SAB-C161JI-LF [INFINEON]

16-Bit Single-Chip Microcontroller; 16位单芯片微控制器
SAB-C161JI-LF
型号: SAB-C161JI-LF
厂家: Infineon    Infineon
描述:

16-Bit Single-Chip Microcontroller
16位单芯片微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总89页 (文件大小:1266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V3.0, Jan. 2001  
C161CS-32R/-L  
C161JC-32R/-L  
C161JI-32R/-L  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2001-01  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2001.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V3.0, Jan. 2001  
C161CS-32R/-L  
C161JC-32R/-L  
C161JI-32R/-L  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C161CS/JC/JI  
Revision History:  
2001-01  
V3.0  
Previous Version:  
2000-08 V2.0 (intermediate version)  
1999-03  
(Advance Information)  
Page  
All  
Subjects (major changes since last revision)1)  
Converted to Infineon layout  
2
Derivative Synopsis Table updated  
4, 6, 10, 18 Programmable Interface Routing introduced  
27, 28  
29  
GPT block diagrams updated  
RTC description improved  
35  
OWD description improved  
39ff  
51  
RSTCON and SDLM registers added  
Description of input/output voltage and hysteresis improved  
Separate table for power consumption  
Clock generation mode table updated  
External clock drive specification improved  
Reset calibration time specified, definition of VAREF improved  
Programmable sample time introduced  
Timing tables updated to 25 MHz  
53  
57  
60  
62  
63  
65ff  
1)  
Changes refer to version 1999-03.  
Controller Area Network (CAN): License of Robert Bosch GmbH  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
16-Bit Single-Chip Microcontroller  
C166 Family  
C161CS/JC/JI  
C161CS/JC/JI  
• High Performance 16-bit CPU with 4-Stage Pipeline  
– 80 ns Instruction Cycle Time at 25 MHz CPU Clock  
– 400 ns Multiplication (16 × 16 bit), 800 ns Division (32 / 16 bit)  
– Enhanced Boolean Bit Manipulation Facilities  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Single-Cycle Context Switching Support  
– 16 MBytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area  
• 16-Priority-Level Interrupt System with 59 Sources, Sample-Rate down to 40 ns  
• 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC)  
• Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5),  
via prescaler or via direct clock input  
– Additional 32 kHz Oscillator  
• On-Chip Memory Modules  
– 2 KBytes On-Chip Internal RAM (IRAM)  
– 8 KBytes On-Chip Extension RAM (XRAM)  
– 256 KBytes On-Chip Mask ROM  
• On-Chip Peripheral Modules  
– 12-Channel 10-bit A/D Converter with Programmable Conversion Time  
down to 7.8 µs  
– Two 16-Channel Capture/Compare Units (eight IO lines each)  
– Two Multi-Functional General Purpose Timer Units with 5 Timers  
– Two Asynchronous/Synchronous Serial Channels  
– High-Speed Synchronous Serial Channel (SPI)  
– On-Chip CAN Interface (Rev. 2.0B active, Full CAN / Basic CAN)  
with 15 Message Objects (C161CS 2x, C161JC 1x)  
– Serial Data Link Module (SDLM), compliant with J1850,  
supporting Class 2 (C161JC/JI)  
– IIC Bus Interface (10-bit Addressing, 400 kHz) with 2 Channels (multiplexed)  
– On-Chip Real Time Clock  
• Up to 16 MBytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit  
Data Bus Width  
– Five Programmable Chip-Select Signals  
– Hold- and Hold-Acknowledge Bus Arbitration Support  
Data Sheet  
1
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
• Idle, Sleep, and Power Down Modes with Flexible Power Management  
• Programmable Watchdog Timer and Oscillator Watchdog  
• Up to 93 General Purpose I/O Lines,  
partly with Selectable Input Thresholds and Hysteresis  
• Supported by a Large Range of Development Tools like C-Compilers,  
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,  
Simulators, Logic Analyzer Disassemblers, Programming Boards  
• On-Chip Bootstrap Loader  
• 128-Pin TQFP Package  
This document describes several derivatives of the C161 group. Table 1 enumerates  
these derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
Table 1  
C161CS/JC/JI Derivative Synopsis  
Derivative  
On-Chip  
Program Memory Interface(s)  
Serial Bus  
Maximum CPU  
Frequency  
SAK-C161CS-32RF  
SAB-C161CS-32RF  
256 KByte ROM  
CAN1, CAN2  
CAN1, CAN2  
CAN1, SDLM  
CAN1, SDLM  
SDLM  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
SAK-C161CS-LF  
SAB-C161CS-LF  
---  
SAK-C161JC-32RF  
SAB-C161JC-32RF  
256 KByte ROM  
SAK-C161JC-LF  
SAB-C161JC-LF  
---  
SAK-C161JI-32RF  
SAB-C161JI-32RF  
256 KByte ROM  
---  
SAK-C161JI-LF  
SAB-C161JI-LF  
SDLM  
For simplicity all versions are referred to by the term C161CS/JC/JI throughout this  
document.  
Data Sheet  
2
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
• the package and the type of delivery.  
For the available ordering codes for the C161CS/JC/JI please refer to the “Product  
Catalog Microcontrollers”, which summarizes all available microcontroller variants.  
Note: The ordering codes for Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Introduction  
The C161CS/JC/JI derivatives are high performance derivatives of the Infineon  
C166 Family of full featured single-chip CMOS microcontrollers. They combine high  
CPU performance (up to 12.5 million instructions per second) with high peripheral  
functionality and enhanced IO-capabilities. They also provide clock generation via PLL  
and various on-chip memory modules such as program ROM, internal RAM, and  
extension RAM.  
VDD VSS  
VAREF VAGND  
Port 0  
16 Bit  
XTAL1  
XTAL2  
XTAL3  
XTAL4  
RSTIN  
RSTOUT  
NMI  
Port 1  
16 Bit  
Port 2  
8 Bit  
Port 3  
15 Bit  
C161CS/JC/JI  
Port 4  
8 Bit  
EA  
READY  
ALE  
Port 6  
8 Bit  
RD  
Port 7  
4 Bit  
WR/WRL  
Port 5  
12 Bit  
Port 9  
6 Bit  
MCL04450  
Figure 1  
Logic Symbol  
Data Sheet  
3
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Pin Configuration  
(top view)  
RSTOUT  
NMI  
1
2
3
4
5
6
7
8
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
P0H.1/AD9  
P0H.0/AD8  
VSS  
VSS  
VDD  
P6.0/CS0  
P6.1/CS1  
P6.2/CS2  
VDD  
P0L.7/AD7  
P0L.6/AD6  
P0L.5/AD5  
P0L.4/AD4  
P0L.3/AD3  
P0L.2/AD2  
P0L.1/AD1  
P0L.0/AD0  
EA  
P6.3/CS3  
P6.4/CS4  
9
P6.5/HOLD  
P6.6/HLDA  
P6.7/BREQ  
P7.4/CC28IO/*  
P7.5/CC29IO/*  
P7.6/CC30IO/*  
P7.7/CC31IO/*  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
ALE  
READY  
WR/WRL  
RD  
VSS  
VDD  
P4.7/A23/*  
P4.6/A22/*  
P4.5/A21/*  
P4.4/A20/*  
P4.3/A19  
P4.2/A18  
P4.1/A17  
P4.0/A16  
VSS  
C161CS/JC/JI  
VDD  
P9.0/SDA0  
P9.1/SCL0  
P9.2/SDA1  
P9.3/SCL1  
P9.4/SDA2  
P9.5  
VSS  
VDD  
P5.0/AN0  
P5.1/AN1  
P5.2/AN2  
P5.3/AN3  
P5.4/AN4  
P5.5/AN5  
VDD  
P3.15/CLKOUT/FOUT  
P3.13/SCLK  
P3.12/BHE/WRH  
MCP04451  
Figure 2  
*) The marked pins of Port 4 and Port 7 can have interface lines assigned to them (CAN  
interface in the C161CS and C161JC, SDLM interface in the C161JC and C161JI).  
Table 2 on the pages below lists the possible assignments.  
Data Sheet  
4
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions  
Symbol Pin  
No.  
Input Function  
Outp.  
RST  
OUT  
1
O
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or  
a watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
2
I
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C161CS/JC/JI to go into  
power down mode. If NMI is high, when PWRDN is  
executed, the part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
P6  
IO  
Port 6 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 6 outputs can be configured as push/  
pull or open drain drivers.  
The Port 6 pins also serve for alternate functions:  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
5
6
7
8
9
10  
11  
O
O
O
O
O
I
CS0  
CS1  
CS2  
CS3  
CS4  
HOLD  
HLDA  
Chip Select 0 Output  
Chip Select 1 Output  
Chip Select 2 Output  
Chip Select 3 Output  
Chip Select 4 Output  
External Master Hold Request Input  
Hold Acknowledge Output (master mode)  
or Input (slave mode)  
I/O  
P6.7  
12  
O
BREQ  
Bus Request Output  
Data Sheet  
5
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P7  
IO  
Port 7 is a 4-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 7 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 7 is  
selectable (TTL or special). Port 7 pins provide inputs/  
outputs for CAPCOM2 and serial interface lines.1)  
P7.4  
P7.5  
P7.6  
P7.7  
13  
14  
15  
16  
I/O  
I
I
O
I/O  
O
O
I
I/O  
I
I
O
I/O  
O
O
I
CC28IO  
CAPCOM2: CC28 Capture Inp./Compare Outp.,  
CAN1_RxD CAN 1 Receive Data Input,  
CAN2_RxD CAN 2 Receive Data Input,  
SDL_TxD SDLM Transmit Data Output  
(C161CS/JC)  
(C161CS)  
(C161JC/JI)  
CC29IO  
CAPCOM2: CC29 Capture Inp./Compare Outp.,  
CAN1_TxD CAN 1 Transmit Data Output,  
CAN2_TxD CAN 2 Transmit Data Output,  
SDL_RxD SDLM Receive Data Input  
(C161CS/JC)  
(C161CS)  
(C161JC/JI)  
CC30IO  
CAPCOM2: CC30 Capture Inp./Compare Outp.,  
CAN1_RxD CAN 1 Receive Data Input,  
CAN2_RxD CAN 2 Receive Data Input,  
SDL_TxD SDLM Transmit Data Output  
(C161CS/JC)  
(C161CS)  
(C161JC/JI)  
CC31IO  
CAPCOM2: CC31 Capture Inp./Compare Outp.,  
CAN1_TxD CAN 1 Transmit Data Output,  
CAN2_TxD CAN 2 Transmit Data Output,  
SDL_RxD SDLM Receive Data Input  
(C161CS/JC)  
(C161CS)  
(C161JC/JI)  
P9  
IO  
Port 9 is a 6-bit bidirectional open drain I/O port (provide  
external pullup resistors if required). It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
The following Port 9 pins also serve for alternate functions:  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
19  
20  
21  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
SDA0  
SCL0  
SDA1  
SCL1  
SDA2  
IIC Bus Data Line 0  
IIC Bus Clock Line 0  
IIC Bus Data Line 1  
IIC Bus Clock Line 1  
IIC Bus Data Line 2  
Note: Port 9 pins can only tolerate positive overload currents  
(see Table 9).  
Data Sheet  
6
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P5  
I
Port 5 is a 12-bit input-only port with Schmitt-Trigger char.  
The pins of Port 5 also serve as analog input channels for the  
A/D converter, or they serve as timer inputs:  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P5.12 37  
P5.13 38  
P5.14 39  
P5.15 40  
27  
28  
29  
30  
31  
32  
33  
34  
I
I
I
I
I
I
I
I
I
I
I
I
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN12,  
AN13,  
AN14,  
AN15,  
T6IN  
T5IN  
GPT2 Timer T6 Count Inp.  
GPT2 Timer T5 Count Inp.  
T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.  
T2EUD GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.  
Data Sheet  
7
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P2  
IO  
Port 2 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 2 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 2 is  
selectable (TTL or special).  
The following Port 2 pins also serve for alternate functions:  
P2.8  
P2.9  
43  
44  
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I
CC8IO  
EX0IN  
CC9IO  
EX1IN  
CC10IO  
EX2IN  
CC11IO  
EX3IN  
CC12IO  
EX4IN  
CC13IO  
EX5IN  
CC14IO  
EX6IN  
CC15IO  
EX7IN  
T7IN  
CAPCOM1: CC8 Capture Inp./Compare Output,  
Fast External Interrupt 0 Input  
CAPCOM1: CC9 Capture Inp./Compare Output,  
Fast External Interrupt 1 Input  
CAPCOM1: CC10 Capture Inp./Compare Outp.,  
Fast External Interrupt 2 Input  
CAPCOM1: CC11 Capture Inp./Compare Outp.,  
Fast External Interrupt 3 Input  
CAPCOM1: CC12 Capture Inp./Compare Outp.,  
Fast External Interrupt 4 Input  
CAPCOM1: CC13 Capture Inp./Compare Outp.,  
Fast External Interrupt 5 Input  
CAPCOM1: CC14 Capture Inp./Compare Outp.,  
Fast External Interrupt 6 Input  
CAPCOM1: CC15 Capture Inp./Compare Outp.,  
Fast External Interrupt 7 Input,  
P2.10 45  
P2.11 46  
P2.12 47  
P2.13 48  
P2.14 49  
P2.15 50  
CAPCOM2: Timer T7 Count Input  
Note: During Sleep Mode a spike filter on the EXnIN  
interrupt inputs suppresses input pulses < 10 ns.  
Input pulses > 100 ns safely pass the filter.  
Data Sheet  
8
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P3  
IO  
Port 3 is a 15-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 3 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 3 is  
selectable (TTL or special).  
The following Port 3 pins also serve for alternate functions:  
P3.0  
P3.1  
53  
54  
I
T0IN  
CAPCOM1 Timer T0 Count Input,  
ASC1 Clock/Data Output (Async./Sync)  
GPT2 Timer T6 Toggle Latch Output,  
ASC1 Data Input (Async.) or Inp./Output (Sync.)  
GPT2 Register CAPREL Capture Input  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 External Up/Down Control Input  
GPT1 Timer T4 Count/Gate/Reload/Capture Inp  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Count/Gate/Reload/Capture Inp  
SSC Master-Receive/Slave-Transmit Inp./Outp.  
SSC Master-Transmit/Slave-Receive Outp./Inp.  
ASC0 Clock/Data Output (Async./Sync.)  
ASC0 Data Input (Async.) or Inp./Outp. (Sync.)  
External Memory High Byte Enable Signal,  
External Memory High Byte Write Strobe  
SSC Master Clock Output / Slave Clock Input.  
O
O
I/O  
I
O
I
I
I
I
I/O  
I/O  
O
I/O  
O
O
I/O  
O
O
TxD1  
T6OUT  
RxD1  
CAPIN  
T3OUT  
T3EUD  
T4IN  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
55  
56  
57  
58  
59  
60  
61  
62  
T3IN  
T2IN  
MRST  
MTSR  
TxD0  
RxD0  
BHE  
P3.10 63  
P3.11 64  
P3.12 65  
WRH  
SCLK  
P3.13 66  
P3.15 67  
CLKOUT System Clock Output (= CPU Clock)  
FOUT Programmable Frequency Output  
Data Sheet  
9
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P4  
IO  
Port 4 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. The Port 4 outputs can be configured as  
push/pull or open drain drivers. The input threshold of Port 4  
is selectable (TTL or special).  
Port 4 can be used to output the segment address lines and  
for serial interface lines:1)  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
70  
71  
72  
73  
74  
O
O
O
O
O
I
A16  
A17  
A18  
A19  
A20  
Least Significant Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line,  
CAN2_RxD CAN 2 Receive Data Input,  
SDL_RxD SDLM Receive Data Input  
(C161CS)  
(C161JC/JI)  
I
P4.5  
P4.6  
75  
76  
O
I
O
O
O
I
A21  
CAN1_RxD CAN 1 Receive Data Input,  
A22 Segment Address Line,  
CAN1_TxD CAN 1 Transmit Data Output,  
CAN2_TxD CAN 2 Transmit Data Output,  
SDL_RxD SDLM Receive Data Input  
Segment Address Line,  
(C161CS/JC)  
(C161CS/JC)  
(C161CS)  
(C161JC/JI)  
P4.7  
77  
O
I
O
I
A23  
Most Significant Segment Address Line,  
CAN1_RxD CAN 1 Receive Data Input,  
CAN2_TxD CAN 2 Transmit Data Output,  
CAN2_RxD CAN 2 Receive Data Input,  
SDL_TxD SDLM Transmit Data Output  
(C161CS/JC)  
(C161CS)  
(C161CS)  
(C161JC/JI)  
O
RD  
80  
81  
O
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
WR/  
WRL  
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a  
16-bit bus, and for every data write access on an 8-bit bus.  
See WRCFG in register SYSCON for mode selection.  
Data Sheet  
10  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
READY 82  
I
Ready Input. When the Ready function is enabled, a high  
level at this pin during an external memory access will force  
the insertion of memory cycle time waitstates until the pin  
returns to a low level.  
An internal pullup device will hold this pin high when nothing  
is driving it.  
ALE  
EA  
83  
84  
O
I
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
External Access Enable pin. A low level at this pin during and  
after Reset forces the C161CS/JC/JI to begin instruction  
execution out of external memory. A high level forces  
execution out of the internal program memory.  
“ROMless” versions must have this pin tied to ‘0’.  
PORT0  
P0L.0-7 85-  
92  
P0H.0-7 95-  
102  
IO  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state.  
In case of an external bus configuration, PORT0 serves as  
the address (A) and address/data (AD) bus in multiplexed  
bus modes and as the data (D) bus in demultiplexed bus  
modes.  
Demultiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
D0 – D7  
I/O  
16-bit  
D0 - D7  
D8 - D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
16-bit  
AD0 – AD7 AD0 - AD7  
A8 - A15 AD8 - AD15  
Note: At the end of an external reset (EA = ‘0’) PORT0 also  
inputs the configuration values.  
Data Sheet  
11  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
PORT1  
P1L.0-7 103-  
110  
P1H.0-7 113-  
120  
IO  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the  
16-bit address bus (A) in demultiplexed bus modes and also  
after switching from a demultiplexed bus mode to a  
multiplexed bus mode.  
The following PORT1 pins also serve for alternate functions:  
P1H.4 117  
P1H.5 118  
P1H.6 119  
P1H.7 120  
I/O  
I/O  
I/O  
I/O  
CC24IO  
CC25IO  
CC26IO  
CC27IO  
CAPCOM2: CC24 Capture Inp./Compare Outp.  
CAPCOM2: CC25 Capture Inp./Compare Outp.  
CAPCOM2: CC26 Capture Inp./Compare Outp.  
CAPCOM2: CC27 Capture Inp./Compare Outp.  
XTAL2 123  
XTAL1 124  
O
I
XTAL2:  
XTAL1:  
Output of the oscillator amplifier circuit.  
Input to the oscillator amplifier and input to  
the internal clock generator  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
XTAL3 126  
XTAL4 127  
I
XTAL3:  
Input to the 32-kHz oscillator amplifier and  
input to the internal clock generator  
Output of the oscillator amplifier circuit.  
O
XTAL4:  
To clock the device from an external source, drive XTAL3,  
while leaving XTAL4 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
Data Sheet  
12  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
RSTIN 128  
I/O  
Reset Input with Schmitt-Trigger characteristics. A low level  
at this pin while the oscillator is running resets the C161CS/  
JC/JI. An internal pullup resistor permits power-on reset  
using only a capacitor connected to VSS.  
A spike filter suppresses input pulses < 10 ns. Input pulses  
> 100 ns safely pass the filter. The minimum duration for a  
safe recognition should be 100 ns + 2 CPU clock cycles.  
In bidirectional reset mode (enabled by setting bit BDRSTEN  
in register SYSCON) the RSTIN line is internally pulled low  
for the duration of the internal reset sequence upon any reset  
(HW, SW, WDT). See note below this table.  
Note: To let the reset configuration of PORT0 settle and to  
let the PLL lock a reset duration of ca. 1 ms is  
recommended.  
VAREF 35  
VAGND 36  
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
VDD  
4, 18,  
Digital Supply Voltage:  
262),  
+5 V during normal operation and idle mode.  
2.5 V during power down mode if RTC is off  
2.7 V during power down mode if RTC is running  
42, 52,  
68, 78,  
93, 111,  
121  
VSS  
3, 17,  
252),  
Digital Ground.  
41, 51,  
69, 79,  
94, 112,  
122,  
125  
1)  
The CAN and/or SDLM interface lines are assigned to ports P4 and P7 under software control. Within the CAN  
module or SDLM several assignments can be selected.  
2)  
Supply pins 25 and 26 feed the Analog/Digital Converter and should be decoupled separately.  
Data Sheet  
13  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Note: The following behavioural differences must be observed when the bidirectional  
reset is active:  
• Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared  
automatically after a reset.  
• The reset indication flags always indicate a long hardware reset.  
• The PORT0 configuration is treated as if it were a hardware reset. In particular, the  
bootstrap loader may be activated when P0L.4 is low.  
• Pin RSTIN may only be connected to external reset devices with an open drain output  
driver.  
• A short hardware reset is extended to the duration of the internal reset sequence.  
Data Sheet  
14  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Functional Description  
The architecture of the C161CS/JC/JI combines advantages of both RISC and CISC  
processors and of advanced peripheral subsystems in a very well-balanced way. In  
addition the on-chip memory blocks allow the design of compact systems with maximum  
performance.  
The following block diagram gives an overview of the different on-chip components and  
of the advanced, high bandwidth internal bus structure of the C161CS/JC/JI.  
Note: All time specifications refer to a CPU clock of 25 MHz  
(see definition in the AC Characteristics section).  
C166-Core  
ProgMem  
IRAM  
Internal  
RAM  
16  
16  
Data  
Data  
32  
16  
ROM  
256 KByte  
Instr. / Data  
CPU  
2 KByte  
Osc / PLL  
XTAL  
XRAM  
8 KByte  
PEC  
External Instr. / Data  
16-Level  
Priority  
Interrupt Controller  
ASC1  
(USART)  
RTC WDT  
16  
Interrupt Bus  
IIC  
400 KBd, 2 Ch.  
Peripheral Data Bus  
16  
CAN/SDLM  
2.0B act. / Cl.B  
ADC ASC0 SSC  
GPT  
CCOM2CCOM1  
10-Bit  
(USART)  
(SPI)  
T2  
T3  
T4  
T7  
T8  
T0  
T1  
12  
Channels  
EBC  
8
8
XBUS Control  
External Bus  
Control  
8
T5  
T6  
BRGen  
BRGen  
Port 0  
Port 1  
Port 5  
Port 3  
Port 7  
4
Port 9  
6
16  
16  
12  
15  
MCB04323_1CSR  
Figure 3  
Block Diagram  
The program memory, the internal RAM (IRAM) and the set of generic peripherals are  
connected to the CPU via separate buses. A fourth bus, the XBUS, connects external  
resources as well as additional on-chip resoures, the X-Peripherals (see Figure 3).  
The XBUS resources (XRAM, CAN, SDLM, IIC, ASC1) of the C161CS/JC/JI can be  
enabled during initialization by setting the general X-Peripheral enable bit XPEN  
(SYSCON.2).  
If the X-Peripherals remain disabled they consume neither address space nor port pins.  
Data Sheet  
15  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Memory Organization  
The memory space of the C161CS/JC/JI is configured in a Von Neumann architecture  
which means that code memory, data memory, registers and I/O ports are organized  
within the same linear address space which includes 16 MBytes. The entire memory  
space can be accessed bytewise or wordwise. Particular portions of the on-chip memory  
have additionally been made directly bitaddressable.  
The C161CS/JC/JI incorporates 256 KBytes of on-chip mask-programmable ROM for  
code or constant data. The lower 32 KBytes of the on-chip ROM can be mapped either  
to segment 0 or segment 1.  
2 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined  
variables, for the system stack, general purpose register banks and even for code. A  
register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0,  
…, RL7, RH7) so-called General Purpose Registers (GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the C166 Family.  
8 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user  
stacks, or code. The XRAM is accessed like external memory and therefore cannot be  
used for the system stack or for register banks and is not bitaddressable. The XRAM  
permits 16-bit accesses with maximum speed.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the  
microcontroller.  
Data Sheet  
16  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). It can be programmed either to Single Chip Mode when no external  
memory is required, or to one of four different external memory access modes, which  
are as follows:  
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed  
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed  
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed  
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/  
output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses  
and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time,  
Memory Tri-State Time, Length of ALE and Read Write Delay) have been made  
programmable to allow the user the adaption of a wide range of different types of  
memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs  
ADDRSELx / BUSCONx) which control the access to different resources with different  
bus characteristics. These address windows are arranged hierarchically where  
BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to  
locations not covered by these 4 address windows are controlled by BUSCON0.  
Up to 5 external CS signals (4 windows plus default) can be generated in order to save  
external glue logic. The C161CS/JC/JI offers the possibility to switch the CS outputs to  
an unlatched mode. In this mode the internal filter logic is switched off and the CS signals  
are directly generated from the address. The unlatched CS mode is enabled by setting  
CSCFG (SYSCON.6).  
Access to very slow memories or memories with varying access times is supported via  
a particular ‘Ready’ function.  
A HOLD/HLDA protocol is available for bus arbitration and allows to share external  
resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN  
in register PSW. After setting HLDEN once, pins P6.7 … P6.5 (BREQ, HLDA, HOLD)  
are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA  
pin is an output. By setting bit DP6.7 to ‘1’ the Slave Mode is selected where pin HLDA  
is switched to input. This allows to directly connect the slave controller to another master  
controller without glue logic.  
For applications which require less than 16 MBytes of external memory space, this  
address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case  
Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an  
address space of 16 MBytes is used.  
Data Sheet  
17  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Note: When one or both of the on-chip CAN Modules or the SDLM are used with the  
interface lines assigned to Port 4, the interface lines override the segment address  
lines and the segment address output on Port 4 is therefore limited to 6/4 bits i.e.  
address lines A21/A19 … A16. CS lines can be used to increase the total amount  
of addressable external memory.  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic  
and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a  
separate multiply and divide unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C161CS/JC/JI’s instructions can be  
executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For  
example, shift and rotate instructions are always processed during one machine cycle  
independent of the number of bits to be shifted. All multiple-cycle instructions have been  
optimized so that they can be executed very fast as well: branches in 2 cycles, a 16 × 16  
bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline  
optimization, the so-called ‘Jump Cache’, allows reducing the execution time of  
repeatedly performed jumps in a loop from 2 cycles to 1 cycle.  
CPU  
16  
Internal  
RAM  
SP  
STKOV  
STKUN  
MDH  
MDL  
R15  
Exec. Unit  
Instr. Ptr.  
Instr. Reg.  
Mul/Div-HW  
Bit-Mask Gen  
General  
Purpose  
Registers  
R15  
ALU  
32  
4-Stage  
Pipeline  
(16-bit)  
ROM  
Barrel - Shifter  
Context Ptr.  
R0  
PSW  
SYSCON  
BUSCON 0  
BUSCON 1  
BUSCON 2  
BUSCON 3  
BUSCON 4  
16  
R0  
ADDRSEL 1  
ADDRSEL 2  
ADDRSEL 3  
ADDRSEL 4  
Data Page Ptr.  
Code Seg. Ptr.  
MCB02147  
Figure 4  
CPU Block Diagram  
Data Sheet  
18  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal.  
These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer  
(CP) register determines the base address of the active register bank to be accessed by  
the CPU at any time. The number of register banks is only restricted by the available  
internal RAM space. For easy parameter passing, a register bank may overlap others.  
A system stack of up to 1024 words is provided as a storage for temporary data. The  
system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the  
stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly  
compared against the stack pointer value upon each stack access for the detection of a  
stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient C161CS/JC/JI instruction set which  
includes the following instruction classes:  
– Arithmetic Instructions  
– Logical Instructions  
– Boolean Bit Manipulation Instructions  
– Compare and Loop Control Instructions  
– Shift and Rotate Instructions  
– Prioritize Instruction  
– Data Movement Instructions  
– System Stack Instructions  
– Jump and Call Instructions  
– Return Instructions  
– System Control Instructions  
– Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
19  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Interrupt System  
With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of  
internal program execution), the C161CS/JC/JI is capable of reacting very fast to the  
occurrence of non-deterministic events.  
The architecture of the C161CS/JC/JI supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
‘stolen’ from the current CPU activity to perform a PEC service. A PEC service implies  
a single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source or the destination pointer. An individual PEC transfer  
counter is implicity decremented for each PEC service except when performing in the  
continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The C161CS/JC/JI has 8 PEC channels each of which offers such fast interrupt-driven  
data transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via  
its related register, each source can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt sources has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with  
an individual trap (interrupt) number.  
Table 3 shows all of the possible C161CS/JC/JI interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not used by associated peripherals, may be used to  
generate software controlled interrupt requests by setting the respective interrupt  
request bit (xIR).  
Data Sheet  
20  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 3  
C161CS/JC/JI Interrupt Nodes  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
CAPCOM Register 0  
CAPCOM Register 1  
CAPCOM Register 2  
CAPCOM Register 3  
CAPCOM Register 4  
CAPCOM Register 5  
CAPCOM Register 6  
CAPCOM Register 7  
CAPCOM Register 8  
CAPCOM Register 9  
CC0IR  
CC1IR  
CC2IR  
CC3IR  
CC4IR  
CC5IR  
CC6IR  
CC7IR  
CC8IR  
CC9IR  
CC0IE  
CC0INT  
CC1INT  
CC2INT  
CC3INT  
CC4INT  
CC5INT  
CC6INT  
CC7INT  
CC8INT  
CC9INT  
00’0040H 10H  
00’0044H 11H  
00’0048H 12H  
00’004CH 13H  
00’0050H 14H  
00’0054H 15H  
00’0058H 16H  
00’005CH 17H  
00’0060H 18H  
00’0064H 19H  
CC1IE  
CC2IE  
CC3IE  
CC4IE  
CC5IE  
CC6IE  
CC7IE  
CC8IE  
CC9IE  
CAPCOM Register 10 CC10IR  
CAPCOM Register 11 CC11IR  
CAPCOM Register 12 CC12IR  
CAPCOM Register 13 CC13IR  
CAPCOM Register 14 CC14IR  
CAPCOM Register 15 CC15IR  
CAPCOM Register 16 CC16IR  
CAPCOM Register 17 CC17IR  
CAPCOM Register 18 CC18IR  
CAPCOM Register 19 CC19IR  
CAPCOM Register 20 CC20IR  
CAPCOM Register 21 CC21IR  
CAPCOM Register 22 CC22IR  
CAPCOM Register 23 CC23IR  
CAPCOM Register 24 CC24IR  
CAPCOM Register 25 CC25IR  
CAPCOM Register 26 CC26IR  
CAPCOM Register 27 CC27IR  
CAPCOM Register 28 CC28IR  
CAPCOM Register 29 CC29IR  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
CC16IE  
CC17IE  
CC18IE  
CC19IE  
CC20IE  
CC21IE  
CC22IE  
CC23IE  
CC24IE  
CC25IE  
CC26IE  
CC27IE  
CC28IE  
CC29IE  
CC10INT 00’0068H 1AH  
CC11INT 00’006CH 1BH  
CC12INT 00’0070H 1CH  
CC13INT 00’0074H 1DH  
CC14INT 00’0078H 1EH  
CC15INT 00’007CH 1FH  
CC16INT 00’00C0H 30H  
CC17INT 00’00C4H 31H  
CC18INT 00’00C8H 32H  
CC19INT 00’00CCH 33H  
CC20INT 00’00D0H 34H  
CC21INT 00’00D4H 35H  
CC22INT 00’00D8H 36H  
CC23INT 00’00DCH 37H  
CC24INT 00’00E0H 38H  
CC25INT 00’00E4H 39H  
CC26INT 00’00E8H 3AH  
CC27INT 00’00ECH 3BH  
CC28INT 00’00E0H 3CH  
CC29INT 00’0110H 44H  
Data Sheet  
21  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 3  
C161CS/JC/JI Interrupt Nodes (cont’d)  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
CAPCOM Register 30 CC30IR  
CC30IE  
CC31IE  
T0IE  
CC30INT 00’0114H 45H  
CAPCOM Register 31 CC31IR  
CC31INT 00’0118H 46H  
CAPCOM Timer 0  
CAPCOM Timer 1  
CAPCOM Timer 7  
CAPCOM Timer 8  
GPT1 Timer 2  
T0IR  
T1IR  
T7IR  
T8IR  
T2IR  
T3IR  
T4IR  
T5IR  
T6IR  
CRIR  
T0INT  
T1INT  
T7INT  
T8INT  
T2INT  
T3INT  
T4INT  
T5INT  
T6INT  
CRINT  
ADCINT  
ADEINT  
S0TINT  
00’0080H 20H  
00’0084H 21H  
00’00F4H 3DH  
00’00F8H 3EH  
00’0088H 22H  
00’008CH 23H  
00’0090H 24H  
00’0094H 25H  
00’0098H 26H  
00’009CH 27H  
00’00A0H 28H  
00’00A4H 29H  
00’00A8H 2AH  
T1IE  
T7IE  
T8IE  
T2IE  
GPT1 Timer 3  
T3IE  
GPT1 Timer 4  
T4IE  
GPT2 Timer 5  
T5IE  
GPT2 Timer 6  
T6IE  
GPT2 CAPREL Reg.  
CRIE  
A/D Conversion Compl. ADCIR  
ADCIE  
ADEIE  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
XP0IE  
XP1IE  
XP2IE  
XP3IE  
XP4IE  
XP5IE  
XP6IE  
XP7IE  
A/D Overrun Error  
ASC0 Transmit  
ADEIR  
S0TIR  
ASC0 Transmit Buffer S0TBIR  
S0TBINT 00’011CH 47H  
ASC0 Receive  
ASC0 Error  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
XP0INT  
XP1INT  
XP2INT  
XP3INT  
XP4INT  
XP5INT  
XP6INT  
XP7INT  
00’00ACH 2BH  
00’00B0H 2CH  
00’00B4H 2DH  
00’00B8H 2EH  
00’00BCH 2FH  
00’0100H 40H  
00’0104H 41H  
00’0108H 42H  
00’010CH 43H  
00’0120H 48H  
00’0124H 49H  
00’0128H 4AH  
00’012CH 4BH  
SSC Transmit  
SSC Receive  
SSC Error  
IIC Data Transfer Event XP0IR  
IIC Protocol Event  
CAN1 (C161CS/JC)  
PLL/OWD and RTC  
ASC1 Transmit  
ASC1 Receive  
XP1IR  
XP2IR  
XP3IR  
XP4IR  
XP5IR  
XP6IR  
XP7IR  
ASC1 Error  
CAN2 (C161CS) or  
SDLM (C161JC/JI)  
Data Sheet  
22  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
The C161CS/JC/JI also provides an excellent mechanism to identify and to process  
exceptions or error conditions that arise during run-time, so-called ‘Hardware Traps’.  
Hardware traps cause immediate non-maskable system reaction which is similar to a  
standard interrupt service (branching to a dedicated vector table location). The  
occurence of a hardware trap is additionally signified by an individual bit in the trap flag  
register (TFR). Except when another higher prioritized trap service is in progress, a  
hardware trap will interrupt any actual program execution. In turn, hardware trap services  
can normally not be interrupted by standard or PEC interrupts.  
Table 4 shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Table 4  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
Hardware Reset  
Software Reset  
RESET  
RESET  
RESET  
00’0000H  
00’0000H  
00’0000H  
00H  
00H  
00H  
III  
III  
III  
W-dog Timer Overflow  
Class A Hardware Traps:  
Non-Maskable Interrupt NMI  
NMITRAP 00’0008H  
STOTRAP 00’0010H  
STUTRAP 00’0018H  
02H  
04H  
06H  
II  
II  
II  
Stack Overflow  
Stack Underflow  
STKOF  
STKUF  
Class B Hardware Traps:  
Undefined Opcode  
Protected Instruction  
Fault  
UNDOPC BTRAP  
PRTFLT BTRAP  
00’0028H  
00’0028H  
0AH  
0AH  
I
I
Illegal Word Operand  
Access  
ILLOPA  
BTRAP  
00’0028H  
0AH  
I
Illegal Instruction  
Access  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
00’0028H  
00’0028H  
0AH  
0AH  
I
I
Illegal External Bus  
Access  
Reserved  
[2CH –  
3CH]  
[0BH –  
0FH]  
Software Traps  
Any  
Any  
Current  
CPU  
Priority  
TRAP Instruction  
[00’0000H – [00H –  
00’01FCH] 7FH]  
in steps  
of 4H  
Data Sheet  
23  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Capture/Compare (CAPCOM) Units  
The CAPCOM units support generation and control of timing sequences on up to  
32 channels with a maximum resolution of 16 TCL. The CAPCOM units are typically  
used to handle high speed I/O tasks such as pulse and waveform generation, pulse  
width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time  
recording relative to external events.  
Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time  
bases for the capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal  
system clock, or may be derived from an overflow/underflow of timer T6 in module  
GPT2. This provides a wide range of variation for the timer period and resolution and  
allows precise adjustments to the application specific requirements. In addition, external  
count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/  
compare registers relative to external events.  
Both of the two capture/compare register arrays contain 16 dual purpose capture/  
compare registers, each of which may be individually allocated to either CAPCOM timer  
T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function.  
Eight registers of each module have one port pin associated with it which serves as an  
input pin for triggering the capture function, or as an output pin to indicate the occurrence  
of a compare event.  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘captured’) into the capture/compare  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event.  
The contents of all registers which have been selected for one of the five compare  
modes are continuously compared with the contents of the allocated timers.  
Table 5  
Compare Modes (CAPCOM)  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
several compare events per timer period are possible  
Interrupt-only compare mode;  
only one compare interrupt per timer period is generated  
Pin set ‘1’ on match; pin reset ‘0’ on compare time overflow;  
only one compare event per timer period is generated  
Data Sheet  
24  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
When a match occurs between the timer value and the value in a capture/compare  
register, specific actions will be taken based on the selected compare mode.  
Reload Reg. TxREL  
fCPU  
TxIN  
2n : 1  
Tx  
Input  
Control  
Interrupt  
Request  
CAPCOM Timer Tx  
GPT2 Timer T6  
Over/Underflow  
CCxIO  
Mode  
Control  
(Capture  
or  
16-Bit  
8 Capture Inputs  
8 Compare Outputs  
Capture/  
Compare  
Registers  
16 Capture/Compare  
Interrupt Request  
Compare)  
CCxIO  
fCPU  
2n : 1  
Ty  
Interrupt  
Request  
Input  
Control  
CAPCOM Timer Ty  
Reload Reg. TyREL  
GPT2 Timer T6  
Over/Underflow  
x = 0, 7  
y = 1, 8  
n = 3 … 10  
MCB02143c  
Figure 5  
CAPCOM Unit Block Diagram  
Data Sheet  
25  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate  
modules, GPT1 and GPT2. Each timer in each module may operate independently in a  
number of different modes, or may be concatenated with another timer of the same  
module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer  
to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 16 TCL.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-  
flow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components, or may be used internally to clock timers  
T2 and T4 for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a  
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2  
or T4 triggered either by an external signal or by a selectable state transition of its toggle  
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite  
state transitions of T3OTL with the low and high times of a PWM signal, this signal can  
be constantly generated without software intervention.  
Data Sheet  
26  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
T2EUD  
fCPU  
T2IN  
U/D  
Interrupt  
Request  
(T2IR)  
2n : 1  
GPT1 Timer T2  
T2  
Mode  
Control  
Reload  
Capture  
Interrupt  
Request  
(T3IR)  
fCPU  
2n : 1  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
T3IN  
GPT1 Timer T3  
T3OUT  
U/D  
T3EUD  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
(T4IR)  
2n : 1  
GPT1 Timer T4  
U/D  
fCPU  
T4EUD  
MCT04825  
n = 3 … 10  
Figure 6  
Block Diagram of GPT1  
With its maximum resolution of 8 TCL, the GPT2 module provides precise event control  
and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU  
clock via a programmable prescaler or with external signals. The count direction (up/  
down) for each timer is programmable by software or may additionally be altered  
dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is  
supported via the output toggle latch (T6OTL) of timer T6, which changes its state on  
each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the  
CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The  
CAPREL register may capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared  
Data Sheet  
27  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
after the capture procedure. This allows the C161CS/JC/JI to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of  
GPT1 timer T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
fCPU  
T5IN  
2n : 1  
T5  
Mode  
Control  
U/D  
Interrupt  
Request  
(T5IR)  
GPT2 Timer T5  
Clear  
Capture  
Interrupt  
Request  
(CRIR)  
T3  
MUX  
CT3  
CAPIN  
GPT2 CAPREL  
Interrupt  
Request  
(T6IR)  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6IN  
To auxiliary  
Timers  
T6  
Mode  
fCPU  
2n : 1  
Control  
To other  
Modules  
mcb03999b.vsd  
n = 2 … 9  
Figure 7  
Block Diagram of GPT2  
Data Sheet  
28  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Real Time Clock  
The Real Time Clock (RTC) module of the C161CS/JC/JI consists of a chain of 3 divider  
blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer  
(accessible via registers RTCH and RTCL). The RTC module is directly clocked via a  
separate clock driver with the on-chip main oscillator frequency divided by 32  
(fRTC = fOSCm / 32) or with the on-chip auxiliary oscillator frequency (fRTC = fOSCa). It is  
therefore independent from the selected clock generation mode of the C161CS/JC/JI.  
All timers count up.  
The RTC module can be used for different purposes:  
• System clock to determine the current time and date  
• Cyclic time based interrupt  
• 48-bit timer for long term measurements  
T14REL  
Reload  
fRTC  
T14  
8:1  
Interrupt  
Request  
RTCH  
RTCL  
MCD04432  
Figure 8  
RTC Block Diagram  
Note: The registers associated with the RTC are not affected by a reset in order to  
maintain the correct system time even when intermediate resets are executed.  
Data Sheet  
29  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
A/D Converter  
For analog signal measurement, a 10-bit A/D converter with 12 multiplexed input  
channels and a sample and hold circuit has been integrated on-chip. It uses the method  
of successive approximation. The sample time (for loading the capacitors) and the  
conversion time is programmable and can so be adjusted to the external circuitry.  
Overrun error detection/protection is provided for the conversion result register  
(ADDAT): either an interrupt request will be generated when the result of a previous  
conversion has not been read from the result register at the time the next conversion is  
complete, or the next conversion is suspended in such a case until the previous result  
has been read.  
For applications which require less than 12 analog input channels, the remaining  
channel inputs can be used as digital input port pins.  
The A/D converter of the C161CS/JC/JI supports four different conversion modes. In the  
standard Single Channel conversion mode, the analog level on a specified channel is  
sampled once and converted to a digital result. In the Single Channel Continuous mode,  
the analog level on a specified channel is repeatedly sampled and converted without  
software intervention. In the Auto Scan mode, the analog levels on a prespecified  
number of channels (standard or extension) are sequentially sampled and converted. In  
the Auto Scan Continuous mode, the number of prespecified channels is repeatedly  
sampled and converted. In addition, the conversion of a specific channel can be inserted  
(injected) into a running sequence without disturbing this sequence. This is called  
Channel Injection Mode.  
The Peripheral Event Controller (PEC) may be used to automatically store the  
conversion results into a table in memory for later evaluation, without requiring the  
overhead of entering and exiting interrupt routines for each data transfer.  
After each reset and also during normal operation the ADC automatically performs  
calibration cycles. This automatic self-calibration constantly adjusts the converter to  
changing operating conditions (e.g. temperature) and compensates process variations.  
These calibration cycles are part of the conversion cycle, so they do not affect the normal  
operation of the A/D converter.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise  
those pins used for analog input can be disconnected from the digital IO or input stages  
under software control. This can be selected for each pin separately via register  
P5DIDIS (Port 5 Digital Input Disable).  
Data Sheet  
30  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external  
peripheral components is provided by three serial interfaces with different functionality,  
two Asynchronous/Synchronous Serial Channels (ASC0/ASC1) and a High-Speed  
Synchronous Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller  
families and supports full-duplex asynchronous communication at up to 781 kBaud and  
half-duplex synchronous communication at up to 3.1 MBaud (@ 25 MHz CPU clock).  
A dedicated baud rate generator allows to set up all standard baud rates without  
oscillator tuning. For transmission, reception and error handling 4 separate interrupt  
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or  
received, preceded by a start bit and terminated by one or two stop bits. For  
multiprocessor communication, a mechanism to distinguish address from data bytes has  
been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a  
shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop  
back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. A parity bit can automatically be generated on  
transmission or be checked on reception. Framing error detection allows to recognize  
data frames with missing stop bits. An overrun error will be generated, if the last  
character received has not been read out of the receive buffer register at the time the  
reception of a new character is complete.  
The ASC1 is function compatible with the ASC0, except that its registers are not bit-  
addressable (XBUS peripheral) and it provides only three interrupt vectors.  
The SSC supports full-duplex synchronous communication at up to 6.25 MBaud  
(@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked  
peripheral components. A dedicated baud rate generator allows to set up all standard  
baud rates without oscillator tuning. For transmission, reception and error handling three  
separate interrupt vectors are provided.  
The SSC transmits or receives characters of 2 … 16 bits length synchronously to a shift  
clock which can be generated by the SSC (master mode) or by an external master (slave  
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection  
of shifting and latching clock edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. Transmit and receive error supervise the correct handling  
of the data buffer. Phase and baudrate error detect incorrect serial data.  
Data Sheet  
31  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Serial Data Link Module (SDLM)  
The Serial Data Link Module (SDLM) provides serial communication via a J1850 type  
multiplexed serial bus via an external J1850 bus transceiver. The module conforms to  
the SAE Class B J1850 specification for variable pulse width modulation (VPW). The  
SDLM is integrated as an on-chip peripheral and is connected to the CPU via the XBUS.  
General SDLM Features:  
• Compliant to the SAE Class B J1850 specification (VPW)  
• Class 2 protocol fully supported  
• Variable Pulse Width (VPW) operation at 10.4 kBaud  
• High Speed 4X operation at 41.6 kBaud  
• Programmable Normalization Bit  
• Programmable Delay for transceiver interface  
• Digital Noise Filter  
• Power Down mode with automatic wakeup support upon bus activity  
• Single Byte Header and Consolidated Header supported  
• CRC generation and checking  
• Receive and transmit Block Mode  
Data Link Operation Features:  
• 11 Byte Transmit Buffer  
• Double buffered 11 Byte receive buffer (optional overwrite enable)  
• Support for In Frame Response (IFR) types 1, 2 and 3  
• Transmit and Receiver Message Buffers configurable for either FIFO or Byte mode  
• Advanced Interrupt Handling with 8 separately enabled sources:  
Error, format or bus shorted  
CRC error  
Lost Arbitration  
Break received  
In-Frame-Response request  
Header received  
Complete message received  
Transmit successful  
• Automatic IFR transmission (Types 1 and 2) for 3-Byte consolidated headers  
• User configurable clock divider  
• Bus status flags (IDLE, EOF, EOD, SOF, Tx and Rx in progress)  
Note: When the SDLM is used with the interface lines assigned to Port 4, the interface  
lines override the segment address lines and the segment address output on  
Port 4 is therefore limited to 6/4 bits i.e. address lines A21/A19 … A16. CS lines  
can be used to increase the total amount of addressable external memory.  
Data Sheet  
32  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
CAN-Modules  
The integrated CAN-Modules handle the completely autonomous transmission and  
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),  
i.e. the on-chip CAN-Modules can receive and transmit standard frames with 11-bit  
identifiers as well as extended frames with 29-bit identifiers.  
The modules provide Full CAN functionality on up to 15 message objects each.  
Message object 15 may be configured for Basic CAN functionality. Both modes provide  
separate masks for acceptance filtering which allows to accept a number of identifiers in  
Full CAN mode and also allows to disregard a number of identifiers in Basic CAN mode.  
All message objects can be updated independent from the other objects and are  
equipped for the maximum message length of 8 bytes.  
The bit timing is derived from the XCLK and is programmable up to a data rate of  
1 MBaud. Each CAN-Module uses two pins of Port 4 or Port 8 to interface to an external  
bus transceiver. The interface pins are assigned via software.  
Module CAN2 (C161CS only) is identical with the first one, except that it uses a separate  
address area and a separate interrupt node.  
The two CAN modules can be internally coupled by assigning their interface pins to the  
same two port pins, or they can interface to separate CAN buses.  
Note: When one or both of the on-chip CAN Modules are used with the interface lines  
assigned to Port 4, the interface lines override the segment address lines and the  
segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines  
A21/A19 … A16. CS lines can be used to increase the total amount of addressable  
external memory.  
IIC Module  
The integrated IIC Bus Module handles the transmission and reception of frames over  
the two-line IIC bus in accordance with the IIC Bus specification. The on-chip IIC Module  
can receive and transmit data using 7-bit or 10-bit addressing and it can operate in slave  
mode, in master mode or in multi-master mode.  
Several physical interfaces (port pins) can be established under software control. Data  
can be transferred at speeds up to 400 kbit/sec.  
Two interrupt nodes dedicated to the IIC module allow efficient interrupt service and also  
support operation via PEC transfers.  
Note: The port pins associated with the IIC interfaces feature open drain drivers only, as  
required by the IIC specification.  
Data Sheet  
33  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Parallel Ports  
The C161CS/JC/JI provides up to 93 I/O lines which are organized into eight input/output  
ports and one input port. All port lines are bit-addressable, and all input/output lines are  
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O  
ports are true bidirectional ports which are switched to high impedance state when  
configured as inputs. The output drivers of five I/O ports can be configured (pin by pin)  
for push/pull operation or open-drain operation via control registers, Port 9 provides  
open-drain-only drivers. During the internal reset, all port pins are configured as inputs.  
The input threshold of Port 2, Port 3, Port 4, Port 6, and Port 7 is selectable (TTL or  
CMOS like), where the special CMOS like input threshold reduces noise sensitivity due  
to the input hysteresis. The input threshold may be selected individually for each byte of  
the respective ports.  
All port lines have programmable alternate input or output functions associated with  
them. All port lines that are not used for these alternate functions may be used as  
general purpose IO lines.  
PORT0 and PORT1 may be used as address and data lines when accessing external  
memory, while Port 4 outputs the additional segment address bits A23/19/17 … A16 in  
systems where segmentation is enabled to access more than 64 KBytes of memory.  
Port 2, Port 7, and parts of PORT1 are associated with the capture inputs or compare  
outputs of the CAPCOM units.  
Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select  
signals.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control  
signal BHE, and the system clock output CLKOUT (or the programmable frequency  
output FOUT).  
Port 5 is used for the analog input channels to the A/D converter or timer control signals.  
The edge characteristics (transition time) and driver characteristics (output current) of  
the C161CS/JC/JI’s port drivers can be selected via the Port Output Control registers  
(POCONx).  
Data Sheet  
34  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be  
disabled in the time interval until the EINIT (end of initialization) instruction has been  
executed. Thus, the chip’s start-up procedure is always monitored. The software has to  
be designed to service the Watchdog Timer before it overflows. If, due to hardware or  
software related failures, the software fails to do so, the Watchdog Timer overflows and  
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow  
external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/  
256. The high byte of the Watchdog Timer register can be set to a prespecified reload  
value (stored in WDTREL) in order to allow further variation of the monitored time  
interval. Each time it is serviced by the application software, the high byte of the  
Watchdog Timer is reloaded. Thus, time intervals between 20 µs and 671 ms can be  
monitored (@ 25 MHz).  
The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).  
Oscillator Watchdog  
The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip  
oscillator (either with a crystal or via external clock drive). For this operation the PLL  
provides a clock signal which is used to supervise transitions on the oscillator clock. This  
PLL clock is independent from the XTAL1 clock. When the expected oscillator clock  
transitions are missing the OWD activates the PLL Unlock / OWD interrupt node and  
supplies the CPU with the PLL clock signal. Under these circumstances the PLL will  
oscillate with its basic frequency.  
In direct drive mode the PLL base frequency is used directly (fCPU = 2 … 5 MHz).  
In prescaler mode the PLL base frequency is divided by 2 (fCPU = 1 … 2.5 MHz).  
Note: The CPU clock source is only switched back to the oscillator clock after a  
hardware reset.  
The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON.  
In this case (OWDDIS = ‘1’) the PLL remains idle and provides no clock signal, while the  
CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also  
no interrupt request will be generated in case of a missing oscillator clock.  
Note: At the end of an external reset (EA = ‘0’) bit OWDDIS reflects the inverted level of  
pin RD at that time. Thus the oscillator watchdog may also be disabled via  
hardware by (externally) pulling the RD line low upon a reset, similar to the  
standard reset configuration via PORT0. At the end of an internal reset (EA = ‘1’)  
bit OWDDIS is cleared.  
Data Sheet  
35  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Power Management  
The C161CS/JC/JI provides several means to control the power it consumes either at a  
given time or averaged over a certain timespan. Three mechanisms can be used (partly  
in parallel):  
Power Saving Modes switch the C161CS/JC/JI into a special operating mode  
(control via instructions).  
Idle Mode stops the CPU while the peripherals can continue to operate.  
Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may  
optionally continue running). Sleep Mode can be terminated by external interrupt  
signals.  
Clock Generation Management controls the distribution and the frequency of  
internal and external clock signals (control via register SYSCON2).  
Slow Down Mode lets the C161CS/JC/JI run at a CPU clock frequency of fOSC  
/
1 … 32 (half for prescaler operation) which drastically reduces the consumed power.  
The PLL can be optionally disabled while operating in Slow Down Mode.  
External circuitry can be controlled via the programmable frequency output FOUT.  
Peripheral Management permits temporary disabling of peripheral modules (control  
via register SYSCON3).  
Each peripheral can separately be disabled/enabled. A group control option disables  
a major part of the peripheral set by setting one single bit.  
The on-chip RTC supports intermittend operation of the C161CS/JC/JI by generating  
cyclic wakeup signals. This offers full performance to quickly react on action requests  
while the intermittend sleep phases greatly reduce the average power consumption of  
the system.  
Data Sheet  
36  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Instruction Set Summary  
Table 6 lists the instructions of the C161CS/JC/JI in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the “C166 Family Instruction Set Manual”.  
This document also provides a detailled description of each instruction.  
Table 6  
Mnemonic  
ADD(B)  
ADDC(B)  
SUB(B)  
SUBC(B)  
MUL(U)  
DIV(U)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
Add word (byte) operands  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit) 2  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
NEG(B)  
AND(B)  
OR(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
4
BAND, BOR,  
BXOR  
4
BCMP  
Compare direct bit to direct bit  
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Data Sheet  
37  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 6  
Instruction Set Summary (cont’d)  
Description  
Mnemonic  
MOV(B)  
MOVBS  
MOVBZ  
Bytes  
Move word (byte) data  
2 / 4  
Move byte operand to word operand with sign extension 2 / 4  
Move byte operand to word operand. with zero extension 2 / 4  
JMPA, JMPI,  
JMPR  
Jump absolute/indirect/relative if condition is met  
4
JMPS  
J(N)B  
JBC  
Jump absolute to a code segment  
4
4
4
4
Jump relative if direct bit is (not) set  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
JNBS  
CALLA, CALLI,  
CALLR  
Call absolute/indirect/relative subroutine if condition is met 4  
CALLS  
PCALL  
Call absolute subroutine in any code segment  
4
4
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
SRST  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
DISWDT  
EINIT  
Enter Power Down Mode (supposes NMI-pin being low)  
Service Watchdog Timer  
4
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Data Sheet  
38  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Special Function Registers Overview  
Table 7 lists all SFRs which are implemented in the C161CS/JC/JI in alphabetical order.  
Bit-addressable SFRs are marked with the letter “b” in column “Name”. SFRs within the  
Extended SFR-Space (ESFRs) are marked with the letter “E” in column “Physical  
Address”. Registers within on-chip X-peripherals are marked with the letter “X” in column  
“Physical Address”.  
An SFR can be specified via its individual mnemonic name. Depending on the selected  
addressing mode, an SFR can be accessed via its physical address (using the Data  
Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).  
Note: Registers within device specific interface modules (CAN, SDLM) are only present  
in the corresponding device, of course.  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
ADCIC  
b FF98H  
CCH A/D Converter End of Conversion  
Interrupt Control Register  
0000H  
ADCON  
b FFA0H  
D0H  
50H  
A/D Converter Control Register  
A/D Converter Result Register  
A/D Converter 2 Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
ADDAT  
FEA0H  
ADDAT2  
F0A0H E 50H  
ADDRSEL1  
ADDRSEL2  
ADDRSEL3  
ADDRSEL4  
ADEIC  
FE18H  
FE1AH  
0CH  
0DH  
0EH  
0FH  
FE1CH  
FE1EH  
b FF9AH  
CDH A/D Converter Overrun Error Interrupt  
Control Register  
BUFFCON  
BUFFSTAT  
EB24H X ---  
EB1CH X ---  
SDLM Buffer Control Register  
SDLM Buffer Status Register  
Bus Configuration Register 0  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
SDLM Bus Status Register  
CAN1 Bit Timing Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
UUUUH  
XX01H  
UFUUH  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
86H  
8AH  
8BH  
8CH  
8DH  
BUSSTAT  
C1BTR  
EB20H X ---  
EF04H X ---  
C1CSR  
EF00H X ---  
EF06H X ---  
CAN1 Control / Status Register  
CAN1 Global Mask Short  
C1GMS  
Data Sheet  
39  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Address Addr.  
Reset  
Value  
C1PCIR  
C1LARn  
C1LGML  
C1LMLM  
C1MCFGn  
C1MCRn  
C1UARn  
C1UGML  
C1UMLM  
C2BTR  
C2CSR  
C2GMS  
C2PCIR  
C2LARn  
C2LGML  
C2LMLM  
C2MCFGn  
C2MCRn  
C2UARn  
C2UGML  
C2UMLM  
CAPREL  
CC0  
EF02H X ---  
EFn4H X ---  
EF0AH X ---  
EF0EH X ---  
EFn6H X ---  
EFn0H X ---  
EFn2H X ---  
EF08H X ---  
EF0CH X ---  
EE04H X ---  
EE00H X ---  
EE06H X ---  
EE02H X ---  
EEn4H X ---  
EE0AH X ---  
EE0EH X ---  
EEn6H X ---  
EEn0H X ---  
EEn2H X ---  
EE08H X ---  
EE0CH X ---  
CAN1 Port Control / Interrupt Register  
CAN1 Lower Arbitration Reg. (msg. n)  
CAN1 Lower Global Mask Long  
CAN1 Lower Mask of Last Message  
CAN1 Message Config. Reg. (msg. n)  
CAN1 Message Control Reg. (msg. n)  
CAN1 Upper Arbitration Reg. (msg. n)  
CAN1 Upper Global Mask Long  
CAN1 Upper Mask of Last Message  
CAN2 Bit Timing Register  
XXXXH  
UUUUH  
UUUUH  
UUUUH  
UUH  
UUUUH  
UUUUH  
UUUUH  
UUUUH  
UUUUH  
XX01H  
UFUUH  
XXXXH  
UUUUH  
UUUUH  
UUUUH  
UUH  
CAN2 Control / Status Register  
CAN2 Global Mask Short  
CAN2 Port Control / Interrupt Register  
CAN2 Lower Arbitration Reg. (msg. n)  
CAN2 Lower Global Mask Long  
CAN2 Lower Mask of Last Message  
CAN2 Message Config. Reg. (msg. n)  
CAN2 Message Control Reg. (msg. n)  
CAN2 Upper Arbitration Reg. (msg. n)  
CAN2 Upper Global Mask Long  
CAN2 Upper Mask of Last Message  
GPT2 Capture/Reload Register  
CAPCOM Register 0  
UUUUH  
UUUUH  
UUUUH  
UUUUH  
0000H  
FE4AH  
FE80H  
25H  
40H  
0000H  
CC0IC  
b FF78H  
FE82H  
BCH CAPCOM Register 0 Interrupt Ctrl. Reg.  
0000H  
CC1  
41H  
4AH  
C6H  
4BH  
C7H  
4CH  
C8H  
4DH  
CAPCOM Register 1  
0000H  
CC10  
FE94H  
CAPCOM Register 10  
0000H  
CC10IC  
CC11  
b FF8CH  
FE96H  
CAPCOM Reg. 10 Interrupt Ctrl. Reg.  
CAPCOM Register 11  
0000H  
0000H  
CC11IC  
CC12  
b FF8EH  
FE98H  
CAPCOM Reg. 11 Interrupt Ctrl. Reg.  
CAPCOM Register 12  
0000H  
0000H  
CC12IC  
CC13  
b FF90H  
FE9AH  
CAPCOM Reg. 12 Interrupt Ctrl. Reg.  
CAPCOM Register 13  
0000H  
0000H  
Data Sheet  
40  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
CC13IC  
CC14  
b FF92H  
C9H  
CAPCOM Reg. 13 Interrupt Ctrl. Reg.  
CAPCOM Register 14  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FE9CH  
b FF94H  
FE9EH  
4EH  
CC14IC  
CC15  
CAH CAPCOM Reg. 14 Interrupt Ctrl. Reg.  
4FH CAPCOM Register 15  
CBH CAPCOM Reg. 15 Interrupt Ctrl. Reg.  
CC15IC  
CC16  
b FF96H  
FE60H  
30H  
CAPCOM Register 16  
CC16IC  
CC17  
b F160H E B0H  
FE62H 31H  
b F162H E B1H  
FE64H 32H  
b F164H E B2H  
FE66H 33H  
b F166H E B3H  
CAPCOM Reg.16 Interrupt Ctrl. Reg.  
CAPCOM Register 17  
CC17IC  
CC18  
CAPCOM Reg. 17 Interrupt Ctrl. Reg.  
CAPCOM Register 18  
CC18IC  
CC19  
CAPCOM Reg. 18 Interrupt Ctrl. Reg.  
CAPCOM Register 19  
CC19IC  
CC1IC  
CC2  
CAPCOM Reg. 19 Interrupt Ctrl. Reg.  
b FF7AH  
FE84H  
BDH CAPCOM Reg. 1 Interrupt Ctrl. Reg.  
42H  
34H  
CAPCOM Register 2  
CC20  
FE68H  
CAPCOM Register 20  
CC20IC  
CC21  
b F168H E B4H  
FE6AH 35H  
b F16AH E B5H  
FE6CH 36H  
b F16CH E B6H  
FE6EH 37H  
b F16EH E B7H  
FE70H 38H  
b F170H E B8H  
FE72H 39H  
b F172H E B9H  
FE74H 3AH  
b F174H E BAH  
FE76H 3BH  
b F176H E BBH  
FE78H 3CH  
CAPCOM Reg. 20 Interrupt Ctrl. Reg.  
CAPCOM Register 21  
CC21IC  
CC22  
CAPCOM Reg. 21 Interrupt Ctrl. Reg.  
CAPCOM Register 22  
CC22IC  
CC23  
CAPCOM Reg. 22 Interrupt Ctrl. Reg.  
CAPCOM Register 23  
CC23IC  
CC24  
CAPCOM Reg. 23 Interrupt Ctrl. Reg.  
CAPCOM Register 24  
CC24IC  
CC25  
CAPCOM Reg. 24 Interrupt Ctrl. Reg.  
CAPCOM Register 25  
CC25IC  
CC26  
CAPCOM Reg. 25 Interrupt Ctrl. Reg.  
CAPCOM Register 26  
CC26IC  
CC27  
CAPCOM Reg. 26 Interrupt Ctrl. Reg.  
CAPCOM Register 27  
CC27IC  
CC28  
CAPCOM Reg. 27 Interrupt Ctrl. Reg.  
CAPCOM Register 28  
Data Sheet  
41  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Address Addr.  
b F178H E BCH CAPCOM Reg. 28 Interrupt Ctrl. Reg.  
Reset  
Value  
CC28IC  
CC29  
CC29IC  
CC2IC  
CC3  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FC00H  
FE7AH  
3DH  
CAPCOM Register 29  
b F184H E C2H  
CAPCOM Reg. 29 Interrupt Ctrl. Reg.  
CAPCOM Reg. 2 Interrupt Ctrl. Reg.  
CAPCOM Register 3  
b FF7CH  
FE86H  
BEH  
43H  
3EH  
CC30  
CC30IC  
CC31  
CC31IC  
CC3IC  
CC4  
FE7CH  
CAPCOM Register 30  
b F18CH E C6H  
FE7EH 3FH  
CAPCOM Reg. 30 Interrupt Ctrl. Reg.  
CAPCOM Register 31  
b F194H E CAH CAPCOM Reg. 31 Interrupt Ctrl. Reg.  
b FF7EH  
FE88H  
BFH  
44H  
C0H  
45H  
C1H  
46H  
C2H  
47H  
C3H  
48H  
C4H  
49H  
C5H  
A9H  
AAH  
ABH  
CAPCOM Reg. 3 Interrupt Ctrl. Reg.  
CAPCOM Register 4  
CC4IC  
CC5  
b FF80H  
FE8AH  
CAPCOM Reg. 4 Interrupt Ctrl. Reg.  
CAPCOM Register 5  
CC5IC  
CC6  
b FF82H  
FE8CH  
CAPCOM Reg. 5 Interrupt Ctrl. Reg.  
CAPCOM Register 6  
CC6IC  
CC7  
b FF84H  
FE8EH  
CAPCOM Reg. 6 Interrupt Ctrl. Reg.  
CAPCOM Register 7  
CC7IC  
CC8  
b FF86H  
FE90H  
CAPCOM Reg. 7 Interrupt Ctrl. Reg.  
CAPCOM Register 8  
CC8IC  
CC9  
b FF88H  
FE92H  
CAPCOM Reg. 8 Interrupt Ctrl. Reg.  
CAPCOM Register 9  
CC9IC  
CCM0  
CCM1  
CCM2  
CCM3  
CCM4  
CCM5  
CCM6  
CCM7  
CLKDIV  
CP  
b FF8AH  
b FF52H  
b FF54H  
b FF56H  
b FF58H  
b FF22H  
b FF24H  
b FF26H  
b FF28H  
CAPCOM Reg. 9 Interrupt Ctrl. Reg.  
CAPCOM Mode Control Register 0  
CAPCOM Mode Control Register 1  
CAPCOM Mode Control Register 2  
ACH CAPCOM Mode Control Register 3  
91H  
92H  
93H  
94H  
CAPCOM Mode Control Register 4  
CAPCOM Mode Control Register 5  
CAPCOM Mode Control Register 6  
CAPCOM Mode Control Register 7  
SDLM Clock Divider Register  
EB14H X ---  
FE10H  
08H  
CPU Context Pointer Register  
Data Sheet  
42  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
b FF6AH  
FE08H  
Addr.  
CRIC  
CSP  
B5H  
GPT2 CAPREL Interrupt Ctrl. Reg.  
0000H  
0000H  
04H  
CPU Code Segment Pointer Register  
(8 bits, not directly writeable)  
DP0H  
DP0L  
DP1H  
DP1L  
DP2  
b F102H E 81H  
b F100H E 80H  
b F106H E 83H  
b F104H E 82H  
P0H Direction Control Register  
P0L Direction Control Register  
P1H Direction Control Register  
P1L Direction Control Register  
Port 2 Direction Control Register  
Port 3 Direction Control Register  
Port 4 Direction Control Register  
Port 6 Direction Control Register  
Port 7 Direction Control Register  
00H  
00H  
00H  
00H  
b FFC2H  
b FFC6H  
b FFCAH  
b FFCEH  
b FFD2H  
b FFDAH  
FE00H  
E1H  
E3H  
E5H  
E7H  
E9H  
0000H  
0000H  
00H  
DP3  
DP4  
DP6  
00H  
DP7  
00H  
DP9  
EDH Port 9 Direction Control Register  
00H  
DPP0  
DPP1  
DPP2  
DPP3  
ERRSTAT  
EXICON  
EXISEL  
00H  
01H  
02H  
03H  
CPU Data Page Pointer 0 Reg. (10 bits)  
CPU Data Page Pointer 1 Reg. (10 bits)  
CPU Data Page Pointer 2 Reg. (10 bits)  
CPU Data Page Pointer 3 Reg. (10 bits)  
SDLM Error Status Register  
0000H  
0001H  
0002H  
0003H  
0000H  
0000H  
0000H  
FE02H  
FE04H  
FE06H  
EB22H X ---  
b F1C0H E E0H  
External Interrupt Control Register  
b F1DAH E EDH External Interrupt Source Select  
Register  
FLAGRST  
FOCON  
GLOBCON  
ICADR  
EB28H X ---  
b FFAAH D5H  
SDLM Flag Reset Register  
Frequency Output Control Register  
SDLM Global Control Register  
IIC Address Register  
IIC Configuration Register  
IIC Control Register  
IIC Receive/Transmit Buffer  
IIC Status Register  
0000H  
0000H  
0000H  
0XXXH  
XX00H  
0000H  
XXH  
EB10H X ---  
ED06H X ---  
ED00H X ---  
ED02H X ---  
ED08H X ---  
ED04H X ---  
F07CH E 3EH  
F07EH E 3FH  
F07AH E 3DH  
ICCFG  
ICCON  
ICRTB  
ICST  
0000H  
1XXXH  
1820H  
X040H  
IDCHIP  
IDMANUF  
IDMEM  
Identifier  
Identifier  
Identifier  
Data Sheet  
43  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Address Addr.  
Reset  
Value  
IDPROG  
IFR  
F078H E 3CH  
EB18H X ---  
EB2CH X ---  
EB04H X ---  
F1DEH E EFH  
Identifier  
XXXXH  
0000H  
0000H  
0007H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
SDLM In-Frame Response Register  
SDLM Interrupt Control Register  
SDLM Interface Port Connect Register  
Interrupt Subnode Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Reg. – High Word  
CPU Multiply Divide Reg. – Low Word  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 4 Open Drain Control Register  
Port 6 Open Drain Control Register  
Port 7 Open Drain Control Register  
Constant Value 1’s Register (read only)  
Port 0 High Reg. (Upper half of PORT0)  
Port 0 Low Reg. (Lower half of PORT0)  
Port 1 High Reg. (Upper half of PORT1)  
Port 1 Low Reg. (Lower half of PORT1)  
Port 2 Register  
INTCON  
IPCR  
ISNC  
MDC  
MDH  
MDL  
b FF0EH  
87H  
06H  
07H  
FE0CH  
FE0EH  
ODP2  
ODP3  
ODP4  
ODP6  
ODP7  
ONES  
P0H  
b F1C2H E E1H  
b F1C6H E E3H  
b F1CAH E E5H  
b F1CEH E E7H  
b F1D2H E E9H  
00H  
00H  
b FF1EH  
b FF02H  
b FF00H  
b FF06H  
b FF04H  
b FFC0H  
b FFC4H  
b FFC8H  
b FFA2H  
b FFCCH  
b FFD0H  
b FFD8H  
FEC0H  
8FH  
81H  
80H  
83H  
82H  
E0H  
E2H  
E4H  
D1H  
E6H  
E8H  
FFFFH  
00H  
P0L  
00H  
P1H  
00H  
P1L  
00H  
P2  
0000H  
0000H  
00H  
P3  
Port 3 Register  
P4  
Port 4 Register (7 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
00H  
P6  
Port 6 Register (8 bits)  
P7  
Port 7 Register (8 bits)  
00H  
P9  
ECH Port 9 Register (8 bits)  
00H  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
PEC Channel 0 Control Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FEC2H  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
Data Sheet  
44  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
PECC7  
FECEH  
67H  
PEC Channel 7 Control Register  
Port Input Threshold Control Register  
P0L Output Control Register  
P0H Output Control Register  
P1L Output Control Register  
P1H Output Control Register  
Port 2 Output Control Register  
Dedicated Pins Output Control Register  
Port 3 Output Control Register  
Port 4 Output Control Register  
Port 6 Output Control Register  
Port 7 Output Control Register  
CPU Program Status Word  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
XXH  
PICON  
b F1C4H E E2H  
F082H E 41H  
F080H E 40H  
F086H E 43H  
F084H E 42H  
F088H E 44H  
F0AAH E 55H  
F08AH E 45H  
F08CH E 46H  
F08EH E 47H  
F090H E 48H  
POCON0H  
POCON0L  
POCON1H  
POCON1L  
POCON2  
POCON20  
POCON3  
POCON4  
POCON6  
POCON7  
PSW  
b FF10H  
88H  
RP0H  
b F108H E 84H  
System Startup Configuration Register  
(Rd. only)  
RSTCON b F1E0H m ---  
Reset Control Register  
00XXH  
no  
RTCH  
F0D6H E 6BH  
F0D4H E 6AH  
EB4CH X ---  
EB4AH X ---  
EB4EH X ---  
EB40H X ---  
EB4AH X ---  
EB42H X ---  
EB44H X ---  
EB46H X ---  
EB48H X ---  
EB50H X ---  
EB5AH X ---  
EB52H X ---  
EB54H X ---  
EB56H X ---  
RTC High Register  
RTCL  
RTC Low Register  
no  
RXCNT  
RXCNTB  
RXCPU  
RXD00  
RXD010  
RXD02  
RXD04  
RXD06  
RXD08  
RXD10  
RXD110  
RXD12  
RXD14  
RXD16  
SDLM Bus Receive Byte Counter (CPU)  
SDLM Bus Receive Byte Counter (bus)  
SDLM CPU Receive Byte Counter Reg.  
SDLM Receive Data Register 00 (CPU)  
SDLM Receive Data Register 010 (CPU)  
SDLM Receive Data Register 02 (CPU)  
SDLM Receive Data Register 04 (CPU)  
SDLM Receive Data Register 06 (CPU)  
SDLM Receive Data Register 08 (CPU)  
SDLM Receive Data Register 10 (bus)  
SDLM Receive Data Register 110 (bus)  
SDLM Receive Data Register 12 (bus)  
SDLM Receive Data Register 14 (bus)  
SDLM Receive Data Register 16 (bus)  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
Data Sheet  
45  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Address Addr.  
EB58H X ---  
Reset  
Value  
RXD18  
S0BG  
SDLM Receive Data Register 18 (bus)  
0000H  
0000H  
FEB4H  
5AH  
Serial Channel 0 Baud Rate Generator  
Reload Register  
S0CON  
S0EIC  
b FFB0H  
b FF70H  
D8H  
B8H  
Serial Channel 0 Control Register  
0000H  
0000H  
Serial Channel 0 Error Interrupt Ctrl.  
Reg.  
S0RBUF  
S0RIC  
FEB2H  
59H  
B7H  
Serial Channel 0 Receive Buffer  
Register (read only)  
XXXXH  
0000H  
0000H  
0000H  
0000H  
0000H  
b FF6EH  
Serial Channel 0 Receive Interrupt  
Control Register  
S0TBIC  
S0TBUF  
S0TIC  
b F19CH E CEH Serial Channel 0 Transmit Buffer  
Interrupt Control Register  
FEB0H  
58H  
B6H  
Serial Channel 0 Transmit Buffer  
Register  
b FF6CH  
Serial Channel 0 Transmit Interrupt  
Control Register  
S1BG  
EDA4H X ---  
Serial Channel 1 Baud Rate Generator  
Reload Register  
S1CON  
EDA6H X ---  
EDA2H X ---  
Serial Channel 1 Control Register  
0000H  
S1RBUF  
Serial Channel 1 Receive Buffer  
Register (read only)  
XXXXH  
S1TBUF  
EDA0H X ---  
Serial Channel 1 Transmit Buffer  
Register  
0000H  
SOFPTR  
SP  
EB60H X ---  
SDLM Start-of-Frame Pointer Register  
CPU System Stack Pointer Register  
SSC Baudrate Register  
0000H  
FC00H  
0000H  
0000H  
0000H  
XXXXH  
0000H  
0000H  
0000H  
FA00H  
FC00H  
FE12H  
09H  
SSCBR  
F0B4H E 5AH  
SSCCON b FFB2H  
D9H  
BBH  
SSC Control Register  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
SSC Error Interrupt Control Register  
SSC Receive Buffer (read only)  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer (write only)  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
F0B2H E 59H  
b FF74H  
BAH  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
FE14H  
FE16H  
Data Sheet  
46  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
SYSCON b FF12H  
89H  
CPU System Configuration Register  
CPU System Configuration Register 1  
CPU System Configuration Register 2  
CPU System Configuration Register 3  
CAPCOM Timer 0 Register  
1)0XX0H  
0000H  
0000H  
0X00H  
0000H  
0000H  
0000H  
0000H  
0000H  
no  
SYSCON1 b F1DCH E EEH  
SYSCON2 b F1D0H E E8H  
SYSCON3 b F1D4H E EAH  
T0  
FE50H  
b FF50H  
b FF9CH  
FE54H  
28H  
A8H  
T01CON  
T0IC  
T0REL  
T1  
CAPCOM Timer 0 and Timer 1 Ctrl. Reg.  
CEH CAPCOM Timer 0 Interrupt Ctrl. Reg.  
2AH  
29H  
CAPCOM Timer 0 Reload Register  
CAPCOM Timer 1 Register  
FE52H  
T14  
F0D2H E 69H  
F0D0H E 68H  
RTC Timer 14 Register  
T14REL  
T1IC  
T1REL  
T2  
RTC Timer 14 Reload Register  
CAPCOM Timer 1 Interrupt Ctrl. Reg.  
CAPCOM Timer 1 Reload Register  
GPT1 Timer 2 Register  
no  
b FF9EH  
CFH  
2BH  
20H  
A0H  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
23H  
A3H  
B3H  
24H  
A4H  
B4H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FE56H  
FE40H  
T2CON  
T2IC  
T3  
b FF40H  
b FF60H  
FE42H  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
T3CON  
T3IC  
T4  
b FF42H  
b FF62H  
FE44H  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4CON  
T4IC  
T5  
b FF44H  
b FF64H  
FE46H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
T5CON  
T5IC  
T6  
b FF46H  
b FF66H  
FE48H  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
T6CON  
T6IC  
T7  
b FF48H  
b FF68H  
GPT2 Timer 6 Control Register  
GPT2 Timer 6 Interrupt Control Register  
CAPCOM Timer 7 Register  
F050H E 28H  
b FF20H 90H  
T78CON  
T7IC  
T7REL  
CAPCOM Timer 7 and 8 Ctrl. Reg.  
b F17AH E BDH CAPCOM Timer 7 Interrupt Ctrl. Reg.  
F054H E 2AH  
CAPCOM Timer 7 Reload Register  
47  
Data Sheet  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Table 7  
Name  
C161CS/JC/JI Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Address Addr.  
Reset  
Value  
T8  
F052H E 29H  
b F17CH E BEH  
F056H E 2BH  
CAPCOM Timer 8 Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0014H  
0000H  
2)00XXH  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
T8IC  
T8REL  
TFR  
CAPCOM Timer 8 Interrupt Ctrl. Reg.  
CAPCOM Timer 8 Reload Register  
Trap Flag Register  
b FFACH  
D6H  
TRANSSTAT EB1EH X ---  
SDLM Transmission Status Register  
SDLM Bus Transmit Byte Counter Reg.  
SDLM CPU Transmit Byte Counter Reg.  
SDLM Transmit Data Register 0  
SDLM Transmit Data Register 10  
SDLM Transmit Data Register 2  
SDLM Transmit Data Register 4  
SDLM Transmit Data Register 6  
SDLM Transmit Data Register 8  
SDLM Transceiver Delay Register  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
IIC Data Interrupt Control Register  
IIC Protocol Interrupt Control Register  
TXCNT  
TXCPU  
TXD0  
EB3CH X ---  
EB3EH X ---  
EB30H X ---  
EB3AH X ---  
EB32H X ---  
EB34H X ---  
EB36H X ---  
EB38H X ---  
EB16H X ---  
TXD10  
TXD2  
TXD4  
TXD6  
TXD8  
TxDELAY  
WDT  
FEAEH  
57H  
D7H  
WDTCON b FFAEH  
XP0IC  
XP1IC  
XP2IC  
XP3IC  
XP4IC  
XP5IC  
XP6IC  
XP7IC  
ZEROS  
1)  
b F186H E C3H  
b F18EH E C7H  
b F196H E CBH CAN1 Interrupt Control Register  
b F19EH E CFH  
b F182H E C1H  
b F18AH E C5H  
b F192H E C9H  
PLL/RTC Interrupt Control Register  
ASC1 Transmit Interrupt Ctrl. Reg.  
ASC1 Receive Interrupt Control Register  
ASC1 Error Interrupt Control Register  
b F19AH E CDH CAN2/SDLM Interrupt Control Register  
b FF1CH 8EH Constant Value 0’s Register (read only)  
The system configuration is selected during reset.  
2)  
The reset value depends on the indicated reset source.  
Data Sheet  
48  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Absolute Maximum Ratings  
Table 8  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
150  
150  
6.5  
Storage temperature  
TST  
TJ  
-65  
-40  
-0.5  
°C  
°C  
V
Junction temperature  
under bias  
Voltage on VDD pins with  
respect to ground (VSS)  
VDD  
Voltage on any pin with  
respect to ground (VSS)  
VIN  
-0.5  
-10  
V
DD + 0.5 V  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Power dissipation  
PDISS  
1.5  
W
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDD or VIN < VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
49  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the C161CS/JC/JI. All parameters specified in the following sections refer  
to these operating conditions, unless otherwise noticed.  
Table 9  
Operating Condition Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
4.5 5.5  
Unit Notes  
Digital supply voltage  
VDD  
V
Active mode,  
CPUmax = 25 MHz  
f
2.51)  
5.5  
V
V
PowerDown mode  
Digital ground voltage  
Overload current  
VSS  
IOV  
0
Reference voltage  
±5  
mA Per pin2)3)4)  
3)  
Absolute sum of overload Σ|IOV|  
50  
mA  
currents  
External Load  
Capacitance  
CL  
TA  
100  
pF  
Pin drivers in  
fast edge mode5)  
Ambient temperature  
0
70  
°C  
°C  
°C  
SAB-C161CS/JC/JI …  
SAF-C161CS/JC/JI …  
SAK-C161CS/JC/JI …  
-40  
-40  
85  
125  
1)  
Output voltages and output currents will be reduced when VDD leaves the range defined for active mode.  
2)  
Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input overload  
currents on all pins may not exceed 50 mA. The supply voltage must remain within the specified limits.  
Proper operation is not guaranteed if overload conditions occur on functional pins line XTAL1, RD, WR, etc.  
3)  
4)  
Not 100% tested, guaranteed by design and characterization.  
Due to the different port structure of Port 9 (required by the IIC bus specification) the pins of Port 9 can only  
tolerate positive overload current, i.e. VOV > VSS - 0.5 V.  
5)  
The timing is valid for pin drivers in high current or dynamic current mode. The reduced static output current  
in dynamic current mode must be respected when designing the system.  
Data Sheet  
50  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C161CS/  
JC/JI and partly its demands on the system. To aid in interpreting the parameters right,  
when evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C161CS/JC/JI will provide signals with the respective timing  
characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to  
the C161CS/JC/JI.  
DC Characteristics  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
Input low voltage (TTL,  
all except XTAL1, XTAL3, Port 9)  
VIL SR -0.5  
VIL2 SR -0.5  
VILS SR -0.5  
0.2 VDD  
- 0.1  
V
V
V
V
Input low voltage  
XTAL1, XTAL3, Port 9  
0.3 VDD  
Input low voltage  
(Special Threshold)  
2.0  
Input high voltage (TTL, all  
except RSTIN, XTAL1, XTAL3,  
Port 9)  
VIH SR 0.2 VDD VDD  
+ 0.9 0.5  
+
Input high voltage RSTIN  
(when operated as input)  
VIH1 SR 0.6 VDD VDD  
+
+
+
V
V
V
0.5  
Input high voltage  
XTAL1, XTAL3, Port 9  
VIH2 SR 0.7 VDD VDD  
0.5  
Input high voltage  
(Special Threshold)  
VIHS SR 0.8 VDD VDD  
- 0.2  
0.5  
Input Hysteresis  
HYS  
400  
mV Series resistance  
(Special Threshold)  
= 0 Ω  
Output low voltage  
VOL CC –  
0.45  
0.4  
V
I
I
OL = 2.4 mA3)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT, RSTIN2))  
OL = 0.5 mA4)  
Output low voltage  
(Port 9)  
VOL9 CC –  
V
IOL = 3.0 mA  
Data Sheet  
51  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
DC Characteristics (cont’d)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
Output low voltage  
(all other outputs)  
Output high voltage5)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
VOL1 CC –  
0.45  
V
V
I
I
OL = 1.6 mA3)  
OL = 1.6 mA4)  
VOH CC 2.4  
I
I
OH = -2.4 mA3)  
OH = -0.5 mA4)  
0.9 VDD  
OH1 CC 2.4  
V
V
I
OH = -0.5 mA3)  
Output high voltage5)  
(all other outputs)  
V
I
I
OH = -1.6 mA3)  
OH = -0.5 mA4)  
0.9 VDD  
IOZ1 CC –  
V
I
OH = -0.5 mA3)  
Input leakage current (Port 5)  
±200  
±500  
nA 0 V < VIN < VDD  
Input leakage current (all other) IOZ2 CC –  
nA 0.45 V < VIN <  
VDD  
7)  
RSTIN inactive current6)  
RSTIN active current6)  
READY/RD/WR inact. current9) IRWH  
IRSTH  
-10  
µA VIN = VIH1  
µA VIN = VIL  
8)  
IRSTL  
-100  
7)  
-40  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
V
V
OUT = 2.4 V  
8)  
READY/RD/WR active current9) IRWL  
-500  
OUT = VOLmax  
OUT = VOLmax  
OUT = 2.4 V  
7)  
ALE inactive current9)  
ALE active current9)  
Port 6 inactive current9)  
Port 6 active current9)  
IALEL  
40  
8)  
IALEH  
500  
7)  
IP6H  
-40  
OUT = 2.4 V  
8)  
7)  
IP6L  
-500  
OUT = VOL1max  
PORT0 configuration current10) IP0H  
-10  
µA VIN = VIHmin  
µA VIN = VILmax  
µA 0 V < VIN < VDD  
8)  
IP0L  
-100  
XTAL1 input current  
Pin capacitance11)  
IIL CC –  
CIO CC –  
±20  
10  
pF  
f = 1 MHz  
(digital inputs/outputs)  
TA = 25 °C  
1)  
Keeping signal levels within the levels specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications also refer to the specification of the overload current IOV  
.
2)  
3)  
4)  
5)  
Valid in bidirectional reset mode only.  
This output current may be drawn from (output) pins operating in High Current mode.  
This output current may be drawn from (output) pins operating in Low Current mode.  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
Data Sheet  
52  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
6)  
7)  
8)  
9)  
These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 k.  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins  
are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The  
READY-pullup is always active, except for Powerdown mode.  
10)  
11)  
This specification is valid during Reset and during Adapt-mode.  
Not 100% tested, guaranteed by design and characterization.  
Power Consumption C161CS/JC/JI  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test Condition  
Power supply current (active)  
with all peripherals active  
IDD  
15 +  
2.5 × fCPU  
mA RSTIN = VIL  
f
CPU in [MHz]1)  
Idle mode supply current  
with all peripherals active  
IIDX  
5 +  
1.5 × fCPU  
mA RSTIN = VIH1  
CPU in [MHz]1)  
µA RSTIN = VIH1  
OSC in [MHz]1)  
f
2)  
Idle mode supply curr., Main osc, IIDOM  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
500 +  
50 × fOSC  
f
2)  
Idle mode supply curr., Aux. osc, IIDOA  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
100  
µA  
µA  
µA  
V
f
DD = VDDmax  
OSC = 32 kHz3)  
2)  
Sleep and Power-down mode  
supply current with RTC running  
on main oscillator  
IPDRM  
200 +  
25 × fOSC  
V
DD = VDDmax  
f
OSC in [MHz]3)  
3)  
Sleep and Power-down mode  
IPDO  
50  
VDD = VDDmax  
supply current with RTC disabled  
1)  
The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10.  
These parameters are tested at VDDmax and maximum CPU clock with all outputs disconnected and all inputs  
at VIL or VIH.  
2)  
3)  
This parameter is determined mainly by the current consumed by the oscillator (see Figure 9). This current,  
however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical  
circuitry and may change in case of a not optimized external oscillator circuitry.  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD - 0.1 V to VDD, all outputs (including pins configured as outputs) disconnected.  
Data Sheet  
53  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
I
µA  
1500  
1250  
1000  
750  
500  
250  
0
IIDOMmax  
IIDOMtyp  
IPDRMmax  
IPDOmax  
IIDOAmax  
fOSC  
0
4
8
12  
16 MHz  
MCD04453  
Figure 9  
Idle and Power Down Supply Current as a Function of Oscillator  
Frequency  
Data Sheet  
54  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
I [mA]  
100  
IDD5max  
80  
60  
40  
20  
IDD5typ  
IIDX5max  
IIDX5typ  
10  
15  
20  
25  
f
CPU [MHz]  
Figure 10  
Supply/Idle Current as a Function of Operating Frequency  
Data Sheet  
55  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C161CS/JC/JI is controlled by the internal CPU clock fCPU  
.
Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus  
cycles) operations.  
The specification of the external timing (AC Characteristics) therefore depends on the  
time between two consecutive edges of the CPU clock, called “TCL” (see Figure 11).  
Phase Locked Loop Operation  
fOSC  
TCL  
fCPU  
TCL  
Direct Clock Drive  
fOSC  
TCL  
fCPU  
TCL  
Prescaler Operation  
fOSC  
TCL  
fCPU  
MCT04338  
TCL  
Figure 11  
Generation Mechanisms for the CPU Clock  
The CPU clock signal fCPU can be generated from the oscillator clock signal fOSC via  
different mechanisms. The duration of TCLs and their variation (and also the derived  
external timing) depends on the used mechanism to generate fCPU. This influence must  
be regarded when calculating the timings for the C161CS/JC/JI.  
Note: The example for PLL operation shown in the fig. above refers to a PLL factor of 4.  
The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG  
in register RP0H.7-5.  
Upon a long hardware reset register RP0H is loaded with the logic levels present on the  
upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins  
Data Sheet  
56  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register  
RSTCON under software control.  
Table 10 associates the combinations of these three bits with the respective clock  
generation mode.  
Table 10  
C161CS/JC/JI Clock Generation Modes  
CPU Frequency External Clock Notes  
CPU = fOSC × F Input Range1)  
CLKCFG  
(P0H.7-5)  
f
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
f
f
f
f
f
f
f
f
OSC × 4  
2.5 to 6.25 MHz  
3.33 to 8.33 MHz  
5 to 12.5 MHz  
2 to 5 MHz  
Default configuration  
OSC × 3  
OSC × 2  
OSC × 5  
OSC × 1  
OSC × 1.5  
OSC / 2  
1 to 25 MHz  
Direct drive2)  
6.66 to 16.6 MHz  
2 to 50 MHz  
CPU clock via prescaler  
0 0 0  
OSC × 2.5  
4 to 10 MHz  
1)  
The external clock input range refers to a CPU clock range of 10 … 25 MHz.  
2)  
The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When prescaler operation is configured (CLKCFG = 001B) the CPU clock is derived from  
the internal oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of fCPU is half the frequency of fOSC and the high and low time of fCPU  
(i.e. the duration of an individual TCL) is defined by the period of the input clock fOSC  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be  
calculated using the period of fOSC for any TCL.  
Phase Locked Loop  
When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is  
enabled and provides the CPU clock (see table above). The PLL multiplies the input  
frequency by the factor F which is selected via the combination of pins P0.15-13 (i.e.  
f
CPU = fOSC × F). With every F’th transition of fOSC the PLL circuit synchronizes the CPU  
clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock  
frequency does not change abruptly.  
Due to this adaptation to the input clock the frequency of fCPU is constantly adjusted so  
it is locked to fOSC. The slight variation causes a jitter of fCPU which also effects the  
duration of individual TCLs.  
Data Sheet  
57  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
The timings listed in the AC Characteristics that refer to TCLs therefore must be  
calculated using the minimum TCL that is possible under the respective circumstances.  
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is  
constantly adjusting its output frequency so it corresponds to the applied input frequency  
(crystal or oscillator) the relative deviation for periods of more than one TCL is lower than  
for one single TCL (see formula and Figure 12).  
For a period of N × TCL the minimum value is computed using the corresponding  
deviation D :  
N
(N × TCL)min = N × TCLNOM - D  
D [ns] = ±(13.3 + N × 6.3) / fCPU [MHz],  
N
N
where N = number of consecutive TCLs and 1 N 40.  
So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D = (13.3 + 3 × 6.3) / 25 = 1.288 ns,  
3
and (3TCL)min = 3TCLNOM - 1.288 ns = 58.7 ns (@ fCPU = 25 MHz).  
This is especially important for bus cycles using waitstates and e.g. for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse  
train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL  
jitter is neglectible.  
Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 12).  
Max. jitter DN  
ns  
This approximated formula is valid for  
±30  
<
<
<
<
25 MHz.  
CPU  
1
N
40 and 10 MHz  
f
10 MHz  
16 MHz  
±26.5  
±20  
20 MHz  
25 MHz  
±10  
±1  
N
1
10  
20  
30  
40  
MCD04455  
Figure 12  
Approximated Maximum Accumulated PLL Jitter  
Data Sheet  
58  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Direct Drive  
When direct drive is configured (CLKCFG = 011B) the on-chip phase locked loop is  
disabled and the CPU clock is directly driven from the internal oscillator with the input  
clock signal.  
The frequency of fCPU directly follows the frequency of fOSC so the high and low time of  
f
CPU (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock  
fOSC  
.
The timings listed below that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances. This minimum value  
can be calculated via the following formula:  
TCLmin = 1/fOSC × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fOSC is  
compensated so the duration of 2TCL is always 1/fOSC. The minimum value TCLmin  
therefore has to be used only once for timings that require an odd number of TCLs (1, 3,  
…). Timings that require an even number of TCLs (2, 4, …) may use the formula  
2TCL = 1/fOSC  
Note: The address float timings in Multiplexed bus mode (t11 and t45) use the maximum  
duration of TCL (TCLmax = 1/fOSC × DCmax) instead of TCLmin  
.
.
Data Sheet  
59  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
AC Characteristics  
External Clock Drive XTAL1 (Main Oscillator)  
(Operating Conditions apply)  
Table 11  
External Clock Drive Characteristics  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
PLL  
1:N  
Unit  
min.  
Oscillator period tOSCM SR 40  
max. min.  
max. min.  
max.  
5001) ns  
20  
6
6
6
601)  
10  
10  
High time2)  
Low time2)  
Rise time2)  
t1  
t2  
t3  
t4  
SR 203)  
SR 203)  
SR –  
ns  
ns  
ns  
ns  
6
10  
10  
10  
10  
Fall time2)  
SR –  
1)  
The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation  
mode. Please see respective table above.  
2)  
3)  
The clock input signal must reach the defined levels VIL2 and VIH2  
.
The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (fCPU) in  
direct drive mode depends on the duty cycle of the clock input signal.  
t1  
t3  
t4  
VIH2  
VIL  
0.5 VDD  
t2  
tOSC  
MCT02534  
Figure 13  
External Clock Drive XTAL1  
Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is  
limited to a range of 4 MHz to 16 MHz.  
It is strongly recommended to measure the oscillation allowance (or margin) in the  
final target system (layout) to determine the optimum parameters for the oscillator  
operation. Please refer to the limits specified by the crystal supplier.  
When driven by an external clock signal it will accept the specified frequency  
range. Operation at lower input frequencies is possible but is guaranteed by  
design only (not 100% tested).  
Data Sheet  
60  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
AC Characteristics  
External Clock Drive XTAL3 (Auxiliary Oscillator)  
(Operating Conditions apply)  
Table 12  
AC Characteristics  
Symbol  
Parameter  
Optimum Input Clock Variable Input Clock  
Unit  
= 32 kHz  
min.  
Oscillator period tOSCA SR 31  
1 / tOSCA = 10 to 50 kHz  
max.  
31  
min.  
max.  
100  
20  
µs  
µs  
µs  
1)  
1)  
High time  
Low time  
Rise time  
t1  
t2  
t3  
t4  
SR 61)  
SR 61)  
SR –  
0.2 × tOSCA  
0.2 × tOSCA  
12  
12  
0.4 × tOSCA µs  
0.4 × tOSCA µs  
Fall time  
SR –  
1)  
The clock input signal must reach the defined levels VIL and VIH2  
.
Note: The auxiliary oscillator is optimized for oscillation with a crystal at a frequency of  
32 kHz. When driven by an external clock signal it will accept the specified  
frequency range.  
Operation at lower input frequencies is possible but is guaranteed by design only  
(not 100% tested).  
Data Sheet  
61  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
A/D Converter Characteristics  
(Operating Conditions apply)  
Table 13  
A/D Converter Characteristics  
Symbol Limit Values  
min. max.  
AREF SR 4.0 DD + 0.1 V  
AGNDSR VSS - 0.1 VSS + 0.2 V  
Parameter  
Unit Test  
Condition  
1)  
Analog reference supply  
Analog reference ground  
V
V
V
2)  
3)  
4)  
Analog input voltage range VAIN SR VAGND  
VAREF  
6.25  
V
Basic clock frequency  
Conversion time  
fBC  
tC  
0.5  
CC –  
MHz  
40 tBC  
+
tS + 2tCPU  
3328 tBC  
±2  
t
5)  
CPU = 1 / fCPU  
Calibration time after reset tCAL CC –  
1)  
Total unadjusted error  
TUE CC –  
AREF SR –  
LSB  
kΩ  
Internal resistance of  
R
t
BC / 60  
t
BC in [ns]6)7)  
reference voltage source  
- 0.25  
Internal resistance of analog RASRCSR –  
tS / 450  
ktS in [ns]7)8)  
source  
- 0.25  
7)  
ADC input capacitance  
CAIN CC –  
33  
pF  
1)  
TUE is tested at VAREF = 5.0 V, VAGND = 0 V, VDD = 4.9 V. It is guaranteed by design for all other voltages  
within the defined voltage range.  
If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V  
(i.e. VAREF = VDD = +0.2 V) the maximum TUE is increased to ±3 LSB. This range is not 100% tested.  
The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see IOV  
specification) does not exceed 10 mA.  
During the reset calibration sequence the maximum TUE may be ±4 LSB.  
2)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in  
these cases will be X000 or X3FF , respectively.  
H
H
3)  
4)  
The limit values for fBC must not be exceeded when selecting the CPU frequency and the ADCTC setting.  
This parameter includes the sample time tS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the basic clock tBC depend on programming and can be taken from Table 14.  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
5)  
6)  
During the reset calibration conversions can be executed (with the current accuracy). The time required for  
these conversions is added to the total reset calibration time.  
During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within each conversion step. The maximum internal resistance results from the programmed conversion  
timing.  
7)  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
62  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
8)  
During the sample time the input capacitance CAIN can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion  
result.  
Values for the sample time tS depend on programming and can be taken from Table 14.  
Sample time and conversion time of the C161CS/JC/JI’s A/D Converter are  
programmable. Table 14 should be used to calculate the above timings.  
The limit values for fBC must not be exceeded when selecting ADCTC.  
Table 14  
A/D Converter Computation Table  
ADCON.13|12 Sample time  
ADCON.15|14 A/D Converter  
(ADCTC)  
Basic Clock fBC  
(ADSTC)  
tS  
00  
01  
10  
11  
f
f
f
f
CPU / 4  
CPU / 2  
CPU / 16  
CPU / 8  
00  
01  
10  
11  
t
t
t
t
BC × 8  
BC × 16  
BC × 32  
BC × 64  
Converter Timing Example:  
Assumptions:  
fCPU = 25 MHz (i.e. tCPU = 40 ns), ADCTC = ‘00’, ADSTC = ‘00’.  
Basic clock  
Sample time  
fBC  
tS  
= fCPU / 4 = 6.25 MHz, i.e. tBC = 160 ns.  
= tBC × 8 = 1280 ns.  
Conversion time tC  
= tS + 40 tBC + 2 tCPU = (1280 + 6400 + 80) ns = 7.8 µs.  
Data Sheet  
63  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Testing Waveforms  
2.4 V  
1.8 V  
0.8 V  
1.8 V  
0.8 V  
Test Points  
0.45 V  
AC inputs during testing are driven at 2.4 V for a logic 1’ and 0.45 V for a logic 0’.  
Timing measurements are made at IH min for a logic 1’ and IL max for a logic 0’.  
V
V
MCA04414  
Figure 14  
Input Output Waveforms  
VLoad + 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VLoad - 0.1 V  
VOL + 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs,  
but begins to float when a 100 mV change from the loaded VOH  
/
VOL level occurs (IOH  
/
I
OL = 20 mA).  
MCA00763  
Figure 15  
Float Waveforms  
Data Sheet  
64  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Memory Cycle Variables  
The timing tables below use three variables which are derived from the BUSCONx  
registers and represent the special characteristics of the programmed memory cycle.  
The following table describes, how these variables are to be computed.  
Table 15  
Memory Cycle Variables  
Symbol Values  
Description  
ALE Extension  
tA  
TCL × <ALECTL>  
Memory Cycle Time Waitstates tC  
Memory Tristate Time  
2TCL × (15 - <MCTC>)  
2TCL × (1 - <MTTC>)  
tF  
Note: Please respect the maximum operating frequency of the respective derivative.  
AC Characteristics  
Multiplexed Bus  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 10 + tA  
t6 CC 4 + tA  
t7 CC 10 + tA  
t8 CC 10 + tA  
t9 CC -10 + tA  
t10 CC –  
TCL - 10  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
TCL - 16  
+ tA  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10 + tA  
Address float after RD,  
WR (with RW-delay)  
6
6
Address float after RD,  
WR (no RW-delay)  
t11 CC –  
26  
TCL + 6  
RD, WR low time  
(with RW-delay)  
t12 CC 30 + tC  
2TCL - 10 –  
+ tC  
Data Sheet  
65  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Multiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
min.  
max.  
RD, WR low time  
(no RW-delay)  
t13 CC 50 + tC  
3TCL - 10 –  
+ tC  
ns  
RD to valid data in  
(with RW-delay)  
t14 SR –  
20 + tC  
40 + tC  
0
2TCL - 20 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 20 ns  
+ tC  
ALE low to valid data in  
t16 SR –  
40 + tA  
+ tC  
3TCL - 20 ns  
+ tA + tC  
Address to valid data in  
t17 SR –  
50 + 2tA  
+ tC  
4TCL - 30 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD  
Data valid to WR  
Data hold after WR  
t19 SR –  
26 + tF  
2TCL - 14 ns  
+ tF  
t22 CC 20 + tC  
t23 CC 26 + tF  
2TCL - 20 –  
+ tC  
ns  
ns  
ns  
ns  
ns  
2TCL - 14 –  
+ tF  
ALE rising edge after RD, t25 CC 26 + tF  
WR  
2TCL - 14 –  
+ tF  
Address hold after RD,  
WR  
ALE falling edge to CS1) t38 CC -4 - tA  
CS low to Valid Data In1) t39 SR –  
t27 CC 26 + tF  
2TCL - 14 –  
+ tF  
10 - tA  
-4 - tA  
10 - tA  
40  
3TCL - 20 ns  
+ tC  
+ 2tA  
+ tC + 2tA  
CS hold after RD, WR1) t40 CC 46 + tF  
3TCL - 14 –  
ns  
ns  
+ tF  
ALE fall. edge to RdCS, t42 CC 16 + tA  
TCL - 4  
WrCS (with RW delay)  
+ tA  
Data Sheet  
66  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Multiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
ALE fall. edge to RdCS, t43 CC -4 + tA  
WrCS (no RW delay)  
-4  
+ tA  
ns  
ns  
ns  
Address float after RdCS, t44 CC –  
WrCS (with RW delay)  
0
0
Address float after RdCS, t45 CC –  
WrCS (no RW delay)  
20  
TCL  
RdCS to Valid Data In  
(with RW delay)  
t46 SR –  
t47 SR –  
16 + tC  
2TCL - 24 ns  
+ tC  
RdCS to Valid Data In  
(no RW delay)  
36 + tC  
3TCL - 24 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 30 + tC  
(with RW delay)  
2TCL - 10 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 50 + tC  
(no RW delay)  
3TCL - 10 –  
+ tC  
Data valid to WrCS  
t50 CC 26 + tC  
2TCL - 14 –  
+ tC  
Data hold after RdCS  
Data float after RdCS  
t51 SR 0  
t52 SR –  
0
20 + tF  
2TCL - 20 ns  
+ tF  
Address hold after  
RdCS, WrCS  
t54 CC 20 + tF  
t56 CC 20 + tF  
2TCL - 20 –  
+ tF  
ns  
ns  
Data hold after WrCS  
2TCL - 20 –  
+ tF  
1)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
67  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A23-A16  
Address  
(A15-A8)  
BHE, CSxE  
t54  
t19  
t6  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t8  
t10  
t14  
t12  
`
RD  
t42  
t44  
t51  
t52  
t46  
t48  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t8  
t10  
t22  
t56  
t12  
WR, WRL,  
WRH  
t42  
t44  
t50  
t48  
WrCSx  
MCT04439  
Figure 16  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
68  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A23-A16  
Address  
(A15-A8)  
BHE, CSxE  
t6  
t54  
t19  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t8  
t10  
t14  
t12  
RD  
t42  
t44  
t51  
t52  
t46  
t48  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t8  
t10  
t22  
t56  
t12  
WR, WRL,  
WRH  
t42  
t44  
t50  
t48  
WrCSx  
MCT04440  
Figure 17  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
69  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A23-A16  
Address  
(A15-A8)  
BHE, CSxE  
t54  
t19  
t6  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t9  
t11  
t15  
t13  
RD  
t43  
t45  
t51  
t52  
t47  
t49  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t9  
t11  
t22  
t56  
t13  
WR, WRL,  
WRH  
t43  
t45  
t50  
t49  
WrCSx  
MCT04441  
Figure 18  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
70  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A23-A16  
Address  
(A15-A8)  
BHE, CSxE  
t6  
t54  
t19  
t7  
t18  
Read Cycle  
Address  
Data IN  
BUS  
t9  
t11  
t15  
t13  
RD  
t43  
t45  
t51  
t47  
t49  
t52  
RdCSx  
t23  
Write Cycle  
Address  
Data OUT  
BUS  
t9  
t11  
t22  
t56  
t13  
WR, WRL,  
WRH  
t43  
t45  
t50  
t49  
WrCSx  
MCT04442  
Figure 19  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
71  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
AC Characteristics  
Demultiplexed Bus  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz  
1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 10 + tA  
t6 CC 4 + tA  
t8 CC 10 + tA  
t9 CC -10 + tA  
t12 CC 30 + tC  
t13 CC 50 + tC  
t14 SR –  
TCL - 10  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
TCL - 16  
+ tA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10  
+ tA  
RD, WR low time  
(with RW-delay)  
2TCL - 10 –  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 10 –  
+ tC  
RD to valid data in  
(with RW-delay)  
20 + tC  
40 + tC  
0
2TCL - 20 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 20 ns  
+ tC  
ALE low to valid data in  
t16 SR –  
40 +  
tA + tC  
3TCL - 20 ns  
+ tA + tC  
Address to valid data in  
t17 SR –  
50 +  
2tA + tC  
4TCL - 30 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD rising t20 SR –  
26 +  
2tA + tF  
2TCL - 14 ns  
+ 22tA  
+ tF  
1)  
edge (with RW-delay1))  
1)  
Data float after RD rising t21 SR –  
10 +  
2tA + tF  
TCL - 10  
ns  
1)  
edge (no RW-delay1))  
+ 22tA  
1)  
+ tF  
Data Sheet  
72  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Demultiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz  
1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min. max.  
Data valid to WR  
t22 CC 20 + tC  
2TCL - 20 –  
+ tC  
ns  
ns  
ns  
Data hold after WR  
t24 CC 10 + tF  
TCL - 10  
+ tF  
ALE rising edge after RD, t26 CC -10 + tF  
-10 + tF  
WR  
Address hold after WR2) t28 CC 0 + tF  
ALE falling edge to CS3) t38 CC -4 - tA  
CS low to Valid Data In3) t39 SR –  
0 + tF  
-4 - tA  
ns  
ns  
10 - tA  
10 - tA  
40 +  
3TCL - 20 ns  
tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR3) t41 CC 6 + tF  
TCL - 14  
+ tF  
ns  
ns  
ns  
ALE falling edge to RdCS, t42 CC 16 + tA  
WrCS (with RW-delay)  
TCL - 4  
+ tA  
ALE falling edge to RdCS, t43 CC -4 + tA  
-4  
WrCS (no RW-delay)  
+ tA  
RdCS to Valid Data In  
(with RW-delay)  
t46 SR –  
t47 SR –  
16 + tC  
2TCL - 24 ns  
+ tC  
RdCS to Valid Data In  
(no RW-delay)  
36 + tC  
3TCL - 24 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 30 + tC  
(with RW-delay)  
2TCL - 10 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 50 + tC  
(no RW-delay)  
3TCL - 10 –  
+ tC  
Data valid to WrCS  
t50 CC 26 + tC  
2TCL - 14 –  
+ tC  
Data hold after RdCS  
t51 SR 0  
t53 SR –  
0
Data float after RdCS  
(with RW-delay)1)  
20 + tF  
2TCL - 20 ns  
1)  
+ 2tA + tF  
Data Sheet  
73  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Demultiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz  
1 / 2TCL = 1 to 25 MHz  
min.  
t68 SR –  
max.  
min.  
max.  
Data float after RdCS  
(no RW-delay)1)  
0 + tF  
TCL - 20  
+ 2tA + tF  
ns  
ns  
ns  
1)  
Address hold after  
RdCS, WrCS  
t55 CC -6 + tF  
t57 CC 6 + tF  
-6 + tF  
Data hold after WrCS  
TCL - 14 + –  
tF  
1)  
RW-delay and tA refer to the next following bus cycle (including an access to an on-chip X-Peripheral).  
2)  
Read data are latched with the same clock edge that triggers the address change and the rising RD edge.  
Therefore address changes before the end of RD have no impact on read cycles.  
3)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
74  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t28  
t17  
A23-A16  
A15-A0  
Address  
BHE, CSxE  
t55  
t6  
t20  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t8  
t14  
t12  
RD  
t42  
t51  
t46  
t48  
t53  
RdCSx  
Write Cycle  
t24  
BUS  
(D15-D8)  
D7-D0  
Data OUT  
t8  
t22  
t57  
t12  
WR, WRL,  
WRH  
t42  
t50  
t48  
WrCSx  
MCT04443  
Figure 20  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
75  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t17  
t28  
A23-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t20  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t8  
t14  
t12  
RD  
t42  
t51  
t46  
t48  
t53  
RdCSx  
Write Cycle  
t24  
BUS  
Data OUT  
(D15-D8)  
D7-D0  
t8  
t22  
t57  
t12  
WR, WRL,  
WRH  
t42  
t50  
t48  
WrCSx  
MCT04444  
Figure 21  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
76  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t28  
t17  
A23-A16  
A15-A0  
Address  
BHE, CSxE  
t55  
t6  
t21  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t9  
t15  
t13  
RD  
t43  
t51  
t47  
t49  
t68  
RdCSx  
Write Cycle  
t24  
BUS  
(D15-D8)  
D7-D0  
Data OUT  
t22  
t57  
t9  
t13  
WR, WRL,  
WRH  
t43  
t50  
t49  
WrCSx  
MCT04445  
Figure 22  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
77  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t17  
t28  
A23-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t21  
Read Cycle  
t18  
BUS  
Data IN  
(D15-D8)  
D7-D0  
t9  
t15  
t13  
RD  
t43  
t51  
t47  
t49  
t68  
RdCSx  
Write Cycle  
t24  
BUS  
Data OUT  
(D15-D8)  
D7-D0  
t9  
t22  
t57  
t13  
WR, WRL,  
WRH  
t43  
t50  
t49  
WrCSx  
MCT04446  
Figure 23  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
78  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
AC Characteristics  
CLKOUT and READY  
(Operating Conditions apply)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
2TCL  
TCL - 6  
TCL - 10  
max.  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t29 CC 40  
t30 CC 14  
t31 CC 10  
t32 CC –  
40  
2TCL  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
t33 CC –  
4
4
CLKOUT rising edge to  
ALE falling edge  
t34 CC 0 + tA  
10 + tA 0 + tA  
10 + tA  
Synchronous READY  
setup time to CLKOUT  
t35 SR 14  
t36 SR 4  
t37 SR 54  
t58 SR 14  
t59 SR 4  
14  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous READY  
hold time after CLKOUT  
4
Asynchronous READY  
low time  
2TCL + t58  
Asynchronous READY  
setup time1)  
14  
4
Asynchronous READY  
hold time1)  
Async. READY hold time t60 SR 0  
after RD, WR high  
0
0
TCL - 20  
+ 2tA + tC  
+ tF  
+ 2tA +  
tC  
+ tF  
2)  
(Demultiplexed Bus)2)  
2)  
1)  
These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
2)  
Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This  
adds even more time for deactivating READY.  
The 2tA and tC refer to the next following bus cycle, tF refers to the current bus cycle.  
The maximum limit for t60 must be fulfilled if the next following bus cycle is READY controlled.  
Data Sheet  
79  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
READY  
Waitstate  
MUX/Tristate 6)  
Running Cycle 1)  
t32  
t33  
t30  
t29  
CLKOUT  
ALE  
t31  
t34  
7)  
Command  
RD, WR  
2)  
t36  
t36  
t35  
t35  
Sync  
3)  
3)  
READY  
4)  
t59  
t59  
t60  
t58  
t58  
Async  
3)  
3)  
READY  
5)  
see 6)  
t37  
MCT04447  
Figure 24  
CLKOUT and READY  
Notes  
1)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
The leading edge of the respective command depends on RW-delay.  
2)  
READY sampled HIGH at this sampling point generates a READY controlled waitstate,  
READY sampled LOW at this sampling point terminates the currently running bus cycle.  
READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or  
WR).  
3)  
4)  
5)  
6)  
If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT  
(e.g. because CLKOUT is not enabled), it must fulfill t37 in order to be safely synchronized. This is guaranteed,  
4)  
if READY is removed in reponse to the command (see Note ).  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here.  
For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without  
MTTC waitstate this delay is zero.  
The next external bus cycle may start here.  
7)  
Data Sheet  
80  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
AC Characteristics  
External Bus Arbitration  
(Operating Conditions apply)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min.  
max.  
min.  
max.  
HOLD input setup time  
to CLKOUT  
t61 SR 20  
t62 CC –  
t63 CC –  
20  
ns  
ns  
ns  
CLKOUT to HLDA high  
or BREQ low delay  
20  
20  
20  
20  
CLKOUT to HLDA low  
or BREQ high delay  
CSx release  
t64 CC –  
t65 CC -4  
t66 CC –  
t67 CC – 4  
20  
24  
20  
24  
20  
24  
20  
24  
ns  
ns  
ns  
ns  
CSx drive  
-4  
Other signals release  
Other signals drive  
– 4  
Data Sheet  
81  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
CLKOUT  
HOLD  
t61  
t63  
HLDA  
see1)  
t62  
2)  
BREQ  
t64  
3)  
CSx  
(On P6.x)  
t66  
Other  
Signals  
1)  
MCT04448  
Figure 25  
External Bus Arbitration, Releasing the Bus  
Notes  
1)  
The C161CS/JC/JI will complete the currently running bus cycle before granting bus access.  
This is the first possibility for BREQ to get active.  
The CS outputs will be resistive high (pullup) after t64.  
2)  
3)  
Data Sheet  
82  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
2)  
CLKOUT  
HOLD  
t61  
t62  
HLDA  
t62  
t62  
t63  
1)  
BREQ  
t65  
CSx  
(On P6.x)  
t67  
Other  
Signals  
MCT04449  
Figure 26  
External Bus Arbitration, (Regaining the Bus)  
Notes  
1)  
This is the last chance for BREQ to trigger the indicated regain-sequence.  
Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high.  
Please note that HOLD may also be deactivated without the C161CS/JC/JI requesting the bus.  
The next C161CS/JC/JI driven bus cycle may start here.  
2)  
Data Sheet  
83  
V3.0, 2001-01  
C161CS/JC/JI-32R  
C161CS/JC/JI-L  
Package Outline  
P-TQFP-128-2  
(Plastic Thin Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Sheet  
84  
V3.0, 2001-01  
Infineon goes for Business Excellence  
“Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAB-C161K-L16M

16-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB-C161K-L25M

16-Bit Single-Chip Microcontroller
INFINEON

SAB-C161K-LM

16-Bit Single-Chip Microcontroller
INFINEON

SAB-C161K-LM3V

16-Bit Single-Chip Microcontroller
INFINEON

SAB-C161K-LMHA

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP80, 0.65 MM PITCH, PLASTIC, MQFP-80
INFINEON

SAB-C161O-L16M

16-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB-C161O-L25M

16-Bit Single-Chip Microcontroller
INFINEON

SAB-C161O-LM

16-Bit Single-Chip Microcontroller
INFINEON

SAB-C161O-LM3V

16-Bit Single-Chip Microcontroller
INFINEON

SAB-C161O-LM3VHA

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP80, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, MQFP-80
INFINEON

SAB-C161PI-L25F

Microcontroller,
INFINEON

SAB-C161PI-L25FCA

Microcontroller, 16-Bit, 25MHz, CMOS, PQFP100, GREEN, PLASTIC, TQFP-100
INFINEON