and as SCL0 when used as an I2C pin  
(operation mode 4).  
SCK0_0  
46  
34  
22  
B5  
(SCL0_0)  
Document Number: 002-00233 Rev. *D  
Page 21 of 109  
S6E1C Series  
Pin No.  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
Pin Function  
Pin Name  
Function Description  
QFN-64  
QFN-48  
QFN-32  
30  
Multi-function serial interface ch.1 input  
pin  
SIN1_1  
41  
29  
19  
C5  
Multi-function serial interface ch.1 output  
pin. This pin operates as SOT1 when  
used as a UART/CSIO/LIN pin (operation  
mode 0 to 3) and as SDA1 when used as  
an I2C pin (operation mode 4).  
SOT1_1  
42  
30  
20  
C4  
(SDA1_1)  
Multi-function  
Serial 1  
Multi-function serial interface ch.1 clock  
I/O pin. This pin operates as SCK1 when  
used as a CSIO pin (operation mode 2)  
and as SCL1 when used as an I2C pin  
(operation mode 4).  
SCK1_1  
43  
44  
31  
32  
21  
-
C3  
(SCL1_1)  
Multi-function serial interface ch.1 serial  
chip select 0 input/output pin.  
SCS10_1  
-
Multi-function serial interface ch.1 serial  
chip select 1 output pin.  
SCS11_1  
SIN3_1  
45  
1
33  
1
-
-
Multi-function serial interface ch.3 input  
pin  
2
A1  
Multi-function serial interface ch.3 output  
pin. This pin operates as SOT3 when  
used as a UART/CSIO/LIN pin (operation  
mode 0 to 3) and as SDA3 when used as  
an I2C pin (operation mode 4).  
SOT3_1  
2
2
3
B1  
(SDA3_1)  
Multi-function  
Serial 3  
Multi-function serial interface ch.3 clock  
I/O pin. This pin operates as SCK3 when  
used as a CSIO (operation mode 2) and  
as SCL3 when used as an I2C pin  
(operation mode 4).  
SCK3_1  
3
3
4
-
C1  
-
(SCL3_1)  
Multi-function serial interface ch.4 input  
pin  
SIN4_1  
38  
27  
Multi-function serial interface ch.4 output  
pin. This pin operates as SOT4 when  
used as a UART/CSIO/LIN pin (operation  
mode 0 to 3) and as SDA4 when used as  
an I2C pin (operation mode 4).  
SOT4_1  
37  
36  
26  
-
-
-
-
(SDA4_1)  
Multi-function  
Serial 4  
Multi-function serial interface ch.4 clock  
I/O pin. This pin operates as SCK4 when  
used as a CSIO (operation mode 2) and  
as SCL4 when used as an I2C pin  
(operation mode 4).  
SCK4_1  
-
(SCL4_1)  
Multi-function serial interface ch4 CTS  
input pin  
Multi-function serial interface ch4 RTS  
output pin  
CTS4_1  
RTS4_1  
35  
34  
-
-
-
-
-
-
Document Number: 002-00233 Rev. *D  
Page 22 of 109  
S6E1C Series  
Pin No.  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
Pin Function  
Pin Name  
Function Description  
QFN-64  
QFN-48  
QFN-32  
30  
Multi-function serial interface ch.6 input  
pin  
SIN6_1  
8
8
7
E1  
Multi-function serial interface ch.6 output  
pin. This pin operates as SOT6 when  
used as a UART/CSIO/LIN pin (operation  
mode 0 to 3) and as SDA6 when used as  
an I2C pin (operation mode 4).  
SOT6_1  
7
6
7
6
6
5
D1  
E2  
(SDA6_1)  
Multi-function serial interface ch.6 clock  
I/O pin. This pin operates as SCK6 when  
used as a CSIO (operation mode 2) and  
as SCL6 when used as an I2C pin  
(operation mode 4).  
Multi-function  
Serial 6  
SCK6_1  
(SCL6_1)  
Multi-function serial interface ch.6 serial  
chip select 0 input/output pin.  
SCS60_1  
SCS61_1  
SCS62_1  
SIN7_1  
5
9
5
9
-
-
-
-
-
-
-
-
Multi-function serial interface ch.6 serial  
chip select 1 output pin.  
Multi-function serial interface ch.6 serial  
chip select 2 output pin.  
10  
26  
-
Multi-function serial interface ch.7 input  
pin  
18  
Multi-function serial interface ch.7 output  
pin. This pin operates as SOT7 when  
used as a UART/CSIO/LIN pin (operation  
mode 0 to 3) and as SDA7 when used as  
an I2C pin (operation mode 4).  
SOT7_1  
25  
24  
17  
16  
-
-
-
-
(SDA7_1)  
Multi-function  
Serial 7  
Multi-function serial interface ch.7 clock  
I/O pin. This pin operates as SCK7 when  
used as a CSIO (operation mode 2) and  
as SCL7 when used as an I2C pin  
(operation mode 4).  
SCK7_1  
(SCL7_1)  
Document Number: 002-00233 Rev. *D  
Page 23 of 109  
S6E1C Series  
Pin No.  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
Pin Function  
Pin Name  
Function Description  
QFN-64  
QFN-48  
QFN-32  
30  
I2S Serial Data Input pin (operation  
mode 2).  
I2S Serial Data Output pin (operation  
MI2SDI4_1  
MI2SDO4_1  
MI2SCK4_1  
MI2SWS4_1  
MI2SMCK4_1  
MI2SDI6_1  
38  
-
-
-
37  
36  
35  
34  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mode 2).  
I2S Serial Clock Output pin (operation  
mode 2).  
I2S Word Select Output pin (operation  
-
mode 2).  
I2S Master Clock Input/output pin  
(operation mode 2).  
I2S Serial Data Input pin (operation  
-
I2S(MFS)  
8
7
6
5
mode 2).  
I2S Serial Data Output pin (operation  
mode 2).  
I2S Serial Clock Output pin (operation  
MI2SDO6_1  
MI2SCK6_1  
MI2SWS6_1  
7
6
mode 2).  
I2S Word Select Output pin (operation  
mode 2).  
5
I2S Master Clock Input/output pin  
MI2SMCK6_1  
IC1_CIN_0  
9
9
-
-
-
-
-
-
-
(operation mode 2).  
Smart Card insert detection output pin  
Smart Card serial interface clock output  
pin  
11  
16  
IC1_CLK_0  
-
Smart Card  
Interface  
IC1_DATA_0  
IC1_RST_0  
IC1_VCC_0  
IC1_VPEN_0  
UDM0  
Smart Card serial interface data input pin  
Smart Card reset output pin  
Smart Card power enable output pin  
Smart Card programming output pin  
USB function/host D pin  
USB function/host D + pin  
USB external pull-up control pin  
12  
13  
15  
14  
58  
59  
61  
64  
43  
11  
64  
43  
11  
-
-
-
-
-
-
-
-
-
-
-
-
44  
45  
47  
48  
31  
10  
48  
31  
10  
30  
31  
-
A3  
A2  
-
USB  
UDP0  
UHCONX0  
RTCCO_0  
RTCCO_1  
RTCCO_2  
SUBOUT_0  
SUBOUT_1  
SUBOUT_2  
1
D2  
C3  
-
0.5 seconds pulse output pin of  
real-time clock  
21  
-
Real-time  
Clock  
1
D2  
C3  
-
Sub clock output pin  
21  
-
HDMI-CEC/Remote Control Reception  
ch.0 input/output pin  
CEC0_0  
CEC1_0  
38  
33  
27  
25  
-
-
HDMI-CEC/Re  
mote Control  
Reception  
HDMI-CEC/Remote Control Reception  
ch.1 input/output pin  
17  
D4  
Document Number: 002-00233 Rev. *D  
Page 24 of 109  
S6E1C Series  
Pin No.  
LQFP-64 LQFP-48 LQFP-32 WLCSP-  
Pin Function  
Pin Name  
Function Description  
QFN-64  
QFN-48  
QFN-32  
30  
Deep Standby mode return signal input  
pin 0  
Deep Standby mode return signal input  
pin 1  
Deep Standby mode return signal input  
pin 2  
Deep Standby mode return signal input  
pin 3  
Deep Standby mode return signal input  
pin 4  
Deep Standby mode return signal input  
pin 5  
Deep Standby mode return signal input  
pin 6  
Deep Standby mode return signal input  
pin 7  
WKUP0  
WKUP1  
WKUP2  
WKUP3  
WKUP4  
WKUP5  
WKUP6  
WKUP7  
64  
48  
1
D2  
41  
51  
56  
52  
54  
62  
63  
29  
39  
42  
-
19  
26  
29  
-
C5  
B3  
B2  
-
Low Power  
Consumption  
Mode  
-
-
-
-
-
-
-
-
-
External Reset Input pin.  
A reset is valid when INITX="L".  
RESET  
MODE  
INITX  
32  
24  
16  
F5  
Mode 0 pin.  
During normal operation, input MD0="L".  
During serial programming to Flash  
memory, input MD0="H".  
MD0  
17  
13  
8
F1  
Mode 1 pin.  
During normal operation, input is not  
needed.  
MD1  
56  
42  
29  
B2  
During serial programming to Flash  
memory, MD1 = "L" must be input.  
X0  
X0A  
X1  
Main clock (oscillation) input pin  
Sub clock (oscillation) input pin  
Main clock (oscillation) I/O pin  
Sub clock (oscillation) I/O pin  
18  
30  
19  
31  
14  
22  
15  
23  
9
F2  
D5  
E3  
E5  
14  
10  
15  
CLOCK  
X1A  
Built-in high-speed CR oscillation clock  
output port  
CROUT_1  
64  
48  
1
D2  
VCC  
VCC  
VCC  
VSS  
VSS  
27  
48  
57  
29  
60  
19  
36  
43  
21  
46  
11  
24  
-
F3  
A5  
-
POWER  
GND  
Power supply pin  
13  
32  
E4  
-
GND pin  
A/D converter analog reference voltage  
input pin  
A/D converter analog reference voltage  
input pin  
AVRH2  
49  
50  
37  
38  
-
-
-
Analog  
Reference  
AVRL  
25  
Power supply stabilization capacitance  
pin  
C pin  
C
28  
20  
12  
F4  
2
In case of 32-pin package, AVRH pin is internally connected to the VCC pin.  
Document Number: 002-00233 Rev. *D  
Page 25 of 109  
S6E1C Series  
6. I/O Circuit Type  
Type  
Circuit  
Remarks  
P-ch  
P-ch  
Digital output  
X1  
It is possible to select the main  
oscillation / GPIO function  
N-ch  
Digital output  
R
When the main oscillation is  
selected.  
Pull-up resistor control  
Digital input  
Oscillation feedback resistor  
Approximately 1 MΩ  
With standby mode control  
Standby mode Control  
Clock input  
A
When the GPIO is selected.  
CMOS level output.  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
Standby mode Control  
Digital input  
Standby mode Control  
R
P-ch  
P-ch  
Approximately 33 kΩ  
Digital output  
X0  
IOH= -4 mA, IOL= 4 mA  
N-ch  
Digital output  
Pull-up resistor control  
CMOS level hysteresis input  
Pull-up resistor  
Pull-up resistor  
B
Approximately 33 kΩ  
Digital input  
Document Number: 002-00233 Rev. *D  
Page 26 of 109  
S6E1C Series  
Type  
Circuit  
Remarks  
P-ch  
P-ch  
Digital output  
X1A  
It is possible to select the sub  
oscillation / GPIO function  
N-ch  
Digital output  
R
When the sub oscillation is  
selected.  
Oscillation feedback resistor  
Approximately 5 MΩ  
Pull-up resistor control  
Digital input  
Standby mode Control  
Clock input  
With Standby mode control  
C
When the GPIO is selected.  
CMOS level output.  
Standby mode Control  
Digital input  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
Standby mode Control  
Approximately 33 kΩ  
R
IOH= -4 mA, IOL= 4 mA  
P-ch  
P-ch  
Digital output  
X0A  
N-ch  
Digital output  
Pull-up resistor control  
Document Number: 002-00233 Rev. *D  
Page 27 of 109  
S6E1C Series  
Type  
Circuit  
Remarks  
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
P-ch  
P-ch  
Digital output  
N-ch  
Digital output  
D
Approximately 33 kΩ  
R
IOH= -4mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Pull-up resistor control  
Digital input  
Standby mode Control  
CMOS level output  
P-ch  
P-ch  
Digital output  
Digital output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
N-ch  
R
E
Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Pull-up resistor control  
Digital input  
Standby mode Control  
Wake up request  
Wake up control  
Document Number: 002-00233 Rev. *D  
Page 28 of 109  
S6E1C Series  
Type  
Circuit  
Remarks  
CMOS level output  
P-ch  
P-ch  
Digital output  
CMOS level hysteresis input  
With input control  
Analog input  
N-ch  
Digital output  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
R
F
Pull-up resistor control  
Digital input  
Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Standby mode Control  
Analog input  
Input control  
P-ch  
P-ch  
Digital output  
Digital output  
CMOS level output  
CMOS level hysteresis input  
With input control  
N-ch  
Analog input  
R
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
G
Pull-up resistor control  
Digital input  
: Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Standby mode Control  
Wake up request  
Wake up Control  
Analog input  
Input control  
Document Number: 002-00233 Rev. *D  
Page 29 of 109  
S6E1C Series  
Type  
Circuit  
Remarks  
CMOS level output  
CMOS level hysteresis input  
5V tolerant  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
P-ch  
P-ch  
Digital output  
H
Approximately 33 kΩ  
N-ch  
Digital output  
R
IOH= -4 mA, IOL= 4 mA  
Available to control PZR  
registers  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Pull-up resistor control  
Digital input  
Standby mode Control  
Mode input  
I
CMOS level hysteresis input  
GPIO Digital output  
GPIO Digital input/output direction  
GPIO Digital input  
GPIO Digital input circuit control  
UDP output  
It is possible to select the USB  
I/O / GPIO function.  
UDP0/P81  
USB Full-speed/Low-speed control  
UDP input  
When the USB I/O is selected.  
Full-speed, Low-speed control  
Differential  
UDM0/P80  
Differential input  
USB/GPIO select  
J
When the GPIO is selected.  
CMOS level output  
UDM input  
CMOS level hysteresis input  
With standby mode control  
UDM output  
USB Digital input/output direction  
GPIO Digital input  
GPIO Digital input/output direction  
GPIO Digital input  
GPIO Digital input circuit control  
Document Number: 002-00233 Rev. *D  
Page 30 of 109  
S6E1C Series  
7. Handling Precautions  
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in  
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to  
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.  
7.1 Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of  
certain established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical  
characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely  
affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users  
considering application outside the listed conditions are advised to contact their sales representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output  
functions.  
(1) Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,  
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at  
the design stage.  
(2) Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.  
Such conditions if present for extended periods of time can damage the device.  
Therefore, avoid this type of connection.  
(3) Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be  
connected through an appropriate resistance to a power supply pin or ground pin.  
Document Number: 002-00233 Rev. *D  
Page 31 of 109  
S6E1C Series  
Latch-Up  
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally  
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of  
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or  
damage from high heat, smoke or flame. To prevent this from happening, do the following:  
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal  
noise, surge levels, etc.  
(2) Be sure that abnormal current flows do not occur during the power-on sequence.  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic  
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.  
Fail-Safe Design  
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating conditions.  
Precautions Related to Usage of Devices  
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office  
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from  
such use without prior approval.  
7.2 Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you  
should mount only under Cypress’ recommended conditions. For detailed information about mount conditions, contact your sales  
representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or  
mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow  
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected  
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress  
recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact  
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be  
verified before mounting.  
Document Number: 002-00233 Rev. *D  
Page 32 of 109  
S6E1C Series  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed  
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections  
caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of  
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended  
conditions.  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength  
may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of  
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing  
moisture resistance and causing packages to crack. To prevent, do the following:  
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product.  
Store products in locations where temperature changes are slight.  
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 ˚C  
and 30 ˚C.  
When you open Dry Package that recommends humidity 40% to 70% relative humidity.  
(3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica  
gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.  
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended  
conditions for baking.  
Condition: 125°C/24 h  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:  
(1) Maintain relative humidity in the working environment between 40% and 70%.  
Use of an apparatus for ion generation may be needed to remove electricity.  
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.  
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of  
1 MΩ).  
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is  
recommended.  
(4) Ground all fixtures and instruments, or protect with anti-static measures.  
(5) Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.  
Document Number: 002-00233 Rev. *D  
Page 33 of 109  
S6E1C Series  
7.3 Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.  
For reliable performance, do the following:  
(1) Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are  
anticipated, consider anti-humidity processing.  
(2) Discharge of Static Electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,  
use anti-static measures or processing to prevent discharges.  
(3) Corrosive Gases, Dust, or Oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If  
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.  
(4) Radiation, Including Cosmic Radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide  
shielding as appropriate.  
(5) Smoke, Flame  
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices  
begin to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Cypress products in other special environmental conditions should consult with sales  
representatives.  
Document Number: 002-00233 Rev. *D  
Page 34 of 109  
S6E1C Series  
8. Handling Devices  
Power Supply Pins  
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to  
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground  
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the  
ground level, and to conform to the total output current rating.  
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also  
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and  
GND pin, between AVRH pin and AVRL pin near this device.  
Stabilizing Supply Voltage  
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended  
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that  
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC  
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a  
momentary fluctuation on switching the power supply.  
Crystal Oscillator Circuit  
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,  
X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.  
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by  
ground plane as this is expected to produce stable operation.  
Evaluate oscillation of your using crystal oscillator by your mount board.  
Sub Crystal Oscillator  
This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions  
is recommended for sub crystal oscillator to stabilize the oscillation.  
Surface mount type  
Size: More than 3.2 mm × 1.5 mm  
Load capacitance: Approximately 6 pF to 7 pF  
Lead type  
Load capacitance: Approximately 6 pF to 7 pF  
Document Number: 002-00233 Rev. *D  
Page 35 of 109  
 
S6E1C Series  
Using an External Clock  
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3)  
can be used as a general-purpose I/O port.  
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to  
X0A. X1A (P47) can be used as a general-purpose I/O port.  
However in the Deep Standby mode, an external clock as an input of the sub clock cannot be used.  
Example of Using an External Clock  
Device  
X0(X0A)  
Set as  
Can be used as  
general-purpose  
I/O ports.  
External clock  
input  
1(PE3),  
1A (P47)  
Handling when Using Multi-Function Serial Pin as I2C Pin  
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to  
keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF.  
C Pin  
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND  
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.  
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F  
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use  
by evaluating the temperature characteristics of a capacitor.  
A smoothing capacitor of about 4.7 μF would be recommended for this series.  
Incidentally, the C pin becomes floating in Deep standby mode.  
C
Device  
CS  
VSS  
GND  
Mode Pins (MD0)  
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays  
low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection  
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is  
because of preventing the device erroneously switching to test mode due to noise.  
Document Number: 002-00233 Rev. *D  
Page 36 of 109  
S6E1C Series  
Notes on Power-on  
Turn power on/off in the following order or at the same time.  
Turning on : VCC AVRH  
Turning off : AVRH VCC  
Serial Communication  
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.  
Therefore, design a printed circuit board so as to avoid noise.  
Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end.  
If an error is detected, retransmit the data.  
Differences in Features Among the Products with Different Memory Sizes and Between Flash Memory  
Products and MASK Products  
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among  
the products with different memory sizes and between Flash memory products and MASK products are different because chip  
layout and memory structures are different.  
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.  
Pull-Up Function of 5 V Tolerant I/O  
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.  
Handling when Using Debug Pins  
When debug pins (SWDIO/SWCLK) are set to GPIO or other peripheral functions, set them as output only; do not set them as input.  
Document Number: 002-00233 Rev. *D  
Page 37 of 109  
S6E1C Series  
9. Memory Map  
Memory Map (1)  
0x41FF_FFFF  
Reserved  
0xFFFF_FFFF  
0xF802_0000  
Reserved  
0x4006_2000  
0x4006_1000  
0x4005_0000  
0x4004_0000  
FAST GPIO  
(Single-cycle I/O port)  
VIR (Vector Indicate reg.)  
(Single-cycle I/O port)  
FAST GPIO  
DSTC  
Reserved  
USB  
0xF800_0180  
0xF800_0100  
Reserved  
0x4003_CB00  
0x4003_CA00  
0x4003_C900  
0x4003_C200  
0x4003_C100  
0x4003_C000  
0x4003_B000  
0x4003_A000  
(Single-cycle I/O port)  
0xF800_0000  
0xF000_2000  
0xF000_1000  
MFS-I2S Clock Gen.  
Smart Card I/F  
Reserved  
Peripheral Clock Gating  
Low Speed CR Prescaler  
RTC  
Reserved  
MTB_DWT  
CM0+  
Coresight-MTB(SFR)  
Watch Counter  
CRC Accelerator  
MFS  
0xF000_0000  
0xE000_0000  
0x4003_9000  
0x4003_8000  
CM0+  
Private Peripherals  
Reserved  
0x4003_7000  
0x4003_6000  
0x4003_5000  
USB Clock ctrl  
LVD/DS mode  
Reserved  
0x4400_0000  
HDMI-CEC/  
Remote Control Receiver  
0x4003_4000  
0x4003_3000  
32 Mbytes Bit band alias  
0x40000000 ~ 0x40100000  
GPIO  
Reserved  
Int-Req.Read  
EXTI  
0x4200_0000  
0x4000_0000  
0x4003_2000  
0x4003_1000  
Peripherals  
Reserved  
0x4003_0000  
0x4002_F000  
0x4002_E000  
Reserved  
HCR Trimming  
0x2400_0000  
Reserved  
32 Mbytes Bit band alias  
0x20000000 ~ 0x20100000  
0x4002_8000  
0x4002_7000  
0x4002_6000  
0x4002_5000  
0x2200_0000  
0x2000_4000  
0x2000_0000  
A/D Converter  
Reserved  
Base Timer  
Reserved  
Reserved  
SRAM  
0x4001_6000  
0x4001_5000  
Dual timer  
Reserved  
Reserved  
0x0010_0008  
0x0010_0004  
CR Trim  
Security  
0x4001_3000  
SW-Watchdog  
HW-Watchdog  
Clock/Reset  
0x0010_0000  
0x4001_2000  
0x4001_1000  
Reserved  
0x0001_FFF0  
0x4001_0000  
FLASH  
Reserved  
Flash-IF  
0x0000_0000  
0x4000_1000  
0x4000_0000  
See "Memory map (2)" for the memory size details.  
Document Number: 002-00233 Rev. *D  
Page 38 of 109  
 
S6E1C Series  
Memory Map (2)  
S6E1C11/S6E1C31  
S6E1C12/S6E1C32  
*: See "S6E1C1/C3 Series Flash Programming Manual" to check details of the flash memory.  
Document Number: 002-00233 Rev. *D  
Page 39 of 109  
S6E1C Series  
Peripheral Address Map  
Start Address  
End Address  
Bus  
Peripheral  
Flash memory I/F register  
0x4000_0000  
0x4000_1000  
0x4001_0000  
0x4001_1000  
0x4001_2000  
0x4001_3000  
0x4001_5000  
0x4001_6000  
0x4002_0000  
0x4002_1000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
0x4002_7000  
0x4002_8000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_3000  
0x4003_4000  
0x4000_0FFF  
AHB  
0x4000_FFFF  
0x4001_0FFF  
0x4001_1FFF  
0x4001_2FFF  
0x4001_4FFF  
0x4001_5FFF  
0x4001_FFFF  
0x4002_0FFF  
0x4002_3FFF  
0x4002_4FFF  
0x4002_5FFF  
0x4002_6FFF  
0x4002_7FFF  
0x4002_DFFF  
0x4002_EFFF  
0x4002_FFFF  
0x4003_0FFF  
0x4003_1FFF  
0x4003_2FFF  
0x4003_3FFF  
0x4003_4FFF  
Reserved  
Clock/Reset Control  
Hardware Watchdog Timer  
Software Watchdog Timer  
Reserved  
APB0  
Dual-Timer  
Reserved  
Reserved  
Reserved  
Reserved  
Base Timer  
Reserved  
A/D Converter  
Reserved  
Built-in CR trimming  
Reserved  
External Interrupt Controller  
Interrupt Request Batch-Read Function  
Reserved  
GPIO  
HDMI-CEC/Remote Control Receiver  
APB1  
0x4003_5000  
0x4003_6000  
0x4003_5FFF  
0x4003_6FFF  
Low-Voltage Detection / DS mode / Vref Calibration  
USB Clock Generator  
0x4003_7000  
0x4003_7800  
0x4003_7A00  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_C000  
0x4003_C100  
0x4003_77FF  
0x4003_79FF  
0x4003_7FFF  
0x4003_8FFF  
0x4003_9FFF  
0x4003_AFFF  
0x4003_BFFF  
0x4003_C0FF  
0x4003_C7FF  
Reserved  
Reserved  
Reserved  
Multi-function Serial Interface  
CRC  
Watch Counter  
Real-time clock  
Low-speed CR Prescaler  
Peripheral Clock Gating  
0x4003_C800  
0x4003_C900  
0x4003_CA00  
0x4003_CB00  
0x4004_0000  
0x4005_0000  
0x4006_1000  
0x4006_2000  
0x4003_C8FF  
0x4003_C9FF  
0x4003_CAFF  
0x4003_FFFF  
0x4004_FFFF  
0x4006_0FFF  
0x4006_1FFF  
0x41FF_FFFF  
Reserved  
Smart Card Interface  
MFS-I2S Clock Generator  
Reserved  
USB ch.0  
Reserved  
AHB  
DSTC  
Reserved  
Document Number: 002-00233 Rev. *D  
Page 40 of 109  
 
S6E1C Series  
10.Pin Status in Each CPU State  
The following table shows pin status in each CPU state.  
CPU State  
Type  
Selected Pin Function  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Main oscillation  
circuit selected3  
Main oscillation circuit selected  
OS  
OS  
OE  
OE  
OE  
GS  
IS  
OS  
A
Main clock external input selected  
GPIO selected  
-
-
-
-
IE/IS  
PC  
IE/IS  
HC  
IE/IS  
IS  
IS  
HS  
IS  
IS  
IS  
HS  
Digital I/O  
selected4  
Main oscillation  
circuit selected3  
Digital I/O  
Main oscillation circuit selected  
GPIO selected  
OS  
-
OS  
-
OE  
PC  
OE  
HC  
OE  
IS  
GS  
GS  
IS  
IS  
OS  
GS  
B
C
selected4  
Sub oscillation  
circuit selected3  
Sub oscillation circuit selected  
OS  
OE  
OE  
OE  
OE  
OE  
OE  
OE  
Sub clock external input selected  
GPIO selected  
-
-
-
-
IE/IS  
PC  
IE/IS  
HC  
IE/IS  
IS  
IS  
IS  
IS  
IS  
Digital I/O  
selected4  
HS  
OE  
HS  
OE  
Sub oscillation  
Sub oscillation circuit selected  
OS  
OE  
OE  
OE  
OE  
OE  
circuit selected 3  
D
Digital I/O  
selected4  
GPIO selected  
INITX input  
-
-
PC  
HC  
IS  
HS  
IS  
HS  
Digital I/O  
selected  
This pin is digital input pin, pull up resistor is on, and digital input  
is not shut off in all CPU states.  
E
F
Digital I/O  
selected  
This pin is digital input pin, pull up resistor is none, digital input is  
not shut off in all CPU states.  
MD0 input  
USB I/O selected5  
USB port selected  
GPIO selected  
-
-
UE  
CP  
US  
HC  
US  
IS  
US  
HS  
US  
IS  
US  
HS  
G
H
Digital I/O  
selected6  
IS  
IE  
SW selected  
IS  
-
IP7  
-
PC  
PC  
IP  
IP  
IS  
IP  
IP  
IS  
IP  
Digital I/O  
selected  
GPIO selected  
HC  
HS  
HS  
NMI selected  
-
-
-
-
IP  
IP  
IP  
IP  
IP  
IP  
IS  
-
IP  
-
-
IP  
-
-
IP  
-
Digital I/O  
selected  
I
WKUP0 enable and input selected  
GPIO selected  
IS  
IE  
PC  
HC  
Analog input  
selected8  
Analog input selected  
Analog input is enabled in all CPU state  
WKUP enable and input selected  
External interrupt enable and input selected  
-
-
-
-
IP  
IP  
IP  
IP  
IP  
IP  
IP  
GS  
IP  
IS  
IP  
GS  
J
Digital I/O  
selected9  
GPIO selected  
-
-
-
-
PC  
PC  
HC  
HC  
IS  
IS  
HS  
GS  
IS  
IS  
HS  
GS  
Resource other than above selected  
CEC pin selected  
-
-
-
-
-
-
CP  
IP  
PC  
CP  
IP  
HC  
CP  
IP  
IP  
CP  
IP  
GS  
CP  
IP  
IS  
CP  
IP  
GS  
WKUP enable and input selected  
External interrupt enable and input selected  
Digital I/O  
selected  
K
GPIO selected  
IS  
-
IE  
-
PC  
PC  
HC  
HC  
IS  
IS  
HS  
GS  
IS  
IS  
HS  
GS  
Resource other than above selected  
Terms in the table above have the following meanings.  
3
In this type, when internal oscillation function is selected, digital output is disabled. (Hi-Z) pull up resistor is off, digital input is shut off by fixed 0.  
In this type, when Digital I/O function is selected, internal oscillation function is disabled.  
In this type, when USB I/O function is selected, digital output is disabled. (Hi-Z), digital input is shut off by fixed 0.  
In this type, when Digital I/O function is selected, USB I/O function is disabled.This pin does not have pull up resistor.  
In this case, PCR register is initialized to “1”. Pull up resistor is on.  
4
5
6
7
8
9
In this type, when analog input function is selected, digital output is disabled, (Hi-Z). pull up resistor is off, digital input is shut off by fixed 0.  
In this type, when Digital I/O function is selected, analog input function is not available.  
Document Number: 002-00233 Rev. *D  
Page 41 of 109  
 
 
 
 
S6E1C Series  
Type  
This indicates a pin status type that is shown in pin list tablein 5. List of Pin Functions”  
Selected Pin function  
This indicates a pin function that is selected by user program.  
CPU state  
This indicates a state of the CPU that is shown below.  
(1)  
(2)  
Reset state. CPU is initialized by Power-on reset or a reset due to low Power voltage supply.  
Reset state. CPU is initialized by INITX input signal or system initialization after power on reset.  
(3) Run mode or SLEEP mode state.  
Timer mode, RTC mode or STOP mode state.  
(4)  
The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0".  
Timer mode, RTC mode or STOP mode state.  
(5)  
(6)  
The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1".  
Deep standby STOP mode or Deep standby RTC mode state,  
The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0"  
Deep standby STOP mode or Deep standby RTC mode state,  
(7)  
(8)  
The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1"  
Run mode state after returning from Deep Standby mode.  
(I/O state hold function(CONTX) is fixed at 1)  
Document Number: 002-00233 Rev. *D  
Page 42 of 109  
S6E1C Series  
Each pin status  
The meaning of the symbols in the pin status table is as follows.  
IS  
IE  
Digital output is disabled. (Hi-Z) Pull up resistor is off. Digital input is shut off by fixed 0.  
Digital output is disabled. (Hi-Z) Pull up resistor is off. Digital input is not shut off.  
Digital output is disabled. (Hi-Z) Pull up resistor is defined by the value of the PCR register. Digital  
input is not shut off.  
IP  
Digital output is disabled. (Hi-Z) Pull up resistor is off. Digital input is shut off in case of the OSC  
stop. Digital input is not shut off in case of the OSC operation.  
IE/IS  
OE  
The OSC is in operation state. However, it may be stopped in some operation mode of the CPU.  
For detail, see chapter Low Power Consumption Modein peripheral manual.  
The OSC is in stop state. (Hi-Z)  
OS  
UE  
USB I/O function is controlled by USB controller.  
US  
PC  
USB I/O function is disabled(Hi-Z)  
Digital output and pull up resistor is controlled by the register in the GPIO or peripheral function.  
Digital input is not shut off  
Digital output is controlled by the register in the GPIO or peripheral function. Pull up resistor is off  
Digital input is not shut off.  
CP  
HC  
HS  
GS  
Digital output and pull up resistor is maintained the status that is immediately prior to entering the  
current CPU state. Digital input is not shut off  
Digital output and pull up resistor is maintained the status that is immediately prior to entering the  
current CPU state. Digital input is shut off  
Digital output and pull up resistor is copied the GPIO status that is immediately prior to entering the  
current CPU state and the status is maintained. Digital input is shut off.  
Document Number: 002-00233 Rev. *D  
Page 43 of 109  
S6E1C Series  
11.Electrical Characteristics  
11.1 Absolute Maximum Ratings  
Parameter  
Power supply voltage10, 11  
Analog reference voltage10, 12  
Rating  
Symbol  
Unit  
Remarks  
Min  
VSS - 0.5  
VSS - 0.5  
Max  
VCC  
AVRH  
VSS + 4.6  
VSS + 4.6  
VCC + 0.5  
(4.6 V)  
VSS + 6.5  
VCC + 0.5  
(4.6 V)  
Vcc + 0.5  
(4.6 V)  
V
V
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
V
V
V
Input voltage10  
VI  
5 V tolerant  
Analog pin input voltage10  
Output voltage10  
VIA  
VO  
VSS - 0.5  
V
L level maximum output current13  
L level average output current14  
L level total maximum output current  
L level total average output current15  
H level maximum output current13  
H level average output current14  
H level total maximum output current  
H level total average output current15  
Power consumption  
IOL  
IOLAV  
IOL  
IOLAV  
IOH  
IOHAV  
IOH  
IOHAV  
PD  
-
-
-
-
-
-
-
-
-
10  
4
100  
50  
- 10  
- 4  
- 100  
- 50  
200  
+ 150  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
4 mA type  
4 mA type  
4 mA type  
4 mA type  
Storage temperature  
TSTG  
- 55  
<WARNING>  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of  
absolute maximum ratings. Do not exceed these ratings.  
10  
11  
12  
13  
14  
15  
These parameters are based on the condition that VSS= 0 V.  
VCC must not drop below VSS - 0.5 V.  
Ensure that the voltage does not to exceed VCC + 0.5 V at power-on.  
The maximum output current is the peak value for a single pin.  
The average output is the average current for a single pin over a period of 100 ms.  
The total average output current is the average current for all pins over a period of 100 ms.  
Document Number: 002-00233 Rev. *D  
Page 44 of 109  
 
 
 
 
 
S6E1C Series  
11.2 Recommended Operating Conditions  
(VSS= 0.0 V)  
Remarks  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
1.6516  
3.6  
V
V
Power supply voltage  
VCC  
-
17  
3.0  
2.7  
3.6  
VCC  
V
VCC 2.7 V  
AVRH  
-
Analog reference voltage  
VCC  
VSS  
1
VCC  
VSS  
10  
V
V
μF  
°C  
VCC < 2.7 V  
AVRL  
CS  
Ta  
-
-
-
Smoothing capacitor  
Operating temperature  
For regulator18  
- 40  
+ 105  
<WARNING>  
1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of  
the device's electrical characteristics are warranted when the device is operated within these ranges.  
2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may  
adversely affect reliability and could result in device failure.  
3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
4. Users considering application outside the listed conditions are advised to contact their representatives beforehand.  
16  
In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by  
built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.  
17  
When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).  
See "C Pin" in "8. Handling Devices" for the connection of the smoothing capacitor.  
18  
Document Number: 002-00233 Rev. *D  
Page 45 of 109  
S6E1C Series  
11.3 DC Characteristics  
11.3.1 Current Rating  
Symbol  
HCLK  
Frequency19  
8 MHz  
Value  
Max21  
Conditions  
Unit  
Remarks  
Typ20  
1.4  
(Pin Name)  
8 MHz external clock input, PLL ON22  
NOP code executed  
2.7  
4.1  
23  
20 MHz  
40 MHz  
2.6  
mA  
Built-in high speed CR stopped  
All peripheral clock stopped by CKENx  
8 MHz external clock input, PLL ON22  
Benchmark code executed  
3.9  
5.6  
8 MHz  
1.3  
2.3  
2.6  
3.8  
Run mode,  
code executed  
from Flash  
23  
20 MHz  
mA  
mA  
mA  
Built-in high speed CR stopped  
PCLK1 stopped  
8 MHz crystal oscillation, PLL ON22  
40 MHz  
3.4  
5.1  
8 MHz  
1.6  
2.8  
3.0  
4.4  
NOP code executed  
23 24  
20 MHz  
,
,
Built-in high speed CR stopped  
All peripheral clock stopped by CKENx  
8 MHz external clock input, PLL ON22  
NOP code executed  
Built-in high speed CR stopped  
All peripheral clock stopped by CKENx  
40 MHz  
4.1  
5.9  
8 MHz  
1.0  
1.7  
2.1  
2.9  
Run mode,  
23  
20 MHz  
code executed  
Icc  
from RAM  
40 MHz  
2.7  
4.0  
(VCC)  
8 MHz external clock input, PLL ON  
NOP code executed  
Run mode,  
code executed  
from Flash  
23 25 26  
40 MHz  
1.6  
3.1  
mA  
,
,
Built-in high speed CR stopped  
PCLK1 stopped  
Built-in high speed CR27  
NOP code executed  
23  
23  
23  
8 MHz  
32 kHz  
100 kHz  
1.1  
240  
246  
2.4  
mA  
μA  
μA  
All peripheral clock stopped by CKENx  
32 kHz crystal oscillation  
Run mode,  
code executed  
from Flash  
1264  
1271  
NOP code executed  
All peripheral clock stopped by CKENx  
Built-in low speed CR  
NOP code executed  
All peripheral clock stopped by CKENx  
8 MHz  
20 MHz  
40 MHz  
0.8  
1.3  
1.8  
1.9  
2.4  
3.0  
8 MHz external clock input, PLL ON22  
All peripheral clock stopped by CKENx  
23  
mA  
Built-in high speed CR27  
23  
23  
23  
8 MHz  
32 kHz  
100 kHz  
0.6  
237  
238  
1.7  
mA  
μA  
μA  
Iccs  
Sleep  
All peripheral clock stopped by CKENx  
(VCC)  
operation  
32 kHz crystal oscillation  
1261  
1262  
All peripheral clock stopped by CKENx  
Built-in low speed CR  
All peripheral clock stopped by CKENx  
19  
20  
21  
22  
23  
24  
25  
26  
27  
PCLK0 is set to divided rate 8.  
TA=+25°C,VCC=3.3 V  
TA=+105°C,VCC=3.6 V  
When HCLK=8, PLL is off.  
All ports are fixed  
When IMAINSEL bit (MOSC_CTL:IMAINSEL) is “10” (default).  
Flash sync down is set to FRWTR.RWT=111 and FSYNDN.SD=1111  
VCC=1.65 V  
The frequency is set to 8 MHz by trimming  
Document Number: 002-00233 Rev. *D  
Page 46 of 109  
 
 
 
S6E1C Series  
Symbol  
(Pin  
Name)  
Value  
Parameter  
Conditions  
Unit  
μA  
Remarks  
Typ  
Max  
Ta=25℃  
Vcc=3.3 V  
28 29  
12.4  
52.4  
,
ICCH  
(VCC)  
Ta=25℃  
Vcc=1.65 V  
28 29  
Stop mode  
12.0  
-
52.0  
597  
μA  
,
Ta=105℃  
Vcc=3.6 V  
28 29  
μA  
,
Ta=25℃  
Vcc=3.3 V  
32 kHz Crystal  
oscillation  
Ta=25℃  
Vcc=1.65 V  
32 kHz Crystal  
oscillation  
28 29  
15.6  
15.0  
-
55.6  
55.0  
601  
μA  
μA  
μA  
μA  
μA  
μA  
,
ICCT  
(VCC)  
28 29  
Sub timer mode  
,
Power  
supply  
current  
Ta=105℃  
Vcc=3.6 V  
32 kHz Crystal  
oscillation  
28 29  
,
Ta=25℃  
Vcc=3.3 V  
32 kHz Crystal  
oscillation  
28 29  
13.2  
12.7  
-
53.2  
52.7  
598  
,
Ta=25℃  
ICCR  
(VCC)  
Vcc=1.65 V  
32 kHz Crystal  
oscillation  
28 29  
RTC mode  
,
Ta=105℃  
Vcc=3.6 V  
32 kHz Crystal  
oscillation  
28 29  
,
28  
29  
All ports are fixed. LVD off. Flash off.  
When CALDONE bit(CAL_CTL:CALDONE) is “1”. In case of “0”, Bipolar Vref current is added.  
Document Number: 002-00233 Rev. *D  
Page 47 of 109  
 
 
S6E1C Series  
Symbol  
(Pin  
Value  
Max  
Parameter  
Conditions  
Unit  
Remarks  
Typ  
0.58  
0.56  
-
Name)  
Ta=25°C  
Vcc=3.3 V  
Ta=25°C  
Vcc=1.65 V  
Ta=105°C  
Vcc=3.6 V  
Ta=25°C  
Vcc=3.3 V  
Ta=25°C  
Vcc=1.65 V  
Ta=105°C  
Vcc=3.6 V  
Ta=25°C  
Vcc=3.3 V  
Ta=25°C  
Vcc=1.65 V  
Ta=105°C  
Vcc=3.6 V  
Ta=25°C  
Vcc=3.3 V  
Ta=25°C  
30 31  
1.85  
1.83  
46  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
,
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
RAM off  
ICCHD  
(VCC)  
Deep standby  
Stop mode  
0.78  
0.76  
-
6.6  
6.6  
88  
RAM on  
RAM off  
RAM on  
Power  
supply  
current  
1.16  
1.15  
-
2.4  
2.4  
46  
ICCRD  
(VCC)  
Deep standby  
RTC mode  
1.37  
1.35  
-
7.2  
7.2  
88  
Vcc=1.65 V  
Ta=105°C  
Vcc=3.6 V  
30  
31  
All ports are fixed. LVD off.  
When CALDONE bit(CAL_CTL:CALDONE) is “1”. In case of “0”, Bipolar Vref current is added.  
Document Number: 002-00233 Rev. *D  
Page 48 of 109  
 
 
S6E1C Series  
LVD Current  
Parameter  
(VCC=1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Name  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
Low-Voltage  
0.15  
0.3  
μA  
For occurrence of reset  
detection circuit  
(LVD) power  
supply current  
ICCLVD  
VCC  
At operation  
For occurrence of  
interrupt  
0.10  
0.3  
μA  
Bipolar Vref Current  
(VCC=1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Parameter  
Symbol  
ICCBGR  
Conditions  
Unit  
Remarks  
Name  
Typ  
Max  
Bipolar Vref  
Current  
VCC  
At operation  
100  
200  
μA  
Flash Memory Current  
(VCC=1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Name  
Parameter  
Flash  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
memory  
write/erase  
current  
ICCFLASH  
VCC  
At Write/Erase  
4.4  
5.6  
mA  
A/D converter Current  
(VCC=1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Max  
Power supply  
current  
ICCAD  
VCC  
At operation  
0.5  
0.75  
mA  
Reference  
power supply  
current  
At operation  
At stop  
0.69  
0.1  
1.3  
1.3  
mA  
AVRH=3.6 V  
ICCAVRH  
AVRH  
μA  
(AVRH)  
Document Number: 002-00233 Rev. *D  
Page 49 of 109  
S6E1C Series  
Peripheral Current Dissipation  
(VCC=1.65 V to 3.6 V, VSS=0 V, TA=- 40°C to +105°C)  
Frequency (MHz)  
20  
Clock  
Peripheral  
System  
Conditions  
Unit  
mA  
mA  
Remarks  
8
40  
At all ports  
operation  
At 2ch  
GPIO  
0.05  
0.12  
0.06  
0.13  
0.05  
0.10  
0.03  
0.05  
0.08  
0.23  
HCLK  
DSTC  
USB  
0.02  
0.13  
0.02  
0.04  
0.01  
0.02  
0.04  
0.10  
0.13  
0.10  
0.21  
0.06  
0.08  
0.18  
operation  
At 1ch  
32  
operation  
At 4ch  
Base timer  
ADC  
operation  
At 1 unit  
operation  
At 1ch  
PCLK1  
Multi-function serial  
MFS-I2S  
mA  
operation  
At 1ch  
operation  
At 1ch  
Smart Card I/F  
operation  
32  
USB itself uses 48 MHz clock  
Document Number: 002-00233 Rev. *D  
Page 50 of 109  
S6E1C Series  
11.3.2 Pin Characteristics  
(VCC = 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
VCC 2.7 V  
VCC < 2.7 V  
Unit  
Remarks  
Min  
Typ  
Max  
CMOS  
hysteresis  
input pin,  
MD0  
VCC × 0.8  
H level input  
voltage  
(hysteresis  
input)  
-
VCC +0.3  
V
VIHS  
VCC × 0.7  
VCC 2.7 V  
VCC × 0.8  
VCC × 0.7  
5 V tolerant  
input pin  
-
-
VSS +5.5  
V
VCC < 2.7 V  
CMOS  
hysteresis  
input pin,  
MD0  
VCC 2.7 V  
VCC × 0.2  
VCC × 0.3  
VSS - 0.3  
VSS - 0.3  
V
L level input  
voltage  
(hysteresis  
input)  
VCC < 2.7 V  
VILS  
VCC 2.7 V  
-
-
VCC × 0.2  
VCC × 0.3  
5 V tolerant  
input pin  
V
V
VCC < 2.7 V  
VCC 2.7 V,  
IOH = - 4 mA  
VCC - 0.5  
H level  
output voltage  
VOH  
4 mA type  
4 mA type  
-
-
VCC  
0.4  
VCC < 2.7 V,  
IOH = - 2 mA  
VCC - 0.45  
VCC 2.7 V,  
IOL 4 mA  
L level  
output voltage  
VOL  
VSS  
V
VCC < 2.7 V,  
IOL=2 mA  
Input leak  
current  
IIL  
-
-
- 5  
21  
-
-
33  
-
+ 5  
48  
88  
μA  
kΩ  
Pull-up  
resistance  
value  
VCC 2.7 V  
VCC < 2.7 V  
RPU  
Pull-up pin  
Other than  
VCC, VSS,  
AVRH  
Input  
capacitance  
CIN  
-
-
5
15  
pF  
Document Number: 002-00233 Rev. *D  
Page 51 of 109  
S6E1C Series  
11.4 AC Characteristics  
11.4.1 Main Clock Input Characteristics  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
VCC 2.7V  
VCC < 2.7V  
8
8
48  
20  
When the crystal  
oscillator is connected  
MHz  
MHz  
ns  
Input frequency  
Input clock cycle  
FCH  
When the external  
clock is used  
-
-
8
48  
X0,  
X1  
When the external  
clock is used  
tCYLH  
-
20.83  
125  
Input clock pulse  
width  
PWH/tCYLH,  
PWL/tCYLH  
When the external  
clock is used  
When the external  
clock is used  
45  
-
55  
5
%
Input clock rising  
time and falling time  
tCF,  
tCR  
-
ns  
FCM  
FCC  
-
-
-
-
-
-
-
-
-
-
-
40.8  
40.8  
40.8  
40.8  
-
MHz  
MHz  
MHz  
MHz  
ns  
Master clock  
-
Base clock (HCLK/FCLK)  
APB0 bus clock34  
APB1 bus clock34  
Master clock  
Internal operating  
clock33 frequency  
FCP0  
FCP1  
-
-
24.5  
tCYCCM  
tCYCC  
tCYCP0  
tCYCP1  
-
-
-
-
-
-
24.5  
24.5  
24.5  
-
-
-
ns  
ns  
ns  
Base clock (HCLK/FCLK)  
APB0 bus clock34  
APB1 bus clock34  
Internal operating  
clock33 cycle time  
X0  
33  
34  
For details of each internal operating clock, refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".  
For details of the APB bus to which a peripheral is connected, see the Peripheral Address Map.  
Document Number: 002-00233 Rev. *D  
Page 52 of 109  
 
 
 
S6E1C Series  
11.4.2 Sub Clock Input Characteristics35  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
When the crystal  
oscillator is  
-
-
32.768  
-
kHz  
connected  
When the external  
clock is used  
When the external  
clock is used  
When the external  
clock is used  
Input frequency  
Input clock cycle  
fCL  
-
-
32  
10  
45  
-
-
-
100  
31.25  
55  
kHz  
μs  
X0A,  
X1A  
tCYLL  
-
Input clock pulse  
width  
PWH/tCYLL,  
PWL/tCYLL  
%
X0A  
35  
See "Sub crystal oscillator" in "11. Handling Devices" for the crystal oscillator used.  
Document Number: 002-00233 Rev. *D  
Page 53 of 109  
S6E1C Series  
11.4.3 Built-in CR Oscillation Characteristics  
Built-in High-Speed CR  
(VCC= 1.65 V to 3.6 V, VSS = 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
Ta = - 10°C to + 105°C,  
7.92  
8
8.08  
MHz  
Clock frequency  
FCRH  
After trimming36  
Ta = - 40°C to + 105°C,  
-
7.84  
-
8
-
8.16  
300  
MHz  
Frequency  
stabilization time  
37  
tCRWT  
μs  
Built-in Low-Speed CR  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Typ  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
Clock frequency  
fCRL  
-
50  
100  
150  
kHz  
36  
37  
In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming.  
This is time from the trim value setting to stable of the frequency of the High-speed CR clock.  
After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.  
Document Number: 002-00233 Rev. *D  
Page 54 of 109  
S6E1C Series  
11.4.4 Operating Conditions of Main PLL  
(In the Case of Using the Main Clock as the Input Clock of the PLL)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Typ  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
PLL oscillation stabilization wait time38  
(LOCK UP time)  
tLOCK  
50  
-
-
μs  
PLL input clock frequency  
PLL multiple rate  
FPLLI  
-
8
5
-
-
-
-
-
16  
18  
MHz  
multiple  
MHz  
PLL macro oscillation clock frequency  
Main PLL clock frequency39  
USB clock frequency40  
FPLLO  
FCLKPLL  
FCLKSPLL  
75  
-
150  
40  
MHz  
-
48  
MHz  
Main PLL connection  
Main PLL  
clock  
PLL input  
clock  
PLL macro  
Main clock (CLKMO)  
oscillation clock  
(CLKPLL)  
K
M
Main  
PLL  
High-speed CR clock (CLKHC)  
divider  
divider  
N
divider  
USB clock  
USB  
clock  
divider  
11.4.5 Operating Conditions of Main PLL  
(In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Typ  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
PLL oscillation stabilization wait time41  
(LOCK UP time)  
tLOCK  
50  
-
-
μs  
PLL input clock frequency  
PLL multiple rate  
FPLLI  
-
7.84  
9
8
-
8.16  
18  
MHz  
multiple  
MHz  
PLL macro oscillation clock frequency  
Main PLL clock frequency42  
FPLLO  
FCLKPLL  
75  
-
-
150  
40.8  
-
MHz  
Note:  
For the main PLL source clock, input the high-speed CR clock (CLKHC) whose frequency and temperature have been trimmed.  
When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the  
master clock from exceeding the maximum frequency.  
38  
39  
40  
41  
42  
The wait time is the time it takes for PLL oscillation to stabilize.  
For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".  
For more information about USB clock, see "Chapter: USB Clock Generation" in "FM0+ Family Peripheral Manual Communication Macro Part”.  
The wait time is the time it takes for PLL oscillation to stabilize.  
For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".  
Document Number: 002-00233 Rev. *D  
Page 55 of 109  
S6E1C Series  
11.4.6 Reset Input Characteristics  
(VCC = 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
Reset input time  
tINITX  
INITX  
-
500  
-
ns  
11.4.7 Power-on Reset Timing  
(VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Typ  
Pin  
Name  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min  
Max  
VCC must be held  
below 0.2V for a  
minimum period of  
tOFF. Improper  
initialization may  
occur if this  
Power supply shut down time  
tOFF  
-
2
-
-
ms  
condition is not  
met.  
VCC  
This dV/dt  
characteristic is  
1000 mV/μs applied at the  
power-on of cold  
Vcc: 0.2V to  
1.65V  
Power ramp rate  
dV/dt  
tPRT  
0.6  
-
-
start (tOFF>2ms).  
Time until releasing  
Power-on reset  
-
0.43  
3.4  
ms  
1.65V  
VDH  
VCC  
0.2V  
0.2V  
0.2V  
dV/dt  
tPRT  
tOFF  
Internal RST  
release  
start  
RST Active  
CPU Operation  
Glossary  
VDH: detection voltage of Low-Voltage detection reset. See "11.7 Low-Voltage Detection Characteristics".  
Document Number: 002-00233 Rev. *D  
Page 56 of 109  
 
S6E1C Series  
11.4.8 Base Timer Input Timing  
Timer Input Timing  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
ECK, TIN)  
Input pulse width  
tTIWH, tTIWL  
-
2 tCYCP  
-
ns  
tTIWH  
tTIWL  
ECK  
TIN  
VIHS  
VIHS  
VILS  
VILS  
Trigger Input Timing  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
TGIN)  
Input pulse width  
tTRGH, tTRGL  
-
2 tCYCP  
-
ns  
tTRGH  
tTRGL  
VIHS  
VIHS  
TGIN  
VILS  
VILS  
Note:  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map  
".  
Document Number: 002-00233 Rev. *D  
Page 57 of 109  
S6E1C Series  
11.4.9 CSIO/SPI/UART Timing  
CSIO (SPI=0, SCINV=0)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Pin  
name  
-
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
Baud rate  
-
-
-
8
-
8
Mbps  
ns  
Serial clock cycle time  
tSCYC  
SCKx  
4 tCYCP  
-
4 tCYCP  
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
SCK ↓ → SOT delay time  
SIN → SCK ↑ setup time  
SCK ↑ → SIN hold time  
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↓ → SOT delay time  
SIN → SCK ↑ setup time  
SCK ↑ → SIN hold time  
tSLOVI  
tIVSHI  
tSHIXI  
tSLSH  
tSHSL  
tSLOVE  
tIVSHE  
tSHIXE  
- 30  
50  
0
+ 30  
- 20  
36  
0
+ 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
-
-
-
-
2 tCYCP  
10  
-
2 tCYCP  
10  
tCYCP  
10  
-
SCKx  
SCKx  
-
-
+
tCYCP + 10  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
-
50  
-
-
30  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above AC characteristics are for clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
The characteristics are applicable only when the relocate port numbers are the same.  
For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.  
External load capacitance CL=30 pF  
Document Number: 002-00233 Rev. *D  
Page 58 of 109  
 
S6E1C Series  
tSCYC  
VOH  
SCK  
SOT  
VOL  
VOL  
tSLOVI  
VOH  
VOL  
tIVSHI  
VIH  
VIL  
tSHIXI  
VIH  
VIL  
SIN  
Master mode  
tSLSH  
tSHSL  
VIH  
tR  
VIH  
tF  
VIH  
SCK  
VIL  
VIL  
tSLOVE  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 59 of 109  
S6E1C Series  
CSIO (SPI=0, SCINV=1)  
Parameter  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7V  
VCC 2.7V  
Pin  
name  
-
Symbol  
Conditions  
Unit  
Min  
Max  
8
-
Min  
Max  
8
-
Baud rate  
Serial clock cycle time  
-
-
-
-
Mbps  
ns  
tSCYC  
SCKx  
4 tCYCP  
4 tCYCP  
SCKx,  
SOTx  
SCK ↑ → SOT delay time  
tSHOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
Master mode  
SCKx,  
SINx  
SCKx,  
SINx  
SIN → SCK ↓ setup time  
SCK ↓ → SIN hold time  
tIVSLI  
tSLIXI  
50  
0
-
-
36  
0
-
-
ns  
ns  
2 tCYCP  
10  
tCYCP + 10  
-
2 tCYCP  
10  
tCYCP + 10  
-
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↑ → SOT delay time  
tSLSH  
tSHSL  
SCKx  
-
-
-
-
ns  
ns  
ns  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
tSHOVE  
-
50  
-
33  
Slave mode  
SIN → SCK ↓ setup time  
SCK ↓ → SIN hold time  
tIVSLE  
tSLIXE  
10  
20  
-
-
10  
20  
-
-
ns  
ns  
SCKx,  
SINx  
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above AC characteristics are for clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
The characteristics are applicable only when the relocate port numbers are the same.  
For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.  
External load capacitance CL=30 pF  
Document Number: 002-00233 Rev. *D  
Page 60 of 109  
 
S6E1C Series  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
VIH  
VIL  
tSLIXI  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 61 of 109  
S6E1C Series  
SPI (SPI=1, SCINV=0)  
Parameter  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Pin  
name  
-
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
Baud rate  
Serial clock cycle time  
-
-
-
8
-
-
8
-
Mbps  
ns  
tSCYC  
SCKx  
4 tCYCP  
4 tCYCP  
SCKx,  
SOTx  
SCK ↑ → SOT delay time  
tSHOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
SCKx,  
SINx  
SCKx,  
SINx  
SCKx,  
SOTx  
SIN → SCK ↓ setup time  
SCK ↓→ SIN hold time  
SOT → SCK ↓ delay time  
tIVSLI  
tSLIXI  
tSOVLI  
50  
0
-
-
-
36  
0
-
-
-
ns  
ns  
ns  
Master mode  
2 tCYCP  
30  
-
2 tCYCP  
30  
-
2 tCYCP  
10  
tCYCP + 10  
-
2 tCYCP  
10  
tCYCP + 10  
-
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↑ → SOT delay time  
tSLSH  
tSHSL  
SCKx  
-
-
-
-
ns  
ns  
ns  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
tSHOVE  
-
50  
-
33  
Slave mode  
SIN → SCK ↓ setup time  
SCK ↓→ SIN hold time  
tIVSLE  
tSLIXE  
10  
20  
-
-
10  
20  
-
-
ns  
ns  
SCKx,  
SINx  
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above AC characteristics are for clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
The characteristics are applicable only when the relocate port numbers are the same.  
For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.  
External load capacitance CL=30 pF  
Document Number: 002-00233 Rev. *D  
Page 62 of 109  
 
S6E1C Series  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
VIH  
tF  
VIH  
VIH  
SCK  
SOT  
SIN  
VIL  
VIL  
tR  
tSHOVE  
*
VOH  
VOL  
VOH  
VOL  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
*: Changes when writing to TDR register  
Document Number: 002-00233 Rev. *D  
Page 63 of 109  
S6E1C Series  
SPI (SPI=1, SCINV=1)  
Parameter  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Pin  
name  
-
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
Baud rate  
Serial clock cycle time  
-
-
-
8
-
-
8
-
Mbps  
ns  
tSCYC  
SCKx  
4 tCYCP  
4 tCYCP  
SCKx,  
SOTx  
SCK ↓ → SOT delay time  
tSLOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
SCKx,  
SINx  
SCKx,  
SINx  
SCKx,  
SOTx  
Master mode  
SIN → SCK ↑ setup time  
SCK ↑ → SIN hold time  
SOT → SCK ↑ delay time  
tIVSHI  
tSHIXI  
tSOVHI  
50  
0
-
-
-
36  
0
-
-
-
ns  
ns  
ns  
2 tCYCP  
30  
-
2 tCYCP  
30  
-
2 tCYCP  
10  
tCYCP + 10  
-
2 tCYCP  
10  
tCYCP + 10  
-
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↓ → SOT delay time  
tSLSH  
tSHSL  
SCKx  
-
-
-
-
ns  
ns  
ns  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
tSLOVE  
-
50  
-
33  
Slave mode  
SIN → SCK ↑ setup time  
SCK ↑ → SIN hold time  
tIVSHE  
tSHIXE  
10  
20  
-
-
10  
20  
-
-
ns  
ns  
SCKx,  
SINx  
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above AC characteristics are for clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
The characteristics are applicable only when the relocate port numbers are the same.  
For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.  
External load capacitance CL=30 pF  
Document Number: 002-00233 Rev. *D  
Page 64 of 109  
 
S6E1C Series  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tR  
tF  
tSHSL  
tSLSH  
VIH  
VIH  
SCK  
VIL  
VIL  
VIL  
tSLOVE  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 65 of 109  
S6E1C Series  
When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=1)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
SCS↓→SCKsetup time  
SCK↑→SCS↑ hold time  
SCS deselect time  
tCSSI  
tCSHI  
tCSDI  
tCSSE  
tCSHE  
tCSDE  
tDSE  
-5043  
+044  
-5045  
+043  
+5044  
+5044  
-5043  
+044  
-5044  
+043  
+5044  
+5044  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
SCS↓→SCKsetup time  
SCK↑→SCS↑ hold time  
SCS deselect time  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
0
0
Slave mode  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↓→SOT delay time  
SCS↑→SOT delay time  
-
55  
-
-
40  
-
tDEE  
0
0
Notes:  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".  
These characteristics guarantee only the same relocate port number.  
For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.  
When the external load capacitance CL=30 pF.  
43  
44  
45  
CSSU bit value × serial chip select timing operating clock cycle.  
CSHD bit value × serial chip select timing operating clock cycle.  
CSDS bit value × serial chip select timing operating clock cycle.  
Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip  
select pin becomes active again.  
Document Number: 002-00233 Rev. *D  
Page 66 of 109  
 
 
S6E1C Series  
SCSO  
SCK  
tCSSI  
tCSDI  
tCSHI  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
Master mode  
SCSI  
SCK  
tCSSE  
tCSDE  
tCSHE  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 67 of 109  
S6E1C Series  
When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
SCS↓→SCKsetup time  
SCK↓→SCS↑ hold time  
SCS deselect time  
tCSSI  
tCSHI  
tCSDI  
tCSSE  
tCSHE  
tCSDE  
tDSE  
-5046  
+047  
-5048  
+046  
+5047  
+5048  
-5046  
+047  
-5048  
+046  
+5047  
+5048  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
SCS↓→SCKsetup time  
SCK↓→SCS↑ hold time  
SCS deselect time  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
0
0
Slave mode  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↓→SOT delay time  
SCS↑→SOT delay time  
-
55  
-
-
40  
-
tDEE  
0
0
Notes:  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".  
These characteristics guarantee only the same relocate port number.  
For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.  
When the external load capacitance CL=30 pF.  
46  
47  
48  
CSSU bit value × serial chip select timing operating clock cycle.  
CSHD bit value × serial chip select timing operating clock cycle.  
CSDS bit value × serial chip select timing operating clock cycle.  
Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip  
select pin becomes active again.  
Document Number: 002-00233 Rev. *D  
Page 68 of 109  
 
 
 
S6E1C Series  
SCSO  
SCK  
tCSSI  
tCSDI  
tCSHI  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
Master mode  
SCSI  
SCK  
tCSSE  
tCSDE  
tCSHE  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 69 of 109  
S6E1C Series  
When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=0)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
SCS↑→SCKsetup time  
SCK↑→SCS↓ hold time  
SCS deselect time  
tCSSI  
tCSHI  
tCSDI  
tCSSE  
tCSHE  
tCSDE  
tDSE  
-5049  
+050  
-5051  
+049  
+5050  
+5051  
-5049  
+050  
-5051  
+049  
+5050  
+5051  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
SCS↑→SCKsetup time  
SCK↑→SCS↓ hold time  
SCS deselect time  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
0
0
Slave mode  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↑→SOT delay time  
SCS↓→SOT delay time  
-
55  
-
-
40  
-
tDEE  
0
0
Notes:  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
For information About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".  
These characteristics guarantee only the same relocate port number.  
For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.  
When the external load capacitance CL=30 pF.  
49  
50  
51  
CSSU bit value × serial chip select timing operating clock cycle.  
CSHD bit value × serial chip select timing operating clock cycle.  
CSDS bit value × serial chip select timing operating clock cycle.  
Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip  
select pin becomes active again.  
Document Number: 002-00233 Rev. *D  
Page 70 of 109  
 
 
 
S6E1C Series  
tCSDI  
SCSO  
SCK  
tCSSI  
tCSHI  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
Master mode  
tCSDE  
SCSI  
SCK  
tCSSE  
tCSHE  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 71 of 109  
S6E1C Series  
When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=0)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
VCC 2.7 V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
SCS↑→SCKsetup time  
SCK↓→SCS↓ hold time  
SCS deselect time  
tCSSI  
tCSHI  
tCSDI  
tCSSE  
tCSHE  
tCSDE  
tDSE  
-5052  
+053  
-5054  
+052  
+5053  
+5054  
-5052  
+053  
-5054  
+052  
+5053  
+5054  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
SCS↑→SCKsetup time  
SCK↓→SCS↓ hold time  
SCS deselect time  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
0
0
Slave mode  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↑→SOT delay time  
SCS↓→SOT delay time  
-
55  
-
-
40  
-
tDEE  
0
0
Notes:  
tCYCP indicates the APB bus clock cycle time.  
For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".  
These characteristics guarantee only the same relocate port number.  
For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.  
When the external load capacitance CL=30 pF.  
52  
53  
54  
CSSU bit value × serial chip select timing operating clock cycle.  
CSHD bit value × serial chip select timing operating clock cycle.  
CSDS bit value × serial chip select timing operating clock cycle.  
Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip  
select pin becomes active again.  
Document Number: 002-00233 Rev. *D  
Page 72 of 109  
 
 
 
S6E1C Series  
tCSDI  
SCSO  
SCK  
tCSSI  
tCSHI  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
Master mode  
tCSDE  
SCSI  
SCK  
tCSSE  
tCSHE  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
Slave mode  
Document Number: 002-00233 Rev. *D  
Page 73 of 109  
S6E1C Series  
UART external clock input (EXT=1)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
Serial clock L pulse width  
Serial clock H pulse width  
SCK falling time  
tSLSH  
tSHSL  
tF  
tCYCP +10  
-
-
ns  
ns  
ns  
ns  
tCYCP +10  
CL=30 pF  
-
-
5
5
SCK rising time  
tR  
tR  
tF  
tSHSL  
tSLSH  
VIH  
VIH  
SCK  
VIL  
VIL  
VIL  
Document Number: 002-00233 Rev. *D  
Page 74 of 109  
S6E1C Series  
11.4.10 External Input Timing  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Min  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Max  
A/D converter  
trigger input  
55  
ADTGx  
-
2 tCYCP  
-
ns  
Input pulse width  
tINH, tINL  
56  
57  
INT00 to INT08,  
INT12, INT13,  
INT15, NMIX  
2 tCYCP +10055  
500  
-
-
ns  
ns  
External  
interrupt, NMI  
Deep standby  
wake up  
58  
WKUPx  
500  
-
ns  
55  
56  
57  
58  
tCYCP indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
In Run mode and Sleep mode  
In Timer mode, RTC mode and Stop mode  
In Deep Standby RTC mode and Deep Standby Stop mode  
Document Number: 002-00233 Rev. *D  
Page 75 of 109  
 
S6E1C Series  
11.4.11 I2C Timing  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Standard-Mode  
Fast-Mode  
Min Max  
Parameter  
Symbol  
FSCL  
Conditions  
Unit  
kHz  
μs  
Remarks  
Min  
Max  
SCL clock frequency  
(Repeated) Start condition hold time  
SDA ↓ → SCL ↓  
0
100  
0
400  
tHDSTA  
4.0  
-
0.6  
-
SCL clock L width  
tLOW  
tHIGH  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
μs  
SCL clock H width  
(Repeated) Start setup time  
SCL ↑ → SDA ↓  
Data hold time  
SCL ↓ → SDA ↓ ↑  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
4.7  
0
-
0.6  
0
-
μs  
μs  
ns  
μs  
CL=30 pF,  
3.4560  
0.961  
59  
R=(Vp/IOL  
)
Data setup time  
250  
4.0  
-
-
100  
0.6  
-
-
SDA ↓ ↑ → SCL ↑  
Stop condition setup time  
SCL ↑ → SDA ↑  
Bus free time between  
Stop condition and  
Start condition  
tBUF  
tSP  
4.7  
2
-
-
1.3  
2
-
-
μs  
Noise filter  
-
ns  
62  
62  
tCYCP  
tCYCP  
".  
To use Standard-mode, set the APB bus clock at 2 MHz or more.  
To use Fast-mode, set the APB bus clock at 8 MHz or more.  
SDA  
SCL  
59  
R represents the pull-up resistance of the SCL and SDA lines, and CL the load capacitance of the SCL and SDA lines. VP represents the power supply voltage of the  
pull-up resistance, and IOL the VOL guaranteed current.  
60  
The maximum tHDDAT must satisfy at least the condition that the period during which the device is holding the SCL signal at L (tLOW) does not extend.  
61  
A Fast-mode I2C bus device can be used in a Standard-mode I2C bus system, provided that the condition of tSUDAT ≥ 250 ns is fulfilled.  
62  
tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.  
Document Number: 002-00233 Rev. *D  
Page 76 of 109  
 
 
S6E1C Series  
11.4.12 I2S Timing (MFS-I2S Timing)  
Master Mode Timing  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
VCC < 2.7 V  
Min Max  
VCC 2.7 V  
Min Max  
Symbo  
Condition  
s
Parameter  
Pin Name  
Unit  
l
FMI2SCK  
tICYC  
MI2SCK max frequency63  
I2S clock cycle time63  
I2S clock Duty cycle  
MI2SCK↓ → MI2SWS delay  
time  
MI2SCK↓ → MI2SDO delay  
time  
MI2SDI MI2SCK setup  
time  
MI2SCK ↑ → MI2SDI hold  
time  
MI2SCK falling time  
MI2SCK rising time  
MI2SCKx  
MI2SCKx  
MI2SCKx  
MI2SCKx,  
MI2SWSx  
MI2SCKx,  
MI2SDOx  
MI2SCKx,  
MI2SDIx  
MI2SCKx,  
MI2SDIx  
MI2SCKx  
MI2SCKx  
-
6.144  
-
55%  
-
6.144  
-
55%  
MHz  
ns  
4 tCYCP  
45%  
4 tCYCP  
45%  
tSWDT  
tSDDT  
tDSST  
tSDHT  
-30  
-30  
50  
0
+30  
-20  
-20  
36  
0
+20  
ns  
ns  
ns  
ns  
+30  
+20  
CL=30 pF  
-
-
-
-
tF  
tR  
-
-
5
5
-
-
5
5
ns  
ns  
VIH  
VIH  
MI2SCK  
VIL  
VIL  
tF  
tR  
tSWDT,  
tSDDT  
MI2SWS  
and  
MI2SDO  
VOH  
VOL  
tDSST  
tSDHT  
VIH  
VIH  
MI2SDI  
VIL  
VIL  
63  
I2S clock should meet the multiple of PCLK(tICYC) and the frequency less than FMI2SCK meantime. The detail information please refer to Chapter I2S of Communication  
Macro Part of the Peripheral Manual.  
Document Number: 002-00233 Rev. *D  
Page 77 of 109  
 
S6E1C Series  
MI2SMCK Input Characteristics  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Input frequency  
Symbol  
Pin Name Conditions  
Unit  
Remarks  
Min  
Max  
fCHS  
MI2SMCK  
-
-
-
12.288  
MHz  
Input clock cycle  
tCYLHS  
-
tCFS  
-
-
81.3  
45  
-
ns  
%
PWHS/tCYLHS  
PWLS/tCYLHS  
When using  
external clock  
When using  
external clock  
Input clock pulse width  
55  
Input clock rise time and  
fall time  
-
-
-
5
ns  
tCRS  
MI2SMCK Output Characteristics  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Pin Name Conditions  
Unit  
Remarks  
Min  
Max  
-
25  
MHz  
VCC 2.7 V  
Output frequency  
fCHS  
MI2SMCK  
-
-
20  
MHz  
VCC < 2.7 V  
Document Number: 002-00233 Rev. *D  
Page 78 of 109  
S6E1C Series  
11.4.13 Smart Card Interface Characteristics  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
ICx_VCC,  
ICx_RST,  
ICx_CLK,  
ICx_DATA  
Output rising time  
tR  
4
20  
ns  
Output falling time  
tF  
CL=30 pF  
4
20  
ns  
Output clock frequency  
Duty cycle  
fCLK  
-
20  
MHz  
ICx_CLK  
45%  
55%  
External pull-up resistor (20 to 50 kΩ) must be applied to ICx_CIN pin when it’s used as smart card reader function.  
Document Number: 002-00233 Rev. *D  
Page 79 of 109  
S6E1C Series  
11.4.14 SW-DP Timing  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
SWCLK,  
SWDIO  
SWDIO setup time  
tSWS  
-
15  
-
ns  
SWCLK,  
SWDIO  
SWDIO hold time  
tSWH  
tSWD  
-
-
15  
-
-
ns  
ns  
SWCLK,  
SWDIO  
SWDIO delay time  
45  
Note:  
External load capacitance CL=30 pF  
SWCLK  
SWDIO  
(When input)  
SWD  
SWDIO  
(When output)  
Document Number: 002-00233 Rev. *D  
Page 80 of 109  
S6E1C Series  
11.5 12-bit A/D Converter  
Electrical Characteristics of A/D Converter (Preliminary Values)  
(VCC= 1.65 V to 3.6 V, VSS= 0 V, TA=- 40°C to +105°C)  
Value  
Typ  
-
-
-
-
Parameter  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity  
Zero transition voltage  
Symbol  
Pin Name  
Unit  
Remarks  
Min  
-
- 4.5  
- 2.5  
- 15  
Max  
12  
4.5  
+ 2.5  
+ 15  
-
-
-
-
-
-
bit  
LSB  
LSB  
mV  
VZT  
ANxx  
Full-scale transition voltage  
VFST  
ANxx  
AVRH - 15  
-
AVRH + 15  
mV  
1.0  
4.0  
10  
-
-
-
-
-
-
-
-
-
-
-
-
VCC 2.7 V  
Conversion time64  
-
-
μs  
1.8 VCC < 2.7 V  
1.65 VCC < 1.8 V  
VCC 2.7 V  
0.3  
1.2  
3.0  
50  
Sampling time65  
Ts  
-
-
10  
μs  
1.8 VCC < 2.7 V  
1.65 VCC < 1.8 V  
VCC 2.7 V  
Compare clock cycle66  
Tcck  
1000  
1.0  
ns  
200  
500  
1.8 VCC < 2.7 V  
1.65 VCC < 1.8 V  
State transition time to  
operation permission  
Analog input capacity  
Tstt  
-
-
-
-
-
-
μs  
CAIN  
7.5  
2.2  
pF  
VCC 2.7 V  
1.8 VCC < 2.7 V  
1.65 VCC < 1.8 V  
Analog input resistance  
RAIN  
-
-
-
kΩ  
5.5  
10.5  
4
Interchannel disparity  
Analog port input leak  
current  
-
-
-
-
-
-
-
-
-
LSB  
μA  
V
ANxx  
ANxx  
5
Analog input voltage  
VSS  
2.7  
VCC  
VSS  
AVRH  
VCC  
VCC ≥ 2.7V  
VCC < 2.7V  
-
-
AVRH  
AVRL  
-
-
V
V
Reference voltage  
VSS  
64  
The conversion time is the value of sampling time (tS) + compare time (tC).  
The minimum conversion time is computed according to the following conditions:  
VCC ≥ 2.7 V  
1.8 ≤ VCC < 2.7 V  
1.65 ≤ VCC < 1.8 V  
sampling time=0.3 μs, compare time=0.7 μs  
sampling time=1.2 μs, compare time=2.8 μs  
sampling time=3.0 μs, compare time=7.0 μs  
Ensure that the conversion time satisfies the specifications of the sampling time (tS) and compare clock cycle (tCCK).  
For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part".  
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.  
For the number of the APB bus to which the A/D Converter is connected, see the Peripheral Address Map.  
The base clock (HCLK) is used to generate the sampling time and the compare clock cycle.  
65  
The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1).  
The compare time (tC) is the result of (Equation 2).  
66  
Document Number: 002-00233 Rev. *D  
Page 81 of 109  
S6E1C Series  
ANxx  
Analog input pins  
Comparator  
REXT  
RAIN  
Analog signal  
source  
CAIN  
(Equation 1) tS (RAIN + REXT ) × CAIN × 9  
tS:  
Sampling time  
RAIN  
:
Input resistance of A/D Converter = 2.2 with 2.7 < VCC < 3.6  
Input resistance of A/D Converter = 5.5 with 1.8 < VCC < 2.7  
Input resistance of A/D Converter = 10.5 with 1.65 < VCC < 1.8  
Input capacitance of A/D Converter = 7.5 pF with 1.65 < VCC < 3.6  
Output impedance of external circuit  
CAIN  
:
REXT  
:
(Equation 2) tC=tCCK × 14  
tC:  
tCCK  
Compare time  
:
Compare clock cycle  
Document Number: 002-00233 Rev. *D  
Page 82 of 109  
S6E1C Series  
Definitions of 12-bit A/D Converter Terms  
Resolution:  
Analog variation that is recognized by an A/D converter.  
Integral Nonlinearity:  
Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the  
full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion  
characteristics.  
Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.  
Integral Nonlinearity  
Differential Nonlinearity  
0xFFF  
Actual conversion  
Actual conversion  
characteristics  
0xFFE  
0xFFD  
0x(N+1)  
0xN  
characteristics  
{1 LSB(N-1) + VZT}  
VFST  
Ideal characteristics  
(Actually-  
measured  
value)  
VNT  
0x004  
(Actual
value)  
V(N+1)T  
(Actually-measured  
value)  
0x(N-1)  
0x(N-2)  
0x003  
0x002  
Actual conversion  
characteristics  
VNT  
(Asured  
value)  
Ideal characteristics  
0x001  
ly-measured value)  
Analog input  
VZT  
Actual conversion characteristics  
VSS  
AVRH  
VSS  
AVRH  
Analog input  
VNT - {1LSB × (N - 1) + VZT}  
1LSB  
Integral Nonlinearity of digital output N =  
Differential Nonlinearity of digital output N =  
[LSB]  
V(N + 1) T - VNT  
- 1 [LSB]  
1LSB  
VFST VZT  
1LSB =  
4094  
N
VZT  
VFST  
VNT  
: A/D converter digital output value.  
: Voltage at which the digital output changes from 0x000 to 0x001.  
: Voltage at which the digital output changes from 0xFFE to 0xFFF.  
: Voltage at which the digital output changes from 0x(N − 1) to 0xN.  
Document Number: 002-00233 Rev. *D  
Page 83 of 109  
S6E1C Series  
11.6 USB Characteristics  
(VCC=3.0 V to 3.6 V, VSS=0 V, TA=- 40°C to +105°C)  
Value  
Pin  
Schematic  
Parameter  
Symbol  
VIH  
Conditions  
Unit  
V
Name  
Min  
Max  
Reference  
VCC  
+
1
Input H level voltage  
-
2.0  
0.3  
VSS  
0.3  
0.2  
0.8  
1
Input  
Input L level voltage  
characteristics  
VIL  
-
0.8  
V
Differential input sensitivity  
VDI  
-
-
V
V
2
2
3
Differential common mode range  
VCM  
-
2.5  
External pull-down  
resistance = 15 kΩ  
External pull-up  
resistance = 1.5 kΩ  
-
Output H level voltage  
VOH  
VOL  
2.8  
0.0  
3.6  
0.3  
V
V
3
UDP0,  
UDM0  
Output L level voltage  
Crossover voltage  
VCRS  
tFR  
1.3  
4
2.0  
20  
V
4
5
5
5
6
7
7
7
Rising time  
Full-speed  
Full-speed  
Full-speed  
Full-speed  
Low-speed  
Low-speed  
Low-speed  
ns  
ns  
%
Output  
Falling time  
tFF  
4
20  
characteristic  
Rising/Falling time matching  
Output impedance  
Rising time  
tFRFM  
ZDRV  
tLR  
90  
28  
75  
75  
80  
111.11  
44  
300  
300  
125  
ns  
ns  
%
Falling time  
tLF  
Rising/Falling time matching  
tLRFM  
1. The switching threshold voltage of single-end-receiver of USB I/O buffer is set as within VIL(Max)=0.8 V, VIH(Min)=2.0 V (TTL  
input standard).  
There is some hysteresis to lower noise sensitivity.  
2. Use differential-receiver to receive USB differential data signal.  
Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local  
ground reference level.  
Above voltage range is the common mode input voltage range.  
1.0  
0.2  
0.8  
2.5  
Common mode input voltage [V]  
Document Number: 002-00233 Rev. *D  
Page 84 of 109  
 
 
S6E1C Series  
3. The output drive capability of the driver is below 0.3 V at Low-state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the  
VSS and 1.5 kΩ load) at high-state (VOH)  
4. The cross voltage of the external differential output signal (D+ / D-) of USB I/O buffer is within 1.3 V to 2.0 V.  
D+  
Max 2.0V  
VCRS specified range  
Min 1.3V  
D-  
5. They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal.  
They are defined by the time between 10% and 90% of the output signal voltage.  
For full-speed buffer, Tr/Tf ratio is regulated as within ±10% to minimize RFI emission.  
D+  
90%  
90%  
10%  
10%  
D-  
Trise  
Tfall  
Rising time  
Falling time  
Full-speed buffer  
Rs=27 Ω  
TxD+  
CL=50 pF  
CL=50 pF  
Rs=27 Ω  
TxD-  
3-state enable  
6. USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential  
Mode).  
USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs)  
addition is defined to satisfy the above definition and keep balance.  
When using this USB I/O, use it with 25 Ω to 33 Ω (recommendation value: 27 Ω) series resistor Rs.  
Document Number: 002-00233 Rev. *D  
Page 85 of 109  
S6E1C Series  
Full-speed buffer  
Rs  
Rs  
TxD+  
28 Ω to 44 Ω equivalent impedance  
TxD-  
28 Ω to 44 Ω equivalent impedance  
Mount it as external resistance.  
3-state enable  
Rs series resistor 25 Ω to 30 Ω  
Series resistor of 27 Ω (recommendation value) must be added.  
And, use “resistance with an uncertainty of 5% by E24 sequence”.  
7. They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal.  
They are defined by the time between 10% and 90% of the output signal voltage.  
D+  
90%  
90%  
10%  
10%  
D-  
Tfall  
Trise  
Falling time  
Rising time  
See “Low-speed load (Compliance Load)” for conditions of external load.  
Document Number: 002-00233 Rev. *D  
Page 86 of 109  
S6E1C Series  
Low-Speed Load (Upstream Port Load) Reference 1  
Low-speed buffer  
Rs=27 Ω  
TxD+  
CL=50 pF to 150 pF  
Rpd  
Rs=27 Ω  
TxD-  
CL=50 pF to 150 pF  
Rpd  
3-state enable  
Rpd=15 kΩ  
Low-Speed Load (Downstream Port Load) Reference 2  
Low-speed buffer  
Rs=27 Ω  
VTERM  
TxD+  
CL=200 pF to  
600 pF  
Rs=27 Ω  
TxD-  
CL=50 pF to 150 pF  
Rpu=1.5 kΩ  
VTERM=3.6 V  
3-state enable  
Document Number: 002-00233 Rev. *D  
Page 87 of 109  
S6E1C Series  
Low-Speed Load (Compliance Load)  
Low-speed buffer  
Rs=27 Ω  
Rs=27 Ω  
TxD+  
CL=200 pF to 450 pF  
TxD-  
CL=200 pF to 450 pF  
3-state enable  
Document Number: 002-00233 Rev. *D  
Page 88 of 109  
S6E1C Series  
11.7 Low-Voltage Detection Characteristics  
11.7.1 Low-Voltage Detection Reset  
(TA=-40°C to +105°C)  
Value  
Typ  
1.50  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
1.38  
1.43  
Max  
1.60  
1.65  
Detected voltage  
Released voltage  
VDL  
VDH  
V
V
When voltage drops  
When voltage rises  
Fixed67  
1.55  
LVD stabilization wait  
time  
8160×  
tCYCP  
TLVDW  
-
-
-
-
-
μs  
μs  
68  
LVD detection delay  
time  
TLVDDL  
-
200  
67  
68  
The value of low voltage detection reset is always fixed.  
tCYCP indicates the APB1 bus clock cycle time.  
Document Number: 002-00233 Rev. *D  
Page 89 of 109  
S6E1C Series  
11.7.2 Low-Voltage Detection Interrupt  
(TA=-40°C to +105°C)  
Value  
Typ  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
1.56  
1.61  
1.61  
1.66  
1.66  
1.70  
1.70  
1.75  
1.75  
1.79  
1.79  
1.84  
1.84  
1.89  
1.89  
1.93  
2.30  
2.39  
2.39  
2.48  
2.48  
2.58  
2.58  
2.67  
2.67  
2.76  
2.76  
2.85  
2.85  
2.94  
2.94  
3.04  
Max  
1.84  
1.89  
1.89  
1.94  
1.94  
2.00  
2.00  
2.05  
2.05  
SVHI=00100  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
1.70  
1.75  
1.75  
1.80  
1.80  
1.85  
1.85  
1.90  
1.90  
1.95  
1.95  
2.00  
2.00  
2.05  
2.05  
2.10  
2.50  
2.60  
2.60  
2.70  
2.70  
2.80  
2.80  
2.90  
2.90  
3.00  
3.00  
3.10  
3.10  
3.20  
3.20  
3.30  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
SVHI=00101  
SVHI=00110  
SVHI=00111  
SVHI=01000  
SVHI=01001  
SVHI=01010  
SVHI=01011  
SVHI=01100  
SVHI=01101  
SVHI=01110  
SVHI=01111  
SVHI=10000  
SVHI=10001  
SVHI=10010  
SVHI=10011  
2.11  
2.11  
2.16  
2.16  
2.21  
2.21  
2.27  
2.70  
2.81  
2.81  
2.92  
2.92  
3.02  
3.02  
3.13  
3.13  
3.24  
3.24  
3.35  
3.35  
3.46  
3.46  
3.56  
8160  
×
LVD stabilization wait  
time  
TLVDW  
TLVDDL  
-
-
-
-
-
-
μs  
μs  
69  
tCYCP  
LVD detection delay  
time  
200  
69  
tCYCP represents the APB1 bus clock cycle time.  
Document Number: 002-00233 Rev. *D  
Page 90 of 109  
S6E1C Series  
11.8 Flash Memory Write/Erase Characteristics  
(VCC=1.65 V to 3.6 V, TA=- 40°C to +105°C)  
Value70  
Typ  
Parameter  
Unit  
Remarks  
Min  
Max  
Large  
sector  
Small  
sector  
-
1.1  
2.7  
The sector erase time includes the time of  
writing prior to internal erase.  
Sector erase time  
s
-
-
-
0.3  
30  
0.9  
528  
11.7  
The halfword (16-bit) write time excludes the  
system-level overhead.  
The chip erase time includes the time of  
writing prior to internal erase.  
Halfword (16-bit) write time  
Chip erase time  
μs  
4.5  
s
Write/Erase Cycle and Data Hold Time  
Write/Erase Cycle  
Data Hold Time (Year)  
Remarks  
These values come from the technology qualification  
(using Arrhenius equation to translate high  
temperature acceleration test result into average  
temperature value at +85°C).  
1,000  
20  
10  
10,000  
70  
The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write.  
Document Number: 002-00233 Rev. *D  
Page 91 of 109  
S6E1C Series  
11.9 Return Time from Low-Power Consumption Mode  
11.9.1 Return Factor: Interrupt/WKUP  
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the  
program operation.  
Return Count Time  
(VCC=1.65 V to 3.6 V, TA=-40°C to +105°C)  
Parameter  
Value  
Symbol  
Unit  
Remarks  
When  
High-speed CR  
is enabled  
Current Mode  
Sleep mode  
Mode to return  
Typ  
Max71  
each Run Mode  
4*HCLK  
μs  
High-speed CR Run mode  
Main Run mode  
When  
High-speed CR  
is enabled  
12*HCLK  
13*HCLK  
μs  
PLL Run mode  
Timer mode  
Stop Mode  
RTC mode  
Low-speed CR Run mode  
Sub Run mode  
High-speed CR Run mode  
Low-speed CR Run mode  
Main Run mode  
Sub Run mode  
PLL Run mode  
High-speed CR Run mode  
Low-speed CR Run mode  
Sub Run mode  
34+12*HCLK  
34+12*HCLK  
72+13*HCLK  
72+13*HCLK  
μs  
μs  
tICNT  
34+12*HCLK  
72+13*HCLK  
72  
72  
μs  
μs  
+tOSCWT  
+tOSCWT  
34+12*HCLK  
72+13*HCLK  
Main Run mode  
PLL Run mode  
34+12*HCLK  
72+13*HCLK  
μs  
μs  
+tOSCWT  
+tOSCWT  
Deep Standby RTC mode  
Deep Standby Stop mode  
High-speed CR Run mode  
43  
281  
Operation Example of Return from Low-Power Consumption Mode (by External Interrupt73)  
External  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
71  
72  
73  
The maximum value depends on the condition of environment.  
tOSCWT: Oscillator stabilization time.  
External interrupt is set to detecting fall edge.  
Document Number: 002-00233 Rev. *D  
Page 92 of 109  
 
S6E1C Series  
Operation Example of Return from Low-Power Consumption Mode (by Internal Resource Interrupt74)  
Internal  
resource  
interrupt  
Interrupt factor  
accept  
Active  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
Notes:  
The return factor is different in each Low-Power consumption modes.  
See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual.  
When interrupt recovers, the operation mode that CPU recovers depends on the state before the Low-Power consumption  
mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual".  
74  
Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.  
Document Number: 002-00233 Rev. *D  
Page 93 of 109  
S6E1C Series  
11.9.2 Return Factor: Reset  
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program  
operation.  
Return Count Time  
(VCC=1.65 V to 3.6 V, TA=-40°C to +105°C)  
Parameter  
Value  
Symbol  
Unit  
Remarks  
When  
High-speed CR  
is enabled  
When  
Current Mode  
Mode to return  
Typ  
Max75  
High-speed CR Sleep mode  
Main Sleep mode  
20  
22  
μs  
PLL Sleep mode  
Low-speed CR Sleep mode  
Sub Sleep mode  
50  
106  
137  
μs  
μs  
High-speed CR  
is enabled  
When  
High-speed CR  
is enabled  
112  
When  
High-speed CR  
is enabled  
High-speed CR Timer mode  
Main Timer mode  
PLL Timer mode  
High-speed CR Run mode  
tRCNT  
20  
22  
μs  
Low-speed CR Timer mode  
Sub Timer mode  
87  
159  
209  
μs  
μs  
148  
Stop mode  
RTC mode  
Deep Standby RTC mode  
Deep Standby Stop mode  
45  
43  
68  
μs  
μs  
281  
Operation Example of Return from Low-Power Consumption Mode (by INITX)  
INITX  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
75  
The maximum value depends on the accuracy of built-in CR.  
Document Number: 002-00233 Rev. *D  
Page 94 of 109  
S6E1C Series  
Operation Example of Return from Low Power Consumption Mode (by Internal Resource Reset76)  
Internal  
resource  
reset  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
Notes:  
The return factor is different in each Low-Power consumption modes.  
See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual.  
When interrupt recovers, the operation mode that CPU recovery depends on the state before the Low-Power consumption  
mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual".  
The time during the power-on reset/low-voltage detection reset is excluded. See "11.4.7 Power-on Reset Timing in 11.4 AC  
Characteristics in 11. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection  
reset.  
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is  
necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.  
The internal resource reset means the watchdog reset and the CSV reset.  
76  
Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.  
Document Number: 002-00233 Rev. *D  
Page 95 of 109  
S6E1C Series  
12.Ordering Information  
Package-Specific  
Features  
(see next table)  
Flash  
Part number  
SRAM  
[Kbyte]  
Package  
(Tray)  
USB2.0  
I2S  
[Kbyte]  
S6E1C32D0AGV20000  
S6E1C31D0AGV20000  
128  
64  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
Plastic LQFP  
(0.50 mm pitch),  
64 pins  
64-pin  
48-pin  
32-pin  
64-pin  
48-pin  
32-pin  
(LQD064)  
S6E1C32C0AGV20000  
S6E1C31C0AGV20000  
128  
64  
Plastic LQFP  
(0.50 mm pitch),  
48 pins  
(LQA048)  
S6E1C32B0AGP20000  
S6E1C31B0AGP20000  
128  
64  
Plastic LQFP  
(0.80 mm pitch),  
32 pins  
(LQB032)  
S6E1C32D0AGN20000  
S6E1C31D0AGN20000  
128  
64  
Plastic QFN64  
(0.50 mm pitch),  
64 pins  
(WNS064)  
S6E1C32C0AGN20000  
S6E1C31C0AGN20000  
128  
64  
Plastic QFN48  
(0.50 mm pitch),  
48 pins  
(WNY048)  
S6E1C32B0AGN20000  
S6E1C31B0AGN20000  
128  
64  
Plastic QFN32  
(0.50 mm pitch),  
32 pins  
(WNU032)  
S6E1C32B0AGU1H000  
Plastic WLCSP30  
(0.40 mm pitch),  
30 pins  
128  
16  
30-pin  
(U4M030)  
* 7 inch reel only for  
this MPN  
S6E1C12D0AGV20000  
S6E1C11D0AGV20000  
128  
64  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
Plastic LQFP  
(0.50 mm pitch),  
64 pins  
64-pin  
48-pin  
32-pin  
64-pin  
48-pin  
32-pin  
(LQD064)  
S6E1C12C0AGV20000  
S6E1C11C0AGV20000  
128  
64  
Plastic LQFP  
(0.50 mm pitch),  
48 pins  
(LQA048)  
S6E1C12B0AGP20000  
S6E1C11B0AGP20000  
128  
64  
Plastic LQFP  
(0.80 mm pitch),  
32 pins  
(LQB032)  
S6E1C12D0AGN20000  
S6E1C11D0AGN20000  
128  
64  
Plastic QFN64  
(0.50 mm pitch),  
64 pins  
(WNS064)  
S6E1C12C0AGN20000  
S6E1C11C0AGN20000  
128  
64  
Plastic QFN48  
(0.50 mm pitch),  
48 pins  
(WNY048)  
S6E1C12B0AGN20000  
S6E1C11B0AGN20000  
128  
64  
Plastic QFN32  
(0.50 mm pitch),  
32 pins  
(WNU032)  
Document Number: 002-00233 Rev. *D  
Page 96 of 109  
 
S6E1C Series  
Package  
Feature  
32 LQFP  
32 QFN  
48 LQFP  
48 QFN  
64 LQFP  
64 QFN  
30 WLCSP  
Pin count  
30  
32  
48  
64  
4 ch. (Max)  
6 ch. (Max)  
6 ch. (Max)  
Ch.0/1/3 without FIFO  
Ch. 6 with FIFO  
Ch.0/1/3 without FIFO Ch.0/1/3 without FIFO  
Multi-function Serial Interface  
(UART/CSIO/I2C/I2S)  
Ch.4/6/7 with FIFO  
Ch.4/6/7 with FIFO  
I2S: 1 ch (Max)  
Ch. 6 with FIFO  
I2S: 2 ch (Max)  
Ch. 4/6 with FIFO  
I2S: No  
7 pins (Max),  
NMI x 1  
9 pins (Max),  
NMI x 1  
12 pins (Max),  
NMI x 1  
External Interrupt  
I/O port  
24 pins (Max)  
6 ch. (1 unit)  
38 pins (Max)  
8 ch. (1 unit)  
54 pins (Max)  
8 ch. (1 unit)  
12-bit A/D converter  
Smart Card Interface  
No  
1 ch (Max)  
HDMI-CEC/ Remote Control  
Receiver  
1 ch.(Max)  
Ch.1  
2 ch (Max)  
Ch.0/1  
13.Acronyms  
Acronym  
Description  
ADC  
ACK  
analog-to-digital converter  
acknowledge  
AHB  
ARM®  
AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus  
Advanced RISC Machine, a CPU architecture  
Consumer Electronics Control, a command and control interface over HDMI (High Definition Multimedia  
Interface)  
CEC  
CMOS  
CPU  
complementary metal oxide semiconductor  
central processing unit  
CR  
clock and reset  
CRC  
CSIO  
CSV  
cyclic redundancy check, an error-checking protocol  
clock synchronous serial interface  
clock supervisor  
CTS  
clear to send, a flow control signal in some data communication interfaces  
descriptor system data transfer controller  
end of message  
first in, first out  
general-purpose input/output  
High Definition Multimedia Interface  
High Definition Multimedia Interface - Consumer Electronics Control, see CEC  
interface  
Inter-Integrated Circuit, a communications protocol  
Inter-IC (integrated circuit) Sound, a communications protocol  
input/output, see also GPIO  
DTSC  
EOM  
FIFO  
GPIO  
HDMI  
HDMI-CEC  
I/F  
I2C, or IIC  
I2S, or IIS  
I/O  
IRQ  
interrupt request  
LIN  
LVD  
Local Interconnect Network, a communications protocol  
low-voltage detect  
MFS  
multi-function serial  
MSB  
MTB  
most significant byte  
micro trace buffer  
NMI  
non-maskable interrupt  
Document Number: 002-00233 Rev. *D  
Page 97 of 109  
 
 
S6E1C Series  
Acronym  
NVIC  
OS  
Description  
nested vectored interrupt controller  
operating system  
OSC  
PLL  
oscillator  
phase-locked loop  
PPG  
PWC  
PWM  
RAM  
RX  
programmable pulse generator  
pulse-width counter  
pulse-width modulator  
random access memory  
receive  
RTS  
SPI  
SRAM  
SW-DP  
TX  
request to send, a flow control signal in some data communication interfaces  
Serial Peripheral Interface, a communications protocol  
static random access memory  
serial wire debug port  
transmit  
UART  
USB  
universal asynchronous receiver transmitter  
Universal Serial Bus  
Document Number: 002-00233 Rev. *D  
Page 98 of 109  
S6E1C Series  
14.Package Dimensions  
Package Type  
Package Code  
LQFP-32  
LQB032  
4
D
5
7
D1  
24  
17  
17  
24  
25  
25  
16  
16  
E1  
E
5
4
7
3
6
32  
9
9
32  
1
8
8
1
2
5
7
e
BOTTOM VIEW  
0.10  
C
A-B  
D
3
0.20  
C
A-B D  
b
0.20  
C
A-B  
D
8
TOPVIEW  
2
9
θ
c
b
SECTION A-A'  
A
SEATING  
PLANE  
A'  
0.25  
0.10  
C
10  
SIDEVIEW  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.60  
A
A1  
b
0.05  
0.32  
0.13  
0.15  
0.35 0.43  
0.18  
c
D
9.00 BSC  
D1  
e
7.00 BSC  
0.80 BSC  
9.00 BSC  
7.00 BSC  
E
E1  
L
0.45 0.60 0.75  
0.30 0.50 0.70  
L1  
θ
0°  
8°  
PACKAGE OUTLINE, 32 LEAD LQFP  
7.0X7.0X1.6 MM LQB032 REV*.*  
002-13879 **  
Document Number: 002-00233 Rev. *D  
Page 99 of 109  
 
S6E1C Series  
Package Type  
Package Code  
LQFP-48  
LQA048  
4
5
D
7
D1  
36  
36  
25  
25  
37  
24  
24  
37  
E1  
E
5
7
4
3
6
48  
13  
13  
48  
1
1
12  
12  
2
A-B  
5
7
e
0.10  
C
D
3
0.20  
C A-B D  
0.80  
C
A-B  
D
b
8
2
A
9
θ
A
SEATING  
PLANE  
c
A'  
0.25  
A1  
10  
b
0.80  
C
L1  
L
SECTION A-A'  
DIMENSIONS  
MIN. NOM. MAX.  
1.70  
SYMBOL  
A
A1  
b
0.00  
0.20  
0.27  
0.20  
0.15  
0.09  
c
D
9.00 BSC  
7.00 BSC  
0.50 BSC  
9.00 BSC  
7.00 BSC  
0.60  
D1  
e
E
E1  
L
0.45  
0.30  
0°  
0.75  
0.70  
L1  
θ
0.50  
8°  
PACKAGE OUTLINE, 48 LEAD LQFP  
7.0X7.0X1.7 MM LQA048 REV**  
002-13731 **  
Page 100 of 109  
Document Number: 002-00233 Rev. *D  
S6E1C Series  
Package Type  
Package Code  
LQFP-64  
LQD064  
4
5
D
7
D1  
48  
33  
33  
48  
32  
32  
49  
49  
5
7
E1  
E
4
3
6
17  
17  
64  
64  
1
16  
16  
1
2
5
7
e
A-B D  
3
0.10  
0.08  
C A-B D  
BOTTOM VIEW  
0.20  
C
C
A-B  
D
b
8
TOPVIEW  
2
A
9
c
A
SEATING  
PLANE  
b
0.25  
A'  
A1  
SECTION A-A'  
L1  
0.08  
C
L
10  
SIDE VIEW  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.00  
0.15  
0.09  
0.20  
0.2  
c
0.20  
D
12.00 BSC.  
10.00 BSC.  
0.50 BSC  
D1  
e
E
12.00 BSC.  
10.00 BSC.  
E1  
L
0.45 0.60 0.75  
0.30 0.50 0.70  
L1  
PACKAGE OUTLINE, 64 LEAD LQFP  
10.0X10.0X1.7 MM LQD064 Rev**  
002-11499 **  
Page 101 of 109  
Document Number: 002-00233 Rev. *D  
S6E1C Series  
Package Type  
Package Code  
QFN-32  
WNU032  
D
0.10  
C A B  
D2  
A
17  
24  
0.10  
2X  
C
0.10  
C A B  
16  
25  
(ND-1)× e  
E
E2  
5
9
32  
c
8
1
9
INDEX MARK  
8
L
0.10  
0.05  
C A B  
e
b
B
C
0.10  
2X  
C
4
BOTTOM VIEW  
TOP VIEW  
0.10  
C
A
SEATING PLANE  
0.08  
9
C
A1  
C
SIDE VIEW  
NOTE  
1. ALL DIMENSIONSARE IN MILLIMETERS.  
DIMENSIONS  
NOM. MAX.  
SYMBOL  
A
2. DIMENSIONING AND TOLERANCIN C CONFORMSTO ASME Y14.5-1994.  
3. N ISTHE TOTAL NU MBER OF TERMINALS.  
MIN.  
0.80  
0.05  
4. DIMENSION "b"APPLIESTO META  
LLIZED TERMINAL AND ISMEASURED  
A
D
E
0.00  
1
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS  
THE OPTIONAL RADIUSON THE OTHER END OF THE TERMINAL. THE  
DIMENSION "b"SHOULD NOTBE MEASURED IN THATRADIUSAREA.  
5.00 BSC  
5.00 BSC  
0.25  
5. ND REFERTO THE NUMBER OF  
TERMINALSON D OR E SIDE.  
0.20  
0.30  
b
6. MAX. PACKAGE WARPAGE IS0.05mm.  
D
3.20 BSC  
3.20 BSC  
0.50 BSC  
0.25 REF  
0.40  
2
2
7. MAXIMUM ALLOWABL E BURRSIS0.076mm IN ALL DIRECTIONS.  
8. PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.  
E
e
c
9. BILATERAL COPLAN ARITY ZONE APPLIESTO THE EXPOSED HEAT  
SINK SLUG ASWELL ASTHE TERMINALS.  
10. JEDEC SPEC IFICATION NO. REF : N/A  
L
0.35  
0.45  
PACKAGEOUTLINE, 32 LEAD QFN  
5.00X5.00X0.80MM WNU032 3.20X3.20MMEPAD(SAWN)REV**  
002-15907 **  
Page 102 of 109  
Document Number: 002-00233 Rev. *D  
S6E1C Series  
Package Type  
Package Code  
QFN-48  
WNY048  
0.15  
C
A B  
D
D2  
A
25  
36  
0.10  
2X  
C
24  
37  
0.15  
C A B  
(ND-1)× e  
E2  
E
5
13  
48  
9
c
12  
1
INDEX MARK  
8
L
b
e
0.10  
0.05  
C
C
A B  
B
0.10  
2X  
C
TOP VIEW  
4
BOTTOM VIEW  
A
SEATING PLANE  
0.05  
C
A1  
9
C
SIDE VIEW  
NOTE  
1. ALLDIMENSIONSAREIN MILLIMETERS.  
DIMENSIONS  
SYMBOL  
A
2. DIMENSIONING AND TOLERANCING CONFORMSTO ASME Y14.5-1994.  
3. N ISTHETOTALNUMBEROFTERMINALS.  
MIN. NOM. MAX.  
0.80  
4. DIMENSION "b"APPLIESTO METALLIZED TERMINALAND ISMEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINALTIP.IFTHETERMINALHAS  
THEOPTIONALRADIUSON THEOTHEREND OFTHETERMINAL. THE  
DIMENSION "b"SHOULD NOTBEMEASURED IN THATRADIUSAREA.  
A
D
E
0.00  
0.05  
1
7.00 BSC  
7.00 BSC  
0.25  
5. ND REFERTO THENUMBEROFTERMINALSON D ORESIDE.  
6. MAX. PACKAGEWARPAGEIS0.05mm.  
0.18  
0.30  
b
D
4.65 BSC  
4.65 BSC  
0.50 BSC  
0.30 REF  
0.50  
2
2
7. MAXIMUM ALLOWABLEBURRSIS0.076mm IN ALLDIRECTIONS.  
8. PIN #1 ID ON TOPW ILLBE LOCATED WITHIN INDICATED ZONE.  
E
e
c
9. BILATERALCOPLANARITY ZONEAPPLIESTO THEEXPOSEDHEAT  
SINKSLUG ASWELLASTHETERMINALS.  
10. JEDECSPECIFICATION NO. REF: N/A  
L
0.45  
0.55  
PACKAGEOUTLINE, 48 LEAD QFN  
7.00X7.00X0.80MM WNY0484.65X4.65MMEPAD(SAWN)REV**  
002-16422 **  
Page 103 of 109  
Document Number: 002-00233 Rev. *D  
S6E1C Series  
Package Type  
Package Code  
QFN-64  
WNS064  
0.15  
C A B  
D2  
D
A
33  
48  
0.10  
2X  
C
0.15  
C A B  
32  
49  
(ND-1)× e  
E
E2  
5
17  
64  
c
16  
1
INDEX MARK  
8
L
9
b
e
0.10  
C
C
A B  
B
0.05  
0.10  
2X  
C
4
TOPVIEW  
BOTTOM VIEW  
A
SEATING PLANE  
0.05  
C
A1  
9
C
SIDEVIEW  
NOTE  
1. ALLDIMENSIONSAREIN MILLIMETERS.  
DIMENSIONS  
SYMBOL  
A
2. DIMENSIONING AND TOLERANCING CONFORMSTO ASME Y14.5-1994.  
3. N ISTHETOTALNUMBEROFTERMINALS.  
MIN. NOM. MAX.  
0.80  
4. DIMENSION "b"APPLIESTO METALLIZED TERMINALAND ISMEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINALTIP.IFTHETERMINALHAS  
THEOPTIONALRADIUSON THEOTHEREND OFTHETERMINAL. THE  
DIMENSION "b"SHOULD NOTBEMEASURED IN THATRADIUSAREA.  
A
1
0.00  
0.05  
D
E
b
9.00 BSC  
9.00 BSC  
0.25  
5. ND REFERTO THENUMBEROFTERMINALSON D ORESIDE.  
6. MAX. PACKAGEWARPAGEIS0.05mm.  
0.20  
0.30  
D
E
e
7.20 BSC  
7.20 BSC  
0.50 BSC  
0.50 REF  
0.40  
2
2
7. MAXIMUM ALLOWABLEBURRSIS0.076mm IN ALLDIRECTIONS.  
8. PIN #1 ID ON TOPW ILLBE LOCATED WITHIN INDICATED ZONE.  
9. BILATERALCOPLANARITY ZONEAPPLIESTO THEEXPOSEDHEAT  
SINKSLUG ASWELLASTHETERMINALS.  
c
10. JEDECSPECIFICATION NO. REF: N/A  
L
0.35  
0.45  
PACKAGEOUTLINE, 64 LEAD QFN  
9.00X9.00X0.80MM WNS0647.20X7.20MMEPAD(SAWN)REV**  
002-16424 **  
Page 104 of 109  
Document Number: 002-00233 Rev. *D  
S6E1C Series  
Package Type  
Package Code  
WLCSP 30  
U4M030  
A
D1  
D
eD  
INDEX MARK  
8
7
1
2
3
4
5
SE  
PIN A1  
CORNER  
eE  
E
E1  
0.03  
2X  
C
F
E
D
C
B
A
B
7
SD  
0.03  
2X  
C
TOP VIEW  
30×φ b  
0.05  
C A B  
6
BOTTOM VIEW  
DETAIL A  
A
A2  
0.05  
C
A1  
DETAIL A  
SIDE VIEW  
DIMENSIONS  
NOTES  
1. ALL DIMENSIONSARE IN MILLIMETERS.  
SYMBOL  
MIN. NOM. MAX.  
0.534  
2. DIMENSIONSAND TOLERANCESMETHODSPERASME Y14.5-2009.  
THISOUTLINE CONFORMSTO JEP95, SECTION 4.5.  
A
0.164  
0.224  
A1  
D
3. BALL POSITION DESIGNATION PERJEP95, SECTION 3, SPP-010.  
4. "e" REPRESENTSTHE SOLDERBALL GRID PITCH.  
2.690 BSC  
2.310 BSC  
2.000 BSC  
1.600 BSC  
6
E
5. SYMBOL "MD"ISTHE BALL MATRIX SIZE IN THE "D"DIRECTION.  
SYMBOL "ME"ISTHE BALL MATRIX SIZE IN THE "E"DIRECTION.  
n ISTHE NUMBEROF POPULATED SOLDERBALL POSITIONSFORMATRIX  
SIZE MD X ME.  
D
E
1
1
6. DIMENSION "b"ISMEASURED ATTHE MAXIMUM BALL DIAMETER  
IN A PLANE PARALLEL TO DATUM C.  
MD  
ME  
n
5
7. "SD" AND "SE" ARE MEASURED WITH RESPECTTO DATUMSA AND BAND  
DEFINE THE POSITION OF THE CENTERSOLDERBALL IN THE OUTERROW.  
WHEN THERE ISAN ODD NUMBEROF SOLDERBALLSIN THE OUTERROW  
"SD"OR "SE"= 0.  
30  
φb  
0.24  
0.27  
0.30  
WHEN THERE ISAN EVEN NUMBEROF SOLDERBALLSIN THE OUTERROW,  
"SD"= eD/2 AND "SE" = eE/2.  
eD  
eE  
0.400 BSC  
0.40 BSC  
8. A1 CORNERTO BE IDENTIFIED BY CHAMFER, LASERORINK MARK.  
METALLIZED MARK IN DENTATION OROTHERMEANS.  
SD /SE  
0.20 /0 BSC  
9. "+"INDICATESTHE THEORETICAL CENTEROF DEPOPULATED BALLS.  
10. JEDEC SPECIFICATION NO. REF: N/A.  
PACKAGE OUTLINE, 30 BALLWLCSP  
2.31X2.69X0.534 MM U4M030  
Rev0**02-18455 **  
Document Number: 002-00233 Rev. *D  
Page 105 of 109  
 
S6E1C Series  
15.Errata  
This chapter describes the errata for S6E1C product family. Details include errata trigger conditions, scope of impact, available  
workaround, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions.  
15.1 Part Numbers Affected  
Part Number  
S6E1C32D0AGV20000, S6E1C32C0AGV20000, S6E1C32B0AGP20000,  
S6E1C32D0AGN20000, S6E1C32C0AGN20000, S6E1C32B0AGN20000  
S6E1C32B0AGU1H000  
S6E1C31D0AGV20000, S6E1C31C0AGV20000, S6E1C31B0AGP20000,  
S6E1C31D0AGN20000, S6E1C31C0AGN20000, S6E1C31B0AGN20000  
S6E1C12D0AGV20000, S6E1C12C0AGV20000, S6E1C12B0AGP20000,  
S6E1C12D0AGN20000, S6E1C12C0AGN20000, S6E1C12B0AGN20000  
S6E1C11D0AGV20000, S6E1C11C0AGV20000, S6E1C11B0AGP20000,  
S6E1C11D0AGN20000, S6E1C11C0AGN20000, S6E1C11B0AGN20000  
15.2 Qualification Status  
Product Status: In Production Qual.  
15.3 Errata Summary  
This table defines the errata applicability to available devices.  
Items  
Part Number  
Silicon Revision  
Fix Status  
[1] AHB Bus Matrix issue  
Refer to 15.1  
Rev B  
Fixed in Rev C  
[2] Deep Standby Mode current  
consumption issue  
Refer to 15.1  
Rev B, Rev C  
Next silicon is not planned.  
15.4 Errata Detail  
15.4.1 AHB Bus Matrix issue  
PROBLEM DEFINITION  
The AHB Bus Matrix logic has two master interfaces (CPU and DSTC) and four slave interfaces (RAM, FLASH, AHB and APB).  
When two master interfaces (CPU and DSTC) access the same slave interface at the same time, and when the CPU is in wait cycle,  
an unnecessary access occurs during the wait cycle and the expected access occurs again after the unnecessary access.  
PARAMETERS AFFECTED  
N/A  
TRIGGER CONDITION(S)  
CPU and DSTC access the same slave interface at the same time.  
SCOPE OF IMPACT  
DSTC cannot be used.  
WORKAROUND  
DSTC must not use.  
Document Number: 002-00233 Rev. *D  
Page 106 of 109  
 
 
S6E1C Series  
FIX STATUS  
This issue is fixed in Rev C.  
15.4.2 Deep Standby Mode current consumption issue  
PROBLEM DEFINITION  
The current consumption does not decrease in Deep Standby Mode (Deep Standby RTC Mode and Deep Standby Stop Mode)  
PARAMETERS AFFECTED  
N/A  
TRIGGER CONDITION(S)  
MCU is in Deep Standby Mode and both MAINXC bits in SPSR and SUBXC bits in SUBOSC_CTL has not been cleared with 0b00  
since power-on.  
SCOPE OF IMPACT  
The current consumption does not decrease.  
WORKAROUND  
Clear both MAINXC bits in SPSR and SUBXC bits in SUBOSC_CTL with 0b00.  
Please note:  
- Output pins become unstable state in a moment right after clearing these register bits with 0b00.  
- You can set these register bits to any value after they are cleared with 0b00.  
FIX STATUS  
The user uses the workaround to prevent this issue. The next silicon fixing this issue is not planned.  
Document Number: 002-00233 Rev. *D  
Page 107 of 109  
S6E1C Series  
Document History  
Document Title: S6E1C Series 32-bit ARM® Cortex®-M0+ FM0+ Microcontroller  
Document Number: 002-00233  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
4896074  
4955136  
TEKA  
08/31/2015 New Spec.  
*A  
TEKA  
10/9/2015  
AC/DC characteristics updated. Typo fixed in List of Pin Functions.  
Added the frequency value of Ta = - 10°C to + 105°Con 11.4.3 Built-in  
CR Oscillation Characteristics.  
Added the remark of “VCC < 0.2V” on “11.4.7 Power-on Reset Timing”.  
Added the measure condition of ICC on 11.3.1 Current Rating.  
*B  
5158709  
YUKT  
03/04/2016  
Changed the package outlines to cypress format on 13. Package  
Dimensions.  
Changed the package codes to cypress codes on 3. Pin Assignmentand  
12. Ordering Information.  
Consolidated the C Series of Cypress MCUs into one data sheet. Minor  
updates to grammar. Made table footnotes consectutive. Corrected  
navigational aids (cross reference link colors). Added front matter to data  
sheet to match Cypress corporate style. Added tables to differentiate parts  
in 2 Product Lineup and 2.1 Package Dependent Features. Removed full  
multiplexed signal names from 4 Pin Assignment drawings. Added  
hyperlinks to 5 List of Pin Functions.  
10 Pin Status in Each CPU State: Changed several instances of pullup  
register to pull up resistor.  
*C  
5220682  
MBGR  
09/07/2016  
Expanded 12 Ordering Information.  
Fixed typo in Memory Map. Updated logo. Removed WLCSP information.  
Updated 11.4.7 Power-on Reset Timing.  
Added 15 Erratta.  
Added 13 Acronyms.  
Updated “15 Errata(Page 106)  
Updated the schematic for “11.4.7 Power-on Reset Timing”(Page 56)  
Updated “14. Package Dimensions” (Page 99-105)  
Modify expressions of channel numbers for USB, I2S (Page 1)  
Added the Baud rate spec in “11.4.9 CSIO/SPI/UART Timing”.(Page 58, 60,  
62, 64)  
*D  
5453786  
YSKA  
04/13/2017  
Modify typo about Main oscillation (Page 41)  
Modified Real-Time Clock(RTC) in “3. Product Features in Detail”  
Deleted “second, or day of the week” in the Interrupt function.(Page 8)  
Added WLCSP package information(Page 1, 6, 6, 17, 19, 96, 97, 105)  
Deleted I2C slave related description(Page 4, 6, 38, 41, 76, 97)  
Document Number: 002-00233 Rev. *D  
Page 108 of 109  
S6E1C Series  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the  
office closest to you, visit us at Cypress Locations.  
PSoC® Solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Products  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
Cypress Developer Community  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Automotive  
Clocks & Buffers  
Interface  
Technical Support  
cypress.com/support  
Internet of Things  
Memory  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
cypress.com/pmic  
cypress.com/touch  
USB Controllers  
Wireless/RF  
cypress.com/usb  
cypress.com/wireless  
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
All other trademarks or registered trademarks referenced herein are the property of their respective owners.  
© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or  
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,  
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source  
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form  
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are  
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,  
modification, translation, or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It  
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress  
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support  
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the  
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform  
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress  
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,  
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-00233 Rev. *D  
April 13, 2017  
Page 109 of 109  

相关型号:

S6E1C11B0AGP20000

32-bit ARM® Cortex®-M0 FM0 Microcontroller
CYPRESS

S6E1C11B0AGP20000

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family
INFINEON

S6E1C11C0AGN20000

32-bit ARM® Cortex®-M0 FM0 Microcontroller
CYPRESS

S6E1C11C0AGN20000

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family
INFINEON

S6E1C11C0AGV20000

32-bit ARM® Cortex®-M0 FM0 Microcontroller
CYPRESS

S6E1C11C0AGV20000

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family
INFINEON

S6E1C11D0AGN20000

32-bit ARM® Cortex®-M0 FM0 Microcontroller
CYPRESS

S6E1C11D0AGN20000

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family
INFINEON

S6E1C11D0AGV20000

32-bit ARM® Cortex®-M0 FM0 Microcontroller
CYPRESS

S6E1C11D0AGV20000

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family
INFINEON

S6E1C12B0AGN20000

32-bit ARM® Cortex®-M0 FM0 Microcontroller
CYPRESS

S6E1C12B0AGN20000

FM0+ S6E1C-Series Arm® Cortex®-M0+ Microcontroller (MCU) Family
INFINEON