SAB80C517-16-N-T85 [INFINEON]

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC84, PLASTIC, LCC-84;
SAB80C517-16-N-T85
型号: SAB80C517-16-N-T85
厂家: Infineon    Infineon
描述:

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC84, PLASTIC, LCC-84

微控制器
文件: 总61页 (文件大小:1054K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microcomputer Components  
8-Bit CMOS Single-Chip Microcontroller  
SAB 80C517/80C537  
Data Sheet 04.95  
High-Performance  
SAB 80C517/80C537  
8-Bit CMOS Single-Chip Microcontroller  
Advanced Information  
SAB 80C517  
SAB 80C537  
Microcontroller with factory mask-programmable ROM  
Microcontroller for external ROM  
Versions for 12 MHz and 16 MHz  
operating frequency  
8 K × 8 ROM (SAB 80C517 only)  
256 × 8 on-chip RAM  
Superset of SAB 80C51 architecture:  
1 µs instruction cycle time at 12 MHz  
750 ns instruction cycle time at 16 MHz  
256 directly addressable bits  
Fast 32-bit division, 16-bit 2 multiplication,  
32-bit normalize and shift by peripheral  
MUL/DIV unit (MDU)  
Eight data pointers for external memory  
addressing  
Fourteen interrupt vectors, four priority  
levels selectable  
8-bit A/D converter with 12 multiplexed  
inputs and programmable ref. voltages  
Two full duplex serial interfaces  
Fully upward compatible with SAB 80C515  
Extended power saving modes  
Nine ports: 56 I/O lines, 12 input lines  
Two temperature ranges available:  
0 to 70oC  
Boolean processor  
64 Kbyte external data and program  
memory addressing  
Four 16-bit timer/counters  
Powerful 16-bit compare/capture unit  
(CCU) with up to 21 high-speed or PWM  
output channels and 5 capture inputs  
Versatile "fail-safe" provisions  
– 40 to 85oC  
Plastic packages: P-LCC-84,  
P-MQFP-100-2  
SAB 80C517/80C537  
Semiconductor Group  
1
04.95  
SAB 80C517/80C537  
The SAB 80C517/80C537 is a high-end member of the Siemens SAB 8051 family of  
microcontrollers. It is designed in Siemens ACMOS technology and based on the SAB 8051  
architecture. ACMOS is a technology which combines high-speed and density characteristics  
with low-power consumption or dissipation.  
While maintaining all the SAB 80C515 features and operating characteristics the  
SAB 80C517 is expanded in its arithmetic capabilities, "fail-safe" characteristics, analog signal  
processing and timer capabilities. The SAB 80C537 is identical with the SAB 80C517 except  
that it lacks the on-chip program memory. The SAB 80C517/SAB 80C537 is supplied in a  
84 pin plastic leaded chip carrier package (P-LCC-84) and in a 100-pin plastic quad metric flat  
package (P-MQFP-100-2).  
Ordering Information  
Type  
Ordering Code Package  
Description  
8-bit CMOS Microcontroller  
SAB 80C517-N  
Q67120-C397 P-LCC-84  
with factory mask-programma-  
ble ROM, 12 MHz  
SAB 80C517-M  
TBD  
P-MQFP-100-2  
SAB 80C537-N  
Q67120-C452 P-LCC-84  
for external memory, 12 MHz  
SAB 80C537-M  
TBD  
P-MQFP-100-2  
SAB 80C517-N-T40/85  
SAB 80C517-M-T40/85  
Q67120-C483 P-LCC-84  
with factory mask-programma-  
ble ROM, 12 MHz,  
ext. temperature – 40 to 85 °C  
TBD  
P-MQFP-100-2  
SAB 80C537-N-T40/85  
SAB 80C537-M-T40/85  
SAB 80C517-N16  
Q67120-C484 P-LCC-84  
for external ROM, 12 MHz,  
ext. temperature – 40 to 85 °C  
TBD  
P-MQFP-100-2  
Q67120-C723 P-LCC-84  
with mask-programmable  
ROM,16 MHz ext. temperature  
– 40 to 110 °C  
SAB 80C517-M16  
TBD  
P-MQFP-100-2  
SAB 80C537-N16  
SAB 80C537-M16  
Q67120-C722 P-LCC-84  
for external memory, 16 MHz  
TBD  
P-MQFP-100-2  
SAB 80C517-N16-T40/85 Q67120-C724 P-LCC-84  
with mask-programmable ROM,  
16 MHz  
ext. temperature – 40 to 85 °C  
SAB 80C517-16-N-T40/85 Q67120-C725 P-LCC-84  
with factory mask-programma-  
ble ROM, 12 MHz  
Semiconductor Group  
2
SAB 80C517/80C537  
Logic Symbol  
Semiconductor Group  
3
SAB 80C517/80C537  
Pin Configuration  
(P-LCC-84)  
Semiconductor Group  
4
SAB 80C517/80C537  
Pin Configuration  
(P-MQFP-100-2)  
Semiconductor Group  
5
SAB 80C517/80C537  
Pin Definitions and Functions  
Symbol Pin Number  
I/O *)  
Function  
Port 4  
P-LCC-84  
P4.0 – P4.7 1– 3, 5 – 9  
P-MQFP-100-2  
64 - 66,  
68 - 72  
I/O  
is a bidirectional I/O port with internal  
pull-up resistors. Port 4 pins that have  
1 s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as inputs. As inputs,  
port 4 pins being externally pulled low  
will source current (I in the DC  
IL,  
characteristics) because of the internal  
pull-up resistors.  
This port also serves alternate compare  
functions. The secondary functions are  
assigned to the pins of port 4 as  
follows:  
– CM0 (P4.0): Compare Channel 0  
– CM1 (P4.1): Compare Channel 1  
– CM2 (P4.2): Compare Channel 2  
– CM3 (P4.3): Compare Channel 3  
– CM4 (P4.4): Compare Channel 4  
– CM5 (P4.5): Compare Channel 5  
– CM6 (P4.6): Compare Channel 6  
– CM7 (P4.7): Compare Channel 7  
PE/SWD  
4
67  
I
Power saving modes enable/  
Start Watchdog Timer  
A low level on this pin allows the  
software to enter the power down, idle  
and slow down mode. In case the low  
level is also seen during reset, the  
watchdog timer function is off on  
default.  
Use of the software controlled power  
saving modes is blocked, when this pin  
is held on high level. A high level during  
reset performs an automatic start of the  
watchdog timer immediately after reset.  
When left unconnected this pin is pulled  
high by a weak internal pull-up resistor.  
*
I = Input  
O = Output  
Semiconductor Group  
6
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
I/O *)  
Symbol  
Pin Number  
P-LCC-84 P-MQFP-100-2  
Function  
RESET  
10  
73  
I
RESET  
A low level on this pin for the duration of  
one machine cycle while the oscillator is  
running resets the SAB 80C517. A small  
internal pull-up resistor permits  
power-on reset using only a capacitor  
connected to VSS  
.
VAREF  
11  
78  
Reference voltage for the A/D con-  
verter.  
VAGND  
12  
79  
Reference ground for the A/D  
converter.  
P7.7 -P7.0  
13 - 20  
80 - 87  
I
Port 7  
is an 8-bit unidirectional input port. Port  
pins can be used for digital input, if  
voltage levels meet the specified input  
high/low voltages, and for the lower  
8-bit of the multiplexed analog inputs of  
the A/D converter, simultaneously.  
*
I = Input  
O = Output  
Semiconductor Group  
7
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
Symbol Pin Number  
I/O *)  
Function  
Port 3  
P-LCC-84  
P-MQFP-100-2  
90 - 97  
P3.0 - P3.7 21 - 28  
I/O  
is a bidirectional I/O port with internal  
pull-up resistors. Port 3 pins that have  
1 s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as inputs. As inputs,  
port 3 pins being externally pulled low  
will source current (I in the DC  
IL,  
characteristics) because of the internal  
pull-up resistors. Port 3 also contains  
the interrupt, timer, serial port 0 and  
external memory strobe pins that are  
used by various options. The output  
latch corresponding to a secondary  
function must be programmed to a one  
(1) for that function to operate.  
The secondary functions are assigned  
to the pins of port 3, as follows:  
– R × D0 (P3.0): receiver data input  
(asynchronous) or data input/output  
(synchronous) of serial interface  
– T × D0 (P3.1): transmitter data  
output (asynchronous) or clock  
output (synchronous) of serial  
interface 0  
– INT0 (P3.2): interrupt 0 input/timer 0  
gate control  
– INT1 (P3.3): interrupt 1 input/timer 1  
gate control  
– T0 (P3.4): counter 0 input  
– T1 (P3.5): counter 1 input  
– WR (P3.6): the write control signal  
latches the data byte from port 0 into  
the external data memory  
– RD (P3.7): the read control signal  
enables the external data  
memory to port 0  
*
I = Input  
O = Output  
Semiconductor Group  
8
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
Symbol Pin Number  
P-LCC-84 P-MQFP-100-2  
I/O *)  
Function  
Port 1  
P1.7 - P1.0 29 - 36  
98 - 100,  
1, 6 - 9  
I/O  
is a bidirectional I/O port with internal  
pull-up resistors. Port 1 pins that have  
1 s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as inputs. As inputs,  
port 1 pins being externally pulled low  
will source current (I , in the DC  
IL  
characteristics) because of the internal  
pull-up resistors. It is used for the low  
order address byte during program  
verifi-cation. It also contains the  
interrupt, timer, clock, capture and  
compare pins that are used by various  
options. The output latch must be  
programmed to a one (1) for that  
function to operate (except when used  
for the compare functions).  
The secondary functions are assigned  
to the port 1 pins as follows:  
– INT3/CC0 (P1.0): interrupt 3 input/  
compare 0 output / capture 0 input  
– INT4/CC1 (P1.1): interrupt 4 input /  
compare 1 output /capture 1 input  
– INT5/CC2 (P1.2): interrupt 5 input /  
compare 2 output /capture 2 input  
– INT6/CC3 (P1.3): interrupt 6 input /  
compare 3 output /capture 3 input  
– INT2/CC4 (P1.4): interrupt 2 input /  
compare 4 output /capture 4 input  
– T2EX (P1.5): timer 2 external reload  
trigger input  
– CLKOUT (P1.6): system clock  
output  
– T2 (P1.7): counter 2 input  
*
I = Input  
O = Output  
Semiconductor Group  
9
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
I/O *)  
Symbol  
Pin Number  
P-LCC-84 P-MQFP-100-2  
Function  
XTAL2  
XTAL2  
39  
12  
Input to the inverting oscillator amplifier  
and input to the internal clock generator  
circuits.  
XTAL1  
40  
13  
XTAL1  
Output of the inverting oscillator  
amplifier. To drive the device from an  
external clock source, XTAL2 should  
be driven, while XTAL1 is left  
unconnected. There are no  
requirements on the duty cycle of the  
external clock signal, since the input to  
the internal clocking circuitry is devided  
down by a divide-by-two flip-flop.  
Minimum and maximum high and low  
times as well as rise/fall times specified  
in the AC characteristics must be  
observed.  
P2.0 - P2.7 41 - 48  
14 - 21  
I/O  
Port 2  
is a bidirectional I/O port with internal  
pull-up resistors. Port 2 pins that have  
1 s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as in-puts. As inputs,  
port 2 pins being externally pulled low  
will source current (I , in the DC  
IL  
characteristics) because of the internal  
pull-up resistors. Port 2 emits the high-  
order address byte during fetches from  
external program memory and during  
accesses to external data memory that  
use 16-bit addresses (MOVX @DPTR).  
In this application it uses strong  
internal pull-up resistors when issuing  
1 s. During accesses to external data  
memory that use 8-bit addresses  
(MOVX @Ri), port 2 issues the  
contents of the P2 special function  
register.  
*
I = Input  
O = Output  
Semiconductor Group  
10  
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
I/O *)  
Function  
Symbol  
Pin Number  
P-LCC-84 P-MQFP-100-2  
PSEN  
49  
22  
O
The Program Store Enable  
output is a control signal that enables  
the external program memory to the  
bus during external fetch operations. It  
is activated every six oscillator periodes  
except during external data memory  
accesses. Remains high during internal  
pro-gram execution.  
ALE  
EA  
50  
51  
23  
24  
O
The Address Latch Enable  
output is used for latching the address  
into external memory during normal  
operation. It is activated every six  
oscillator periodes except during an  
external data memory access  
I
External Access Enable  
When held at high level, instructions  
are fetched from the internal ROM  
when the PC is less than 8192. When  
held at low level, the SAB 80C517  
fetches all instructions from external  
program memory. For the SAB 80C537  
this pin must be tied low  
P0.0 - P0.7 52 - 59  
26 - 27,  
30 - 35  
I/O  
Port 0  
is an 8-bit open-drain bidirectional I/O  
port. Port 0 pins that have 1 s written to  
them float, and in that state can be  
used as high-impedance inputs. Port 0  
is also the multiplexed low-order  
address and data bus during accesses  
to external program or data memory. In  
this application it uses strong internal  
pull-up resistors when issuing 1 s.  
Port 0 also outputs the code bytes  
during program verification in the  
SAB 83C517. External pull-up resistors  
are required during program  
verification.  
*
I = Input  
O = Output  
Semiconductor Group  
11  
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
Symbol Pin Number  
I/O *)  
Function  
Port 5  
P-LCC-84  
P5.7 - P5.0 61 - 68  
P-MQFP-100-2  
37 - 44  
I/O  
is a bidirectional I/O port with internal  
pull-up resistors. Port 5 pins that have  
1 s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as inputs. As inputs,  
port 5 pins being externally pulled low  
will source current (I , in the DC  
IL  
characteristics) because of the internal  
pull-up resistors. This port also serves  
the alternate function "Concurrent  
Compare". The secondary functions  
are assigned to the port 5 pins as  
follows:  
– CCM0 (P5.0): concurrent compare 0  
– CCM1 (P5.1): concurrent compare 1  
– CCM2 (P5.2): concurrent compare 2  
– CCM3 (P5.3): concurrent compare 3  
– CCM4(P5.4): concurrent compare 4  
– CCM5 (P5.5): concurrent compare 5  
– CCM6 (P5.6): concurrent compare 6  
– CCM7(P5.7): concurrent compare 7  
OWE  
69  
45  
I
Oscillator Watchdog Enable  
A high level on this pin enables the  
oscillator watchdog. When left  
unconnected this pin is pulled high by a  
weak internal pull-up resistor. When  
held at low level the oscillator watchdog  
function is off.  
*
I = Input  
O = Output  
Semiconductor Group  
12  
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
Symbol Pin Number  
P-MQFP-100-2  
I/O *)  
Function  
Port 6  
P-LCC-84  
P6.0 - P6.7 70 - 77  
46 - 50,  
54 - 56  
I/O  
is a bidirectional I/O port with internal  
pull-up resistors. Port 6 pins that have  
1 s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as inputs. As inputs,  
port 6 pins being externally pulled low  
will source current (I , in the  
IL  
DC characteristics) because of the  
internal pull-up resistors. Port 6 also  
contains the external A/D converter  
control pin and the transmit and receive  
pins for serial channel 1. The output  
latch corresponding to a secondary  
function must be programmed to a one  
(1) for that function to operate.  
The secondary functions are assigned  
to the pins of port 6, as follows:  
– ADST (P6.0): external A/D converter  
start pin  
– R × D1 (P6.1): receiver data input of  
serial interface 1  
– T × D1 (P6.2): transmitter data output  
of serial interface 1  
P8.0 - P8.3 78 - 81  
57 - 60  
I
Port 8  
is a 4-bit unidirectional input port. Port  
pins can be used for digital input, if  
voltage levels meet the specified input  
high/low voltages, and for the higher  
4-bit of the multiplexed analog inputs of  
the A/D converter, simultaneously  
*
I = Input  
O = Output  
Semiconductor Group  
13  
SAB 80C517/80C537  
Pin Definitions and Functions (cont’d)  
I/O *)  
Symbol  
Pin Number  
P-LCC-84 P-MQFP-100-2  
Function  
RO  
82  
61  
O
Reset Output  
This pin outputs the internally  
synchronized reset request signal. This  
signal may be generated by an external  
hardware reset, a watchdog timer reset  
or an oscillator watch-dog reset. The  
reset output is active low.  
VSS  
37,60, 83  
38,84  
10, 62  
11, 63  
Circuit ground potential  
V
Supply Terminal for all operating  
CC  
modes  
N.C.  
2 - 5, 25,  
28 - 29,  
36,  
Not connected  
51 - 53,  
74 - 77;  
88 - 89  
*
I = Input  
O = Output  
Semiconductor Group  
14  
SAB 80C517/80C537  
Figure 1  
Block Diagram  
Semiconductor Group  
15  
SAB 80C517/80C537  
Functional Description  
The SAB 80C517 is based on 8051 architecture. It is a fully compatible member of the Siemens  
SAB 8051/80C51 microcontroller family being a significantly enhanced SAB 80C515. The  
SAB 80C517 is therefore 100 % compatible with code written for the SAB 80C515.  
CPU  
Having an 8-bit CPU with extensive facilities for bit-handling and binary BCD arithmetics the  
SAB 80C517 is optimized for control applications. With a 12 MHz crystal, 58% of the  
instructions execute in 1 µs.  
Being designed to close the performance gap to the 16-bit microcontroller world, the  
SAB 80C517’s CPU is supported by a powerful 32-/16-bit arithmetic unit and a more flexible  
addressing of external memory by eight 16-bit datapointers.  
Memory Organisation  
According to the SAB 8051 architecture, the SAB 80C517 has separate address spaces for  
program and data memory. Figure 2 illustrates the mapping of address spaces.  
Figure 2  
Memory Mapping  
Semiconductor Group  
16  
SAB 80C517/80C537  
Program Memory  
The SAB 80C517 has 8 KByte of on-chip ROM, while the SAB 80C537 has no internal ROM.  
The program memory can externally be expanded up to 64 Kbyte. Pin EA controls whether  
program fetches below address 2000 are done from internal or external memory.  
H
Data Memory  
The data memory space consists of an internal and an external memory space.  
External Data Memory  
Up to 64 KByte external data memory can be addressed by instructions that use 8-bit or 16-bit  
indirect addressing. For 8-bit addressing MOVX instructions utilizing registers R0 and R1 can  
be used. A 16-bit external memory addressing is supported by eight 16-bit datapointers.  
Multiple Datapointers  
As a functional enhancement to standard 8051 controllers, the SAB 80C517 contains eight  
16-bit datapointers. The instruction set uses just one of these datapointers at a time. The  
selection of the actual datapointers is done in special function register DPSEL (data pointer  
select, addr. 92 ). Figure 3 illustrates the addressing mechanism.  
H
Internal Data Memory  
The internal data memory is divided into three physically distinct blocks:  
– the lower 128 bytes of RAM including four banks of eight registers each  
– the upper 128 byte of RAM  
– the 128 byte special function register area.  
A mapping of the internal data memory is also shown in figure 2. The overlapping address  
spaces are accessed by different addressing modes. The stack can be located anywhere in the  
internal data memory.  
Semiconductor Group  
17  
SAB 80C517/80C537  
Figure 3  
Addressing of External Data Memory  
Semiconductor Group  
18  
SAB 80C517/80C537  
Special Function Registers  
All registers, except the program counter and the four general purpose register banks, reside  
in the special function register area. The 81 special function registers include arithmetic  
registers, pointers, and registers that provide an interface between the CPU and the on-chip  
peripherals. There are also 128 directly addressable bits within the SFR area. The special  
function registers are listed in table 1. In this table they are organized in groups which refer to  
the functional blocks of the SAB 80C517. Block names and symbols are listed in alphabetical  
order.  
Table 1  
Special Function Register  
Address  
Register  
Name  
Register Contents  
after Reset  
1)  
CPU  
ACC  
B
Accumulator  
B-Register  
0E0  
0F0  
00  
00  
00  
00  
H
H
H
H
H
H
1)  
DPH  
DPL  
DPSEL  
PSW  
SP  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Data Pointer Select Register  
Program Status Word Register  
Stack Pointer  
83  
82  
92  
H
H
H
3)  
3)  
XXXX.X000  
00  
07  
B
1)  
1)  
0D0  
H
H
H
81  
H
H
A/D-  
Converter  
ADCON0  
ADCON1  
ADDAT  
DAPR  
A/D Converter Control Register 0 0D8  
00  
H
0DC  
A/D Converter Control Register 1  
A/D Converter Data Register  
D/AConverter Program Register  
H
XXXX.0000  
00  
00  
B
0D9  
0DA  
H
H
H
H
1)  
1)  
Interrupt  
System  
IEN0  
Interrupt Enable Register 0  
0A8  
00  
H
H
CTCON 2) Com. Timer Control Register  
0E1  
0XXX.0000  
00  
XXXX.00X0  
B
00  
H
B
IEN1  
IEN2  
IP0  
IP1  
IRCON  
TCON 2)  
T2CON 2)  
Interrupt Enable Register 1  
Interrupt Enable Register 2  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
Interrupt Request Control Register 0C0  
Timer Control Register  
Timer 2 Control Register  
0B8  
H
H
3)  
9A  
H
0A9  
0B9  
H
H
H
XX00 0000  
B
1)  
00  
00  
00  
H
H
H
H
1)  
88  
H
0C8  
H
1)  
Bit-addressable special function registers  
This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
X means that the value is indeterminate and the location is reserved  
2)  
3)  
Semiconductor Group  
19  
SAB 80C517/80C537  
Table 1  
Special Function Register (cont’d)  
Address  
Register  
Name  
Register  
Contents  
after Reset  
3)  
B
MUL/DIV  
Unit  
ARCON  
MD0  
MD1  
MD2  
MD3  
Arithmetic Control Register  
Multiplication/Division Register 0 0E9  
Multiplication/Division Register 1 0EA  
Multiplication/Division Register 2 0EB  
Multiplication/Division Register 3 0EC  
Multiplication/Division Register 4 0ED  
0EF  
0XXX.XXXX  
H
H
3)  
XX  
XX  
XX  
XX  
XX  
XX  
H
H
H
H
H
H
3)  
3)  
3)  
3)  
3)  
H
H
H
H
H
MD4  
MD5  
Multiplication/Division Register 5 0EE  
1)  
Bit-addressable special function registers  
This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
X means that the value is indeterminate and the location is reserved  
2)  
3)  
Semiconductor Group  
20  
SAB 80C517/80C537  
Table 1  
Special Function Register (cont’d)  
Address  
Register  
Name  
Register  
Contents  
after Reset  
Compare/  
Capture-  
Unit (CCU) CCH1  
CCH2  
CCEN  
CC4EN  
00  
Comp./Capture Enable Reg.  
Comp./Capture Enable 4 Reg.  
Comp./Capture Reg. 1, High Byte  
Comp./Capture Reg. 2, High Byte 0C5  
Comp./Capture Reg. 3, High Byte 0C7  
0C1  
0C9  
0C3  
H
H
H
H
H
H
3)  
X000.0000  
B
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
CCH3  
CCH4  
CCL1  
CCL2  
CCL3  
CCL4  
CMEN  
CMH0  
CMH1  
CMH2  
CMH3  
CMH4  
CMH5  
CMH6  
CMH7  
CML0  
CML1  
CML2  
CML3  
CML4  
CML5  
CML6  
CML7  
CMSEL  
CRCH  
CRCL  
CTCON  
CTRELH  
CTRELL  
TH2  
Comp./Capture Reg. 4, High Byte 0CF  
H
H
H
H
Comp./Capture Reg. 1, Low Byte 0C2  
Comp./Capture Reg. 2, Low Byte 0C4  
Comp./Capture Reg. 3, Low Byte 0C6  
Comp./Capture Reg. 4, Low Byte 0CE  
Compare Enable Register  
H
0F6  
H
0D3  
0D5  
0D7  
Compare Register 0, High Byte  
Compare Register 1, High Byte  
Compare Register 2, High Byte  
Compare Register 3, High Byte  
Compare Register 4, High Byte  
Compare Register 5, High Byte  
Compare Register 6, High Byte  
Compare Register 7, High Byte  
Compare Register 0, Low Byte  
Compare Register 1, Low Byte  
Compare Register 2, Low Byte  
Compare Register 3, Low Byte  
Compare Register 4, Low Byte  
Compare Register 5, Low Byte  
Compare Register 6, Low Byte  
Compare Register 7, Low Byte  
Compare Input Select  
H
H
H
H
H
H
H
H
0E3  
0E5  
0E7  
0F3  
0F5  
0D2  
0D4  
0D6  
H
H
H
H
H
H
H
H
H
0E2  
0E4  
0E6  
0F2  
0F4  
0F7  
Com./Rel./Capt. Reg. High Byte 0CB  
Com./Rel./Capt. Reg. Low Byte  
Com. Timer Control Reg.  
Com. Timer Rel. Reg., High Byte 0DF  
Com. Timer Rel. Reg., Low Byte  
Timer 2, High Byte  
H
H
0CA  
0E1  
)
3
B
0XXX.0000  
H
00  
00  
00  
00  
00  
H
H
H
H
H
H
0DE  
H
0CD  
0CC  
0C8  
H
H
TL2  
T2CON  
Timer 2, Low Byte  
Timer 2 Control Register  
1)  
H
1)  
Bit-addressable special function registers  
This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
X means that the value is indeterminate and the location is reserved  
2)  
3)  
Semiconductor Group  
21  
SAB 80C517/80C537  
Table 1  
Special Function Register (cont’d)  
Address  
Register  
Name  
Register  
Contents  
after Reset  
1)  
1)  
Ports  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6,  
80  
90  
0A0  
0B0  
0E8  
0F8  
0FA  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
H
H
H
H
H
H
H
H
H
1)  
1)  
1)  
1)  
H
H
H
H
H
3)  
3)  
Port 7, Analog/Digital Input  
0DB  
XX  
XX  
H
H
H
Port 8, Analog/Digital Input, 4-bit 0DD  
H
Pow.Sav.  
Modes  
PCON  
Power Control Register  
87  
00  
H
H
1)  
ADCON0 2)  
PCON 2)  
S0BUF  
Serial  
Channels  
A/D Converter Control Reg.  
Power Control Register  
Serial Channel 0 Buffer Reg.  
Serial Channel 0 Control Reg. 98  
Serial Channel 0, Reload Reg., 0AAH  
low byte  
Serial Channel 0, Reload Reg., 0BAH  
high byte  
Serial Channel 1 Buffer Reg.,  
Serial Channel 1 Control Reg.  
Serial Channel 1 Reload Reg., 9D  
low byte  
0D8  
00  
00  
XX  
00  
H
H
H
87  
H
3)  
99  
H
H
1)  
S0CON  
S0RELL  
H
H
4)  
0D9  
H
3)  
4)  
XXXX.XX11  
S0RELH  
B
3)  
0XX  
H
0X00.000  
00  
9C  
9B  
S1BUF  
S1CON  
S1REL  
H
3)  
H
B
H
H
3)  
S1RELH 4)  
Serial Channel 1, Reload Reg., 0BB  
high byte  
XXXX.XX11  
H
B
1)  
Timer 0/  
Timer 1  
TCON  
TH0  
TH1  
TL0  
TL1  
Timer Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
88  
00  
00  
00  
00  
00  
00  
H
H
H
H
H
H
H
8C  
8D  
H
H
H
H
H
8A  
8B  
89  
TMOD  
1)  
1)  
Watchdog  
IEN0 2)  
IEN1 2)  
IP0 2)  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
Watchdog Timer Reload Reg.  
0A8  
0B8  
0A9  
00  
00  
00  
H
H
H
H
H
H
H
IP1 2)  
0B9  
86  
XX00.0000  
00  
H
3)  
B
WDTREL  
H
1)  
Bit-addressable special function registers.  
2)  
3)  
4)  
This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
X means that the value is indeterminate and the location is reserved.  
These registers are available in the CA step and later steps.  
Semiconductor Group  
22  
SAB 80C517/80C537  
A/D Converter  
The SAB 80C517 contains an 8-bit A/D Converter with 12 multiplexed input channels which  
uses the successive approximation method. It takes 7 machine cycles to sample an analog  
signal (during this sample time the input signal should be held constant); the total conversion  
time (including sample time) is 13 machine cycles (13 µs at 12 MHz oscillator frequency).  
Conversion can be programmed to be single or continuous; at the end of a conversion an  
interrupt can be generated.  
A unique feature is the capability of internal reference voltage programming. The internal  
reference voltages V  
and V  
for the A/D converter are both programmable to one  
IntAREF  
IntAGND  
of 16 steps with respect to the external reference voltages. This feature permits a conversion  
with a smaller internal reference voltage range to gain a higher resolution. In addition, the  
internal reference voltages can easily be adapted by software to the desired analog input  
voltage range (see table 2).  
Table 2  
Adjustable Internal Reference Voltages  
Step  
DAPR (.3-.0)  
DAPR (.7-.4)  
V
V
IntAREF  
IntAGND  
0
1
2
3
4
5
6
7
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.0  
5.0  
0.3125  
0.625  
0.9375  
1.25  
1.5625  
1.875  
2.1875  
2.5  
2.8125  
3.125  
3.4375  
3.75  
1.25  
1.5625  
1.875  
2.1875  
2.5  
2.8125  
3.125  
3.4375  
3.75  
8
9
10  
11  
12  
13  
14  
15  
4.0625  
4.375  
4.68754  
Semiconductor Group  
23  
SAB 80C517/80C537  
Figure 4  
Block Diagram A/D Converter  
Semiconductor Group  
24  
SAB 80C517/80C537  
Compare/Capture Unit (CCU)  
The compare capture unit is a complex timer/register array for applications that require high  
speed I/O, pulse width modulation and more timer/counter capabilities. The CCU contains  
– one 16-bit timer/counter (timer 2) with 2-bit prescaler, reload capability and a max. clock  
frequency of f  
/12 (1 MHz with a 12 MHz crystal).  
OSC  
– one 16-bit timer (compare timer) with 8-bit prescaler, reload capability and a max. clock  
frequency of f /2 (6 MHz with a 12 MHz crystal).  
OSC  
– thirteen 16-bit compare registers.  
– five of which can be used as 16-bit capture registers.  
– up to 21 output lines controlled by the CCU.  
– seven interrupts which can be generated by CCU-events.  
Figure 5 shows a block diagram of the CCU. Eight compare registers (CM0 to CM7) can  
individually be assigned to either timer 2 or the compare timer. Diagrams of the two timers are  
shown in figures 6 and 7. The four compare/capture registers and the compare/reload/capture  
register are always connected to timer 2. Dependent on the register type and the assigned  
timer two compare modes can be selected. Table 3 illustrates possible combinations and the  
corresponding output lines.  
Table 3  
CCU Configuration  
Assigned Timer Compare Register Compare Output at Possible Modes  
Timer 2  
CRCH/CRCL  
CC1H/CC1L  
CC2H/CC2L  
CC3H/CC3L  
CC4H/CC4L  
P1.0/INT3/CC0  
P1.0/INT4/CC1  
P1.0/INT5/CC2  
P1.0/INT6/CC3  
P1.0/INT2/CC4  
Comp. mode 0, 1 + Reload  
Comp. mode 0, 1  
Comp. mode 0, 1  
Comp. mode 0, 1  
Comp. mode 0, 1  
CC4H/CC4L  
P5.0/CCM0  
Comp. mode 1  
:
:
:
CC4H/CC4L  
P5.7/CCM7  
Comp. mode 1  
CM0H/CM0L  
P4.0/CM0  
:
Comp. mode 1  
:
:
CM7H/CM7L  
P4.7/CM7  
Comp. mode 1  
Compare timer  
CM0H/CM0L  
P4.0/CM0  
Comp. mode 0  
(with add. latches)  
:
:
:
:
:
:
CM7H/CM7L  
P4.7/CM7  
Comp. mode 0  
(with shadow latches)  
Semiconductor Group  
25  
SAB 80C517/80C537  
Figure 5  
Block Diagram of the Compare/Capture Unit  
Semiconductor Group  
26  
SAB 80C517/80C537  
Compare  
In the compare mode, the 16-bit values stored in the dedicated compare registers are  
compared to the contents of the timer 2 register or the compare timer register. If the count value  
in the timer registers matches one of the stored values, an appropriate output signal is  
generated and an interrupt is requested. Two compare modes are provided:  
Mode 0: Upon a match the output signal changes from low to high. It goes back to low level  
when the timer overflows.  
Mode 1: The transition of the output signal can be determined by software. A timer overflow  
signal doesn’t affect the compare-output.  
Compare registers CM0 to CM7 use additional compare latches when operated in mode 0.  
Figure 8 shows the function of these latches. The latches are implemented to prevent from loss  
of compare matches which may occur when loading of the compare values is not correlated  
with the timer count. The compare latches are automatically loaded from the compare registers  
at every timer overflow.  
Capture  
This feature permits saving of the actual timer/counter contents into a selected register upon  
an external event or a software write operation. Two modes are provided to latch the current  
16-bit value of timer 2 registers into a dedicated capture register.  
Mode 0: Capture is performed in response to a transition at the corresponding port pins CC0  
to CC3.  
Mode 1: Write operation into the low-order byte of the dedicated capture register causes the  
timer 2 contents to be latched into this register.  
Reload of Timer 2  
A 16-bit reload can be performed with the 16-bit CRC register, which is a concatenation of the  
8-bit registers CRCL and CRCH. There are two modes from which to select:  
Mode 0: Reload is caused by a timer overflow (auto-reload).  
Mode 1: Reload is caused in response to a negative transition at pin T2EX (P1.5), which also  
can request an interrupt.  
Timer/Counters 0 and 1  
These timer/counters are fully compatible with timer/counter 0 or 1 of the SAB 8051 and can  
operate in four modes:  
Mode 0: 8-bit timer/counter with 32:1 prescaler  
Mode 1: 16-bit timer/counter  
Mode 2: 8-bit timer/counter with 8-bit auto reload  
Mode 3: Timer/counter 0 is configured as one 8-bit timer; timer/counter 1 in this mode holds  
its count.  
External inputs INT0 and INT1 can be programmed to function as a gate for timer/counters 0  
and 1 to facilitate pulse width measurements.  
Semiconductor Group  
27  
SAB 80C517/80C537  
Figure 6  
Block Diagram of Timer 2  
Semiconductor Group  
28  
SAB 80C517/80C537  
Figure 7  
Block Diagram of the Compare Timer  
Semiconductor Group  
29  
SAB 80C517/80C537  
Figure 8  
Compare-Mode 0 with Registers CM0 to CM7  
Semiconductor Group  
30  
SAB 80C517/80C537  
Interrupt Structure  
The SAB 80C517 has 14 interrupt vectors with the following vector addresses and request  
flags.  
Table 4  
Interrupt Sources and Vectors  
Source (Request Flags)  
Vector Address  
0003  
Vector  
IE0  
TF0  
IE1  
TF1  
RI0/TI0  
TF2 + EXF2  
IADC  
IEX2  
IEX3  
IEX4  
External interrupt 0  
Timer 0 overflow  
External interrupt 1  
Timer 1 overflow  
Serial channel 0  
Timer 2 overflow/ext. reload  
A/D converter  
External interrupt 2  
External interrupt 3  
External interrupt 4  
External interrupt 5  
External interrupt 6  
Serial channel 1  
H
000B  
H
H
0013  
001B  
H
H
0023  
002B  
H
0043  
H
004B  
H
H
0053  
005B  
H
H
IEX5  
IEX6  
RI1/TI1  
CTF  
0063  
006B  
H
H
0083  
009B  
Compare timer overflow  
H
Each interrupt vector can be individually enabled/disabled. The response time to an interrupt  
request is more than 3 machine cycles and less than 9 machine cycles.  
External interrupts 0 and 1 can be activated by a low-level or a negative transition (selectable)  
at their corresponding input pin, external interrupts 2 and 3 can be programmed for triggering  
on a negative or a positive transition. The external interrupts 2 to 6 are combined with the  
corresponding alternate functions compare (output) and capture (input) on port 1.  
For programming of the priority levels the interrupt vectors are combined to pairs or triples.  
Each pair or triple can be programmed individually to one of four priority levels by setting or  
clearing one bit in special function register IP0 and one in IP1. Figure 9 shows the interrupt  
request sources, the enabling and the priority level structure.  
Semiconductor Group  
31  
SAB 80C517/80C537  
Figure 9  
Interrupt Structure  
Semiconductor Group  
32  
SAB 80C517/80C537  
Figure 9 (cont’d)  
Interrupt Structure  
Semiconductor Group  
33  
SAB 80C517/80C537  
Multiplication/Division Unit  
This on-chip arithmetic unit provides fast 32-bit division, 16-bit multiplication as well as shift and  
normalize features. All operations are integer operations.  
Remainder  
Execution Time  
Operation  
Result  
1
32-bit/16-bit  
16-bit/16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
6 t  
4 t  
)
cy  
cy  
16-bit 16-bit  
32-bit  
4 t  
6 t  
6 t  
cy  
cy  
cy  
2
32-bit normalize  
)
2
32-bit shift left/right  
)
1)  
1 t = 1 µs @ 12 MHz oscillator frequency.  
cy  
2)  
The maximal shift speed is 6 shifts/cycle.  
The MDU consists of six registers used for operands and results and one control register.  
Operation of the MDU can be divided in three phases:  
Figure 10  
Operation of the MDU  
To start an operation, register MD0 to MD5 (or ARCON) must be written to in a certain  
sequence according to table 5 or 6. The order the registers are accessed determines the type  
of the operation. A shift operation is started by a final write operation to register ARCON (see  
also the register description).  
Semiconductor Group  
34  
SAB 80C517/80C537  
Table 5  
Programming the MDU for Multiplication and Division  
Operation  
32-Bit/16-Bit  
16-Bit/16-Bit  
16-Bit 16-Bit  
*
First Write  
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
D'endL  
MD0  
MD1  
D'endL  
MD0  
MD4  
M'andL  
M'orL  
D'end  
D'end  
D'endH  
D'orL  
D'end  
D'end  
D'endH  
D'orL  
MD4  
MD1  
M'andH  
Last Write  
First Read  
D'orH  
MD5  
D'orH  
MD5  
M'orH  
PrL  
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
QuoL  
Quo  
Quo  
QuoH  
RemL  
RemH  
MD0  
MD1  
QuoL  
QuoH  
MD0  
MD1  
MD4  
MD5  
RemL  
RemH  
MD2  
MD3  
Last Read  
PrH  
Table 6  
Shift Operation with the CCU  
Operation  
Normalize, Shift Left, Shift Right  
First Write  
MD0  
least significant byte  
MD1  
MD2  
MD3  
ARCON  
most significant byte  
start of conversion  
Last Write  
First Read  
MD0  
MD1  
MD2  
MD3  
least significant byte  
Last Read  
most significant byte  
Abbreviations  
D'end : Dividend, 1st operand of division  
D'or : Divisor, 2nd operand of division  
M'and : Multiplicand, 1st operand of multiplication  
M'or : Multiplicator, 2nd operand of multiplication  
Pr  
: Product, result of multiplication  
Rem : Remainder  
Quo : Quotient, result of division  
...L  
...H  
: means, that this byte is the least significant of the 16-bit or 32-bit operand  
: means, that this byte is the most significant of the 16-bit or 32-bit operand  
Semiconductor Group  
35  
SAB 80C517/80C537  
I/O Ports  
The SAB 80C517 has seven 8-bit I/O ports and two input ports (8-bit and 4-bit wide).  
Port 0 is an open-drain bidirectional I/O port, while ports 1 to 6 are quasi-bidirectional I/O ports  
with internal pull-up resistors. That means, when configured as inputs, ports 1 to 6 will be pulled  
high and will source current when externally pulled low. Port 0 will float when configured as  
input.  
Port 0 and port 2 can be used to expand the program and data memory externally. During an  
access to external memory, port 0 emits the low-order address byte and reads/writes the data  
byte, while port 2 emits the high-order address byte. In this function, port 0 is not an open-drain  
port, but uses a strong internal pullup FET. Port 1, 3, 4, 5 and port 6 provide several alternate  
functions. Please see the "Pin Description" for details.  
Port pins show the information written to the port latches, when used as general purpose port.  
When an alternate function is used, the port pin is controlled by the respective peripheral unit.  
Therefore the port latch must contain a "one" for that function to operate. The same applies  
when the port pins are used as inputs. Ports 1, 3, 4 and 5 are bit- addressable.  
The SAB 80C517 has two dual-purpose input ports. The twelve port lines at port 7 and port 8  
can be used as analog inputs for the A/D converter. If input voltages at P7 and P8 meet the  
specified digital input levels (V and V ) the port can also be used as digital input port.  
IL  
IH  
Semiconductor Group  
36  
SAB 80C517/80C537  
Power Saving Modes  
The SAB 80C517 provides – due to Siemens ACMOS technology – three modes in which  
power consumption can be significantly reduced.  
– The Slow Down Mode  
The controller keeps up the full operating functionality, but is driven with the eighth part of its  
normal operating frequency. Slowing down the frequency greatly reduces power  
consumption.  
– The Idle Mode  
The CPU is gated off from the oscillator, but all peripherals are still supplied by the clock and  
able to work.  
– The Power Down Mode  
Operation of the SAB 80C517 is stopped, the oscillator is turned off. This mode is used to  
save the contents of the internal RAM with a very low standby current.  
All of these modes are entered by software. Special function register PCON (power control  
register, address is 87 ) is used to select one of these modes.  
H
Hardware Enable for Power Saving Modes  
A dedicated Pin (PE/SWD) of the SAB 80C517 allows to block the power saving modes. Since  
this pin is mostly used in noise-critical application it is combined with an automatic start of the  
Watchdog Timer (see there for further description).  
PE/SWD = V (logic high level):  
Using of the power saving modes is not possible. The  
instruction sequences used for entering of these modes  
will not affect the normal operation of the device.  
IH  
PE/SWD = V (logic low level):  
All power saving modes can be activated by software.  
When left unconnected, Pin PE/SWD is pulled to high level  
by a weak internal pullup. This is done to provide system  
protection on default.  
IL  
The logic-level applied to pin PE/SWD can be changed during program execution to allow or to  
block the use of the power saving modes without any effect on the on-chip watchdog circuitry.  
Power Down Mode  
The power down mode is entered by two consecutive instructions directly following each other.  
The first instruction has to set the flag PDE (power down enable) and must not set PDS (power  
down set). The following instruction has to set the start bit PDS. Bits PDE and PDS will  
automatically be cleared after having been set.  
The instruction that sets bit PDS is the last instruction executed before going into power down  
mode. The only exit from power down mode is a hardware reset.  
The status of all output lines of the controller can be looked up in table 7.  
Semiconductor Group  
37  
SAB 80C517/80C537  
Table 7  
Status of External Pins During Idle and Power Down  
Outputs  
Last instruction executed from  
internal code memory  
Last instruction executed from  
external code memory  
Idle  
Power down  
Idle  
Power Down  
ALE  
High  
High  
Data  
Low  
Low  
Data  
High  
High  
Float  
Low  
PSEN  
Port 0  
Port 1  
Low  
Float  
Data/alternate  
outputs  
Data/last output Data/alternate  
outputs  
Data/last output  
Port 2  
Port 3  
Data  
Data  
Address  
Data  
Data/alternate  
outputs  
Data/last output Data/alternate  
outputs  
Data/last output  
Port 4  
Port 5  
Port 6  
Data/alternate  
outputs  
Data/last output Data/alternate  
outputs  
Data/last output  
Data/last output  
Data/last output  
Data/alternate  
outputs  
Data/last output Data/alternate  
outputs  
Data/alternate  
outputs  
Data/last output Data/alternate  
outputs  
Idle Mode  
During idle mode all peripherals of the SAB 80C517 are still supplied by the oscillator clock.  
Thus the user has to take care which peripheral should continue to run and which has to be  
stopped during Idle.  
The procedure to enter the Idle mode is similar to entering the power down mode.  
The two bits IDLE and IDLS must be set by to consecutive instructions to minimize the chance  
of unintentional activating of the idle mode.  
There are two ways to terminate the idle mode:  
– The idle mode can be terminated by activating any enabled interrupt. This interrupt will be  
serviced and normally the instruction to be executed following the RETI instruction will be  
the one following the instruction that sets the bit IDLS.  
– The other way to terminate the idle mode, is a hardware reset. Since the oscillator is still  
running, the hardware reset must be held active only for two machine cycles for a complete  
reset.  
Normally the port pins hold the logical state they had at the time idle mode was activated. If  
some pins are programmed to serve their alternate functions they still continue to output during  
idle mode if the assigned function is on. The control signals ALE and PSEN hold at logic high  
levels (see table 7).  
Semiconductor Group  
38  
SAB 80C517/80C537  
Table 8  
Baud Rate Generation  
Function  
Mode  
Serial Interface 0  
Mode 0  
Serial Interface 1  
8-Bit  
Baud rate *) 1 MHz @ f  
= 12 MHz  
OSC  
synchronous  
channel  
Baud rate  
derived  
from  
f
OSC  
Mode  
Mode 1  
Mode B  
8-Bit  
Baud rate *) 1 – 62.5 K  
4800, 9600  
1.5 – 375 K  
UART  
Baud rate  
derived  
from  
Timer 1  
BD  
8-bit baud rate generator  
Mode  
Mode 2  
Mode 3  
Mode A  
9-Bit  
UART  
Baud rate *) 187.5 K/  
375 K  
1 – 62.5 K  
1.5 – 375 K  
Baud rate  
derived  
from  
fOSC/2  
Timer 1  
8-bit baud rate generator  
*) Baud rate values are given for 12 MHz oscillator frequency.  
Semiconductor Group  
39  
SAB 80C517/80C537  
Serial Interface 0  
Serial Interface 0 can operate in 4 modes:  
Mode 0:  
Mode 1:  
Mode 2:  
Shift register mode:  
Serial data enters and exits through RXD0. TXD0 outputs the shift clock 8 data bits  
are transmitted/received (LSB first). The baud rate is fixed at 1/12 of the oscillator  
frequency.  
8-bit UART, variable baud rate:  
10-bit are transmitted (through RXD0) or received (through RXD0): a start bit (0),  
8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB80  
in special function register S0CON. The baud rate is variable.  
9-bit UART, fixed baud rate:  
11-bit are transmitted (through TXD0) or received (through RXD0): a start bit (0),  
8 data bits (LSB first), a programmable 9th, and a stop bit (1). On transmission, the  
9th data bit (TB80 in S0CON) can be assigned to the value of 0 or 1. For example,  
the parity bit (P in the PSW) could be moved into TB80 or a second stop bit by  
setting TB80 to 1. On reception the 9th data bit goes into RB80 in special function  
register S0CON, while the stop bit is ignored. The baud rate is programmable to  
either 1/32 or 1/64 of the oscillator frequency.  
Mode 3:  
9-bit UART, variable baud rate:  
11-bit are transmitted (through TXD0) or received (through RXD0): a start bit (0),  
8 data bits (LSB first), a programmable 9th, and a stop bit (1). In fact, mode 3 is the  
same as mode 2 in all respects except the baud rate. The baud rate in mode 3 is  
variable.  
Variable Baud Rates for Serial Interface 0  
Variable baud rates for modes 1 and 3 of serial interface 0 can be derived from either timer 1  
or from the oscillator via a special prescaler ("BD").  
Timer 1 may be operated in mode 1 (to generate slow baud rates) or mode 2. The dedicated  
baud rate generator "BD" provides the two standard baud rates 4800 or 9600 baud with 0.16%  
deviation. Table 8 shows possible configurations and the according baud rates.  
SAB 80C517 devices with stepping code "CA" or later provide a dedicated baud rate generator  
for the serial interface 0. This baud rate genertaor is a free running 10-bit timer with  
programmable reload registers.  
2SMOD × fOSC  
Mode 1.3 baud rate = -------------------------------------------------------  
10  
64 × 2 S0REL  
The default value after reset in the reload registers S0RELL and S0RELH prvide a baud rate  
of 4.8 kBaud (SMOD = 0) or 9.6 kBaud (SMOD = 1) at 12 MHz oscillator frequency. This  
guarantees full compatibility to the SAB 80C517 older steppings.  
Semiconductor Group  
40  
SAB 80C517/80C537  
Serial Interface 1  
Serial interface 1 can operate in two asynchronous modes:  
Mode A: 9-bit UART, variable baud rate.  
11 bits are transmitted (through TXD0) or received (through RXD0): a start bit (0),  
8 data bits (LSB first), a programmable 9th, and a stop bit (1). On transmission, the  
9th data bit (TB81 in S1CON) can be assigned to the value of 0 or 1. For example,  
the parity bit (P in the PSW) could be moved into TB81 or a second stop bit by  
setting TB81 to 1. On reception the 9th data bit goes into RB81 in special function  
register S1CON, while the stop bit is ignored.  
Mode B: 8-bit UART, variable baud rate.  
10 bits are transmitted (through TXD1) or received (through RXD1): a start bit (0),  
8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB81  
in special function register S1CON.  
Variable Baud Rates for Serial Interface 1  
Variable baud rates for modes A and B of serial interface 1 can be derived from a dedicated  
baud rate generator.  
baud rate clock  
The baud rate clock (baud rate = ---------------------------------------- ) is generated by a 8-bit free  
16  
running timer with programmable reload register. SAB 80C517 devices with stepping code  
"CA" or later provide a 10-bit free running timer for baud rate generation.  
f OSC  
Mode A, B baud rate = -----------------------------------------------------------------------  
10  
32 × 2 Reload Value  
Watchdog Units  
The SAB 80C517 offers two enhanced fail safe mechanisms, which allow an automatic recov-  
ery from hardware failure or software upset:  
– programmable watchdog timer (WDT), variable from 512 ms up to about 1.1 s time out  
period @12 MHz. Upward compatible to SAB 80515 watchdog.  
– oscillator watchdog (OWD), monitors the on-chip oscillator and forces the microcontroller to  
go into reset state, in case the on-chip oscillator fails.  
Programmable Watchdog Timer  
The WDT can be activated by hardware or software.  
Hardware initialization is done when pin PE/SWD (Pin 4) is held high during RESET. The  
SAB 80C517 then starts program execution with the WDT running. Pin PE/SWD doesn’t allow  
dynamic switching of the WDT.  
Software initialization is done by setting bit SWDT. A refresh of the watchdog timer is done by  
setting bits WDT and SWDT consecutively.  
A block diagram of the watchdog timer is shown in figure 11.  
When a watchdog timer reset occurs, the watchdog timer keeps on running, but a status flag  
WDTS is set. This flag can also be manipulated by software.  
Semiconductor Group  
41  
SAB 80C517/80C537  
Figure 11  
Block Diagram of the Programmable Watchdog Timer  
Oscillator Watchdog  
The oscillator watchdog monitors the on-chip quartz oscillator. A detected oscillator failure  
(f < appr. 300 kHz) causes a hardware reset. The reset state is held until the on-chip  
OSC  
oscillator is working again. The oscillator watchdog feature is enabled by a high level at pin  
OWE (pin 69). An oscillator watchdog reset sets status flag OWDS which can be examined and  
modified by software. Figure 12 shows a block diagram of the oscillator watchdog.  
Figure 12  
Functional Block Diagram of the Oscillator Watchdog  
Semiconductor Group  
42  
SAB 80C517/80C537  
Instruction Set Summary  
The SAB 80C517/80C537 has the same instruction set as the industry standard 8051 micro-  
controller.  
A pocket guide is available which contains the complete instruction set in functional and hexa-  
decimal order. Furtheron it provides helpful information about Special Function Registers, In-  
terrupt Vectors and Assembler Directives.  
Literature Information  
Title  
Ordering No.  
Microcontroller Family SAB 8051 Pocket Guide  
B158-H6497-X-X-7600  
Semiconductor Group  
43  
SAB 80C517/80C537  
Absolute Maximum Ratings  
Ambient temperature under bias  
SAB 80C517/83C537.................................................................................. 0 to 70 C  
o
o
SAB 80C517/83C537-T40/85.................................................................................... – 40 to 85 C  
o
Storage temperature T ............................................................................ – 65 to 150 C  
ST  
Voltage on V pins with respect to ground (V ) ...................................... – 0.5 V to 6.5 V  
CC  
SS  
Voltage on any pin with respect to ground (V )......................................... – 0.5 to V +0.5 V  
SS  
CC  
Input current on any pin during overload condition ..................................... – 10mA to +10mA  
Absolute sum of all input currents during overload condition..................... |100mA|  
Power dissipation........................................................................................ 2 W  
Note Stresses above those listed under "Absolute Maximum Ratings" may cause permanent  
damage of the device. This is a stress rating only and functional operation of the device  
at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for longer  
periods may affect device reliability. During overload conditions (VIN > VCC or VIN < VSS)  
theVoltage on VCC pins with respect to ground (VSS) must not exeed the values definded  
by the absolute maximum ratings.  
DC Characteristics  
V
= 5 V ± 10 %; V = 0 V;  
SS  
CC  
o
T = 0 to 70 C for the SAB 80C517/83C537  
T = 40 to 85 C for the SAB 80C517-/83C537-T40/85  
A
o
A
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test Condition  
Input low voltage (except EA)  
V
V
– 0.5  
0.2 V –  
– 0.1  
V
IL  
CC  
Input low voltage (EA)  
– 0.5  
0.2 V  
– V  
CC  
IL1  
– 0.3  
Input high voltage  
V
0.2 V  
V
+ 0.5 V  
IH  
CC  
CC  
+ 0.9  
Input high voltage to XTAL2  
Input high voltage to RESET  
V
V
V
0.7 V  
0.6 V  
V
V
+ 0.5 V  
+ 0.5 V  
V
I
IH1  
IH2  
OL  
CC  
CC  
CC  
CC  
Output low voltage  
0.45  
= 1.6 mA1)  
OL  
(ports 1, 2, 3, 4, 5, 6)  
Notes see page 47.  
Semiconductor Group  
44  
SAB 80C517/80C537  
DC Characteristics (cont’d)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
0.45  
Output low voltage  
V
V
I
= 3.2mA 1)  
OL1  
OL  
(ports ALE, PSEN, RO)  
Output high voltage  
(ports 1, 2, 3, 4, 5, 6)  
V
2.4  
0.9 V  
V
V
I
I
= – 80 µA  
= – 10 µA  
OH  
OH  
OH  
CC  
Output high voltage  
(port 0 in external bus mode,  
ALE, PSEN, RO)  
V
2.4  
0.9 V  
V
V
I
I
= – 800 µA2)  
= – 80 µA  
OH1  
OH  
OH  
2)  
CC  
Logic 0 input current  
(ports 1, 2, 3, 4, 5, 6)  
I
I
– 10  
– 10  
– 70  
µA  
µA  
V = 0.45 V  
IN  
IL  
Input low current to RESET  
for reset  
–100  
V = 0.45 V  
IN  
IL2  
Input low current (XTAL2)  
I
I
– 15  
– 20  
µA  
µA  
V = 0.45 V  
IN  
IL3  
Input low current  
(OWE, PE/SWD)  
V = 0.45 V  
IN  
IL4  
Logical 1-to-0 transition current I  
(ports 1, 2, 3, 4, 5, 6)  
– 65  
650  
± 1  
µA  
µA  
pF  
V = 2 V  
TL  
LI  
IN  
10)  
Input leakage current  
(port 0, EA, ports 7, 8)  
I
0.45 < V < V  
IN  
CC  
Pin capacitance  
C
I
10  
f = 1 MHz  
IO  
C
TA = 25oC  
Power supply current:  
Active mode, 12 MHz6)  
Idle mode, 12 MHz6)  
40  
15  
15  
52.3  
19  
19  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
V
V
V
V
V
V
V
= 5 V,4)  
= 5 V,5)  
= 5 V,5)  
= 5 V,4)  
= 5 V,5)  
= 5 V,5)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
Slow down mode, 12 MHz6)  
Active mode, 16 MHz6)  
Idle mode, 16 MHz6)  
I
I
CC  
Slow down mode, 16MHz6)  
Power down Mode  
50  
= 2...5.5 V 3)  
PD  
Notes see page 47.  
Semiconductor Group  
45  
SAB 80C517/80C537  
A/D Converter Characteristics  
V
V
= 5 V ± 10 %; V  
= 0 V  
SS  
CC  
= V  
± 5%; V  
= V ± 0.2 V; V  
- V  
1V  
IntAGND  
AREF  
CC  
AGND  
SS  
IntAREF  
o
T = 0 to 70 C for the SAB 80C517/83C537  
T = 40 to 85 C for the SAB 80C517/83C537-T40/875  
A
o
A
Parameter  
Symbol  
Limit values  
Unit  
Test  
Condition  
min.  
typ.  
max.  
9)  
7)  
Analog input voltage  
VAINPUT  
V
0.2  
V
+ 0.2  
V
AGND  
AREF  
Analog input  
capacitance  
C
25  
60  
pF  
I
7)  
7)  
Load time  
t
t
2 t  
µs  
µs  
L
CY  
Sample time  
(incl. load time)  
7t  
CY  
S
C
7)  
Conversion time  
(incl. sample time)  
t
13 t  
µs  
CY  
TUE  
Total unadjusted error  
± 2  
LSB  
V
V
AREF = VCC  
AGND = VSS 11)  
8)  
8)  
Internal reference error  
VIntREFERR  
IREF  
± 30  
mV  
mA  
V
supply current  
5
AREF  
Notes see page 47.  
Semiconductor Group  
46  
SAB 80C517/80C537  
Notes for pages 44, 45 and 46:  
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed  
on the V of ALE and ports 1, 3, 4, 5 and 6. The noise is due to external bus capacitance  
OL  
discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during  
bus operation.  
In the worst case (capacitive loading > 100 pF), the noise pulse on ALE line may exceed  
0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an  
address latch with a schmitt- trigger strobe input.  
2) Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily  
OH  
fall below the 0.9 V specification when the address lines are stabilizing.  
CC  
3) Power down I is measured with all output pins disconnected;  
PD  
EA = RESET = V ; Port 0 = Port 7 = Port 8 = V ; XTAL1 = N.C.; XTAL2 = V ;  
CC  
CC  
SS  
V
= N.C.; V  
= V ; PE/SWD = OWE = V .  
AGND  
AREF CC SS  
4) I (active mode) is measured with all output pins disconnected; XTAL2 driven with clock  
CC  
signal according to the figure below; XTAL1 = N.C.;  
EA = OWE = PE/SWD = V ; Port 0 = Port 7 = Port 8 = V ;  
CC  
CC  
RESET = V . I would be slightly higher if a crystal oscillator is used.  
SS CC  
5) ICC (idle mode,) is measured with all output pins disconnected and with all peripherals  
disabled; XTAL2 driven with clock signal according to the figure below; XTAL1 = N.C.;  
RESET = OWE = V ; Port 0 = Port 7 = Port 8 = V ; EA = PE/SWD = V .  
CC  
CC  
SS  
I
(slow down mode) is measured with all output pins disconnected and with all peripherals  
CC  
disabled; XTAL2 driven with clock signal according to the figure below; XTAL = N.C.;  
Port 7 = Port 8 = V ; EA = PE/SWD = V .  
CC  
SS  
6) I (max.) at other frequencies is given by: active mode: I max = 3.1 f + 3.0  
* OSC  
CC  
CC  
idle mode: I max = 1.0 f  
+ 3.0  
CC  
* OSC  
Where f  
is the oscillator frequency in MHz. I values are given in mA and measured at  
OSC  
CC  
V
= 5 V (see also notes 4 and 5).  
CC  
7) The output impedance of the analog source must be low enough to assure full loading of the  
sample capacitance (C ) during load time (T ). After charging of the internal capacitance (C )  
I
L
I
in the load time (T ) the analog input must be held constant for the rest of the sample time  
L
(T ).  
S
8) The differential impedance RD of the analog reference voltage source must be less than  
1 kat reference supply voltage.  
9) Exceeding the limit values at one or more input channels will cause additional current which  
is sinked sourced at these channels. This may also affect the accuracy of other channels  
which are operated within the specification.  
10) Only valid for not selected analog inputs.  
11) No missing code.  
Semiconductor Group  
47  
SAB 80C517/80C537  
Clock of Waveform for I Tests in Active, Idle Mode and Slow Down Mode  
CC  
Semiconductor Group  
48  
SAB 80C517/80C537  
AC Characteristics  
= 5 V ± 10 %; V = 0 V T =  
o
V
0 to 70 C for the SAB 80C517/83C537  
CC  
SS  
A
o
T = 40 to 85 C for the SAB 80C517/83C537-T40/85  
A
(C for port 0, ALE and PSEN outputs = 100 pF; C for all other outputs = 80 pF))  
L
L
Parameter  
Symbol  
Limit Values  
Unit  
12 MHz Clock  
Variable Clock  
= 3.5 MHz to 12 MHz  
1/t  
CLCL  
min  
max.  
min.  
max.  
Program Memory Characteristics  
ALE pulse width  
t
t
t
t
127  
2 t  
– 40  
CLCL  
ns  
ns  
ns  
ns  
LHLL  
AVLL  
LLAX  
LLIV  
Address setup to ALE  
Address hold after ALE  
53  
48  
t
t
– 30  
CLCL  
CLCL  
– 35  
ALE to valid  
instruction in  
233  
4t  
– 100  
CLCL  
CLCL  
ALE to PSEN  
t
t
t
58  
215  
t
– 25  
ns  
ns  
ns  
LLPL  
PLPH  
PLIV  
CLCL  
PSEN pulse width  
3 t  
– 35  
CLCL  
PSEN to valid  
instruction in  
150  
3t  
– 100  
Input instruction hold  
after PSEN  
t
t
t
t
t
0
0
ns  
ns  
ns  
ns  
ns  
PXIX  
*)  
Input instruction float  
63  
t
– 20  
PXIX  
PXAV  
AVIV  
AZPL  
CLCL  
*)  
after PSEN  
*)  
Address valid after  
75  
t
– 8  
CLCL  
*)  
PSEN  
Address to valid  
instruction in  
302  
0
5t  
– 115  
CLCL  
Address float to PSEN  
*)  
Interfacing the SAB 80C517 to devices with float times up to 75 ns is permissible.  
This limited bus contention will not cause any damage to port 0 drivers.  
Semiconductor Group  
49  
SAB 80C517/80C537  
AC Characteristics (cont’d)  
Parameter Symbol  
Limit Values  
Unit  
12 MHz Clock  
Variable Clock  
= 3.5 MHz to 12 MHz  
1/t  
CLCL  
min  
max.  
min.  
max.  
External Data Memory Characteristics  
RD pulse width  
t
t
t
t
t
t
t
t
t
t
400  
400  
132  
6 t  
6 t  
2 t  
– 100  
ns  
ns  
ns  
RLRH  
WLWH  
LLAX2  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
CLCL  
CLCL  
WR pulse width  
– 100  
– 30  
Address hold after ALE  
RD to valid instr in  
Data hold after RD  
Data float after RD  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
252  
5 t  
– 165 ns  
CLCL  
0
0
ns  
ns  
97  
2 t  
8 t  
9 t  
3 t  
– 70  
CLCL  
CLCL  
CLCL  
CLCL  
517  
585  
300  
123  
– 150 ns  
– 165 ns  
AVDV  
LLWL  
WHLH  
200  
43  
3 t  
– 50  
+ 50  
+40  
ns  
ns  
CLCL  
CLCL  
CLCL  
WR or RD high to ALE  
high  
t
– 40  
t
CLCL  
CLCL  
Address valid to WR  
t
t
203  
33  
4 t  
– 130  
ns  
ns  
AVWL  
QVWX  
Data valid to WR  
transition  
t
– 50  
CLCL  
Data setup before WR  
Data hold after WR  
t
t
t
433  
33  
0
7 t  
– 150  
– 50  
0
ns  
ns  
ns  
QVWX  
WHQX  
RLAZ  
t
CLCL  
Address float after RD  
Semiconductor Group  
50  
SAB 80C517/80C537  
AC Characteristics  
= 5 V ± 10 %; V  
V
= 0 V  
SS  
CC  
o
T =  
0 to 70 C for the SAB 80C517-16/83C537-16  
A
o
T = 40 to 85 C for the SAB 80C517-16/83C537-16-T40/85  
A
(C for port 0, ALE and PSEN outputs = 100pF; C for all outputs = 80 pF)  
L
L
Parameter  
Symbol  
Limit Values  
Unit  
16 MHz Clock  
Variable Clock  
= 3.5 MHz to 16 MHz  
1/t  
CLCL  
min  
max.  
min.  
max.  
Program Memory Characteristics  
ALE pulse width  
t
t
t
t
t
t
t
t
85  
2 t  
– 40  
CLCL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
AVLL  
LLAX  
LLIV  
Address setup to ALE  
Address hold after ALE  
ALE to valid instr. in  
ALE to PSEN  
33  
28  
t
t
– 30  
CLCL  
CLCL  
– 35  
150  
4t  
– 100  
CLCL  
38  
153  
t
CLCL  
– 25  
LLPL  
PLPH  
PLIV  
PXIX  
PSEN pulse width  
PSEN to valid instr. in  
3 t  
– 35  
CLCL  
88  
3t  
– 100  
CLCL  
Input instruction hold  
after PSEN  
0
0
Input instruction float *)  
after PSEN  
t
t
43  
t
– 20  
ns  
ns  
PXIZ  
CLCL  
Address valid after  
PSEN *)  
55  
t
– 8  
CLCL  
PXAV  
Address to valid instr. in  
t
t
0
198  
0–  
0
5t  
– 115  
ns  
ns  
AVIV  
AZPL  
CLCL  
Address float to PSEN  
*)  
Interfacing the SAB 80C517 to devices with float times up to 55 ns is permissible.  
This limited bus contention will not cause any damage to port 0 drivers.  
Semiconductor Group  
51  
SAB 80C517/80C537  
AC Characteristics (cont’d)  
Parameter Symbol  
Limit Values  
Unit  
16 MHz Clock  
Variable Clock  
= 3.5 MHz to 16 MHz  
1/t  
CLCL  
min  
max.  
min.  
max.  
External Data Memory Characteristics  
RD pulse width  
t
t
t
t
t
t
t
t
t
t
275  
275  
90  
6 t  
6 t  
2 t  
– 100  
ns  
ns  
ns  
RLRH  
WLWH  
LLAX2  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
CLCL  
CLCL  
WR pulse width  
– 100  
– 35  
Address hold after ALE  
RD to valid data in  
Data hold after RD  
Data float after RD  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
148  
5 t  
– 165 ns  
CLCL  
0
0
ns  
ns  
55  
2 t  
8 t  
9 t  
3 t  
– 70  
CLCL  
CLCL  
CLCL  
CLCL  
350  
398  
238  
103  
– 150 ns  
– 165 ns  
AVDV  
LLWL  
WHLH  
138  
23  
3 t  
– 50  
+ 50  
+ 40  
ns  
ns  
CLCL  
CLCL  
CLCL  
WR or RD high to ALE  
high  
t
– 40  
t
CLCL  
CLCL  
Address valid to WR  
t
t
120  
13  
4 t  
– 130  
ns  
ns  
AVWL  
QVWX  
Data valid to WR  
transition  
t
– 50  
CLCL  
Data setup before WR  
Data hold after WR  
t
t
t
288  
13  
0
7 t  
– 150  
– 50  
0
ns  
ns  
ns  
QVWH  
WHQX  
RLAZ  
t
CLCL  
Address float after RD  
Semiconductor Group  
52  
SAB 80C517/80C537  
Program Memory Read Cycle  
Data Memory Read Cycle  
Semiconductor Group  
53  
SAB 80C517/80C537  
Data Memory Write Cycle  
Semiconductor Group  
54  
SAB 80C517/80C537  
AC Characteristics (cont'd)  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Frequ. = 3.5 MHz to 12 MHz  
min  
max.  
External Clock Drive  
Oscillator period  
Oscillator frequency  
High time  
t
83.3  
3.5  
20  
20  
285  
12  
ns  
CLCL  
1/t  
MHz  
ns  
CLCL  
t
t
t
t
CHCX  
Low time  
ns  
CLCX  
CLCH  
CHCL  
Rise time  
20  
20  
ns  
Fall time  
ns  
AC Characteristics (cont'd)  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Frequ. = 1 MHz to 16 MHz  
min max.  
External Clock Drive  
Oscillator period  
Oscillator frequency  
High time  
t
62.5  
3.5  
25  
25  
285  
16  
ns  
CLCL  
1/t  
MHz  
ns  
CLCL  
t
t
t
t
CHCX  
Low time  
ns  
CLCX  
CLCH  
CHCL  
Rise time  
20  
20  
ns  
Fall time  
ns  
Semiconductor Group  
55  
SAB 80C517/80C537  
External Clock Cycle  
Semiconductor Group  
56  
SAB 80C517/80C537  
AC Characteristics (cont’d)  
Parameter  
Symbol  
Limit Values  
Unit  
12 MHz Clock  
Variable Clock  
=3.5 MHz to 12 MHz  
1/t  
CLCL  
min.  
max.  
min.  
max.  
System Clock Timing  
ALE to CLKOUT  
t
t
t
t
543  
7t  
2t  
– 40  
ns  
ns  
ns  
ns  
LLSH  
SHSL  
SLSH  
SLLH  
CLCL  
CLCL  
CLKOUT high time  
CLKOUT low time  
127  
793  
43  
– 40  
– 40  
10t  
CLCL  
CLKOUT low to ALE  
high  
123  
t
– 40  
t
+ 40  
CLCL  
CLCL  
AC Characteristics (cont’d)  
Parameter  
Symbol  
Limit Values  
Unit  
16 MHz Clock  
Variable Clock  
= 3.5 MHz to 16 MHz  
1/t  
CLCL  
min.  
max.  
min.  
max.  
System Clock Timing  
ALE to CLKOUT  
t
t
t
t
398  
7t  
2t  
– 40  
ns  
ns  
ns  
ns  
LLSH  
SHSL  
SLSH  
SLLH  
CLCL  
CLCL  
CLKOUT high time  
CLKOUT low time  
85  
– 40  
– 40  
585  
23  
10t  
CLCL  
CLKOUT low to ALE  
high  
103  
t
– 40  
t
+ 40  
CLCL  
CLCL  
Semiconductor Group  
57  
SAB 80C517/80C537  
System Clock Timing  
Semiconductor Group  
58  
SAB 80C517/80C537  
ROM Verification Characteristics  
T = 25˚C ± 5˚C; V = 5 V ± 10%; V  
= 0 V  
A
CC  
SS  
Parameter  
Symbol  
Limit values  
Unit  
min  
max.  
ROM Verification  
Address to valid data  
ENABLE to valid data  
t
t
0
4
48 t  
48 t  
48 t  
6
ns  
AVQV  
ELQV  
EHQZ  
CLCL  
CLCL  
CLCL  
ns  
Data float after ENABLE t  
ns  
Oscillator frequency  
1/t  
MHz  
CLCL  
ROM Verification  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins  
to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH ≥ ± 20 mA.  
Semiconductor Group  
59  
SAB 80C517/80C537  
Recommended Oscillator Circuits  
AC Testing  
AC Inputs during testing are driven at V  
– 0.5 V for a logic 1 and 0.45 V for a logic ’0’. Timing measure-  
CC  
ments are made at V IHmin for a logic ’1’ and V  
for a logic ’0’.  
ILmax  
Input, Output Waveforms  
Float Waveforms  
Semiconductor Group  
60  

相关型号:

SAB80C517-16M-T40/110

Microcontroller
INFINEON

SAB80C517-M

8-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB80C517-M-T40

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, PQFP100, METRIC, PLASTIC, QFP-100
INFINEON

SAB80C517-M-T40/85

8-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB80C517-M16

8-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB80C517-N

8-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB80C517-N-T40

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, PQCC84, PLASTIC, LCC-84
INFINEON

SAB80C517-N-T40/85

8-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB80C517-N16

8-Bit CMOS Single-Chip Microcontroller
INFINEON

SAB80C517-N16-T40

Microcontroller, 8-Bit, MROM, 8051 CPU, 16MHz, CMOS, PQCC84, PLASTIC, LCC-84
INFINEON

SAB80C517-N16-T40/110

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PQCC84, PLASTIC, LCC-84
INFINEON

SAB80C517-N16-T40/85

8-Bit CMOS Single-Chip Microcontroller
INFINEON