SAB-C505A-4R20M [INFINEON]

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, PLASTIC, MQFP-44;
SAB-C505A-4R20M
型号: SAB-C505A-4R20M
厂家: Infineon    Infineon
描述:

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, PLASTIC, MQFP-44

时钟 微控制器 外围集成电路
文件: 总88页 (文件大小:1013K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Dec. 2000  
C505  
C505C  
C505A  
C505CA  
8-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2000-12  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2000.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, Dec. 2000  
C505  
C505C  
C505A  
C505CA  
8-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C505/C505C/C505A/C505CA Data Sheet  
Revision History :  
Current Version : 2000-12  
Previous Releases :  
08.00, 06.00, 07.99, 12.97  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in current  
version  
24  
version)  
24  
Version register VR2 for C505A-4R/C505CA-4R BB step is updated.  
Controller Area Network (CAN): License of Robert Bosch GmbH  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
8-Bit Single-Chip Microcontroller  
C500 Family  
C505/C505C/C505A/  
C505CA  
Advance Information  
Fully compatible to standard 8051 microcontroller  
Superset of the 8051 architecture with 8 datapointers  
Up to 20 MHz operating frequency  
– 375 ns instruction cycle time @16 MHz  
– 300 ns instruction cycle time @20 MHz (50 % duty cycle)  
On-chip program memory (with optional memory protection)  
– C505(C)(A)-2R :  
16K byte on-chip ROM  
– C505A-4R/C505CA-4R: 32K byte on-chip ROM  
– C505A-4E/C505CA-4E: 32K byte on-chip OTP  
– alternatively up to 64k byte external program memory  
256 byte on-chip RAM  
On-chip XRAM  
– C505/C505C :  
256 byte  
– C505A/C505CA : 1K byte  
(more features on next page)  
XRAM  
Oscillator  
Watchdog  
RAM  
I/O  
Port 0  
Port 1  
C505/C505C: 256 byte  
C505A/C505CA: 1K byte  
256 byte  
A/D Converter  
8 analog inputs /  
8 digit. I/O  
Timer  
C500  
C505/C505C : 8-bit  
C505A/C505CA : 10-bit  
8-bit  
USART  
0
Core  
Port 2  
I/O  
Timer  
1
Timer 2  
8 Datapointers  
Full-CAN Controller  
C505C/C505CA only  
Port 3  
Port 4  
I/O  
Program Memory  
C505(C)(A)-2R : 16K ROM  
C505A-4R/C505CA-4R : 32K ROM  
C505A-4E/C505CA-4E : 32K OTP  
I/O (2-bit I/O port)  
Watchdog Timer  
Figure 1  
C505 Functional Units  
Data Sheet  
1
12.00  
C505/C505C/C505A/C505CA  
Features (continued) :  
32 + 2 digital I/O lines  
– Four 8-bit digital I/O ports  
– One 2-bit digital I/O port (port 4)  
– Port 1 with mixed analog/digital I/O capability  
Three 16-bit timers/counters  
– Timer 0 / 1 (C501 compatible)  
– Timer 2 with 4 channels for 16-bit capture/compare operation  
Full duplex serial interface with programmable baudrate generator (USART)  
Full CAN Module, version 2.0 B compliant (C505C and C505CA only)  
– 256 register/data bytes located in external data memory area  
– 1 MBaud CAN baudrate when operating frequency is equal to or above 8 MHz  
– internal CAN clock prescaler when input frequency is over 10 MHz  
On-chip A/D Converter  
– up to 8 analog inputs  
– C505/C505C : 8-bit resolution  
– C505A/C505CA: 10-bit resolution  
Twelve interrupt sources with four priority levels  
On-chip emulation support logic (Enhanced Hooks Technology TM  
Programmable 15-bit watchdog timer  
Oscillator watchdog  
)
Fast power on reset  
Power Saving Modes  
– Slow-down mode  
– Idle mode (can be combined with slow-down mode)  
– Software power-down mode with wake up capability through P3.2/INT0 or P4.1/RXDC pin  
P-MQFP-44 package  
Pin configuration is compatible to C501, C504, C511/C513-family  
Temperature ranges:  
SAB-C505 versions  
SAF-C505 versions  
SAH-C505 versions  
SAK-C505 versions  
TA = 0 to 70 °C  
TA = -40 to 85°C  
TA = -40 to 110°C  
TA = -40 to 125°C  
Data Sheet  
2
12.00  
C505/C505C/C505A/C505CA  
Table 1  
Differences in Functionality of the C505 MCUs  
Device  
Internal Program Memory XRAM Size A/D Converter CAN  
Resolution  
Controller  
ROM  
OTP  
C505-2R  
16K byte  
256 byte  
256 byte  
256 byte  
256 byte  
1K byte  
1K byte  
1K byte  
1K byte  
1K byte  
1K byte  
1K byte  
1K byte  
8 Bit  
C505-L  
8 Bit  
C505C-2R  
C505C-L  
16K byte  
8 Bit  
8 Bit  
C505A-4R  
C505A-2R  
C505A-L  
32K byte  
10 Bit  
10 Bit  
10 Bit  
10 Bit  
10 Bit  
10 Bit  
10 Bit  
10 Bit  
16K byte  
C505CA-4R  
C505CA-2R  
C505CA-L  
C505A-4E  
C505CA-4E  
32K byte  
16K byte  
32K byte  
32K byte  
Note: The term C505 refers to all versions described within this document unless otherwise noted.  
However the term C505 may also be restricted by the context to refer to only CAN-less  
derivatives with 8-Bit ADC which are C505-2R and C505-L in this document.  
Note: The term C505(C)(A)-2R, for simplicity, is used to stand for C505 16K byte ROM versions  
within this document which are C505-2R, C505C-2R, C505A-2R and C505CA-2R.  
Ordering Information  
The ordering code for Infineon Technologies’ microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
the derivative itself, i.e. its function set  
the specificed temperature rage  
the package and the type of delivery  
For the available ordering codes for the C505 please refer to the “Product information  
Microcontrollers”, which summarizes all available microcontroller variants.  
Data Sheet  
3
12.00  
C505/C505C/C505A/C505CA  
VDD VSS  
Port 0  
8-bit Digital I/O  
VAREF  
VAGND  
Port 1  
8-bit Digital I/O /  
8-bit Analog Inputs  
XTAL1  
XTAL2  
C505  
C505C  
C505A  
C505CA  
Port 2  
8-bit Digital I/O  
RESET  
EA  
Port 3  
8-bit Digital I/O  
ALE  
PSEN  
Port 4  
2-bit Digital I/O  
Figure 2  
Logic Symbol  
Note: The ordering codes for the Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Data Sheet  
4
12.00  
C505/C505C/C505A/C505CA  
33 32 31 30 29 28 27 26 25 24 23  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
P2.4 / A12  
P2.3 / A11  
P2.2 / A10  
P2.1 / A9  
P2.0 / A8  
P0.3 / AD3  
P0.2 / AD2  
P0.1 / AD1  
P0.0 / AD0  
C505  
C505C  
C505A  
C505CA  
V AREF  
18  
17  
16  
15  
14  
13  
12  
V AGND  
V
V
DD  
P1.0 / AN0 / INT3 / CC0  
P1.1 / AN1 / INT4 / CC1  
P1.2 / AN2 / INT5 / CC2  
P1.3 / AN3 / INT6 / CC3  
P1.4 / AN4  
SS  
XTAL1  
XTAL2  
P3.7 / RD  
P3.6 / WR  
1
2
3
4
5
6
7
8
9 10 11  
This pin functionality is not available in the C505/C505A.  
Figure 3  
C505 Pin Configuration P-MQFP-44 Package (Top View)  
Data Sheet  
5
12.00  
C505/C505C/C505A/C505CA  
Table 2  
Pin Definitions and Functions  
Symbol  
Pin Number I/O  
*)  
Function  
Port 1  
P1.0-P1.7  
40-44,1-3  
I/O  
is an 8-bit quasi-bidirectional port with internal pull-up  
arrangement. Port 1 pins can be used for digital input/output  
or as analog inputs of the A/D converter. Port 1 pins that  
have 1’s written to them are pulled high by internal pull-up  
transistors and in that state can be used as inputs. As  
inputs, port 1 pins being externally pulled low will source  
current (IIL, in the DC characteristics) because of the  
internal pullup transistors. Port 1 pins are assigned to be  
used as analog inputs via the register P1ANA.  
As secondary digital functions, port 1 contains the interrupt,  
timer, clock, capture and compare pins. The output latch  
corresponding to a secondary function must be  
programmed to a one (1) for that function to operate (except  
for compare functions). The secondary functions are  
assigned to the pins of port 1 as follows:  
40  
41  
42  
43  
P1.0 / AN0 / INT3 / CC0 Analog input channel 0  
interrupt 3 input /  
capture/compare channel 0 I/O  
P1.1 / AN1 / INT4 / CC1 Analog input channel 1/  
interrupt 4 input /  
capture/compare channel 1 I/O  
P1.2 / AN2 / INT5 / CC2 Analog input channel 2 /  
interrupt 5 input /  
capture/compare channel 2 I/O  
P1.3 / AN3 / INT6 / CC3 Analog input channel 3  
interrupt 6 input /  
capture/compare channel 3 I/O  
44  
1
P1.4 / AN4  
P1.5 / AN5 / T2EX  
Analog input channel 4  
Analog input channel 5 / Timer 2  
external reload / trigger input  
Analog input channel 6 /  
system clock output  
2
3
P1.6 / AN6 / CLKOUT  
P1.7 / AN7 / T2  
Analog input channel 7 /  
counter 2 input  
Port 1 is used for the low-order address byte during program  
verification of the C505 ROM versions (i.e. C505(C)(A)-2R/  
C505A-4R/C505CA-4R).  
*) I = Input  
O= Output  
Data Sheet  
6
12.00  
C505/C505C/C505A/C505CA  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number I/O  
*)  
Function  
RESET  
4
I
RESET  
A high level on this pin for two machine cycle while the  
oscillator is running resets the device. An internal diffused  
resistor to VSS permits power-on reset using only an  
external capacitor to VDD  
.
P3.0-P3.7  
5, 7-13  
I/O  
Port 3  
is an 8-bit quasi-bidirectional port with internal pull-up  
arrangement. Port 3 pins that have 1’s written to them are  
pulled high by the internal pull-up transistors and in that  
state can be used as inputs. As inputs, port 3 pins being  
externally pulled low will source current (IIL, in the DC  
characteristics) because of the internal pullup transistors.  
The output latch corresponding to a secondary function  
must be programmed to a one (1) for that function to operate  
(except for TxD and WR). The secondary functions are  
assigned to the pins of port 3 as follows:  
5
7
8
9
P3.0 / RxD  
P3.1 / TxD  
P3.2 / INT0  
P3.3 / INT1  
Receiver data input (asynch.) or data  
input/output (synch.) of serial interface  
Transmitter data output (asynch.) or  
clock output (synch.) of serial interface  
External interrupt 0 input / timer 0 gate  
control input  
External interrupt 1 input / timer 1 gate  
control input  
10  
11  
12  
P3.4 / T0  
P3.5 / T1  
P3.6 / WR  
Timer 0 counter input  
Timer 1 counter input  
WR control output; latches the data  
byte from port 0 into the external data  
memory  
13  
P3.7 / RD  
RD control output; enables the external  
data memory  
*) I = Input  
O= Output  
Data Sheet  
7
12.00  
C505/C505C/C505A/C505CA  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number I/O  
*)  
Function  
P4.0  
P4.1  
6
28  
I/O  
I/O  
Port 4  
is a 2-bit quasi-bidirectional port with internal pull-up  
arrangement. Port 4 pins that have 1’s written to them are  
pulled high by the internal pull-up transistors and in that  
state can be used as inputs. As inputs, port 4 pins being  
externally pulled low will source current (IIL, in the DC  
characteristics) because of the internal pullup transistors.  
The output latch corresponding to the secondary function  
RXDC must be programmed to a one (1) for that function to  
operate. The secondary functions are assigned to the two  
pins of port 4 as follows (C505C and C505CA only) :  
P4.0 / TXDC  
P4.1 / RXDC  
Transmitter output of CAN controller  
Receiver input of CAN controller  
XTAL2  
XTAL1  
14  
15  
O
I
XTAL2  
Output of the inverting oscillator amplifier.  
XTAL1  
Input to the inverting oscillator amplifier and input to the  
internal clock generator circuits.  
To drive the device from an external clock source, XTAL1  
should be driven, while XTAL2 is left unconnected. To  
operate above a frequency of 16 MHz, a duty cycle of the  
etxernal clock signal of 50 % should be maintained.  
Minimum and maximum high and low times as well as rise/  
fall times specified in the AC characteristics must be  
observed.  
*) I = Input  
O= Output  
Data Sheet  
8
12.00  
C505/C505C/C505A/C505CA  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number I/O  
*)  
Function  
P2.0-P2.7  
18-25  
I/O  
Port 2  
is a an 8-bit quasi-bidirectional I/O port with internal pullup  
resistors. Port 2 pins that have 1’s written to them are pulled  
high by the internal pullup resistors, and in that state can be  
used as inputs. As inputs, port 2 pins being externally pulled  
low will source current (IIL, in the DC characteristics)  
because of the internal pullup resistors. Port 2 emits the  
high-order address byte during fetches from external  
program memory and during accesses to external data  
memory that use 16-bit addresses (MOVX @DPTR). In this  
application it uses strong internal pullup transistors when  
issuing 1s. During accesses to external data memory that  
use 8-bit addresses (MOVX @Ri), port 2 issues the  
contents of the P2 special function register and uses only  
the internal pullup resistors.  
PSEN  
26  
27  
O
O
The Program Store Enable  
output is a control signal that enables the external program  
memory to the bus during external fetch operations. It is  
activated every three oscillator periods except during  
external data memory accesses. Remains high during  
internal program execution. This pin should not be driven  
during reset operation.  
ALE  
The Address Latch Enable  
output is used for latching the low-byte of the address into  
external memory during normal operation. It is activated  
every three oscillator periods except during an external data  
memory access. When instructions are executed from  
internal ROM or OTP (EA=1) the ALE generation can be  
disabled by bit EALE in SFR SYSCON.  
ALE should not be driven during reset operation.  
*) I = Input  
O= Output  
Data Sheet  
9
12.00  
C505/C505C/C505A/C505CA  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number I/O  
*)  
Function  
EA  
29  
I
External Access Enable  
When held at high level, instructions are fetched from the  
internal program memory when the PC is less than 4000  
H
(C505(C)(A)-2R) or 8000H (C505A-4R/C505CA-4R/C505A-  
4E/C505CA-4E). When held at low level, the C505 fetches  
all instructions from external program memory.  
For the C505 romless versions (i.e. C505-L, C505C-L,  
C505A-L and C505CA-L) this pin must be tied low.  
For the ROM protection version EA pin is latched during  
reset.  
P0.0-P0.7  
37-30  
I/O  
Port 0  
is an 8-bit open-drain bidirectional I/O port. Port 0 pins that  
have 1’s written to them float, and in that state can be used  
as high-impendance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external  
program or data memory. In this application it uses strong  
internal pullup transistors when issuing 1’s.  
Port 0 also outputs the code bytes during program  
verification in the C505 ROM versions. External pullup  
resistors are required during program verification.  
VAREF  
VAGND  
VSS  
38  
39  
16  
17  
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
Ground (0V)  
VDD  
Power Supply (+5V)  
*) I = Input  
O= Output  
Data Sheet  
10  
12.00  
C505/C505C/C505A/C505CA  
V
DD  
ROM/  
OTP  
1)  
Oscillator Watchdog  
OSC & Timing  
Vss  
XRAM  
1)  
RAM  
16K or 32K  
256 Byte  
or 1K Byte  
XTAL1  
XTAL2  
256 Byte  
Byte  
CPU  
8 datapointers  
RESET  
ALE  
PSEN  
EA  
Programmable  
Watchdog Timer  
Port 0  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
8-bit digit. I/O  
Timer 0  
Timer 1  
Port 1  
8-bit digit. I/O /  
8-bit analog In  
Port 2  
8-bit digit. I/O  
Timer 2  
USART  
Baudrate generator  
Port 3  
8-bit digit. I/O  
Full-CAN  
Controller  
Port 4  
2-bit digit. I/O  
Interrupt Unit  
A/D Converter  
VAREF  
VAGND  
1)  
8-/10-Bit  
Emulation  
Support  
Logic  
S&H  
MUX  
C505C/C505CA only. 1) Please refer to Table 1 for device specific configuration.  
Figure 4  
Block Diagram of the C505/C505C/C505A/C505CA  
Data Sheet  
11  
12.00  
C505/C505C/C505A/C505CA  
CPU  
The C505 is efficient both as a controller and as an arithmetic processor. It has extensive facilities  
for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program  
memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15% three-  
byte instructions. With a 16 MHz crystal, 58% of the instructions are executed in 375 ns (20MHz:  
300 ns).  
Special Function Register PSW (Address D0 )  
H
Reset Value : 00  
H
Bit No. MSB  
LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
H
H
H
H
H
H
H
H
D0  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
PSW  
H
Bit  
Function  
CY  
Carry Flag  
Used by arithmetic instruction.  
AC  
Auxiliary Carry Flag  
Used by instructions which execute BCD operations.  
F0  
General Purpose Flag  
RS1  
RS0  
Register Bank Select Control Bits  
These bits are used to select one of the four register banks.  
RS1  
RS0  
Function  
Bank 0 selected, data address 00 -07  
0
0
1
1
0
1
0
1
H
H
Bank 1 selected, data address 08 -0F  
H
H
Bank 2 selected, data address 10 -17  
H
H
Bank 3 selected, data address 18 -1F  
H
H
OV  
Overflow Flag  
Used by arithmetic instruction.  
General Purpose Flag  
Parity Flag  
F1  
P
Set/cleared by hardware after each instruction to indicate an odd/even  
number of "one" bits in the accumulator, i.e. even parity.  
Data Sheet  
12  
12.00  
C505/C505C/C505A/C505CA  
Memory Organization  
The C505 CPU manipulates operands in the following four address spaces:  
– On-chip program memory :16K byte ROM (C505(C)(A)-2R) or  
32K byte ROM (C505A-4R/C505CA-4R) or  
32K byte OTP (C505A-4E/C505CA-4E)  
– Totally up to 64K byte internal/external program memory  
– up to 64 Kbyte of external data memory  
– 256 bytes of internal data memory  
– Internal XRAM data memory :256 byte (C505/C505C)  
1K byte (C505A/C505CA)  
– a 128 byte special function register area  
Figure 5 illustrates the memory address spaces of the C505 versions.  
Alternatively  
FFFF  
FFFF  
H
H
Internal  
XRAM  
See table below  
for detailed  
Data Memory  
partitioning  
Ext.  
Data  
Memory  
Unused  
Area  
Int. CAN  
Contr.  
(256 Byte)  
Ext.  
F700  
H
F6FF  
H
Indirect  
Addr.  
Direct  
Addr.  
4000  
8000  
/
H
H
FF  
FF  
80  
H
H
H
H
Special  
Function  
Regs.  
3FFF  
7FFF  
/
H
H
Internal  
RAM  
Ext.  
Data  
Memory  
80  
Int.  
(EA = 1)  
Ext.  
(EA = 0)  
7F  
H
Internal  
RAM  
0000  
0000  
00  
H
H
H
"Code Space"  
"Data Space" F700H to FFFFH:  
"Data Space"  
"Internal Data Space"  
MCB03632  
Device  
C505  
CAN Area  
Unused Area  
F700H FEFFH  
F800H FEFFH  
F700H FBFFH  
F800H FBFFH  
XRAM Area  
FF00H FFFFH  
FF00H FFFFH  
FC00H FFFFH  
FC00H FFFFH  
F700H F7FFH  
F700H F7FFH  
C505C  
C505A  
C505CA  
Figure 5  
C505 Memory Map Memory Map  
Data Sheet  
13  
12.00  
C505/C505C/C505A/C505CA  
Reset and System Clock  
The reset input is an active high input at pin RESET. Since the reset is synchronized internally, the  
RESET pin must be held high for at least two machine cycles (12 oscillator periods) while the  
oscillator is running. A pulldown resistor is internally connected to VSS to allow a power-up reset with  
an external capacitor only. An automatic reset can be obtained when VDD is applied by connecting  
the RESET pin to VDD via a capacitor. Figure 6 shows the possible reset circuitries.  
a)  
b)  
C505  
C505C  
C505A  
C505CA  
C505  
C505C  
C505A  
C505CA  
VDD  
+
RESET  
RESET  
&
c)  
C505  
C505C  
C505A  
C505CA  
VDD  
VDD  
+
RESET  
Figure 6  
Reset Circuitries  
Data Sheet  
14  
12.00  
C505/C505C/C505A/C505CA  
Figure 7 shows the recommended oscillator circuits for crystal and external clock operation.  
C
XTAL2  
C505  
C505C  
C505A  
C505CA  
2-20  
MHz  
C
XTAL1  
C = 20pF ± 10pF for crystal operation  
XTAL2  
C505  
N.C.  
VDD  
C505C  
C505A  
C505CA  
External  
Clock  
XTAL1  
Signal  
Figure 7  
Recommended Oscillator Circuitries  
Data Sheet  
15  
12.00  
C505/C505C/C505A/C505CA  
Multiple Datapointers  
As a functional enhancement to the standard 8051 architecture, the C505 contains eight 16-bit  
datapointers instead of only one datapointer. The instruction set uses just one of these datapointers  
at a time. The selection of the actual datapointer is done in the special function regsiter DPSEL.  
Figure 8 illustrates the datapointer addressing mechanism.  
- - - - - .2 .1 .0  
DPSEL(92  
)
H
DPTR7  
DPTR0  
DPSEL  
Selected  
Data-  
pointer  
.2  
.1  
.0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DPTR 0  
DPTR 1  
DPTR 2  
DPTR 3  
DPTR 4  
DPTR 5  
DPTR 6  
DPTR 7  
DPH(83  
)
DPL(82 )  
H
H
External Data Memory  
MCD00779  
Figure 8  
External Data Memory Addressing using Multiple Datapointers  
Data Sheet  
16  
12.00  
C505/C505C/C505A/C505CA  
Enhanced Hooks Emulation Concept  
The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative  
way to control the execution of C500 MCUs and to gain extensive information on the internal  
operation of the controllers. Emulation of on-chip ROM based programs is possible, too.  
Each production chip has built-in logic for the supprt of the Enhanced Hooks Emulation Concept.  
Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation  
and production chips are identical.  
The Enhanced Hooks TechnologyTM 1), which requires embedded logic in the C500 allows the C500  
together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces  
costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate  
all operating modes of the different versions of the C500 microcontrollers. This includes emulation  
of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in  
single step mode and to read the SFRs after a break.  
ICE-System Interface  
to Emulation Hardware  
RESET  
SYSCON  
PCON  
RSYSCON  
RPCON  
EA  
ALE  
EH-IC  
TCON  
RTCON  
PSEN  
C500  
MCU  
Enhanced Hooks  
Interface Circuit  
Port 0  
Port 2  
Optional  
I/O Ports  
Port 3 Port 1  
RPort 2 RPort 0  
TEA TALE TPSEN  
MCS02647  
Target System Interface  
Figure 9  
Basic C500 MCU Enhanced Hooks Concept Configuration  
Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks  
Emulation Concept to control the operation of the device during emulation and to transfer  
informations about the programm execution and data transfer between the external emulation  
hardware (ICE-system) and the C500 MCU.  
1)  
“Enhanced Hooks Technology“ is a trademark and patent of Metalink Corporation licensed to Infineon  
Technologies.  
Data Sheet  
17  
12.00  
C505/C505C/C505A/C505CA  
Special Function Registers  
The registers, except the program counter and the four general purpose register banks, reside in  
the special function register area. The special function register area consists of two portions : the  
standard special function register area and the mapped special function register area. Five special  
function register of the C505 (PCON1,P1ANA, VR0, VR1, VR2) are located in the mapped special  
function register area. For accessing the mapped special function register area, bit RMAP in special  
function register SYSCON must be set. All other special function registers are located in the  
standard special function register area which is accessed when RMAP is cleared (“0“).  
The registers and data locations of the CAN controller (CAN-SFRs) are located in the external data  
memory area at addresses F700 to F7FF ..  
H
H
Special Function Register SYSCON (Address B1 )  
H
(C505CA only)  
Reset Value : XX100X01  
Reset Value : XX100001  
B
B
Bit No. MSB  
LSB  
0
7
6
5
4
3
2
1
CSWO  
XMAP1 XMAP0  
1)  
B1  
EALE RMAP CMOD  
SYSCON  
H
The functions of the shaded bits are not described here.  
1) This bit is only available in the C505CA.  
Bit  
Function  
RMAP  
Special function register map bit  
RMAP = 0 : The access to the non-mapped (standard) special function register  
area is enabled.  
RMAP = 1 : The access to the mapped special function register area is enabled.  
CSWO  
CAN Controller switch-off bit  
CSWO = 0 : CAN Controller is enabled (default after reset).  
CSWO = 1 : CAN Controller is switched off.  
As long as bit RMAP is set, mapped special function register area can be accessed. This bit is not  
cleared by hardware automatically. Thus, when non-mapped/mapped registers are to be accessed,  
the bit RMAP must be cleared/set respectively by software.  
All SFRs with addresses where address bits 0-2 are 0 (e.g. 80 , 88 , 90 , 98 , ..., F8 , FF ) are  
H
H
H
H
H
H
bitaddressable.  
The 52 special function registers (SFRs) in the standard and mapped SFR area include pointers  
and registers that provide an interface between the CPU and the other on-chip peripherals. The  
SFRs of the C505 are listed in Table 3 and Table 4. In Table 3 they are organized in groups which  
refer to the functional blocks of the C505. The CAN-SFRs (applicable for the C505C and C505CA  
only) are also included in Table 3. Table 4 illustrates the contents of the SFRs in numeric order of  
their addresses. Table 5 list the CAN-SFRs in numeric order of their addresses.  
Data Sheet  
18  
12.00  
C505/C505C/C505A/C505CA  
Table 3  
Special Function Registers - Functional Blocks  
Block  
Symbol  
Name  
Address Contents after  
Reset  
1)  
CPU  
ACC  
B
Accumulator  
B-Register  
E0  
F0  
83  
82  
92  
00  
00  
00  
00  
H
H
H
H
H
1)  
H
H
H
H
DPH  
DPL  
DPSEL  
PSW  
SP  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Data Pointer Select Register  
Program Status Word Register  
Stack Pointer  
3)  
XXXXX000  
00  
07  
H
XX100X01  
XX100001  
C5  
B
1)  
D0  
H
H
81  
B1  
H
SYSCON2) System Control Register  
3) 6)  
3) 7)  
H
B
B
4)  
VR0  
VR1  
VR2 4)  
Version Register 0  
Version Register 1  
Version Register 2  
FC  
FD  
FE  
H
H
H
H
4)  
05  
H
5)  
1)  
3)  
3)  
A/D-  
ADCON02) A/D Converter Control Register 0  
D8  
DC  
D9  
DA  
D9  
00X00000  
01XXX000  
00  
XX  
00  
H
B
B
Converter ADCON1 A/D Converter Control Register 1  
H
ADDAT  
ADST  
ADDATH  
A/D Converter Data Reg. (C505/C505C)  
A/D Converter Start Reg. (C505/C505C)  
A/D Converter High Byte Data Register  
(C505A/C505CA)  
A/D Converter Low Byte Data Register  
(C505A/C505CA)  
H
H
H
H
H
H
3)  
3)  
ADDATL  
DA  
00XXXXXX  
H
B
P1ANA 2) 4) Port 1 Analog Input Selection Register  
90  
FF  
H
00  
H
1)  
1)  
Interrupt  
System  
IEN0 2)  
IEN1 2)  
IP0 2)  
IP1  
TCON  
T2CON  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
Timer Control Register  
Timer 2 Control Register  
Serial Channel Control Register  
Interrupt Request Control Register  
A8  
B8  
A9  
H
H
H
H
H
00  
H
00  
H
3)  
B9  
XX000000  
B
2)  
1)  
88  
00  
H
H
2)  
1)  
C8  
00X00000  
00  
00  
H
H
H
B
2)  
1)  
1)  
SCON  
IRCON  
98  
C0  
H
H
XRAM  
XPAGE  
Page Address Register for Extended on-chip 91  
XRAM and CAN Controller  
00  
H
H
SYSCON2) System Control Register  
B1  
XX100X01  
XX100001  
3) 6)  
3) 7)  
H
B
B
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved  
4) This SFR is a mapped SFR. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
5) The content of this SFR varies with the actual step of the C505 (eg. 01 for the first step)  
H
6) C505 / C505A/C505C only  
7) C505CA only  
Data Sheet  
19  
12.00  
C505/C505C/C505A/C505CA  
Table 3  
Special Function Registers - Functional Blocks (cont’d)  
Block  
Symbol  
Name  
Address Contents after  
Reset  
1)  
Ports  
P0  
P1  
Port 0  
Port 1  
80  
90  
90  
A0  
B0  
FF  
FF  
FF  
FF  
FF  
H
H
H
H
H
H
H
H
H
H
1)  
1)  
P1ANA 2) 4) Port 1 Analog Input Selection Register  
1)  
P2  
P3  
P4  
Port 2  
Port 3  
Port 4  
1)  
E8H 1)  
XXXXXX11  
B
1)  
3)  
Serial  
Channel  
ADCON02) A/D Converter Control Register 0  
D8  
00X00000  
H
B
PCON 2)  
SBUF  
Power Control Register  
Serial Channel Buffer Register  
87  
H
00  
XX  
00  
H
H
H
H
3)  
99  
H
1)  
98  
SCON  
SRELL  
SRELH  
Serial Channel Control Register  
Serial Channel Reload Register, low byte  
Serial Channel Reload Register, high byte  
H
AA  
H
D9  
3)  
BA  
H
XXXXXX11  
B
1)  
Timer 0/  
Timer 1  
TCON  
TH0  
TH1  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
88  
00  
H
H
8C  
H
00  
H
8D  
H
00  
H
TL0  
8A  
H
00  
H
TL1  
Timer 1, Low Byte  
8B  
H
00  
H
TMOD  
Timer Mode Register  
89  
00  
H
H
3)  
Compare/ CCEN  
Capture  
Unit /  
Comp./Capture Enable Reg.  
Comp./Capture Reg. 1, High Byte  
Comp./Capture Reg. 2, High Byte  
Comp./Capture Reg. 3, High Byte  
Comp./Capture Reg. 1, Low Byte  
Comp./Capture Reg. 2, Low Byte  
Comp./Capture Reg. 3, Low Byte  
Reload Register High Byte  
Reload Register Low Byte  
Timer 2, High Byte  
C1  
H
00  
H
CCH1  
CCH2  
CCH3  
CCL1  
CCL2  
CCL3  
CRCH  
CRCL  
TH2  
C3  
H
00  
H
C5  
H
00  
H
Timer 2  
C7  
H
00  
H
C2  
H
00  
H
C4  
H
00  
H
C6  
H
00  
H
CB  
H
00  
H
CA  
H
00  
H
CD  
H
00  
H
TL2  
Timer 2, Low Byte  
CC  
00  
H
H
H
H
H
1)  
C8  
3)  
T2CON  
IEN0 2)  
IEN1 2)  
Timer 2 Control Register  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
00X00000  
B
1)  
A8  
00  
H
1)  
B8  
00  
H
Watchdog WDTREL Watchdog Timer Reload Register  
86  
00  
H
H
H
H
H
IEN0 2)  
IEN1 2)  
IP0 2)  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Priority Register 0  
00  
H
1)  
A8  
1)  
B8  
A9  
00  
H
00  
H
Pow.Save PCON 2)  
Modes  
Power Control Register  
87  
H
00  
H
0XX0XXXX  
PCON1 4) Power Control Register 1  
1)  
88  
3)  
H
B
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved  
4) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Data Sheet  
20  
12.00  
C505/C505C/C505A/C505CA  
Table 3  
Special Function Registers - Functional Blocks (cont’d)  
Block  
Symbol  
Name  
Address Contents after  
Reset  
CAN  
Controller SR  
IR  
(C505C/  
C505CA BTR1  
CR  
Control Register  
Status Register  
Interrupt Register  
Bit Timing Register Low  
F700  
F701  
F702  
F704  
F705  
F706  
F707  
F708  
F709  
01  
XX  
XX  
UU  
0UUUUUUU  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
3)  
3)  
3)  
BTR0  
H
3)  
Bit Timing Register High  
B
3)  
only)  
GMS0  
GMS1  
Global Mask Short Register Low  
Global Mask Short Register High  
Upper Global Mask Long Register Low  
Upper Global Mask Long Register High  
Lower Global Mask Long Register Low  
Lower Global Mask Long Register High  
Upper Mask of Last Message Register Low F70C  
Upper Mask of Last Message Register High F70D  
Lower Mask of Last Message Register Low F70E  
UU  
H
3)  
UUU11111B  
3)  
UU  
UGML0  
UGML1  
LGML0  
LGML1  
UMLM0  
UMLM1  
LMLM0  
LMLM1  
H
H
H
3)  
UU  
3)  
F70A  
F70B  
UU  
3)  
3)  
UUUUU000B  
3)  
UU  
H
H
H
3)  
UU  
3)  
UU  
H
H
Lower Mask of Last Message Register High F70F  
Message Object Registers :  
UUUUU000B  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
5)  
3)  
UU  
MCR0  
MCR1  
UAR0  
UAR1  
LAR0  
LAR1  
MCFG  
DB0  
DB1  
DB2  
DB3  
DB4  
Message Control Register Low  
Message Control Register High  
Upper Arbitration Register Low  
Upper Arbitration Register High  
Lower Arbitration Register Low  
Lower Arbitration Register High  
Message Configuration Register  
Message Data Byte 0  
Message Data Byte 1  
Message Data Byte 2  
Message Data Byte 3  
Message Data Byte 4  
F7n0  
F7n1  
F7n2  
F7n3  
F7n4  
F7n5  
F7n6  
F7n7  
F7n8  
F7n9  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
3)  
UU  
3)  
UU  
3)  
UU  
3)  
UU  
H
3)  
3)  
UUUUU000B  
UUUUUU00B  
3)  
XX  
H
H
H
H
H
H
H
H
3)  
XX  
3)  
XX  
3)  
XX  
F7nA  
F7nB  
H
H
H
H
3)  
XX  
3)  
XX  
DB5  
DB6  
DB7  
Message Data Byte 5  
Message Data Byte 6  
Message Data Byte 7  
F7nC  
F7nD  
F7nE  
3)  
XX  
3)  
XX  
H
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved. “U“ means that the value is unchanged by  
a reset operation. “U“ values are undefined (as “X“) after a power-on reset operation  
4) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
5) The notation “n“ (n= 1 to F) in the message object address definition defines the number of the related  
message object.  
Data Sheet  
21  
12.00  
C505/C505C/C505A/C505CA  
Table 4  
Contents of the SFRs, SFRs in numeric order of their addresses  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
2)  
80  
81  
82  
83  
86  
P0  
FF  
07  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
SP  
H
H
H
H
DPL  
DPH  
00  
00  
WDTREL 00  
WDT  
PSEL  
87  
88  
88  
PCON  
TCON  
00  
00  
SMOD PDS  
TF1 TR1  
IDLS  
TF0  
SD  
GF1  
IE1  
GF0  
IT1  
PDE  
IE0  
IDLE  
IT0  
H
H
H
H
H
2)  
3)  
TR0  
WS  
PCON1 0XX0-  
XXXX  
EWPD –  
B
89  
TMOD  
TL0  
00  
00  
00  
00  
00  
GATE C/T  
M1  
.5  
M0  
.4  
GATE C/T  
M1  
.1  
M0  
.0  
H
H
H
H
H
H
8A  
8B  
.7  
.7  
.7  
.7  
T2  
.6  
.6  
.6  
.6  
.3  
.2  
H
H
TL1  
.5  
.4  
.3  
.2  
.1  
.0  
8C  
8D  
90  
TH0  
TH1  
P1  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
.5  
.4  
.3  
.2  
.1  
.0  
2)  
FF  
CLK-  
OUT  
T2EX .4  
INT6  
INT5  
INT4  
.INT3  
H
H
3)  
90  
91  
92  
P1ANA FF  
XPAGE 00  
EAN7 EAN6 EAN5 EAN4 EAN3 EAN2 EAN1 EAN0  
H
H
H
H
.7  
.6  
.5  
.4  
.3  
.2  
.2  
.1  
.1  
.0  
.0  
H
DPSEL XXXX-  
X000  
B
2)  
98  
99  
SCON  
SBUF  
P2  
00  
SM0  
.7  
SM1  
.6  
SM2  
.5  
REN  
.4  
TB8  
.3  
RB8  
.2  
TI  
RI  
.0  
H
H
XX  
FF  
.1  
H
H
2)  
2)  
A0  
A8  
A9  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
H
H
IEN0  
IP0  
00  
00  
EA  
WDT  
ET2  
ES  
.4  
ET1  
.3  
EX1  
.2  
ET0  
.1  
EX0  
.0  
OWDS WDTS .5  
.7 .6 .5  
AA  
SRELL  
D9  
.4  
.3  
.2  
.1  
.0  
H
H
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
3) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Data Sheet  
22  
12.00  
C505/C505C/C505A/C505CA  
Table 4  
Contents of the SFRs, SFRs in numeric order of their addresses (cont’d)  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
2)  
H
B0  
B1  
P3  
FF  
RD  
WR  
T1  
T0  
INT1  
INT0  
TxD  
RxD  
H
SYSCON XX10-  
3)  
EALE RMAP CMOD –  
XMAP1 XMAP0  
H
0X01  
B
B1  
SYSCON XX10-  
EALE RMAP CMOD CSWO XMAP1 XMAP0  
H
4)  
0001  
B
2)  
B8  
B9  
IEN1  
IP1  
00  
EXEN2 SWDT EX6  
EX5  
.4  
EX4  
.3  
EX3  
.2  
ECAN EADC  
H
H
H
XX00-  
.5  
.1  
.0  
0000  
B
BA  
SRELH XXXX-  
.1  
.0  
H
XX11  
B
2)  
C0  
IRCON  
CCEN  
00  
00  
EXF2 TF2  
IEX6  
IEX5  
IEX4  
IEX3  
SWI  
IADC  
H
H
H
C1  
COCA COCAL COCA COCAL COCA COCAL COCA COCAL  
H
H3  
.7  
.7  
.7  
.7  
.7  
.7  
3
H2  
.5  
.5  
.5  
.5  
.5  
.5  
2
H1  
.3  
.3  
.3  
.3  
.3  
.3  
1
H0  
.1  
.1  
.1  
.1  
.1  
.1  
0
C2  
C3  
C4  
C5  
C6  
C7  
C8  
CCL1  
CCH1  
CCL2  
CCH2  
CCL3  
CCH3  
00  
00  
00  
00  
00  
00  
.6  
.6  
.6  
.6  
.6  
.6  
.4  
.4  
.4  
.4  
.4  
.4  
.2  
.2  
.2  
.2  
.2  
.2  
.0  
H
H
H
H
H
H
H
H
H
H
H
H
H
.0  
.0  
.0  
.0  
.0  
2)  
T2CON 00X0-  
0000  
T2PS I3FR  
T2R1 T2R0 T2CM T2I1  
T2I0  
B
CA  
CB  
CRCL  
CRCH  
TL2  
00  
00  
00  
00  
00  
.7  
.6  
.5  
.5  
.5  
.5  
F0  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
H
H
.7  
.6  
.4  
.3  
.2  
.1  
.0  
H
CC  
CD  
D0  
.7  
.6  
.4  
.3  
.2  
.1  
.0  
H
H
TH2  
.7  
.6  
.4  
.3  
.2  
.1  
.0  
2)  
PSW  
CY  
BD  
AC  
CLK  
RS1  
BSY  
RS0  
ADM  
OV  
MX2  
F1  
MX1  
P
H
H
2)  
D8  
ADCON0 00X0-  
0000  
MX0  
B
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
3) C505 /C505C/C505A only  
4) C505CA only  
Data Sheet  
23  
12.00  
C505/C505C/C505A/C505CA  
Table 4  
Contents of the SFRs, SFRs in numeric order of their addresses (cont’d)  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
D9  
D9  
ADDAT 6) 00  
.7  
.9  
.6  
.8  
.5  
.7  
.4  
.6  
.3  
.5  
.2  
.4  
.1  
.3  
.0  
.2  
H
H
H
H
ADDATH 00  
7)  
6)  
DA  
DA  
ADST  
XXXX-  
XXXX  
H
H
B
ADDATL 00XX-  
.1  
.0  
7)  
XXXX  
B
DC  
ADCON1 01XX-  
X000  
ADCL1 ADCL0 –  
MX2  
MX1  
MX0  
H
B
2)  
E0  
ACC  
P4  
00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
2)  
H
E8  
F0  
XXXX-  
XX11  
RXDC TXDC  
B
2)  
B
00  
H
.7  
1
.6  
1
.5  
0
.4  
0
.3  
0
.2  
1
.1  
0
.0  
1
H
3)4)  
FC  
FD  
FE  
VR0  
VR1  
VR2 5)  
C5  
H
H
3)4)  
H
05  
H
0
0
0
0
0
1
0
1
8)  
3)4)  
H
01  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H9)  
12  
H10)  
33  
H
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
3) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
4) These are read-only registers  
5) The content of this SFR varies with the actual of the step C505 (eg. 01 or 11 or 21 for the first step)  
H
H
H
6) C505 / C505C only  
7) C505A / C505CA only  
8) C505 / C505C AB step only  
9) C505A-4E / C505CA-4E BA step only (11 for the AA step)  
H
10) C505A-4R / C505CA-4R BB step only (32 for the BA step)  
H
Data Sheet  
24  
12.00  
C505/C505C/C505A/C505CA  
Table 5  
Contents of the CAN Registers in numeric order of their addresses  
(C505C/C505CA only)  
Addr.  
Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
n=1-F  
1)  
after  
H
Reset 2)  
F700  
CR  
01  
TEST CCE  
0
0
EIE  
SIE  
IE  
INIT  
H
H
F701  
F702  
F704  
F705  
SR  
XX  
BOFF EWRN –  
RXOK TXOK LEC2 LEC1 LEC0  
H
H
H
IR  
XX  
INTID  
BRP  
H
H
H
BTR0  
BTR1  
UU  
SJW  
H
0UUU.  
UUUU  
0
TSEG2  
TSEG1  
B
F706  
F707  
GMS0  
GMS1  
UU  
ID28-21  
H
H
H
UUU1.  
1111  
ID20-18  
1
1
1
0
1
0
0
1
0
0
B
F708  
F709  
UGML0 UU  
UGML1 UU  
LGML0 UU  
ID28-21  
ID20-13  
ID12-5  
H
H
H
H
H
F70A  
F70B  
H
H
LGML1 UUUU.  
ID4-0  
ID4-0  
U000  
B
F70C  
F70D  
F70E  
UMLM0 UU  
H
ID28-21  
ID12-5  
H
H
UMLM1 UU  
H
ID20-18  
ID17-13  
0
LMLM0 UU  
H
H
H
F70F  
LMLM1 UUUU.  
U000  
B
F7n0  
MCR0  
MCR1  
UU  
UU  
MSGVAL  
RMTPND  
TXIE  
RXIE  
INTPND  
H
H
H
H
F7n1  
TXRQ  
MSGLST  
CPUUPD  
NEWDAT  
F7n2  
F7n3  
F7n4  
F7n5  
UAR0  
UAR1  
LAR0  
LAR1  
UU  
UU  
UU  
ID28-21  
H
H
H
H
H
H
H
ID20-18  
ID17-13  
ID12-5  
UUUU.  
U000  
ID4-0  
0
0
0
B
1) The notation “n“ (n= 1 to F) in the address definition defines the number of the related message object.  
2) “X“ means that the value is undefined and the location is reserved. “U“ means that the value is unchanged  
by a reset operation. “U“ values are undefined (as “X“) after a power-on reset operation  
Data Sheet  
25  
12.00  
C505/C505C/C505A/C505CA  
Table 5  
Contents of the CAN Registers in numeric order of their addresses (cont’d)  
(C505C/C505CA only)  
Addr.  
Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
n=1-F  
1)  
after  
H
Reset 2)  
F7n6  
MCFG  
UUUU.  
DLC  
DIR  
XTD  
0
0
H
UU00  
B
F7n7  
F7n8  
F7n9  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
XX  
H
.7  
.7  
.7  
.7  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
.0  
.0  
.0  
H
XX  
H
H
H
XX  
H
F7nA  
F7nB  
XX  
H
H
H
XX  
H
F7nC  
F7nD  
F7nE  
XX  
H
H
H
XX  
H
XX  
H
H
1) The notation “n“ (n= 1 to F) in the address definition defines the number of the related message object.  
2) “X“ means that the value is undefined and the location is reserved. “U“ means that the value is unchanged  
by a reset operation. “U“ values are undefined (as “X“) after a power-on reset operation  
Data Sheet  
26  
12.00  
C505/C505C/C505A/C505CA  
I/O Ports  
The C505 has four 8-bit I/O ports and one 2-bit I/O port. Port 0 is an open-drain bidirectional I/O  
port, while ports 1 to 4 are quasi-bidirectional I/O ports with internal pullup resistors. That means,  
when configured as inputs, ports 1 to 4 will be pulled high and will source current when externally  
pulled low. Port 0 will float when configured as input.  
The output drivers of port 0 and 2 and the input buffers of port 0 are also used for accessing external  
memory. In this application, port 0 outputs the low byte of the external memory address, time  
multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory  
address when the address is 16 bits wide. Otherwise, the port 2 pins continue emitting the P2 SFR  
contents. In this function, port 0 is not an open-drain port, but uses a strong internal pullup FET .  
Port 4 is 2-bit I/O port with CAN controller specific alternate functions. The eight analog input lines  
are realized as mixed digital/analog inputs. The 8 analog inputs, AN0-AN7, are located at the port  
1 pins P1.0 to P1.7. After reset, all analog inputs are disabled and the related pins of port 1 are  
configured as digital inputs. The analog function of a specific port 1 pin is enabled by bits in the SFR  
P1ANA. Writing a 0 to a bit position of P1ANA assigns the corresponding pin to operate as analog  
input.  
Note : P1ANA is a mapped SFR and can be only accessed if bit RMAP in SFR SYSCON is set.  
Data Sheet  
27  
12.00  
C505/C505C/C505A/C505CA  
Timer / Counter 0 and 1  
Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 6 :  
Table 6  
Timer/Counter 0 and 1 Operating Modes  
Mode Description  
TMOD  
Input Clock  
external (max)  
OSC/12x32  
M1  
M0  
internal  
OSC/6x32  
0
8-bit timer/counter with a  
0
0
f
f
divide-by-32 prescaler  
1
2
16-bit timer/counter  
0
1
1
0
8-bit timer/counter with  
8-bit autoreload  
fOSC/6  
fOSC/12  
3
Timer/counter 0 used as one  
8-bit timer/counter and one  
8-bit timer  
1
1
Timer 1 stops  
In the “timer” function (C/T = ‘0’) the register is incremented every machine cycle. Therefore the  
count rate is fOSC/6.  
In the “counter” function the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a  
falling edge the max. count rate is fOSC/12. External inputs INT0 and INT1 (P3.2, P3.3) can be  
programmed to function as a gate to facilitate pulse width measurements. Figure 10 illustrates the  
input clock logic.  
÷
6
f OSC/6  
OSC  
C/T = 0  
C/T = 1  
Timer 0/1  
Input Clock  
P3.4/T0  
P3.5/T1  
Control  
TR0  
TR1  
&
=1  
Gate  
(TMOD)  
_
<
1
P3.2/INT0  
P3.3/INT1  
MCS03117  
Figure 10  
Timer/Counter 0 and 1 Input Clock Logic  
Data Sheet  
28  
12.00  
C505/C505C/C505A/C505CA  
Timer/Counter 2 with Compare/Capture/Reload  
The timer 2 of the C505 provides additional compare/capture/reload features. which allow the  
selection of the following operating modes:  
– Compare : up to 4 PWM signals with 16-bit/300 ns resolution (@ 20 MHz clock)  
– Capture  
– Reload  
: up to 4 high speed capture inputs with 300 ns resolution  
: modulation of timer 2 cycle time  
The block diagram in Figure 11 shows the general configuration of timer 2 with the additional  
compare/capture/reload registers. The I/O pins which can used for timer 2 control are located as  
multifunctional port functions at port 1.  
P1.5/  
T2EX  
_
<
1
Sync.  
Sync.  
÷6  
EXF2  
Interrupt  
Request  
T2I0  
T2I1  
EXEN2  
Reload  
P1.7/  
T2  
&
Reload  
f OSC  
OSC  
÷12  
Timer 2  
TL2 TH2  
T2PS  
TF2  
Compare  
P1.0/  
INT3/  
CC0  
P1.1/  
INT4/  
CC1  
16 Bit  
Comparator  
16 Bit  
Comparator  
16 Bit  
Comparator  
16 Bit  
Comparator  
Input/  
Output  
Control  
P1.2/  
INT5/  
CC2  
Capture  
P1.2/  
INT6/  
CC3  
CCL3/CCH3  
CCL2/CCH2  
CCL1/CCH1  
CRCL/CRCH  
MCB02730  
Figure 11  
Timer 2 Block Diagram  
Data Sheet  
29  
12.00  
C505/C505C/C505A/C505CA  
Timer 2 Operating Modes  
The timer 2, which is a 16-bit-wide register, can operate as timer, event counter, or gated timer. A  
roll-over of the count value in TL2/TH2 from all 1’s to all 0’s sets the timer overflow flag TF2 in SFR  
IRCON, which can generate an interrupt. The bits in register T2CON are used to control the timer  
2 operation.  
Timer Mode : In timer function, the count rate is derived from the oscillator frequency. A prescaler  
offers the possibility of selecting a count rate of 1/6 or 1/12 of the oscillator frequency.  
Gated Timer Mode : In gated timer function, the external input pin T2 (P1.7) functions as a gate to  
the input of timer 2. lf T2 is high, the internal clock input is gated to the timer. T2 = 0 stops the  
counting procedure. This facilitates pulse width measurements. The external gate signal is sampled  
once every machine cycle.  
Event Counter Mode : In the event counter function. the timer 2 is incremented in response to a 1-  
to-0 transition at its corresponding external input pin T2 (P1.7). In this function, the external input is  
sampled every machine cycle. Since it takes two machine cycles (12 oscillator periods) to recognize  
a 1-to-0 transition, the maximum count rate is 1/6 of the oscillator frequency. There are no  
restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled  
at least once before it changes, it must be held for at least one full machine cycle.  
Reload of Timer 2 : Two reload modes are selectable:  
In mode 0, when timer 2 rolls over from all 1’s to all 0’s, it not only sets TF2 but also causes the timer  
2 registers to be loaded with the 16-bit value in the CRC register, which is preset by software.  
In mode 1, a 16-bit reload from the CRC register is caused by a negative transition at the correspon-  
ding input pin P1.5/T2EX. This transition will also set flag EXF2 if bit EXEN2 in SFR IEN1 has been  
set.  
Data Sheet  
30  
12.00  
C505/C505C/C505A/C505CA  
Timer 2 Compare Modes  
The compare function of a timer/register combination operates as follows : the 16-bit value stored  
in a compare or compare/capture register is compared with the contents of the timer register; if the  
count value in the timer register matches the stored value, an appropriate output signal is generated  
at a corresponding port pin and an interrupt can be generated.  
Compare Mode 0  
In compare mode 0, upon matching the timer and compare register contents, the output signal  
changes from low to high. lt goes back to a low level on timer overflow. As long as compare mode  
0 is enabled, the appropriate output pin is controlled by the timer circuit only and writing to the port  
will have no effect. Figure 12 shows a functional diagram of a port circuit when used in compare  
mode 0. The port latch is directly controlled by the timer overflow and compare match signals. The  
input line from the internal bus and the write-to-latch line of the port latch are disconnected when  
compare mode 0 is enabled.  
Port Circuit  
Read Latch  
VDD  
Compare Register  
Circuit  
Compare Reg.  
S
Q
Q
Port  
Pin  
Internal  
Bus  
16 Bit  
Comparator  
D
Port  
Latch  
Write to  
Latch  
Compare  
Match  
CLK  
16 Bit  
Timer Register  
Timer Circuit  
R
Timer  
Overflow  
Read Pin  
MCS02661  
Figure 12  
Port Latch in Compare Mode 0  
Data Sheet  
31  
12.00  
C505/C505C/C505A/C505CA  
Compare Mode 1  
If compare mode 1 is enabled and the software writes to the appropriate output latch at the port, the  
new value will not appear at the output pin until the next compare match occurs. Thus, it can be  
choosen whether the output signal has to make a new transition (1-to-0 or 0-to-1, depending on the  
actual pin-level) or should keep its old value at the time when the timer value matches the stored  
compare value.  
In compare mode 1 (see Figure 13) the port circuit consists of two separate latches. One latch  
(which acts as a "shadow latch") can be written under software control, but its value will only be  
transferred to the port latch (and thus to the port pin) when a compare match occurs.  
Port Circuit  
Read Latch  
VDD  
Compare Register  
Circuit  
Compare Reg.  
Internal  
Bus  
D
Q
D
Q
Q
Port  
Pin  
16 Bit  
Comparator  
Shadow  
Latch  
Port  
Latch  
Compare  
Match  
Write to  
Latch  
CLK  
CLK  
16 Bit  
Timer Register  
Timer Circuit  
Read Pin  
MCS02662  
Figure 13  
Compare Function in Compare Mode 1  
Timer 2 Capture Modes  
Each of the compare/capture registers CC1 to CC3 and the CRC register can be used to latch the  
current 16-bit value of the timer 2 registers TL2 and TH2. Two different modes are provided for this  
function.  
In mode 0, the external event causing a capture is :  
– for CC registers 1 to 3: a positive transition at pins CC1 to CC3 of port 1  
– for the CRC register:  
a positive or negative transition at the corresponding pin, depending  
on the status of the bit I3FR in SFR T2CON.  
In mode 1 a capture occurs in response to a write instruction to the low order byte of a capture  
register. The write-to-register signal (e.g. write-to-CRCL) is used to initiate a capture. The timer 2  
contents will be latched into the appropriate capture register in the cycle following the write  
instruction. In this mode no interrupt request will be generated.  
Data Sheet  
32  
12.00  
C505/C505C/C505A/C505CA  
Serial Interface (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode, three  
asynchronous modes) as illustrated in Table 7.  
Table 7  
USART Operating Modes  
SCON  
Description  
Mode  
SM0  
SM1  
0
0
0
Shift register mode, fixed baud rate  
Serial data enters and exits through R×D; T×D outputs the shift  
clock; 8-bit are transmitted/received (LSB first)  
1
2
3
0
1
1
1
0
1
8-bit UART, variable baud rate  
10 bits are transmitted (through T×D) or received (at R×D)  
9-bit UART, fixed baud rate  
11 bits are transmitted (through T×D) or received (at R×D)  
9-bit UART, variable baud rate  
Like mode 2  
For clarification some terms regarding the difference between "baud rate clock" and "baud rate"  
should be mentioned. In the asynchronous modes the serial interfaces require a clock rate which is  
16 times the baud rate for internal synchronization. Therefore, the baud rate generators/timers have  
to provide a "baud rate clock" (output signal in Figure 14 to the serial interface which - there divided  
by 16 - results in the actual "baud rate". Further, the abbrevation fOSC refers to the oscillator  
frequency (crystal or external clock operation).  
The variable baud rates for modes 1 and 3 of the serial interface can be derived either from timer 1  
or from a decdicated baud rate generator (see Figure 14).  
Data Sheet  
33  
12.00  
C505/C505C/C505A/C505CA  
Timer 1  
Overflow  
SCON.7  
SCON.6  
(SM0/  
ADCON0.7  
(BD)  
PCON.7  
Baud  
Rate  
Generator  
Mode 1  
Mode 3  
(SMOD)  
SM1)  
0
1
÷2  
0
f OSC  
Baud  
Rate  
1
(SRELH  
SRELL)  
Clock  
Mode 2  
Mode 0  
Only one mode  
can be selected  
÷6  
Note: The switch configuration shows the reset state.  
MCS02733  
Figure 14  
Block Diagram of Baud Rate Generation for the Serial Interface  
Table 8 below lists the values/formulas for the baud rate calculation of the serial interface with its  
dependencies of the control bits BD and SMOD.  
Table 8  
Serial Interface - Baud Rate Dependencies  
Serial Interface  
Active Control Bits Baud Rate Calculation  
Operating Modes  
BD  
SMOD  
Mode 0 (Shift Register)  
fOSC / 6  
Mode 1 (8-bit UART)  
Mode 3 (9-bit UART)  
0
X
Controlled by timer 1 overflow :  
(2SMOD × timer 1 overflow rate) / 32  
1
X
Controlled by baud rate generator  
(2SMOD × fOSC) /  
(32 × baud rate generator overflow rate)  
Mode 2 (9-bit UART)  
0
1
f
f
OSC / 32  
OSC / 16  
Data Sheet  
34  
12.00  
C505/C505C/C505A/C505CA  
CAN Controller (C505C and C505CA only)  
The on-chip CAN controller, compliant to version 2.0B, is the functional heart which provides all  
resources that are required to run the standard CAN protocol (11-bit identifiers) as well as the  
extended CAN protocol (29-bit identifiers). It provides a sophisticated object layer to relieve the  
CPU of as much overhead as possible when controlling many different message objects (up to 15).  
This includes bus arbitration, resending of garbled messages, error handling, interrupt generation,  
etc. In order to implement the physical layer, external components have to be connected to the  
C505C/C505CA.  
The internal bus interface connects the on-chip CAN controller to the internal bus of the  
microcontroller. The registers and data locations of the CAN interface are mapped to a specific 256  
byte wide address range of the external data memory area (F700 to F7FF ) and can be accessed  
H
H
using MOVX instructions. Figure 15 shows a block diagram of the on-chip CAN controller.  
The TX/RX Shift Register holds the destuffed bit stream from the bus line to allow the parallel  
access to the whole data or remote frame for the acceptance match test and the parallel transfer of  
the frame to and from the Intelligent Memory.  
The Bit Stream Processor (BSP) is a sequencer controlling the sequential data stream between  
the TX/RX Shift Register, the CRC Register, and the bus line. The BSP also controls the EML and  
the parallel data stream between the TX/RX Shift Register and the Intelligent Memory such that the  
processes of reception, arbitration, transmission, and error signalling are performed according to  
the CAN protocol. Note that the automatic retransmission of messages which have been corrupted  
by noise or other external error conditions on the bus line is handled by the BSP.  
The Cyclic Redundancy Check Register (CRC) generates the Cyclic Redundancy Check code to  
be transmitted after the data bytes and checks the CRC code of incoming messages. This is done  
by dividing the data stream by the code generator polynomial.  
The Error Management Logic (EML) is responsible for the fault confinement of the CAN device. Its  
counters, the Receive Error Counter and the Transmit Error Counter, are incremented and  
decremented by commands from the Bit Stream Processor. According to the values of the error  
counters, the CAN controller is set into the states error active, error passive and busoff.  
The Bit Timing Logic (BTL) monitors the busline input RXDC and handles the busline related bit  
timing according to the CAN protocol. The BTL synchronizes on a recessive to dominant busline  
transition at Start of Frame (hard synchronization) and on any further recessive to dominant busline  
transition, if the CAN controller itself does not transmit a dominant bit (resynchronization). The BTL  
also provides programmable time segments to compensate for the propagation delay time and for  
phase shifts and to define the position of the Sample Point in the bit time. The programming of the  
BTL depends on the baudrate and on external physical delay times.  
The Intelligent Memory (CAM/RAM array) provides storage for up to 15 message objects of  
maximum 8 data bytes length. Each of these objects has a unique identifier and its own set of  
control and status bits. After the initial configuration, the Intelligent Memory can handle the  
reception and transmission of data without further microcontroller actions.  
Data Sheet  
35  
12.00  
C505/C505C/C505A/C505CA  
TXDC  
RXDC  
Bit  
Timing  
Logic  
BTL-Configuration  
CRC  
Gen./Check  
Timing  
Generator  
TX/RX Shift Register  
Messages  
Clocks  
(to all)  
Control  
Messages  
Handlers  
Intelligent  
Memory  
Interrupt  
Register  
Status +  
Control  
Bit  
Stream  
Processor  
Error  
Management  
Logic  
Status  
Register  
to internal Bus  
MCB02736  
Figure 15  
CAN Controller Block Diagram  
Data Sheet  
36  
12.00  
C505/C505C/C505A/C505CA  
CAN Controller Software Initialization  
The very first step of the initialization is the CAN controller input clock selection. A divide-by-2  
prescaler is enabled by default after reset (Figure 16). Setting bit CMOD (SYSCON.3) disables the  
prescaler. The purpose of the prescaler selection is:  
– to ensure that the CAN controller is operable when f  
– to achieve the maximum CAN baudrate of 1 Mbaud when f  
is over 10 MHz (bit CMOD =0)  
osc  
is 8 MHz (bit CMOD=1)  
osc  
SYSCON.3  
(CMOD)  
f
OSC  
1
0
f
CAN  
Full-CAN  
Module  
2
MCS03296  
Condition: CMOD = 0, when f  
> 10 MHz  
OSC  
Frequency (MHz)  
CMOD  
BRP  
CAN  
(SYSCON.3) (BTR0.0-5)  
baudrate  
(Mbaud/sec)  
f
f
CAN  
OSC  
8
8
8
4
8
1
0
0
000000  
000000  
000000  
1
0.5  
1
B
B
B
16  
Note : The switch configuration shows the reset state of bit CMOD.  
Figure 16  
CAN controller Input Clock Selection  
Data Sheet  
37  
12.00  
C505/C505C/C505A/C505CA  
8-Bit A/D Converter (C505 and C505C only)  
The C505/C505C includes a high performance / high speed 8-bit A/D converter (ADC) with 8 analog  
input channels. It operates with a successive approximation technique and provides the following  
features:  
– 8 multiplexed input channels (port 1), which can also be used as digital outputs/inputs  
– 8-bit resolution  
– Internal start-of-conversion trigger  
– Interrupt request generation after each conversion  
– Single or continuous conversion mode  
The 8-bit ADC uses two clock signals for operation : the conversion clock f  
(=1/t  
) and the  
ADC  
ADC  
input clock f (1/t ). f  
is derived from the C505 system clock f  
which is applied at the XTAL  
IN  
IN ADC  
OSC  
pins via the ADC clock prescaler as shown in Figure 17. The input clock is equal to f  
. The  
OSC  
conversion clock f  
is limited to a maximum frequency of 1.25 MHz. Therefore, the ADC clock  
ADC  
prescaler must be programmed to a value which assures that the conversion clock does not exceed  
1.25 MHz. The prescaler ratio is selected by the bits ADCL1 and ADCL0 of SFR ADCON1.  
ADCL1  
ADCL0  
f
OSC  
32  
16  
8
f
Conversion Clock  
ADC  
MUX  
A / D  
Converter  
4
Input Clock  
1
f
Clock Prescaler  
IN  
Condition: f  
< 1.25 MHz  
f
= f  
=
OSC  
ADC max  
IN  
CLP  
MCS03299  
MCUSystemClock f  
Prescaler  
Ratio  
f
ADCL1  
ADCL0  
IN  
ADC  
Rate (f  
)
[MHz]  
[MHz]  
OSC  
2 MHz  
2
÷ 4  
0.5  
0
0
0
0
1
1
1
0
0
1
1
0
0
0
5 MHz  
5
÷ 4  
1.25  
0.75  
1.25  
0.75  
1
6 MHz  
6
÷ 8  
10 MHz  
12 MHz  
16 MHz  
20 MHz  
10  
12  
16  
20  
÷ 8  
÷ 16  
÷ 16  
÷ 16  
1.25  
Figure 17  
8-Bit A/D Converter Clock Selection  
Data Sheet  
38  
12.00  
C505/C505C/C505A/C505CA  
Internal  
Bus  
IEN1 (B8  
EXEN2  
)
H
SWDT  
EX6  
IEX6  
EAN5  
EX5  
IEX5  
EAN4  
EX4  
IEX4  
EAN3  
EX3  
IEX3  
EAN2  
MX2  
ECAN  
SWI  
EADC  
IADC  
EAN0  
MX0  
IRCON (C0  
EXF2  
)
H
TF2  
P1ANA (90  
)
H
EAN7  
EAN6  
EAN1  
MX1  
ADCON1 (DC  
ADCL1  
)
H
ADCL0  
ADCON0 (D8  
BD  
)
H
CLK  
BSY  
ADM  
MX2  
MX1  
MX0  
ADDAT ADST  
Single /  
Continuous Mode  
(D9  
)
(DA )  
H
H
Port 1  
LSB  
.1  
MUX  
S&H  
.2  
.3  
Conversion  
Clock  
Prescaler  
f
Conversion Clock f  
Input Clock f  
OSC  
ADC  
.4  
A / D  
Converter  
.5  
.6  
IN  
MSB  
V
V
AREF  
AGND  
Start of  
conversion  
Internal  
Bus  
Write to ADST  
Shaded Bit locations are not used in ADC-functions.  
MCB03298  
Figure 18  
Block Diagram of the 8-Bit A/D Converter  
Data Sheet  
39  
12.00  
C505/C505C/C505A/C505CA  
10-Bit A/D Converter (C505A and C505CA only)  
The C505A/C505CA includes a high performance / high speed 10-bit A/D-Converter (ADC) with 8  
analog input channels. It operates with a successive approximation technique and uses self  
calibration mechanisms for reduction and compensation of offset and linearity errors. The A/D  
converter provides the following features:  
– 8 multiplexed input channels (port 1), which can also be used as digital inputs/outputs  
– 10-bit resolution  
– Single or continuous conversion mode  
– Internal start-of-conversion trigger capability  
– Interrupt request generation after each conversion  
– Using successive approximation conversion technique via a capacitor array  
– Built-in hidden calibration of offset and linearity errors  
The 10-bit ADC uses two clock signals for operation : the conversion clock f  
(=1/t  
) and the  
ADC  
ADC  
input clock f (=1/t ). f  
is derived from the C505 system clock f  
which is applied at the  
IN  
IN ADC  
OSC  
XTAL pins. The input clock f is equal to f  
The conversion f  
clock is limited to a maximum  
IN  
OSC  
ADC  
frequency of 2 MHz. Therefore, the ADC clock prescaler must be programmed to a value which  
assures that the conversion clock does not exceed 2 MHz. The prescaler ratio is selected by the  
bits ADCL1 and ADCL0 of SFR ADCON1.  
ADCL1  
ADCL0  
f
OSC  
32  
16  
8
f
Conversion Clock  
ADC  
MUX  
A / D  
Converter  
4
Input Clock  
1
f
Clock Prescaler  
IN  
Condition: f  
< 2 MHz  
f
= f  
=
OSC  
ADC max  
IN  
CLP  
MCS03635  
MCUSystemClock f  
Prescaler  
Ratio  
f
ADCL1  
ADCL0  
IN  
ADC  
Rate (f  
)
[MHz]  
[MHz]  
0.5  
1.5  
2
OSC  
2 MHz  
2
÷ 4  
÷ 4  
÷ 4  
÷ 8  
÷ 8  
÷ 16  
0
0
0
0
0
1
0
0
0
1
1
0
6 MHz  
6
8 MHz  
8
12 MHz  
16 MHz  
20 MHz  
12  
16  
20  
1.5  
2
1.25  
Figure 19  
10-Bit A/D Converter Clock Selection  
Data Sheet  
40  
12.00  
C505/C505C/C505A/C505CA  
Internal  
Bus  
IEN1 (B8  
EXEN2  
)
H
EADC  
IADC  
EAN0  
MX0  
SWDT  
EX6  
EX5  
EX4  
EX3  
ECAN  
IRCON (C0  
)
H
EXF2  
TF2  
IEX6  
IEX5  
IEX4  
IEX3  
SWI  
P1ANA (90  
)
H
EAN7  
EAN6  
EAN5  
EAN4  
EAN3  
EAN2  
EAN1  
ADCON1 (DC  
ADCL1  
)
H
ADCL0  
MX2  
MX2  
MX1  
MX1  
ADCON0 (D8  
BD  
)
H
BSY  
ADM  
MX0  
CLK  
ADDATH ADDATL  
Single /  
Continuous Mode  
(D9 )  
(DA )  
H
H
Port 1  
.2  
.3  
MUX  
S&H  
.4  
.5  
Conversion  
Clock  
Prescaler  
f
Conversion Clock f  
Input Clock f  
OSC  
ADC  
.6  
A / D  
Converter  
.7  
.8  
LSB  
.1  
IN  
MSB  
V
V
AREF  
AGND  
Start of  
conversion  
Internal  
Bus  
Write to ADDATL  
Shaded Bit locations are not used in ADC-functions.  
Figure 20  
Block Diagram of the 10-Bit A/D Converter  
Data Sheet  
41  
12.00  
C505/C505C/C505A/C505CA  
Interrupt System  
The C505 provides 12 interrupt vectors with four priority levels. Five interrupt requests can be  
generated by the on-chip peripherals (timer 0, timer 1, timer 2, serial interface, A/D converter). One  
interrupt can be generated by the CAN controller (C505C and C505CA only) or by a software setting  
and in this case the interrupt vector is the same. Six interrupts may be triggered externally (P3.2/  
INT0, P3.3/INT1, P1.0/AN0/INT3/CC0, P1.1/AN1/INT4/CC1, P1.2/AN2/INT5/CC2, P1.3/AN3/INT6/  
CC3). Additionally, the P1.5/AN5/T2EX can trigger an interrupt. The wake-up from power-down  
mode interrupt has a special functionality which allows to exit from the software power-down mode  
by a short low pulse at either pin P3.2/INT0 or the pin P4.1/RXDC.  
Figure 21 to Figure 23 give a general overview of the interrupt sources and illustrate the request  
and the control flags which are described in the next sections. Table 9 lists all interrupt sources with  
their request flags and interrupt vector addresses.  
Table 9  
Interrupt Source and Vectors  
Interrupt Source  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Channel  
Interrupt Vector Address  
Interrupt Request Flags  
0003  
H
IE0  
000B  
H
TF0  
0013  
H
IE1  
001B  
H
TF1  
0023  
H
RI / TI  
TF2 / EXF2  
IADC  
– / SWI  
IEX3  
IEX4  
IEX5  
IEX6  
Timer 2 Overflow / Ext. Reload  
A/D Converter  
002B  
H
0043  
H
CAN Controller / Software Interrupt 004B  
H
H
External interrupt 3  
0053  
External Interrupt 4  
005B  
H
External Interrupt 5  
0063  
H
External interrupt 6  
006B  
H
H
Wake-up from power-down mode 007B  
Data Sheet  
42  
12.00  
C505/C505C/C505A/C505CA  
Highest  
Priority Level  
P3.2 /  
INT0  
IE0  
0003  
0043  
H
H
TCON.1  
EX0  
Lowest  
Priority Level  
IT0  
IEN0.0  
TCON.0  
A / D Converter  
IADC  
IRCON.0  
EADC  
IEN1.0  
IP1.0  
IP0.0  
P
o
l
l
i
n
g
Timer 0  
Overflow  
TF0  
000B  
004B  
H
H
TCON.5  
ET0  
IEN0.1  
SWI  
>1  
IRCON.1  
S
e
q
u
e
n
c
e
ECAN  
Status  
Error  
IEN1.1  
SIE  
CR.2  
>1  
>1  
EIE  
IE  
CR.3  
CR.1  
Message  
Transmit  
TXIE  
INTPND  
MCR0.0 / 1  
MCR0.5 / 4  
Message  
Receive  
RXIE  
EA  
IP1.1  
IP0.1  
MCR0.3 / 2  
IEN0.7  
Bit addressable  
Request flag is cleared by hardware  
C505C and C505CA Only  
MCB03303  
Figure 21  
Interrupt Structure, Overview Part 1  
Note: Each of the 15 CAN controller message objects (C505C and C505CA only), shown in the  
shaded area of Figure 21 provides the bits/flags.  
Data Sheet  
43  
12.00  
C505/C505C/C505A/C505CA  
Highest  
Priority Level  
P3.3 /  
INT1  
IE1  
0013  
0053  
H
H
TCON.3  
EX1  
Lowest  
Priority Level  
IT1  
IEN0.2  
TCON.2  
P
o
P1.0 /  
AN0 /  
IEX3  
IRCON.2  
EX3  
l
l
i
INT3 /  
CC0  
IEN1.2  
IP1.2  
IP0.2  
I3FR  
n
g
T2CON.6  
Timer 1  
Overflow  
S
e
q
u
e
n
c
e
TF1  
001B  
H
H
TCON.7  
ET1  
IEN0.3  
P1.1 /  
AN1 /  
INT4 /  
CC1  
IEX4  
005B  
EA  
IRCON.3  
EX4  
IEN1.3  
IP1.3  
IP0.3  
IEN0.7  
Bit addressable  
Request flag is cleared by hardware  
MCB03304  
Figure 22  
Interrupt Structure, Overview Part 2  
Data Sheet  
44  
12.00  
C505/C505C/C505A/C505CA  
Highest  
Priority Level  
RI  
>1  
SCON.0  
USART  
0023  
0063  
H
H
ES  
TI  
Lowest  
Priority Level  
IEN0.4  
SCON.1  
P1.2 /  
AN2 /  
INT5 /  
CC2  
P
o
l
l
i
n
g
IEX5  
IRCON.4  
EX5  
IEN1.4  
IP1.4  
IP0.4  
Timer 2  
Overflow  
TF2  
IRCON.6  
>1  
S
e
q
u
e
n
c
e
P1.5 /  
AN5 /  
T2EX  
002B  
H
H
EXF2  
ET2  
EXEN2  
IEN1.7  
IRCON.7  
IEN0.5  
P1.3 /  
INT6 /  
CC3  
IEX6  
IRCON.5  
006B  
EA  
EX6  
IEN1.5  
IP1.5  
IP0.5  
IEN0.7  
Bit addressable  
Request flag is cleared by hardware  
MCB03305  
Figure 23  
Interrupt Structure, Overview Part 3  
Data Sheet  
45  
12.00  
C505/C505C/C505A/C505CA  
Fail Save Mechanisms  
The C505 offers enhanced fail safe mechanisms, which allow an automatic recovery from software  
upset or hardware failure :  
– a programmable watchdog timer (WDT), with variable time-out period from 192 µs up to  
approx. 393.2 ms at 16 MHz (314.5 ms at 20 MHz).  
– an oscillator watchdog (OWD) which monitors the on-chip oscillator and forces the  
microcontroller into reset state in case the on-chip oscillator fails; it also provides the clock for  
a fast internal reset after power-on.  
The watchdog timer in the C505 is a 15-bit timer, which is incremented by a count rate of fOSC/12  
upto fOSC/192. The system clock of the C505 is divided by two prescalers, a divide-by-two and a  
divide-by-16 prescaler. For programming of the watchdog timer overflow rate, the upper 7 bits of the  
watchdog timer can be written. Figure 24 shows the block diagram of the watchdog timer unit.  
0
7
8
f
/ 6  
OSC  
2
16  
WDTL  
14  
WDT Reset - Request  
WDTH  
IP0 (A9  
)
H
WDTPSEL  
OWDS WDTS  
External HW Reset  
7
6
0
WDTREL (86  
)
H
Control Logic  
IEN0 (A8  
IEN1 (B8  
)
)
WDT  
H
H
SWDT  
MCB03306  
Figure 24  
Block Diagram of the Programmable Watchdog Timer  
The watchdog timer can be started by software (bit SWDT in SFR IEN1) but it cannot be stopped  
during active mode of the device. If the software fails to refresh the running watchdog timer an  
internal reset will be initiated on watchdog timer overflow. For refreshing of the watchdog timer the  
content of the SFR WDTREL is transfered to the upper 7-bit of the watchdog timer. The refresh  
sequence consists of two consequtive instructions which set the bits WDT and SWDT each. The  
reset cause (external reset or reset caused by the watchdog) can be examined by software (flag  
WDTS). It must be noted, however, that the watchdog timer is halted during the idle mode and  
power down mode of the processor.  
Data Sheet  
46  
12.00  
C505/C505C/C505A/C505CA  
Oscillator Watchdog  
The oscillator watchdog unit serves for three functions:  
Monitoring of the on-chip oscillator's function  
The watchdog supervises the on-chip oscillator's frequency; if it is lower than the frequency  
of the auxiliary RC oscillator in the watchdog unit, the internal clock is supplied by the RC  
oscillator and the device is brought into reset; if the failure condition disappears (i.e. the on-  
chip oscillator has a higher frequency than the RC oscillator), the part, in order to allow the  
oscillator to stabilize, executes a final reset phase of typ. 1 ms; then the oscillator watchdog  
reset is released and the part starts program execution from address 0000 again.  
H
Fast internal reset after power-on  
The oscillator watchdog unit provides a clock supply for the reset before the on-chip oscillator  
has started. The oscillator watchdog unit also works identically to the monitoring function.  
Control of external wake-up from software power-down mode  
When the power-down mode is left by a low level at the P3.2/INT0 pin or the P4.1/RXDC pin,  
the oscillator watchdog unit assures that the microcontroller resumes operation (execution of  
the power-down wake-up interrupt) with the nominal clock rate. In the power-down mode the  
RC oscillator and the on-chip oscillator are stopped. Both oscillators are started again when  
power-down mode is released. When the on-chip oscillator has a higher frequency than the  
RC oscillator, the microcontroller starts program execution by processing a power down  
interrupt after a final delay of typ. 1 ms in order to allow the on-chip oscillator to stabilize.  
Data Sheet  
47  
12.00  
C505/C505C/C505A/C505CA  
EWPD  
(PCON1.7)  
WS  
(PCON1.4)  
Power - Down  
Mode Activated  
Power-Down Mode  
Wake - Up Interrupt  
P4.1 / RXDC  
Control  
Logic  
Control  
Logic  
P3.2 / INT0  
Internal Reset  
Start /  
Stop  
RC  
Oscillator  
f
f
RC  
1
10  
3 MHz  
<
f
f
1
2
Frequency  
Comparator  
>1  
Delay  
Start /  
Stop  
f
2
XTAL1  
XTAL2  
On-Chip  
Oscillator  
IP0 (A9  
)
H
OWDS  
Int. Clock  
MCB03308  
Figure 25  
Functional Block Diagram of the Oscillator Watchdog  
Data Sheet  
48  
12.00  
C505/C505C/C505A/C505CA  
Power Saving Modes  
The C505 provides two basic power saving modes, the idle mode and the power down mode.  
Additionally, a slow down mode is available. This power saving mode reduces the internal clock rate  
in normal operating mode and it can be also used for further power reduction in idle mode.  
Idle mode  
In the idle mode the main oscillator of the C505 continues to run, but the CPU is gated off from  
the clock signal. All peripheral units are further provided with the clock. The CPU status is  
preserved in its entirety. The idle mode can be terminated by any enabled interrupt of a  
peripheral unit or by a hardware reset.  
Power down mode  
The operation of the C505 is completely stopped and the oscillator is turned off. This mode is  
used to save the contents of the internal RAM with a very low standby current. Power down  
mode is entered by software and can be left by reset or by a short low pulse at pin P3.2/  
INT0.or P4.1/RXDC.  
Slow down mode  
The controller keeps up the full operating functionality, but its normal clock frequency is  
internally divided by 32. This slows down all parts of the controller, the CPU and all  
peripherals, to 1/32-th of their normal operating frequency. Slowing down the frequency  
significantly reduces power consumption.  
In the power down mode of operation, VDD can be reduced to minimize power consumption. It must  
be ensured, however, that VDD is not reduced before the power down mode is invoked, and that VDD  
is restored to its normal operating level, before the power down mode is terminated. Table 10 gives  
a general overview of the entry and exit procedures of the power saving modes.  
Table 10  
Power Saving Modes Overview  
Mode  
Entering  
Leaving by  
Remarks  
(Instruction  
Example)  
Idle Mode  
ORL PCON, #01H Ocurrence of an  
ORL PCON, #20H interrupt from a  
peripheral unit  
CPU clock is stopped;  
CPU maintains their data;  
peripheral units are active (if  
enabled) and provided with  
clock  
Hardware Reset  
Power Down Mode ORL PCON, #02H Hardware Reset  
Oscillator is stopped;  
ORL PCON, #40H  
contents of on-chip RAM and  
SFR’s are maintained;  
Short low pulse at  
pin P3.2/INT0 or  
P4.1/RXDC  
Slow Down Mode  
ORL PCON,#10H  
ANL PCON,#0EFH  
or  
Hardware Reset  
Oscillator frequency is  
reduced to 1/32 of its nominal  
frequency  
Data Sheet  
49  
12.00  
C505/C505C/C505A/C505CA  
OTP Memory Operation (C505A-4E and C505CA-4E only)  
The C505A-4E/C505CA-4E contains a 32K byte one-time programmable (OTP) program memory.  
With the C505A-4E/C505CA-4E fast programming cycles are achieved (1 byte in 100 µsec). Also  
several levels of OTP memory protection can be selected.  
For programming of the device, the C505A-4E/C505CA-4E must be put into the programming  
mode. This typically is done not in-system but in a special programming hardware. In the  
programming mode the C505A-4E/C505CA-4E operates as a slave device similar as an EPROM  
standalone memory device and must be controlled with address/data information, control lines, and  
an external 11.5V programming voltage. Figure 26 shows the pins of the C505A-4E/C505CA-4E  
which are required for controlling of the OTP programming mode.  
VDD VSS  
A0-A7 /  
A8-A14  
PALE  
Port 2  
Port 0  
D0-D7  
EA/VPP  
PROG  
PRD  
PMSEL0  
PMSEL1  
C505A-4E  
C505CA-4E  
RESET  
XTAL1  
XTAL2  
PSEN  
PSEL  
Figure 26  
Programming Mode Configuration  
Data Sheet  
50  
12.00  
C505/C505C/C505A/C505CA  
Pin Configuration in Programming Mode  
33 32 31 30 29 28 27 26 25 24 23  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
A4 / A12  
D3  
D2  
D1  
D0  
N.C.  
N.C.  
21  
20  
19  
A3 / A11  
A2 / A10  
A1 / A9  
A0 / A8  
VDD  
18  
17  
16  
15  
14  
13  
12  
C505A-4E  
C505CA-4E  
V
SS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
XTAL1  
XTAL2  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
9 10 11  
Figure 27  
P-MQFP-44 Pin Configuration of the C505A-4E/C505CA-4E in Programming Mode (Top View)  
Data Sheet  
51  
12.00  
C505/C505C/C505A/C505CA  
The following Table 11 contains the functional description of all C505A-4E/C505CA-4E pins which  
are required for OTP memory programming.  
Table 11  
Pin Definitions and Functions in Programming Mode  
Symbol  
I/O  
*)  
Function  
Pin Number  
4
RESET  
I
Reset  
This input must be at static “1“ (active) level during the whole  
programming mode.  
PMSEL0  
PMSEL1  
5
7
I
I
Programming mode selection pins  
These pins are used to select the different access modes in  
programming mode. PMSEL1,0 must satisfy a setup time to the  
rising edge of PALE. When the logic level of PMSEL1,0 is  
changed, PALE must be at low level.  
PMSEL1  
PMSEL0  
Access Mode  
0
0
1
1
0
1
0
1
Reserved  
Read version bytes  
Program/read lock bits  
Program/read OTP memory byte  
PSEL  
PRD  
8
I
I
I
Basic programming mode select  
This input is used for the basic programming mode selection  
and must be switched according Figure 28.  
9
Programming mode read strobe  
This input is used for read access control for OTP memory read,  
Version Register read, and lock bit read operations.  
PALE  
10  
Programming address latch enable  
PALE is used to latch the high address lines. The high address  
lines must satisfy a setup and hold time to/from the falling edge  
of PALE. PALE must be at low level when the logic level of  
PMSEL1,0 is changed.  
XTAL2  
XTAL1  
VSS  
14  
15  
16  
17  
O
I
XTAL2  
Output of the inverting oscillator amplifier.  
XTAL1  
Input to the oscillator amplifier.  
Circuit ground potential  
must be applied in programming mode.  
VDD  
Power supply terminal  
must be applied in programming mode.  
*) I = Input  
O= Output  
Data Sheet  
52  
12.00  
C505/C505C/C505A/C505CA  
Table 11  
Pin Definitions and Functions in Programming Mode (cont’d)  
Symbol  
I/O  
*)  
Function  
Pin Number  
18-25  
P2.0-7  
I
I
I
Address lines  
P2.0-7 are used as multiplexed address input lines A0-A7 and  
A8-A14. A8-A14 must be latched with PALE.  
PSEN  
PROG  
26  
27  
Program store enable  
This input must be at static “0“ level during the whole  
programming mode.  
Programming mode write strobe  
This input is used in programming mode as a write strobe for  
OTP memory program, and lock bit write operations During  
basic programming mode selection a low level must be applied  
to PROG.  
EA/VPP  
29  
External Access / Programming voltage  
This pin must be at 11.5V (VPP) voltage level during  
programming of an OTP memory byte or lock bit. During an  
OTP memory read operation this pin must be at VIH high level.  
This pin is also used for basic programming mode selection. At  
basic programming mode selection a low level must be applied  
to EA/VPP.  
D7-0  
30-37  
I/O  
Data lines 0-7  
During programming mode, data bytes are transferred via the  
bidirectional port 0 data lines.  
N.C.  
1-3, 6, 11-13, –  
28, 38-44  
Not Connected  
These pins should not be connected in programming mode.  
*) I = Input  
O= Output  
Data Sheet  
53  
12.00  
C505/C505C/C505A/C505CA  
Basic Programming Mode Selection  
The basic programming mode selection scheme is shown in Figure 28.  
5V  
VDD  
Clock  
(XTAL1/XTAL2)  
stable  
RESET  
PSEN  
“1“  
“0“  
0,1  
PMSEL1,0  
“0“  
PROG  
PRD  
“1“  
PSEL  
“0“  
PALE  
VPP  
VIH  
EA/VPP  
0V  
Ready for access  
mode selection  
During this period signals  
are not actively driven  
Figure 28  
Basic Programming Mode Selection  
Data Sheet  
54  
12.00  
C505/C505C/C505A/C505CA  
Table 12  
Access Modes Selection  
EA/  
VPP  
PMSEL  
Address  
(Port 2)  
Data  
(Port 0)  
Access Mode  
PROG  
PRD  
1
0
Program OTP memory byte  
Read OTP memory byte  
Program OTP lock bits  
Read OTP lock bits  
VPP  
VIH  
VPP  
VIH  
VIH  
H
H
H
A0-7  
A8-14  
D0-7  
H
H
H
L
L
D1,D0 see  
Table 13  
H
H
Read OTP version byte  
H
Byte addr.  
D0-7  
of sign. byte  
Lock Bits Programming / Read  
The C505A-4E/C505CA-4E has two programmable lock bits which, when programmed according  
to Table 13, provide four levels of protection for the on-chip OTP code memory. The state of the  
lock bits can also be read.  
Table 13  
Lock Bit Protection Types  
Lock Bits at D1,D0 Protection Protection Type  
Level  
D1  
D0  
1
1
Level 0  
The OTP lock feature is disabled. During normal operation of  
the C505A-4E/C505CA-4E, the state of the EA pin is not  
latched on reset.  
1
0
Level 1  
During normal operation of the C505A-4E/C505CA-4E, MOVC  
instructions executed from external program memory are  
disabled from fetching code bytes from internal memory. EA is  
sampled and latched on reset. An OTP memory read operation  
is only possible using the ROM/OTP verification mode 2 for  
protection level 1. Further programming of the OTP memory is  
disabled (reprogramming security).  
0
0
1
0
Level 2  
Level 3  
Same as level 1, but also OTP memory read operation using  
OTP verification mode is disabled.  
Same as level 2; but additionally external code execution by  
setting EA=low during normal operation of the C505A-4E/  
C505CA-4E is no more possible.  
External code execution, which is initiated by an internal  
program (e.g. by an internal jump instruction above the ROM  
boundary), is still possible.  
Data Sheet  
55  
12.00  
C505/C505C/C505A/C505CA  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
– 65  
– 0.5  
max.  
150  
6.5  
Storage temperature  
°C  
V
TST  
Voltage on VDD pins with respect  
to ground (VSS)  
VDD  
Voltage on any pin with respect  
to ground (VSS)  
– 0.5  
– 10  
V
DD + 0.5  
V
VIN  
Input current on any pin during  
overload condition  
10  
mA  
mA  
W
Absolute sum of all input currents  
during overload condition  
| 100 mA |  
1
Power dissipation  
PDISS  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for longer  
periods may affect device reliability. During absolute maximum rating overload conditions  
(VIN > VDD or VIN < VSS) the voltage on VDD pins with respect to ground (VSS) must not  
exceed the values defined by the absolute maximum ratings.  
Data Sheet  
56  
12.00  
C505/C505C/C505A/C505CA  
Operating Conditions  
Parameter  
Symbol  
Limit Values  
max.  
Unit Notes  
min.  
Supply voltage  
VDD  
4.25  
5.5  
V
Active mode,  
fosc max = 20 MHz  
2
0
5.5  
V
PowerDown mode  
Reference voltage  
Ground voltage  
VSS  
V
Ambient temperature  
°C  
SAB-C505 TA  
0
70  
SAF-C505 TA  
SAH-C505 TA  
SAK-C505 TA  
-40  
-40  
-40  
4
85  
110  
125  
Analog reference  
voltage  
VAREF  
VDD + 0.1  
V
Analog ground voltage VAGND  
VSS – 0.1  
VSS + 0.2  
V
Analog input voltage  
VAIN  
V
AGND -0.2  
VAREF +0.2  
V
1)  
XTAL clock  
fosc  
2
20  
MHz  
(with 50% duty  
cycle)  
1) For the extended temperature range -40 °C to 110 °C (SAH) and -40 °C to 125 °C (SAK), the  
devices C505-2R, C505-L, C505C-2R and C505C-L have the max. operating frequency of  
16MHz with 50% clock duty cycle.  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C505 and partly its  
demands on the system. To aid in interpreting the parameters right, when evaluating them for a  
design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C505 will provide signals with the respective characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective characteristics to the C505.  
Data Sheet  
57  
12.00  
C505/C505C/C505A/C505CA  
DC Characteristics  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Input low voltages  
all except EA, RESET  
EA pin  
VIL  
VIL1  
VIL2  
– 0.5  
– 0.5  
– 0.5  
0.2 VDD - 0.1  
0.2 VDD - 0.3  
0.2 VDD + 0.1 V  
V
V
RESET pin  
Input high voltages  
all except XTAL1, RESET  
XTAL1 pin  
VIH  
VIH1  
VIH2  
0.2 VDD + 0.9 VDD + 0.5  
V
V
V
0.7 VDD  
0.6 VDD  
V
V
DD + 0.5  
DD + 0.5  
RESET pin  
Output low voltages  
Ports 1, 2, 3, 4  
Port 0, ALE, PSEN  
VOL  
VOL1  
0.45  
0.45  
V
V
IOL = 1.6 mA 1)  
IOL = 3.2 mA 1)  
Output high voltages  
Ports 1, 2, 3, 4  
VOH  
2.4  
0.9 VDD  
2.4  
V
V
V
V
I
I
I
I
OH = – 80 µA  
OH = – 10 µA  
OH = – 800 µA  
OH = – 80 µA 2)  
Port 0 in external bus mode,  
ALE, PSEN  
VOH2  
0.9 VDD  
Logic 0 input current  
Ports 1, 2, 3, 4  
IIL  
– 10  
– 65  
– 70  
µA  
µA  
VIN = 0.45 V  
VIN = 2 V  
Logical 1-to-0 transition current ITL  
– 650  
Ports 1, 2, 3, 4  
Input leakage current  
Port 0, AN0-7 (Port 1), EA  
ILI  
± 1  
µA  
0.45 < VIN < VDD  
14)  
Input high current to RESET  
IIH  
5
100  
10  
µA  
0.6 VDD <VIN<VDD  
Pin capacitance  
CIO  
pF  
fc = 1 MHz,  
TA = 25 °C  
3) 4)  
Overload current  
IOV  
± 5  
12.1  
30  
mA  
V
Programming voltage  
Supply current at EA/VPP  
VPP  
10.9  
11.5 V ± 5% 5)  
6)  
mA  
Notes see Page 60  
Data Sheet  
58  
12.00  
C505/C505C/C505A/C505CA  
Power Supply Currents  
Parameter  
Symbol Limit Values Unit Test Condition  
typ.12) max.13)  
7)  
C505 /  
C505C  
Active Mode  
12 MHz IDD  
20 MHz IDD  
19.3  
31.3  
27.0 mA  
39  
8)  
Idle Mode  
12 MHz IDD  
20 MHz IDD  
10.3  
16.2  
13.0 mA  
21.0  
9)  
Active Mode with  
12 MHz IDD  
3.9  
4.8  
5.5  
7.5  
mA  
mA  
µA  
slow-down enabled 20 MHz IDD  
Idle Mode with 12 MHz IDD  
slow-down enabled 20 MHz IDD  
10)  
3.2  
4.0  
5.0  
7.0  
Power down mode  
Active Mode  
IPD  
10  
50  
V
7)  
DD = 2..5.5 V 11)  
C505A-4E  
/C505CA-4E  
16 MHz IDD  
20 MHz IDD  
28.7  
35.2  
30.7 mA  
37.6  
8)  
Idle Mode  
16 MHz IDD  
20 MHz IDD  
14.9  
17.7  
15.9 mA  
18.9  
9)  
Active Mode with  
16 MHz IDD  
9.9  
12.3  
12.8 mA  
15.6  
slow-down enabled 20 MHz IDD  
Idle Mode with 16 MHz IDD  
slow-down enabled 20 MHz IDD  
10)  
5.1  
6.3  
5.6  
6.8  
mA  
Power down mode  
IPD  
5.6  
20  
µA  
V
DD = 2..5.5 V 11)  
7)  
C505A-4R / Active Mode  
C505CA-4R  
16 MHz IDD  
20 MHz IDD  
22.8  
27.6  
29.2 mA  
35.3  
8)  
/C505A-2R /  
C505CA-2R  
/C505A-L /  
Idle Mode  
16 MHz IDD  
20 MHz IDD  
12.7  
15.0  
16.3 mA  
19.3  
9)  
Active Mode with  
slow-down enabled 20 MHz IDD  
16 MHz IDD  
6.6  
7.3  
8.2  
9.3  
mA  
mA  
µA  
C505CA-L  
10)  
Idle Mode with  
slow-down enabled 20 MHz IDD  
16 MHz IDD  
5.0  
5.3  
5.9  
6.5  
Power down mode  
IPD  
5.3  
30  
V
DD = 2..5.5 V 11)  
Notes see Page 60  
Data Sheet  
59  
12.00  
C505/C505C/C505A/C505CA  
Note:  
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE  
and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these  
pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise  
pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger,  
or use an address latch with a schmitt-trigger strobe input.  
2) Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the  
0.9 VDD specification when the address lines are stabilizing.  
3) Overload conditions under operating conditions occur if the voltage on the respective pin exceeds the specified  
operating range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input currents on all port  
pins may not exceed 50 mA. The supply voltage VDD and VSS must remain within the specified limits.  
4) Not 100% tested, guaranteed by design characterization.  
5) Only valid for C505A-4E and C505CA-4E.  
6) Only valid for C505A-4E and C505CA-4E in programming mode.  
7) IDD (active mode) is measured with:  
XTAL1 driven with tR , tF = 5 ns, 50% duty cycle , VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL2 = N.C.;  
EA = Port 0 = RESET =VDD ; all other pins are disconnected.  
8) IDD (idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL1 driven with tR , tF = 5 ns, 50% duty cycle, VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL2 = N.C.;  
RESET = EA = VSS ; Port0 = VDD ; all other pins are disconnected; the microcontroller is put into idle mode by  
software;  
9) IDD (active mode with slow-down mode) is measured with all output pins disconnected and with all peripherals  
disabled;  
XTAL1 driven with tR , tF = 5 ns, 50% duty cycle, VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL2 = N.C.;  
RESET = EA = VSS ; all other pins are disconnected; the microcontroller is put into slow-down mode by  
software;  
10) IDD (idle mode with slow-down mode) is measured with all output pins disconnected and with all peripherals  
disabled;  
XTAL1 driven with tR , tF = 5 ns, 50% duty cycle, VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL2 = N.C.;  
RESET = EA = VSS ; Port0 = VDD ; all other pins are disconnected; the microcontroller is put into idle mode  
with slow-down enabled by software;  
11) IPD (power-down mode) is measured under following conditions:  
Port 0 = EA = VDD ; RESET =VSS ; XTAL2 = N.C.; XTAL1 = VSS ; VAGND = VSS ; VAREF = VDD  
all other pins are disconnected.  
;
12) The typical IDD values are periodically measured at TA = +25 °C but not 100% tested.  
13) The maximum IDD values are measured under worst case conditions (TA = 0 °C or -40 °C and VDD = 5.5 V)  
14) The values are valid for C505CA-4R, C505CA-2R, C505CA-L, C505A-4R, C505A-2R and C505A-L only.  
Data Sheet  
60  
12.00  
C505/C505C/C505A/C505CA  
IDD  
[mA]  
40  
C505  
C505C  
35  
30  
25  
20  
15  
10  
5
IDD  
IDD  
max  
typ  
fOSC  
4
8
12  
16  
20  
[MHz]  
Figure 29  
I
DD Diagram of C505 and C505C  
C505/C505C : Power Supply Current Calculation Formulas  
Parameter  
Symbol  
Formula  
1.5 fOSC + 1.3  
Active mode  
IDD typ  
*
IDD max  
1.5 fOSC + 9.0  
*
Idle mode  
IDD typ  
0.74 fOSC + 1.4  
*
IDD max  
1.0 fOSC + 1.0  
*
Active mode with  
IDD typ  
0.11 fOSC + 2.6  
*
slow-down enabled  
IDD max  
0.25 fOSC + 2.5  
*
Idle mode with  
IDD typ  
0.1 fOSC + 2.0  
*
slow-down enabled  
IDD max  
0.25 fOSC + 2.0  
*
Note:  
f
is the oscillator frequency in MHz. I values are given in mA.  
osc  
DD  
Data Sheet  
61  
12.00  
C505/C505C/C505A/C505CA  
C505A-4E  
C505CA-4E  
IDD  
[mA]  
40  
35  
30  
25  
20  
15  
10  
5
IDD  
IDD  
max  
typ  
fOSC  
4
8
12  
16  
20  
[MHz]  
Figure 30  
IDD Diagram of C505A-4E and C505CA-4E  
C505A-4E/C505CA-4E : Power Supply Current Calculation Formulas  
Parameter  
Symbol  
Formula  
1.63 fOSC + 2.6  
Active mode  
IDD typ  
*
IDD max  
1.74 fOSC + 2.8  
*
Idle mode  
IDD typ  
0.69 fOSC + 3.9  
*
IDD max  
0.74 fOSC + 4.1  
*
Active mode with  
IDD typ  
0.6 fOSC + 0.3  
*
slow-down enabled  
IDD max  
0.7 fOSC + 1.6  
*
Idle mode with  
IDD typ  
0.3 fOSC + 0.3  
*
slow-down enabled  
IDD max  
0.3 fOSC + 0.8  
*
Note:  
f
is the oscillator frequency in MHz. I values are given in mA.  
osc  
DD  
Data Sheet  
62  
12.00  
C505/C505C/C505A/C505CA  
C505A-4R  
C505A-2R  
C505A-L  
IDD  
[mA]  
40  
C505CA-4R  
C505CA-2R  
C505CA-L  
35  
30  
25  
20  
15  
10  
5
IDD  
max  
IDD  
typ  
fOSC  
4
8
12  
16  
20  
[MHz]  
Figure 31  
IDD Diagram of C505A-4R/C505A-2R/C505A-L/C505CA-4R/C505CA-2R/C505CA-L  
C505A-4R/C505A-2R/C505A-L/C505CA-4R/C505CA-2R/C505CA-L :  
Power Supply Current Calculation Formulas  
Parameter  
Symbol  
Formula  
1.19 fOSC + 3.77  
Active mode  
IDD typ  
*
IDD max  
1.54 fOSC + 4.47  
*
Idle mode  
IDD typ  
0.57 fOSC + 3.55  
*
IDD max  
0.75 fOSC + 4.26  
*
Active mode with  
IDD typ  
0.18 fOSC + 3.74  
*
slow-down enabled  
IDD max  
0.28 fOSC + 3.67  
*
Idle mode with  
IDD typ  
0.07 fOSC + 3.91  
*
slow-down enabled  
IDD max  
0.14 fOSC + 3.64  
*
Note:  
f
is the oscillator frequency in MHz. I values are given in mA.  
osc  
DD  
Data Sheet  
63  
12.00  
C505/C505C/C505A/C505CA  
A/D Converter Characteristics of C505 and C505C  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
1)  
Analog input voltage  
Sample time  
VAIN  
tS  
VAGND  
0.2  
-
VAREF  
0.2  
+
V
64 x tIN  
32 x tIN  
16 x tIN  
8 x tIN  
ns  
Prescaler ÷ 32  
Prescaler ÷ 16  
Prescaler ÷ 8  
Prescaler ÷ 4  
2)  
3)  
Conversion cycle time  
tADCC  
320 x tIN ns  
160 x tIN  
80 x tIN  
Prescaler ÷ 32  
Prescaler ÷ 16  
Prescaler ÷ 8  
Prescaler ÷ 4  
40 x tIN  
Total unadjusted error  
TUE  
± 2  
LSB VSS+0.5V VAIN VDD-0.5V 4)  
5) 6)  
tADC in [ns]  
Internal resistance of  
RAREF  
tADC / 500 kΩ  
reference voltage source  
- 1  
2) 6)  
tS in [ns]  
Internal resistance of  
analog source  
RASRC  
CAIN  
tS / 500  
- 1  
kΩ  
6)  
ADC input capacitance  
Notes see next page.  
50  
pF  
Clock calculation table :  
ClockPrescaler ADCL1, 0  
Ratio  
t
t
t
ADC  
S
ADCC  
÷ 32  
÷ 16  
÷ 8  
1
1
0
0
1
0
1
0
32 x t  
16 x t  
8 x t  
64 x t  
32 x t  
16 x t  
8 x t  
320 x t  
160 x t  
80 x t  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
÷ 4  
4 x t  
40 x t  
Further timing conditions : t  
t
min = 800 ns  
ADC  
IN  
= 1 / f  
= t  
OSC  
CLP  
Data Sheet  
64  
12.00  
C505/C505C/C505A/C505CA  
Note:  
1) V  
may exeed V  
or V  
AGND AREF  
up to the absolute maximum ratings. However, the conversion result in  
AIN  
these cases will be 00 or FF , respectively.  
H
H
2) During the sample time the input capacitance C  
must be charged/discharged by the external source. The  
AIN  
internal resistance of the analog source must allow the capacitance to reach their final voltage level within t .  
After the end of the sample time t , changes of the analog input voltage have no effect on the conversion result.  
S
S
3) This parameter includes the sample time t , the time for determining the digital result. Values for the  
S
conversion clock t  
ADC  
depend on programming and can be taken from the table on the previous page.  
4) T  
(max.) is tested at –40 T =125 °C ; VDD 5.5 V; V  
VDD + 0.1 V and V =V  
. It is  
A
AREF  
SS  
AGND  
UE  
guaranteed by design characterization for all other voltages within the defined voltage range.  
If an overload condition occurs on maximum 2 unused analog input pins and the absolute sum of input overload  
currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is  
permissible.  
5) During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference source must allow the capacitance to reach their final voltage level within the  
indicated time. The maximum internal resistance results from the programmed conversion timing.  
6) Not 100% tested, but guaranteed by design characterization.  
Data Sheet  
65  
12.00  
C505/C505C/C505A/C505CA  
A/D Converter Characteristics of C505A and C505CA  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
1)  
Analog input voltage  
Sample time  
VAIN  
tS  
VAGND  
VAREF  
V
64 x tIN  
32 x tIN  
16 x tIN  
8 x tIN  
ns  
Prescaler ÷ 32  
Prescaler ÷ 16  
Prescaler ÷ 8  
Prescaler ÷ 4  
2)  
3)  
Conversion cycle time  
Total unadjusted error  
tADCC  
384 x tIN ns  
192 x tIN  
96 x tIN  
Prescaler ÷ 32  
Prescaler ÷ 16  
Prescaler ÷ 8  
Prescaler ÷ 4  
48 x tIN  
TUE  
± 2  
± 4  
LSB VSS+0.5V VAIN VDD-0.5V 4)  
LSB VSS < VAIN < VDD+0.5V  
4)  
V
DD - 0.5 V < VAIN < VDD  
5) 6)  
t
ADC in [ns]  
Internal resistance of  
reference voltage source  
RAREF  
RASRC  
CAIN  
tADC / 250 kΩ  
- 0.25  
2) 6)  
tS in [ns]  
Internal resistance of  
analog source  
tS / 500  
kΩ  
- 0.25  
6)  
ADC input capacitance  
Notes see next page.  
50  
pF  
Clock calculation table :  
ClockPrescaler ADCL1, 0  
Ratio  
t
t
t
ADC  
S
ADCC  
÷ 32  
÷ 16  
÷ 8  
1
1
0
0
1
0
1
0
32 x t  
16 x t  
8 x t  
64 x t  
384 x t  
192 x t  
96 x t  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
32 x t  
16 x t  
8 x t  
÷ 4  
4 x t  
48 x t  
Further timing conditions : t  
t
min = 500 ns  
ADC  
IN  
= 1 / f  
= t  
OSC  
CLP  
Data Sheet  
66  
12.00  
C505/C505C/C505A/C505CA  
Note:  
1) V  
may exeed V  
or V  
AGND AREF  
up to the absolute maximum ratings. However, the conversion result in  
AIN  
these cases will be X000 or X3FF , respectively.  
H
H
2) During the sample time the input capacitance C  
must be charged/discharged by the external source. The  
AIN  
internal resistance of the analog source must allow the capacitance to reach their final voltage level within t .  
After the end of the sample time t , changes of the analog input voltage have no effect on the conversion result.  
S
S
3) This parameter includes the sample time t , the time for determining the digital result and the time for the  
S
calibration. Values for the conversion clock t  
the previous page.  
depend on programming and can be taken from the table on  
ADC  
4) T  
is tested at V  
= 5.0 V, V = 0 V, VDD = 4.9 V. It is guaranteed by design characterization for all  
AGND  
UE  
AREF  
other voltages within the defined voltage range.  
If an overload condition occurs on maximum 2 unused analog input pins and the absolute sum of input overload  
currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is  
permissible.  
5) During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference source must allow the capacitance to reach their final voltage level within the  
indicated time. The maximum internal resistance results from the programmed conversion timing.  
6) Not 100% tested, but guaranteed by design characterization.  
Data Sheet  
67  
12.00  
C505/C505C/C505A/C505CA  
AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle)  
(Operating Conditions apply)  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
16-MHz clock  
Duty Cycle 1/CLP= 2 MHz to 16 MHz  
0.4 to 0.6  
min.  
48  
10  
10  
max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
CLP - 15  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE to valid instruction in  
ALE to PSEN  
TCLHmin -15 –  
TCLHmin -15 –  
75  
2 CLP - 50 ns  
tLLPL  
tPLPH  
10  
73  
TCLLmin -15  
ns  
ns  
PSEN pulse width  
CLP+  
TCLHmin -15  
PSEN to valid instruction in  
tPLIV  
tPXIX  
38  
CLP+  
TCLHmin- 50  
ns  
ns  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
0
0
*)  
tPXIZ  
15  
TCLLmin -10 ns  
*)  
tPXAV  
20  
TCLLmin - 5  
ns  
ns  
Address to valid instruction in  
tAVIV  
95  
2 CLP +  
TCLHmin -55  
Address float to PSEN  
tAZPL  
-5  
-5  
ns  
*)  
Interfacing the C505 to devices with float times up to 20 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
Data Sheet  
68  
12.00  
C505/C505C/C505A/C505CA  
AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle, contd)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
16-MHz clock  
Duty Cycle  
0.4 to 0.6  
1/CLP= 2 MHz to 16 MHz  
min.  
158  
158  
48  
max. min. max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
RD pulse width  
3 CLP - 30  
3 CLP - 30  
CLP - 15  
ns  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
100  
2 CLP+  
TCLHmin - 50  
tRHDX  
tRHDZ  
tLLDV  
tAVDV  
Data hold after RD  
Data float after RD  
ALE to valid data in  
Address to valid data in  
0
0
ns  
ns  
ns  
ns  
51  
CLP - 12  
4 CLP - 50  
200  
200  
4 CLP +  
TCLHmin -75  
tLLWL  
ALE to WR or RD  
73  
103  
CLP +  
CLP+  
ns  
ns  
TCLLmin - 15 TCLLmin+ 15  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
Address valid to WR  
95  
10  
5
2 CLP - 30  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
40  
TCLHmin - 15 TCLHmin + 15 ns  
TCLLmin - 20  
ns  
ns  
163  
3 CLP +  
TCLLmin - 50  
tWHQX  
tRLAZ  
Data hold after WR  
5
0
TCLHmin - 20  
0
ns  
ns  
Address float after RD  
Data Sheet  
69  
12.00  
C505/C505C/C505A/C505CA  
AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle, contd)  
External Clock Drive Characteristics  
Parameter  
Symbol CPU Clock = 16 MHz  
Duty Cycle 0.4 to 0.6  
Variable CPU Clock  
1/CLP = 2 to 16 MHz  
Unit  
min.  
62.5  
25  
max.  
62.5  
min.  
max.  
Oscillator period  
High time  
CLP  
TCLH  
TCLL  
tR  
62.5  
500  
ns  
ns  
25  
CLP - TCLL  
Low time  
25  
25  
CLP - TCLH ns  
Rise time  
10  
10  
ns  
ns  
Fall time  
tF  
10  
10  
Oscillator duty cycle  
Clock cycle  
DC  
0.4  
25  
0.6  
37.5  
25 / CLP  
1 - 25 / CLP  
TCL  
CLP * DCmin CLP * DCmax ns  
Note: The 16 MHz values in the tables are given as an example for a typical duty cycle variation of  
the oscillator clock from 0.4 to 0.6.  
Data Sheet  
70  
12.00  
C505/C505C/C505A/C505CA  
AC Characteristics (20 MHz, 0.5 Duty Cycle)  
(Operating Conditions apply)  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
0.5 Duty Cycle 1/CLP = 2 MHz to 20 MHz  
Unit  
20 MHz clock  
min.  
35  
10  
10  
max.  
min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
CLP - 15  
CLP/2 - 15  
CLP/2 - 15  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE to valid instruction in  
ALE to PSEN  
55  
2 CLP - 45  
tLLPL  
tPLPH  
10  
60  
CLP/2 - 15  
PSEN pulse width  
3/2 CLP  
- 15  
PSEN to valid instruction in  
tPLIV  
tPXIX  
25  
3/2 CLP  
- 50  
ns  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
0
0
ns  
ns  
ns  
ns  
*)  
tPXIZ  
20  
CLP/2 - 5  
*)  
tPXAV  
20  
CLP/2 - 5  
Address to valid instruction in  
tAVIV  
65  
5/2 CLP  
- 60  
Address float to PSEN  
tAZPL  
- 5  
- 5  
ns  
*)  
Interfacing the C505 to devices with float times up to 20 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
Data Sheet  
71  
12.00  
C505/C505C/C505A/C505CA  
AC Characteristics (20 MHz, 0.5 Duty Cycle, contd)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/CLP = 2 MHz to 20 MHz  
Unit  
20 MHz clock  
0.5 Duty Cycle  
min.  
120  
120  
35  
max.  
min.  
max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
RD pulse width  
3 CLP - 30  
ns  
ns  
ns  
WR pulse width  
3 CLP - 30  
Address hold after ALE  
RD to valid data in  
CLP - 15  
75  
0
5/2 CLP- 50 ns  
Data hold after RD  
0
ns  
ns  
ns  
Data float after RD  
38  
150  
150  
90  
CLP - 12  
4 CLP - 50  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
9/2 CLP - 75 ns  
60  
70  
10  
5
3/2 CLP - 15 3/2 CLP + 15 ns  
Address valid to WR  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
2 CLP - 30  
CLP/2 - 15  
CLP/2 - 20  
7/2 CLP - 50  
CLP/2 - 20  
ns  
ns  
ns  
ns  
ns  
ns  
40  
CLP/2 + 15  
0
125  
5
0
External Clock Drive Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Freq. = 2 MHz to 20 MHz  
min.  
50  
15  
15  
max.  
500  
Oscillator period  
High time  
CLP  
ns  
ns  
ns  
ns  
ns  
TCLH  
CLP-TCLL  
CLP-TCLH  
10  
Low time  
TCLL  
tR  
Rise time  
Fall time  
tF  
10  
Oscillator duty cycle  
DC  
0.5  
0.5  
Data Sheet  
72  
12.00  
C505/C505C/C505A/C505CA  
t LHLL  
ALE  
tAVLL  
t PLPH  
t LLPL  
t LLIV  
t PLIV  
PSEN  
Port 0  
Port 2  
t AZPL  
t LLAX  
t PXAV  
t PXIZ  
t PXIX  
A0 - A7  
Instr.IN  
A0 - A7  
t AVIV  
A8 - A15  
A8 - A15  
MCT00096  
Figure 32  
Program Memory Read Cycle  
Data Sheet  
73  
12.00  
C505/C505C/C505A/C505CA  
tWHLH  
ALE  
PSEN  
RD  
t LLDV  
t LLWL  
t RLRH  
t RLDV  
t AVLL  
tRHDZ  
t LLAX2  
t RLAZ  
tRHDX  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.  
IN  
Port 0  
Data IN  
tAVWL  
t AVDV  
Port 2  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00097  
Figure 33  
Data Memory Read Cycle  
Data Sheet  
74  
12.00  
C505/C505C/C505A/C505CA  
tWHLH  
ALE  
PSEN  
WR  
t LLWL  
t WLWH  
tQVWX  
t AVLL  
tWHQX  
t LLAX2  
tQVWH  
A0 - A7 from  
Ri or DPL  
A0 - A7  
Instr.IN  
Port 0  
Port 2  
Data OUT  
from PCL  
tAVWL  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00098  
Figure 34  
Data Memory Write Cycle  
TCL  
t
t
F
R
H
0.7V  
DD  
XTAL1  
0.2VDD - 0.1  
DD  
TCL  
L
CLP  
Figure 35  
External Clock Drive on XTAL1  
Data Sheet  
75  
12.00  
C505/C505C/C505A/C505CA  
AC Characteristics of Programming Mode (C505A-4E and C505CA-4E only)  
DD = 5 V ± 10 %; VPP = 11.5 V ± 5 %; TA = 25 °C ± 10 °C  
V
Parameter  
Symbol  
Limit Values  
Unit  
min.  
35  
max.  
PALE pulse width  
tPAW  
tPMS  
tPAS  
ns  
PMSEL setup to PALE rising edge  
10  
Address setup to PALE, PROG, or PRD  
falling edge  
10  
ns  
ns  
Address hold after PALE, PROG, or PRD  
falling edge  
tPAH  
10  
Address, data setup to PROG or PRD  
Address, data hold after PROG or PRD  
PMSEL setup to PROG or PRD  
PMSEL hold after PROG or PRD  
PROG pulse width  
tPCS  
tPCH  
tPMS  
tPMH  
tPWW  
tPRW  
tPAD  
tPRD  
tPDH  
tPDF  
100  
0
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
10  
10  
100  
100  
PRD pulse width  
Address to valid data out  
PRD to valid data out  
75  
20  
Data hold after PRD  
0
Data float after PRD  
20  
PROG high between two consecutive PROG tPWH1  
1
low pulses  
PRD high between two consecutive PRD low tPWH2  
pulses  
100  
ns  
ns  
XTAL clock period  
tCLKP  
83.3  
500  
Data Sheet  
76  
12.00  
C505/C505C/C505A/C505CA  
t
PAW  
PMS  
PALE  
t
H, H  
PMSEL1,0  
t
t
PAH  
PAS  
A8-A14  
A0-A7  
Port 2  
Port 0  
PROG  
D0-D7  
t
PWH  
t
t
t
PCH  
PCS  
PWW  
MCT03642  
Notes: PRD must be high during a programming write cycle.  
Figure 36  
Programming Code Byte - Write Cycle Timing  
Data Sheet  
77  
12.00  
C505/C505C/C505A/C505CA  
t
PAW  
PMS  
PALE  
t
H, H  
PMSEL1,0  
t
t
PAH  
PAS  
A8-A14  
A0-A7  
Port 2  
Port 0  
PRD  
t
t
PDH  
PAD  
D0-D7  
t
t
t
PRD  
PDF  
PCH  
t
PWH  
t
t
PCS  
PRW  
Notes: PROG must be high during a programming read cycle.  
MCT03643  
Figure 37  
Verify Code Byte - Read Cycle Timing  
Data Sheet  
78  
12.00  
C505/C505C/C505A/C505CA  
H, L  
H, L  
PMSEL1,0  
Port 0  
D0, D1  
D0, D1  
t
t
PCH  
PCS  
t
t
PMS  
PMH  
PROG  
t
PDH  
t
t
t
t
PMS  
PRD  
PWW  
PDF  
t
PMH  
t
PRW  
PRD  
MCT03644  
Note: PALE should be low during a lock bit read / write cycle.  
Figure 38  
Lock Bit Access Timing  
L, H  
PMSEL1,0  
e. g. FD  
Port 2  
Port 0  
H
t
PCH  
D0-7  
t
t
PCS  
PDH  
t
t
PRD  
PDF  
t
t
PMS  
PMH  
t
PRD  
PRW  
MCT03645  
Note: PROG must be high during a programming read cycle.  
Figure 39  
Version Byte Read Timing  
Data Sheet  
79  
12.00  
C505/C505C/C505A/C505CA  
ROM/OTP Verification Characteristics for C505  
ROM Verification Mode 1 (C505(C)(A)-2R and C505(C)A-4R only)  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
tAVQV  
Address to valid data  
5 CLP  
ns  
P1.0 - P1.7  
P2.0 - P2.6  
Address  
t
AVQV  
Port 0  
Data OUT  
Inputs:  
P2.7, PSEN = V  
Address: P1.0 - P1.7 = A0 - A7  
SS  
ALE, EA = V  
P2.6  
P2.0 - = A8 - A14  
IH  
RESET = V  
IH2  
Data:  
P0.0 - P0.7 = D0 - D7  
Note: P2.6 should be connected to V for C505(C)(A)-2R  
SS  
Figure 40  
ROM Verification Mode 1  
Data Sheet  
80  
12.00  
C505/C505C/C505A/C505CA  
ROM/OTP Verification Characteristics for C505 (contd)  
ROM/OTP Verification Mode 2  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ  
CLP  
6 CLP  
max.  
tAWD  
tACY  
tDVA  
tDSA  
tAS  
ALE pulse width  
ns  
ALE period  
ns  
Data valid after ALE  
Data stable after ALE  
P3.5 setup to ALE low  
Oscillator frequency  
2 CLP  
ns  
4 CLP  
6
ns  
4
tCL  
ns  
1/ CLP  
MHz  
t ACY  
t AWD  
ALE  
t DSA  
t DVA  
Port 0  
P3.5  
Data Valid  
t AS  
MCT02613  
Figure 41  
ROM/OTP Verification Mode 2  
Data Sheet  
81  
12.00  
C505/C505C/C505A/C505CA  
VDD -0.5 V  
0.2 VDD+0.9  
0.2 VDD -0.1  
Test Points  
0.45 V  
MCT00039  
AC Inputs during testing are driven at VDD - 0.5 V for a logic ’1’ and 0.45 V for a logic ’0’.  
Timing measurements are made at VIHmin for a logic ’1’ and VILmax for a logic ’0’.  
Figure 42  
AC Testing: Input, Output Waveforms  
-0.1 V  
VOH  
VLoad +0.1 V  
Timing Reference  
Points  
VLoad  
-0.1 V  
VLoad  
V
OL +0.1 V  
MCT00038  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs.  
IOL/IOH ≥ ± 20 mA  
Figure 43  
AC Testing : Float Waveforms  
Crystal Oscillator Mode  
Driving from External Source  
C
XTAL2  
XTAL1  
N.C.  
XTAL2  
2 - 20  
MHz  
External Oscillator  
Signal  
C
XTAL1  
Crystal Mode: C = 20 pF 10 pF (incl. stray capacitance)  
MCS03311  
Figure 44  
Recommended Oscillator Circuits for Crystal Oscillator  
Data Sheet  
82  
12.00  
C505/C505C/C505A/C505CA  
P-MQFP-44-2 (SMD)  
(Plastic Metric Quad Flat Package)  
Figure 45  
P-MQFP-44 Package Outline  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
SMD = Surface Mounted Device  
Dimensions in mm  
12.00  
Data Sheet  
83  
Infineon goes for Business Excellence  
“Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAB-C505A-L

暂无描述
INFINEON

SAB-C505A-L20M

Microcontroller, 8-Bit, 20MHz, CMOS, PQFP44, PLASTIC, MQFP-44
INFINEON

SAB-C505C-2R

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
INFINEON

SAB-C505C-2R16M

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PQFP44, PLASTIC, MQFP-44
INFINEON

SAB-C505C-2R20M

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, PLASTIC, MQFP-44
INFINEON

SAB-C505C-2RM

8-Bit CMOS Microcontroller
INFINEON

SAB-C505C-L16M

Microcontroller, 8-Bit, 16MHz, CMOS, PQFP44, PLASTIC, MQFP-44
INFINEON

SAB-C505C-LM

8-Bit CMOS Microcontroller
INFINEON

SAB-C505CA-2R16M

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PQFP44, PLASTIC, MQFP-44
INFINEON

SAB-C505CA-2R20M

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, PLASTIC, MQFP-44
INFINEON

SAB-C505CA-2RMCA

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44
INFINEON

SAB-C505CA-4E

Microcontroller, 8-Bit, OTPROM, 20MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
INFINEON