SAF-C161PI-LF [INFINEON]

Microcontroller, 16-Bit, 80166 CPU, 25MHz, CMOS, PQFP100, METRIC, PLASTIC, TQFP-100;
SAF-C161PI-LF
型号: SAF-C161PI-LF
厂家: Infineon    Infineon
描述:

Microcontroller, 16-Bit, 80166 CPU, 25MHz, CMOS, PQFP100, METRIC, PLASTIC, TQFP-100

时钟 局域网 微控制器 外围集成电路
文件: 总82页 (文件大小:834K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C161PI  
Microcontrollers  
C166 Family  
16-Bit Single-Chip Microcontroller  
C161PI  
Data Sheet 1999-07  
Preliminary  
C161PI  
Revision History:  
1999-07 Preliminary  
Previous Versions:  
1998-05  
1998-01  
1997-12  
(C161RI / Preliminary)  
(C161RI / Advance Information)  
(C161RI / Advance Information)  
Page  
---  
Subjects  
3 V specification introduced  
4, 5, 7  
14  
Signal FOUT added  
XRAM description added  
15  
Unlatched CS description added  
Block Diagram corrected  
23  
24  
Description of divider chain improved  
ADC description updated to 10-bit  
Revised description of Absolute Max. Ratings and Operating Conditions  
Power supply values improved  
25, 51, 52  
36, 37  
39, 44  
45 - 50  
54 ff.  
Revised description for clock generation including PLL  
Standard 25-MHz timing  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
The C161PI is the successor of the C161RI. Therefore this data sheet also replaces the C161RI  
data sheet (see also revision history).  
Edition 1999-07  
Published by Infineon Technologies AG i. Gr.,  
St.-Martin-Strasse 53  
D-81541 München  
© Infineon Technologies AG 1999.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and  
charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office  
in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact  
your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Tech-  
nologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to  
support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other  
persons may be endangered.  
C166 Family of  
C161PI  
High-Performance CMOS 16-Bit Microcontrollers  
Preliminary  
C161PI 16-Bit Microcontroller  
• High Performance 16-bit CPU with 4-Stage Pipeline  
– 80 ns Instruction Cycle Time at 25 MHz CPU Clock  
– 400 ns Multiplication (16 × 16 bit), 800 ns Division (32 / 16 bit)  
– Enhanced Boolean Bit Manipulation Facilities  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Single-Cycle Context Switching Support  
– 16 MBytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area  
• 16-Priority-Level Interrupt System with 27 Sources, Sample-Rate down to 40 ns  
• 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC)  
• Clk. Generation via on-chip PLL (1:1.5/2/2.5/3/4/5), via prescaler or via direct clk. inp.  
• On-Chip Memory Modules  
– 1 KByte On-Chip Internal RAM (IRAM)  
– 2 KBytes On-Chip Extension RAM (XRAM)  
• On-Chip Peripheral Modules  
– 4-Channel 10-bit A/D Converter with Programm. Conversion Time down to 7.8 µs  
– Two Multi-Functional General Purpose Timer Units with 5 Timers  
– Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)  
– I2C Bus Interface (10-bit Addressing, 400 KHz) with 2 Channels (multiplexed)  
• Up to 8 MBytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit  
Data Bus Width  
– Five Programmable Chip-Select Signals  
• Idle and Power Down Modes with Flexible Power Management  
• Programmable Watchdog Timer and Oscillator Watchdog  
• On-Chip Real Time Clock  
• Up to 76 General Purpose I/O Lines,  
partly with Selectable Input Thresholds and Hysteresis  
• Supported by a Large Range of Development Tools like C-Compilers,  
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,  
Simulators, Logic Analyzer Disassemblers, Programming Boards  
• On-Chip Bootstrap Loader  
• 100-Pin MQFP / TQFP Package  
Data Sheet  
1
1999-07  
&ꢀꢁꢀ3,  
This document describes the SAB-C161PI-LM, the SAB-C161PI-LF, the SAF-C161PI-  
LM and the SAF-C161PI-LF.  
For simplicity all versions are referred to by the term C161PI throughout this document.  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• the derivative itself, i.e. its function set  
• the specified temperature range  
• the package  
• the type of delivery.  
For the available ordering codes for the C161PI please refer to the  
Product Catalog Microcontrollers“, which summarizes all available microcontroller  
variants.  
Note: The ordering codes for Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Data Sheet  
2
1999-07  
&ꢀꢁꢀ3,  
Introduction  
The C161PI is a derivative of the Infineon C166 Family of 16-bit single-chip CMOS  
microcontrollers. It combines high CPU performance (up to 8 million instructions per  
second) with high peripheral functionality and enhanced IO-capabilities. The C161PI  
derivative is especially suited for cost sensitive applications.  
VDD VSS VAREF VAGND  
PORT0  
XTAL1  
XTAL2  
16 bit  
PORT1  
16 bit  
RSTIN  
RSTOUT  
Port 2  
8 bit  
NMI  
EA  
C161PI  
Port 3  
15 bit  
Port 4  
7 bit  
ALE  
RD  
WR/WRL  
Port 6  
8 bit  
Port 5  
6 bit  
Figure 1  
Logic Symbol  
Data Sheet  
3
1999-07  
&ꢀꢁꢀ3,  
Pin Configuration MQFP Package  
(top view)  
P5.2/AN2  
P5.3/AN3  
P5.14/T4EUD  
P5.15/T2EUD  
VSS  
1
2
3
4
5
6
7
8
NMI  
RSTOUT  
RSTIN  
VDD  
VSS  
P1H.7/A15  
P1H.6/A14  
P1H.5/A13  
P1H.4/A12  
P1H.3/A11  
P1H.2/A10  
P1H.1/A9  
P1H.0/A8  
VDD  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
XTAL1  
XTAL2  
VDD  
P3.0/SCL0  
P3.1/SDA0  
P3.2/CAPIN  
P3.3/T3OUT  
P3.4/T3EUD  
P3.5/T4IN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
C161PI  
P3.6/T3IN  
P3.7/T2IN  
VSS  
P1L.7/A7  
P1L.6/A6  
P1L.5/A5  
P1L.4/A4  
P1L.3/A3  
P1L.2/A2  
P1L.1/A1  
P1L.0/A0  
P0H.7/AD15  
P0H.6/AD14  
P0H.5/AD13  
P0H.4/AD12  
P0H.3/AD11  
P0H.2/AD10  
P0H.1/AD9  
P3.8/MRST  
P3.9/MTSR  
P3.10/TxD0  
P3.11/RxD0  
P3.12/BHE/WRH  
P3.13/SCLK  
P3.15/CLKOUT/  
FOUT  
VSS  
VDD  
P4.0/A16  
P4.1/A17  
P4.2/A18  
P4.3/A19  
P4.4/A20  
Figure 2  
Data Sheet  
4
1999-07  
&ꢀꢁꢀ3,  
Pin Configuration TQFP Package  
(top view)  
P5.14/T4EUD  
P5.15/T2EUD  
VSS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD  
VSS  
1
2
3
4
5
6
7
8
P1H.7/A15  
P1H.6/A14  
P1H.5/A13  
P1H.4/A12  
P1H.3/A11  
P1H.2/A10  
P1H.1/A9  
P1H.0/A8  
VDD  
XTAL1  
XTAL2  
VDD  
P3.0/SCL0  
P3.1/SDA0  
P3.2/CAPIN  
P3.3/T3OUT  
P3.4/T3EUD  
P3.5/T4IN  
P3.6/T3IN  
P3.7/T2IN  
P3.8/MRST  
P3.9/MTSR  
P3.10/TxD0  
P3.11/RxD0  
P3.12/BHE/WRH  
P3.13/SCLK  
P3.15/CLKOUT/  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
C161PI  
P1L.7/A7  
P1L.6/A6  
P1L.5/A5  
P1L.4/A4  
P1L.3/A3  
P1L.2/A2  
P1L.1/A1  
P1L.0/A0  
P0H.7/AD15  
P0H.6/AD14  
P0H.5/AD13  
P0H.4/AD12  
P0H.3/AD11  
FOUT  
VSS  
VDD  
P4.0/A16  
P4.1/A17  
Figure 3  
Data Sheet  
5
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
P5  
I
Port 5 is a 6-bit input-only port with Schmitt-Trigger  
characteristics. The pins of Port 5 also serve as (up to  
4) analog input channels for the A/D converter, or they  
serve as timer inputs:  
P5.0  
P5.1  
P5.2  
P5.3  
P5.14  
P5.15  
97  
98  
99  
100  
1
99  
100  
1
2
3
I
I
I
I
I
I
AN0  
AN1  
AN2  
AN3  
T4EUD  
T2EUD  
GPT1 Timer T4 Ext. Up/Down Ctrl. Input  
GPT1 Timer T5 Ext. Up/Down Ctrl. Input  
2
4
XTAL1 4  
6
I
XTAL1:  
Input to the oscillator amplifier and input to  
the internal clock generator  
XTAL2 5  
7
O
XTAL2:  
Output of the oscillator amplifier circuit.  
To clock the device from an external source, drive  
XTAL1, while leaving XTAL2 unconnected. Minimum  
and maximum high/low and rise/fall times specified in  
the AC Characteristics must be observed.  
Data Sheet  
6
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions (continued)  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
P3  
IO  
Port 3 is a 15-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For  
a pin configured as input, the output driver is put into  
high-impedance state. Port 3 outputs can be  
configured as push/pull or open drain drivers. The input  
threshold of Port 3 is selectable (TTL or special). The  
following Port 3 pins also serve for alternate functions:  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
7
8
9
10  
11  
12  
9
I/O  
I/O  
I
O
I
SCL0  
I2C Bus Clock Line 0  
I2C Bus Data Line 0  
10  
11  
12  
13  
14  
SDA0  
CAPIN  
T3OUT  
T3EUD  
T4IN  
GPT2 Register CAPREL Capture Input  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 External Up/Down Ctrl.Inp  
GPT1 Timer T4 Count/Gate/Reload/  
Capture Input  
I
P3.6  
P3.7  
13  
14  
15  
16  
I
I
T3IN  
T2IN  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Count/Gate/Reload/  
Capture Input  
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
15  
16  
17  
18  
19  
17  
18  
19  
20  
21  
I/O  
I/O  
O
I/O  
O
O
I/O  
O
MRST  
MTSR  
T×D0  
R×D0  
BHE  
SSC Master-Rec. / Slave-Trans. Inp/Outp.  
SSC Master-Trans. / Slave-Rec. Outp/Inp.  
ASC0 Clock/Data Output (Async./Sync.)  
ASC0 Data Input (Async.) or I/O (Sync.)  
External Memory High Byte Enable Signal,  
External Memory High Byte Write Strobe  
SSC Master Clock Outp. / Slave Clock Inp.  
WRH  
SCLK  
P3.13  
P3.15  
20  
21  
22  
23  
CLKOUT System Clock Output (=CPU Clock)  
FOUT Programmable Frequency Output  
Note: Pins P3.0 and P3.1 are open drain outputs only.  
O
Data Sheet  
7
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions (continued)  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
P4  
IO  
Port 4 is a 7-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For  
a pin configured as input, the output driver is put into  
high-impedance state. Port 4 outputs can be  
configured as push/pull or open drain drivers. The input  
threshold of Port 4 is selectable (TTL or special). Port 4  
can be used to output the segment address lines:  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
24  
25  
26  
27  
28  
29  
30  
26  
27  
28  
29  
30  
31  
32  
O
O
O
O
O
O
O
A16  
A17  
A18  
A19  
A20  
A21  
A22  
Least Significant Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Most Significant Segment Address Line  
RD  
31  
33  
O
External Memory Read Strobe. RD is activated for  
every external instruction or data read access.  
WR/  
WRL  
32  
34  
O
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-  
mode this pin is activated for low byte data write  
accesses on a 16-bit bus, and for every data write  
access on an 8-bit bus. See WRCFG in register  
SYSCON for mode selection.  
READY 33  
35  
36  
I
Ready Input. When the Ready function is enabled, a  
high level at this pin during an external memory access  
will force the insertion of memory cycle time waitstates  
until the pin returns to a low level.  
An internal pullup device will hold this pin high when  
nothing is driving it.  
ALE  
34  
O
Address Latch Enable Output. Can be used for latching  
the address into external memory or an address latch  
in the multiplexed bus modes.  
Data Sheet  
8
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions (continued)  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
EA  
35  
37  
I
External Access Enable pin. A low level at this pin  
during and after Reset forces the C161PI to begin  
instruction execution out of external memory. A high  
level forces execution out of the internal program  
memory.  
"ROMless" versions must have this pin tied to ‘0’.  
PORT0  
P0L.0-7 38-  
45  
P0H.0-7 48-  
55  
IO  
PORT0 consists of the two 8-bit bidirectional I/O ports  
P0L and P0H. It is bit-wise programmable for input or  
output via direction bits. For a pin configured as input,  
the output driver is put into high-impedance state.  
In case of external bus configurations, PORT0 serves  
as the address (A) and address/data (AD) bus in  
multiplexed bus modes and as the data (D) bus in  
demultiplexed bus modes.  
40-  
47  
50-  
57  
Demultiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
D0 – D7  
I/O  
16-bit  
D0 - D7  
D8 - D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
16-bit  
AD0 – AD7 AD0 - AD7  
A8 - A15 AD8 - AD15  
PORT1  
P1L.0-7 56-  
63  
P1H.0-7 66-  
73  
IO  
PORT1 consists of the two 8-bit bidirectional I/O ports  
P1L and P1H. It is bit-wise programmable for input or  
output via direction bits. For a pin configured as input,  
the output driver is put into high-impedance state.  
PORT1 is used as the 16-bit address bus (A) in  
demultiplexed bus modes and also after switching from  
a demultiplexed bus mode to a multiplexed bus mode.  
58-  
65  
68-  
75  
Data Sheet  
9
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions (continued)  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
RSTIN 76  
78  
I/O  
Reset Input with Schmitt-Trigger characteristics. A low  
level at this pin while the oscillator is running resets the  
C161PI. An internal pullup resistor permits power-on  
reset using only a capacitor connected to 9SS.  
A spike filter suppresses input pulses <10 ns. Input  
pulses >100 ns safely pass the filter.  
The minimum duration for a safe recognition should be  
100 ns + 2 CPU clock cycles.  
In bidirectional reset mode (enabled by setting bit  
BDRSTEN in register SYSCON) the RSTIN line is  
internally pulled low for the duration of the internal  
reset sequence upon any reset (HW, SW, WDT).  
See note below this table.  
Note: To let the reset configuration of PORT0 settle  
and to let the PLL lock a reset duration of ca.  
1 ms is recommended.  
RST  
OUT  
77  
78  
79  
80  
O
Internal Reset Indication Output. This pin is set to a low  
level when the part is executing either a hardware-, a  
software- or a watchdog timer reset. RSTOUT remains  
low until the EINIT (end of initialization) instruction is  
executed.  
NMI  
I
Non-Maskable Interrupt Input. A high to low transition  
at this pin causes the CPU to vector to the NMI trap  
routine. When the PWRDN (power down) instruction is  
executed, the NMI pin must be low in order to force the  
C161PI to go into power down mode. If NMI is high,  
when PWRDN is executed, the part will continue to run  
in normal mode.  
If not used, pin NMI should be pulled high externally.  
Data Sheet  
10  
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions (continued)  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
P6  
IO  
Port 6 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For  
a pin configured as input, the output driver is put into  
high-impedance state. Port 6 outputs can be  
configured as push/pull or open drain drivers.  
The Port 6 pins also serve for alternate functions:  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
79  
80  
81  
82  
83  
84  
85  
86  
81  
82  
83  
84  
85  
86  
87  
88  
O
O
O
O
CS0  
CS1  
CS2  
CS3  
Chip Select 0 Output  
Chip Select 1 Output  
Chip Select 2 Output  
Chip Select 3 Output  
Chip Select 4 Output  
I2C Bus Data Line 1  
I2C Bus Clock Line 1  
I2C Bus Data Line 2  
O
CS4  
I/O  
I/O  
I/O  
SDA1  
SCL1  
SDA2  
Note: Pins P6.7-5 are open drain outputs only.  
P2  
IO  
Port 2 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For  
a pin configured as input, the output driver is put into  
high-impedance state. Port 2 outputs can be  
configured as push/pull or open drain drivers. The input  
threshold of Port 2 is selectable (TTL or special).  
The Port 2 pins also serve for alternate functions:  
P2.8  
P2.9  
87  
88  
89  
90  
91  
92  
93  
94  
89  
90  
91  
92  
93  
94  
95  
96  
I
I
I
I
I
I
I
I
EX0IN  
EX1IN  
EX2IN  
EX3IN  
EX4IN  
EX5IN  
EX6IN  
EX7IN  
Fast External Interrupt 0 Input  
Fast External Interrupt 1 Input  
Fast External Interrupt 2 Input  
Fast External Interrupt 3 Input  
Fast External Interrupt 4 Input  
Fast External Interrupt 5 Input  
Fast External Interrupt 6 Input  
Fast External Interrupt 7 Input  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
9AREF  
95  
97  
98  
-
-
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
9AGND 96  
Data Sheet  
11  
1999-07  
&ꢀꢁꢀ3,  
Table 1  
Symbol Pin  
Pin Definitions and Functions (continued)  
Pin Input Function  
Num. Num. Outp.  
TQFP MQFP  
9DD  
6, 23, 8, 25, -  
Digital Supply Voltage:  
+ 5 V or + 3 V during normal operation and idle mode.  
2.5 V during power down mode  
37,  
47,  
39,  
49,  
65, 75 67, 77  
9SS  
3, 22, 5, 24, -  
Digital Ground.  
36,  
46,  
38,  
48,  
64, 74 66, 76  
Note: The following behaviour differences must be observed when the bidirectional reset  
is active:  
• Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared  
automatically after a reset.  
• The reset indication flags always indicate a long hardware reset.  
• The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap  
loader may be activated when P0L.4 is low.  
• Pin RSTIN may only be connected to external reset devices with an open drain output  
driver.  
• A short hardware reset is extended to the duration of the internal reset sequence.  
Data Sheet  
12  
1999-07  
&ꢀꢁꢀ3,  
Functional Description  
The architecture of the C161PI combines advantages of both RISC and CISC  
processors and of advanced peripheral subsystems in a very well-balanced way. The  
following block diagram gives an overview of the different on-chip components and of the  
advanced, high bandwidth internal bus structure of the C161PI.  
Note: All time specifications refer to a CPU clock of 25 MHz  
(see definition in the AC Characteristics section).  
16  
&ꢀꢁꢁꢃ&RUH  
(no  
internal  
ROM)  
Data  
Data  
Internal  
RAM  
32  
16  
Instr./Data  
&38  
16  
OSC  
Oscillator  
(16MHz)
PLL
XTAL  
3(&  
External Instr./Data  
Watchdog  
16  
16  
Interrupt Controller 11 ext. IR  
I²C-Bus  
Interface  
Interrupt Bus  
Peripheral Data  
XRAM  
2 KByte  
8
External  
Bus  
XBUS  
Control,  
CS Logic  
(4 CS)  
USART  
Sync.  
Channel  
(SPI)  
4-  
GPT 1  
GPT 2  
RTC  
Channel  
10-bit  
T 2  
T 3  
T 4  
T 5  
T 6  
ADC  
16  
SSC  
BRG  
ASC  
BRG  
7
Port 4  
Port 1  
Port 5  
Port 3  
15  
Port 2  
C161RI V0.1  
8
16  
6
Figure 4  
Block Diagram  
Data Sheet  
13  
1999-07  
&ꢀꢁꢀ3,  
Memory Organization  
The memory space of the C161PI is configured in a Von Neumann architecture which  
means that code memory, data memory, registers and I/O ports are organized within the  
same linear address space which includes 16 MBytes. The entire memory space can be  
accessed bytewise or wordwise. Particular portions of the on-chip memory have  
additionally been made directly bitaddressable.  
1 KByte of on-chip Internal RAM (IRAM) is provided as a storage for user defined  
variables, for the system stack, general purpose register banks and even for code. A  
register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0,  
…, RL7, RH7) so-called General Purpose Registers (GPRs).  
1024 bytes (2 * 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the C166 Family.  
2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user  
stacks, or code. The XRAM is accessed like external memory and therefore cannot be  
used for the system stack or for register banks and is not bitaddressable. The XRAM  
permits 16-bit accesses with maximum speed.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 8 MBytes of external RAM and/or ROM can be connected to the  
microcontroller.  
Data Sheet  
14  
1999-07  
&ꢀꢁꢀ3,  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). It can be programmed either to Single Chip Mode when no external  
memory is required, or to one of four different external memory access modes, which are  
as follows:  
– 16-/18-/20-/23-bit Addresses, 16-bit Data, Demultiplexed  
– 16-/18-/20-/23-bit Addresses, 16-bit Data, Multiplexed  
– 16-/18-/20-/23-bit Addresses, 8-bit Data, Multiplexed  
– 16-/18-/20-/23-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/  
output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses  
and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time,  
Memory Tri-State Time, Length of ALE and Read Write Delay) have been made  
programmable to allow the user the adaption of a wide range of different types of  
memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs  
ADDRSELx / BUSCONx) which allow to access different resources with different bus  
characteristics. These address windows are arranged hierarchically where BUSCON4  
overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not  
covered by these 4 address windows are controlled by BUSCON0.  
Up to 5 external CS signals (4 windows plus default) can be generated in order to save  
external glue logic. The C161PI offers the possibility to switch the CS outputs to an  
unlatched mode. In this mode the internal filter logic is switched off and the CS signals  
are directly generated from the address. The unlatched CS mode is enabled by setting  
CSCFG (SYSCON.6).  
Access to very slow memories is supported via a particular ‘Ready’ function.  
For applications which require less than 8 MBytes of external memory space, this  
address space can be restricted to 1 MByte, 256 KByte or to 64 KByte. In this case Port 4  
outputs four, two or no address lines at all. It outputs all 7 address lines, if an address  
space of 8 MBytes is used.  
Data Sheet  
15  
1999-07  
&ꢀꢁꢀ3,  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic  
and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a  
separate multiply and divide unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C161PI’s instructions can be executed  
in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and  
rotate instructions are always processed during one machine cycle independent of the  
number of bits to be shifted. All multiple-cycle instructions have been optimized so that  
they can be executed very fast as well: branches in 2 cycles, a 16 × 16 bit multiplication  
in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-  
called ‘Jump Cache’, reduces the execution time of repeatedly performed jumps in a loop  
from 2 cycles to 1 cycle.  
Figure 5  
CPU Block Diagram  
Data Sheet  
16  
1999-07  
&ꢀꢁꢀ3,  
The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal.  
These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer  
(CP) register determines the base address of the active register bank to be accessed by  
the CPU at any time. The number of register banks is only restricted by the available  
internal RAM space. For easy parameter passing, a register bank may overlap others.  
A system stack of up to 1024 bytes is provided as a storage for temporary data. The  
system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the  
stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly  
compared against the stack pointer value upon each stack access for the detection of a  
stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient C161PI instruction set which includes  
the following instruction classes:  
– Arithmetic Instructions  
– Logical Instructions  
– Boolean Bit Manipulation Instructions  
– Compare and Loop Control Instructions  
– Shift and Rotate Instructions  
– Prioritize Instruction  
– Data Movement Instructions  
– System Stack Instructions  
– Jump and Call Instructions  
– Return Instructions  
– System Control Instructions  
– Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
17  
1999-07  
&ꢀꢁꢀ3,  
Interrupt System  
With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of  
internal program execution), the C161PI is capable of reacting very fast to the  
occurrence of non-deterministic events.  
The architecture of the C161PI supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
‘stolen’ from the current CPU activity to perform a PEC service. A PEC service implies a  
single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source or the destination pointer. An individual PEC transfer  
counter is implicity decremented for each PEC service except when performing in the  
continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The C161PI has 8 PEC channels each of which offers such fast interrupt-driven data  
transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via  
its related register, each source can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt sources has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with  
an individual trap (interrupt) number.  
The following table shows all of the possible C161PI interrupt sources and the  
corresponding hardware-related interrupt flags, vectors, vector locations and trap  
(interrupt) numbers.  
Note: Interrupt nodes which are not used by associated peripherals, may be used to  
generate software controlled interrupt requests by setting the respective interrupt  
request bit (xIR).  
Data Sheet  
18  
1999-07  
&ꢀꢁꢀ3,  
Table 2  
C161PI Interrupt Nodes  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
External Interrupt 7  
GPT1 Timer 2  
CC8IR  
CC9IR  
CC10IR  
CC11IR  
CC12IR  
CC13IR  
CC14IR  
CC15IR  
T2IR  
CC8IE  
CC9IE  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
T2IE  
CC8INT  
CC9INT  
00’0060H  
00’0064H  
18H  
19H  
1AH  
CC10INT 00’0068H  
CC11INT 00’006CH 1BH  
CC12INT 00’0070H  
CC13INT 00’0074H  
CC14INT 00’0078H  
1CH  
1DH  
1EH  
CC15INT 00’007CH 1FH  
T2INT  
T3INT  
T4INT  
T5INT  
T6INT  
CRINT  
00’0088H  
22H  
GPT1 Timer 3  
T3IR  
T3IE  
00’008CH 23H  
GPT1 Timer 4  
T4IR  
T4IE  
00’0090H  
00’0094H  
00’0098H  
24H  
25H  
26H  
GPT2 Timer 5  
T5IR  
T5IE  
GPT2 Timer 6  
T6IR  
T6IE  
GPT2 CAPREL  
Register  
CRIR  
CRIE  
00’009CH 27H  
A/D Conversion  
Complete  
ADCIR  
ADCIE  
ADCINT  
00’00A0H 28H  
A/D Overrun Error  
ASC0 Transmit  
ADEIR  
S0TIR  
ADEIE  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
XP0IE  
ADEINT  
S0TINT  
00’00A4H 29H  
00’00A8H 2AH  
ASC0 Transmit Buffer S0TBIR  
S0TBINT 00’011CH 47H  
ASC0 Receive  
ASC0 Error  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
XP0IR  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
XP0INT  
00’00ACH 2BH  
00’00B0H 2CH  
00’00B4H 2DH  
00’00B8H 2EH  
00’00BCH 2FH  
SSC Transmit  
SSC Receive  
SSC Error  
I2C Data Transfer  
Event  
00’0100H  
40H  
I2C Protocol Event  
X-Peripheral Node 2  
PLL Unlock / RTC  
XP1IR  
XP2IR  
XP3IR  
XP1IE  
XP2IE  
XP3IE  
XP1INT  
XP2INT  
XP3INT  
00’0104H  
00’0108H  
41H  
42H  
00’010CH 43H  
Data Sheet  
19  
1999-07  
&ꢀꢁꢀ3,  
The C161PI also provides an excellent mechanism to identify and to process exceptions  
or error conditions that arise during run-time, so-called ‘Hardware Traps’. Hardware  
traps cause immediate non-maskable system reaction which is similar to a standard  
interrupt service (branching to a dedicated vector table location). The occurence of a  
hardware trap is additionally signified by an individual bit in the trap flag register (TFR).  
Except when another higher prioritized trap service is in progress, a hardware trap will  
interrupt any actual program execution. In turn, hardware trap services can normally not  
be interrupted by standard or PEC interrupts.  
The following table shows all of the possible exceptions or error conditions that can arise  
during run-time:  
Table 3  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number Prio  
Trap  
Reset Functions:  
Hardware Reset  
Software Reset  
RESET  
RESET  
RESET  
00’0000H  
00’0000H  
00’0000H  
00H  
00H  
00H  
III  
III  
III  
Watchdog Timer Overflow  
Class A Hardware Traps:  
Non-Maskable Interrupt  
Stack Overflow  
NMI  
STKOF  
STKUF  
NMITRAP 00’0008H  
STOTRAP 00’0010H  
STUTRAP 00’0018H  
02H  
04H  
06H  
II  
II  
II  
Stack Underflow  
Class B Hardware Traps:  
Undefined Opcode  
Protected Instruction Fault  
Illegal Word Operand Access ILLOPA  
Illegal Instruction Access  
UNDOPC BTRAP  
00’0028H  
00’0028H  
00’0028H  
00’0028H  
00’0028H  
0AH  
0AH  
0AH  
0AH  
0AH  
I
I
I
I
I
PRTFLT  
BTRAP  
BTRAP  
BTRAP  
BTRAP  
ILLINA  
Illegal External Bus Access  
ILLBUS  
Reserved  
[2CH – 3CH] [0BH –  
0FH]  
Software Traps:  
TRAP Instruction  
Any  
Any  
Current  
CPU  
Priority  
[00’0000H – [00H –  
00’01FCH] 7FH]  
in steps  
of 4H  
Data Sheet  
20  
1999-07  
&ꢀꢁꢀ3,  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate  
modules, GPT1 and GPT2. Each timer in each module may operate independently in a  
number of different modes, or may be concatenated with another timer of the same  
module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer  
to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 16 TCL.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate eg. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-  
flow/underflow. The state of this latch may be output on a port pin (T3OUT) eg. for time  
out monitoring of external hardware components, or may be used internally to clock  
timers T2 and T4 for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 are captured into T2 or T4 in response to  
a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of  
T2 or T4 triggered either by an external signal or by a selectable state transition of its  
toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on  
opposite state transitions of T3OTL with the low and high times of a PWM signal, this  
signal can be constantly generated without software intervention.  
Data Sheet  
21  
1999-07  
&ꢀꢁꢀ3,  
T2EUD  
fCPU  
T2IN  
U/D  
Interrupt  
Request  
2n : 1  
GPT1 Timer T2  
T2  
Mode  
Control  
Reload  
Capture  
Interrupt  
Request  
fCPU  
2n : 1  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
T3IN  
GPT1 Timer T3  
T3OUT  
U/D  
T3EUD  
Other  
Timers  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
2n : 1  
GPT1 Timer T4  
U/D  
fCPU  
T4EUD  
MCT02141  
Figure 6  
Block Diagram of GPT1  
With its maximum resolution of 8 TCL, the GPT2 module provides precise event control  
and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU  
clock via a programmable prescaler. The count direction (up/down) for each timer is  
programmable by software. Concatenation of the timers is supported via the output  
toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/  
underflow.  
Data Sheet  
22  
1999-07  
&ꢀꢁꢀ3,  
The state of this latch may be used to clock timer T5. The overflows/underflows of timer  
T6 can additionally be used to cause a reload from the CAPREL register. The CAPREL  
register may capture the contents of timer T5 based on an external signal transition on  
the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the  
capture procedure. This allows absolute time differences to be measured or pulse  
multiplication to be performed without software overhead.  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of  
GPT1 timer T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
fCPU  
2n : 1  
T5  
Mode  
Control  
U/D  
Interrupt  
Request  
GPT2 Timer T5  
Clear  
Capture  
Interrupt  
Request  
T3  
MUX  
CT3  
CAPIN  
GPT2 CAPREL  
Interrupt  
Request  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6  
Mode  
Control  
Other  
Timers  
fCPU  
2n : 1  
Mcb03999C.vsd  
Figure 7  
Block Diagram of GPT2  
Data Sheet  
23  
1999-07  
&ꢀꢁꢀ3,  
Real Time Clock  
The Real Time Clock (RTC) module of the C161PI consists of a chain of 3 divider blocks,  
a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible  
via registers RTCH and RTCL). The RTC module is directly clocked with the on-chip  
oscillator frequency divided by 32 via a separate clock driver (IRTC = IOSC / 32) and is  
therefore independent from the selected clock generation mode of the C161PI. All timers  
count up.  
The RTC module can be used for different purposes:  
• System clock to determine the current time and date  
• Cyclic time based interrupt  
• 48-bit timer for long term measurements  
T14REL  
Reload  
fRTC  
T14  
8:1  
Interrupt  
Request  
RTCL  
RTCL  
Figure 8  
RTC Block Diagram  
Note: The registers associated with the RTC are not effected by a reset in order to  
maintain the correct system time even when intermediate resets are executed.  
Data Sheet  
24  
1999-07  
&ꢀꢁꢀ3,  
A/D Converter  
For analog signal measurement, a 10-bit A/D converter with 4 multiplexed input channels  
and a sample and hold circuit has been integrated on-chip. It uses the method of  
successive approximation. The sample time (for loading the capacitors) and the  
conversion time is programmable and can so be adjusted to the external circuitry.  
Overrun error detection/protection is provided for the conversion result register  
(ADDAT): either an interrupt request will be generated when the result of a previous  
conversion has not been read from the result register at the time the next conversion is  
complete, or the next conversion is suspended in such a case until the previous result  
has been read.  
For applications which require less than 4 analog input channels, the remaining channel  
inputs can be used as digital input port pins.  
The A/D converter of the C161PI supports four different conversion modes. In the  
standard Single Channel conversion mode, the analog level on a specified channel is  
sampled once and converted to a digital result. In the Single Channel Continuous mode,  
the analog level on a specified channel is repeatedly sampled and converted without  
software intervention. In the Auto Scan mode, the analog levels on a prespecified  
number of channels are sequentially sampled and converted. In the Auto Scan  
Continuous mode, the number of prespecified channels is repeatedly sampled and  
converted. In addition, the conversion of a specific channel can be inserted (injected) into  
a running sequence without disturbing this sequence. This is called Channel Injection  
Mode.  
The Peripheral Event Controller (PEC) may be used to automatically store the  
conversion results into a table in memory for later evaluation, without requiring the  
overhead of entering and exiting interrupt routines for each data transfer.  
After each reset and also during normal operation the ADC automatically performs  
calibration cycles. This automatic self-calibration constantly adjusts the converter to  
changing operating conditions (e.g. temperature) and compensates process variations.  
These calibration cycles are part of the conversion cycle, so they do not affect the normal  
operation of the A/D converter.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise  
those pins used for analog input can be disconnected from the digital IO or input stages  
under software control. This can be selected for each pin separately via registers  
P5DIDIS (Port 5 Digital Input Disable).  
Data Sheet  
25  
1999-07  
&ꢀꢁꢀ3,  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external  
peripheral components is provided by two serial interfaces with different functionality, an  
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous  
Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller  
families and supports full-duplex asynchronous communication at up to 780 KBaud and  
half-duplex synchronous communication at up to 3.1 MBaud @ 25 MHz CPU clock.  
A dedicated baud rate generator allows to set up all standard baud rates without  
oscillator tuning. For transmission, reception and error handling 4 separate interrupt  
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or  
received, preceded by a start bit and terminated by one or two stop bits. For  
multiprocessor communication, a mechanism to distinguish address from data bytes has  
been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a  
shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop  
back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. A parity bit can automatically be generated on  
transmission or be checked on reception. Framing error detection allows to recognize  
data frames with missing stop bits. An overrun error will be generated, if the last  
character received has not been read out of the receive buffer register at the time the  
reception of a new character is complete.  
The SSC supports full-duplex synchronous communication at up to 6.25 Mbaud @  
25 MHz CPU clock. It may be configured so it interfaces with serially linked peripheral  
components. A dedicated baud rate generator allows to set up all standard baud rates  
without oscillator tuning. For transmission, reception and error handling 3 separate  
interrupt vectors are provided.  
The SSC transmits or receives characters of 2...16 bits length synchronously to a shift  
clock which can be generated by the SSC (master mode) or by an external master (slave  
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection  
of shifting and latching clock edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. Transmit and receive error supervise the correct handling  
of the data buffer. Phase and baudrate error detect incorrect serial data.  
Data Sheet  
26  
1999-07  
&ꢀꢁꢀ3,  
I2C Module  
The integrated I2C Bus Module handles the transmission and reception of frames over  
the two-line I2C bus in accordance with the I2C Bus specification. The on-chip I2C Module  
can receive and transmit data using 7-bit or 10-bit addressing and it can operate in slave  
mode, in master mode or in multi-master mode.  
Several physical interfaces (port pins) can be established under software control. Data  
can be transferred at speeds up to 400 Kbit/sec.  
Two interrupt nodes dedicated to the I2C module allow efficient interrupt service and also  
support operation via PEC transfers.  
Note: The port pins associated with the I2C interfaces feature open drain drivers only, as  
required by the I2C specification.  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be  
disabled in the time interval until the EINIT (end of initialization) instruction has been  
executed. Thus, the chip’s start-up procedure is always monitored. The software has to  
be designed to service the Watchdog Timer before it overflows. If, due to hardware or  
software related failures, the software fails to do so, the Watchdog Timer overflows and  
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow  
external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2  
or by 128. The high byte of the Watchdog Timer register can be set to a prespecified  
reload value (stored in WDTREL) in order to allow further variation of the monitored time  
interval. Each time it is serviced by the application software, the high byte of the  
Watchdog Timer is reloaded. Thus, time intervals between 20 µs and 336 ms can be  
monitored (@ 25 MHz).  
The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).  
Data Sheet  
27  
1999-07  
&ꢀꢁꢀ3,  
Parallel Ports  
The C161PI provides up to 76 IO lines which are organized into six input/output ports  
and one input port. All port lines are bit-addressable, and all input/output lines are  
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O  
ports are true bidirectional ports which are switched to high impedance state when  
configured as inputs. The output drivers of three IO ports can be configured (pin by pin)  
for push/pull operation or open-drain operation via control registers. The other IO ports  
operate in push/pull mode, except for the I²C interface pins which are open drain pins  
only. During the internal reset, all port pins are configured as inputs.  
All port lines have programmable alternate input or output functions associated with  
them. All port lines that are not used for these alternate functions may be used as general  
purpose IO lines.  
PORT0 and PORT1 may be used as address and data lines when accessing external  
memory, while Port 4 outputs the additional segment address bits A22/19/17...A16 in  
systems where segmentation is enabled to access more than 64 KBytes of memory.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control  
signal BHE and the system clock output CLKOUT (or the programmable frequency  
output FOUT).  
Port 5 is used for the analog input channels to the A/D converter or timer control signals.  
Port 6 provides the optional chip select signals and interface lines for the I²C module.  
The edge characteristics (transition time) of the C161PI’s port drivers can be selected  
via the Port Driver Control Register (PDCR).  
Data Sheet  
28  
1999-07  
&ꢀꢁꢀ3,  
Instruction Set Summary  
The table below lists the instructions of the C161PI in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the “C166 Family Instruction Set Manual”.  
This document also provides a detailled description of each instruction.  
Table 4  
Mnemonic  
ADD(B)  
ADDC(B)  
SUB(B)  
SUBC(B)  
MUL(U)  
DIV(U)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
Add word (byte) operands  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit) 2  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
NEG(B)  
AND(B)  
OR(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
4
BAND, BOR,  
BXOR  
4
BCMP  
Compare direct bit to direct bit  
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Data Sheet  
29  
1999-07  
&ꢀꢁꢀ3,  
Table 4  
Instruction Set Summary (continued)  
Description  
Mnemonic  
MOV(B)  
MOVBS  
MOVBZ  
Bytes  
Move word (byte) data  
2 / 4  
Move byte operand to word operand with sign extension 2 / 4  
Move byte operand to word operand. with zero extension 2 / 4  
JMPA, JMPI,  
JMPR  
Jump absolute/indirect/relative if condition is met  
4
JMPS  
J(N)B  
JBC  
Jump absolute to a code segment  
4
4
4
4
Jump relative if direct bit is (not) set  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
JNBS  
CALLA, CALLI,  
CALLR  
Call absolute/indirect/relative subroutine if condition is met 4  
CALLS  
PCALL  
Call absolute subroutine in any code segment  
4
4
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack und update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
SRST  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
DISWDT  
EINIT  
Enter Power Down Mode (supposes NMI-pin being low)  
Service Watchdog Timer  
4
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Data Sheet  
30  
1999-07  
&ꢀꢁꢀ3,  
Special Function Registers Overview  
The following table lists all SFRs which are implemented in the C161PI in alphabetical  
order.  
Bit-addressable SFRs are marked with the letter “b” in column “Name”. SFRs within the  
Extended SFR-Space (ESFRs) are marked with the letter “E” in column “Physical  
Address”. Registers within on-chip X-Peripherals (I²C) are marked with the letter “X” in  
column “Physical Address”.  
An SFR can be specified via its individual mnemonic name. Depending on the selected  
addressing mode, an SFR can be accessed via its physical address (using the Data  
Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).  
Table 5  
Name  
C161PI Registers, Ordered by Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
ADCIC  
b FF98H  
CCH  
A/D Converter End of Conversion  
Interrupt Control Register  
0000H  
ADCON  
b FFA0H  
D0H  
50H  
A/D Converter Control Register  
A/D Converter Result Register  
A/D Converter 2 Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
ADDAT  
FEA0H  
ADDAT2  
F0A0H E 50H  
ADDRSEL1  
ADDRSEL2  
ADDRSEL3  
ADDRSEL4  
ADEIC  
FE18H  
FE1AH  
0CH  
0DH  
0EH  
0FH  
CDH  
FE1CH  
FE1EH  
b FF9AH  
A/D Converter Overrun Error Interrupt  
Control Register  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
86H  
8AH  
8BH  
8CH  
8DH  
25H  
C4H  
C5H  
C6H  
C7H  
Bus Configuration Register 0  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
CAPREL  
CC8IC  
FE4AH  
b FF88H  
b FF8AH  
b FF8CH  
b FF8EH  
GPT2 Capture/Reload Register  
External Interrupt 0 Control Register  
External Interrupt 1 Control Register  
External Interrupt 2 Control Register  
External Interrupt 3 Control Register  
CC9IC  
CC10IC  
CC11IC  
Data Sheet  
31  
1999-07  
&ꢀꢁꢀ3,  
Table 5  
C161PI Registers, Ordered by Name (continued)  
Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
C8H  
C9H  
CAH  
CBH  
08H  
CC12IC  
CC13IC  
CC14IC  
CC15IC  
CP  
b FF90H  
External Interrupt 4 Control Register  
External Interrupt 5 Control Register  
External Interrupt 6 Control Register  
External Interrupt 7 Control Register  
CPU Context Pointer Register  
0000H  
0000H  
0000H  
0000H  
FC00H  
0000H  
0000H  
b FF92H  
b FF94H  
b FF96H  
FE10H  
CRIC  
b FF6AH  
FE08H  
B5H  
04H  
GPT2 CAPREL Interrupt Ctrl. Register  
CSP  
CPU Code Segment Pointer Register  
(8 bits, not directly writeable)  
DP0L  
DP0H  
DP1L  
DP1H  
DP2  
b F100H E 80H  
b F102H E 81H  
b F104H E 82H  
b F106H E 83H  
P0L Direction Control Register  
P0H Direction Control Register  
P1L Direction Control Register  
P1H Direction Control Register  
Port 2 Direction Control Register  
Port 3 Direction Control Register  
Port 4 Direction Control Register  
Port 6 Direction Control Register  
00H  
00H  
00H  
00H  
b FFC2H  
b FFC6H  
b FFCAH  
b FFCEH  
FE00H  
E1H  
E3H  
E5H  
E7H  
00H  
0000H  
0000H  
00H  
DP3  
DP4  
DP6  
00H  
DPP0  
CPU Data Page Pointer 0 Register (10  
bits)  
0000H  
DPP1  
FE02H  
FE04H  
FE06H  
01H  
02H  
03H  
CPU Data Page Pointer 1 Reg. (10 bits)  
CPU Data Page Pointer 2 Reg. (10 bits)  
CPU Data Page Pointer 3 Reg. (10 bits)  
External Interrupt Control Register  
I²C Address Register  
0001H  
0002H  
0003H  
0000H  
0XXXH  
XX00H  
0000H  
XXH  
DPP2  
DPP3  
EXICON  
ICADR  
ICCFG  
ICCON  
ICRTB  
ICST  
b F1C0H E E0H  
ED06H X ---  
ED00H X ---  
ED02H X ---  
ED08H X ---  
ED04H X ---  
F07CH E 3EH  
F07EH E 3FH  
F07AH E 3DH  
I²C Configuration Register  
I²C Control Register  
I²C Receive/Transmit Buffer  
I²C Status Register  
0000H  
09XXH  
1820H  
0000H  
IDCHIP  
IDMANUF  
IDMEM  
Identifier  
Identifier  
Identifier  
Data Sheet  
32  
1999-07  
&ꢀꢁꢀ3,  
Table 5  
C161PI Registers, Ordered by Name (continued)  
Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
IDPROG  
ISNC  
MDC  
F078H E 3CH  
Identifier  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
b F1DEH E EFH  
Interrupt Subnode Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Reg. – High Word  
CPU Multiply Divide Reg. – Low Word  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 6 Open Drain Control Register  
Constant Value 1’s Register (read only)  
Port 0 Low Reg. (Lower half of PORT0)  
Port 0 High Reg. (Upper half of PORT0)  
Port 1 Low Reg. (Lower half of PORT1)  
Port 1 High Reg. (Upper half of PORT1)  
Port 2 Register  
b FF0EH  
FE0CH  
87H  
06H  
07H  
MDH  
MDL  
FE0EH  
ODP2  
ODP3  
ODP6  
ONES  
P0L  
b F1C2H E E1H  
b F1C6H E E3H  
b F1CEH E E7H  
b FF1EH  
b FF00H  
b FF02H  
b FF04H  
b FF06H  
b FFC0H  
b FFC4H  
b FFC8H  
b FFA2H  
b FFA4H  
b FFCCH  
FEC0H  
8FH  
80H  
81H  
82H  
83H  
E0H  
E2H  
E4H  
D1H  
D2H  
E6H  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
88H  
FFFFH  
00H  
P0H  
00H  
P1L  
00H  
P1H  
00H  
P2  
0000H  
0000H  
00H  
P3  
Port 3 Register  
P4  
Port 4 Register (7 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
0000H  
00H  
P5DIDIS  
P6  
Port 5 Digital Input Disable Register  
Port 6 Register (8 bits)  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PSW  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
CPU Program Status Word  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
XXH  
FEC2H  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
FECEH  
b FF10H  
PDCR  
RP0H  
F0AAH E 55H  
Pin Driver Control Register  
b F108H E 84H  
System Startup Config. Reg. (Rd. only)  
Data Sheet  
33  
1999-07  
&ꢀꢁꢀ3,  
Table 5  
C161PI Registers, Ordered by Name (continued)  
Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
RTCH  
RTCL  
S0BG  
F0D6H E 6BH  
F0D4H E 6AH  
RTC High Register  
RTC Low Register  
no  
no  
FEB4H  
5AH  
Serial Channel 0 Baud Rate Generator  
Reload Register  
0000H  
S0CON  
S0EIC  
b FFB0H  
b FF70H  
D8H  
B8H  
Serial Channel 0 Control Register  
0000H  
0000H  
Serial Channel 0 Error Interrupt Control  
Register  
S0RBUF  
S0RIC  
FEB2H  
59H  
B7H  
Serial Channel 0 Receive Buffer Reg.  
(read only)  
XXXXH  
0000H  
0000H  
0000H  
0000H  
b FF6EH  
Serial Channel 0 Receive Interrupt  
Control Register  
S0TBIC  
S0TBUF  
S0TIC  
b F19CH E CEH  
Serial Channel 0 Transmit Buffer  
Interrupt Control Register  
FEB0H  
b FF6CH  
FE12H  
58H  
B6H  
09H  
Serial Channel 0 Transmit Buffer Reg.  
(write only)  
Serial Channel 0 Transmit Interrupt  
Control Register  
SP  
CPU System Stack Pointer Register  
SSC Baudrate Register  
FC00H  
0000H  
0000H  
0000H  
XXXXH  
0000H  
0000H  
0000H  
FA00H  
FC00H  
1) 0xx0H  
0000H  
0000H  
no  
SSCBR  
F0B4H E 5AH  
SSCCON b FFB2H  
D9H  
BBH  
SSC Control Register  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
SSC Error Interrupt Control Register  
SSC Receive Buffer  
F0B2H E 59H  
b FF74H  
BAH  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
89H  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
CPU System Configuration Register 2  
CPU System Configuration Register 3  
RTC Timer 14 Register  
FE14H  
FE16H  
SYSCON b FF12H  
SYSCON2 b F1D0H E E8H  
SYSCON3 b F1D4H E EAH  
T14  
F0D2H E 69H  
Data Sheet  
34  
1999-07  
&ꢀꢁꢀ3,  
Table 5  
C161PI Registers, Ordered by Name (continued)  
Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
T14REL  
T2  
F0D0H E 68H  
RTC Timer 14 Reload Register  
GPT1 Timer 2 Register  
no  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
2) 00xxH  
0000H  
0000H  
0000H  
0000H  
0000H  
FE40H  
b FF40H  
b FF60H  
FE42H  
20H  
A0H  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
23H  
A3H  
B3H  
24H  
A4H  
B4H  
D6H  
57H  
D7H  
T2CON  
T2IC  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
T3  
T3CON  
T3IC  
b FF42H  
b FF62H  
FE44H  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4  
T4CON  
T4IC  
b FF44H  
b FF64H  
FE46H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
T5  
T5CON  
T5IC  
b FF46H  
b FF66H  
FE48H  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
T6  
T6CON  
T6IC  
b FF48H  
b FF68H  
b FFACH  
FEAEH  
GPT2 Timer 6 Control Register  
GPT2 Timer 6 Interrupt Control Register  
Trap Flag Register  
TFR  
WDT  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
I²C Data Interrupt Control Register  
I²C Protocol Interrupt Control Register  
X-Peripheral 2 Interrupt Control Register  
RTC Interrupt Control Register  
Constant Value 0’s Register (read only)  
WDTCON  
XP0IC  
XP1IC  
XP2IC  
XP3IC  
ZEROS  
FFAEH  
b F186H E C3H  
b F18EH E C7H  
b F196H E CBH  
b F19EH E CFH  
b FF1CH  
8EH  
1) The system configuration is selected during reset.  
2) The reset value depends on the indicated reset source.  
Data Sheet  
35  
1999-07  
&ꢀꢁꢀ3,  
Absolute Maximum Ratings  
Table 6  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Notes  
Storage temperature  
7ST  
-65  
150  
°C  
V
Voltage on 9DD pins with 9DD  
respect to ground (9SS)  
-0.5  
6.5  
Voltage on any pin with  
respect to ground (9SS)  
9IN  
-0.5  
-10  
-
9DD+0.5  
10  
V
Input current on any pin  
during overload condition  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Power dissipation  
3DISS  
1.5  
W
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (9IN>9DD or 9IN<9SS) the  
voltage on 9DD pins with respect to ground (9SS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
36  
1999-07  
&ꢀꢁꢀ3,  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the C161PI. All parameters specified in the following sections refer to these  
operating conditions, unless otherwise noticed.  
Table 7  
Operating Condition Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
4.5 5.5  
Unit Notes  
Standard  
digital supply voltage  
9DD  
V
Active mode,  
CPUmax = 25 MHz  
I
2.5 1)  
3.0  
5.5  
3.6  
V
V
PowerDown mode  
Reduced  
9DD  
Active mode,  
digital supply voltage  
ICPUmax = 20 MHz  
2.5 1)  
3.6  
V
V
PowerDown mode  
Digital ground voltage  
Overload current  
9SS  
0
Reference voltage  
3)  
,
-
-
±5  
mA Per pin 2)  
OV  
3)  
Absolute sum of overload Σ|,OV|  
50  
mA  
currents  
External Load  
Capacitance  
&
L
-
100  
pF  
Pin drivers in  
fast edge mode  
(PDCR.BIPEC =  
’0’)  
-
50  
pF  
Pin drivers in  
reduced edge  
mode  
(PDCR.BIPEC =  
’1’) 3)  
Ambient temperature  
7A  
0
70  
°C  
°C  
°C  
SAB-C161PI...  
SAF-C161PI...  
SAK-C161PI...  
-40  
-40  
85  
125  
1) Output voltages and output currents will be reduced when 9DD leaves the range defined for active mode.  
2) Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. 9OV ! 9DD+0.5V or 9OV 9SS-0.5V). The absolute sum of input overload  
currents on all port pins may not exceed 50 mA. The supply voltage must remain within the specified limits.  
3) Not 100% tested, guaranteed by design characterization.  
Data Sheet  
37  
1999-07  
&ꢀꢁꢀ3,  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C161PI  
and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C161PI will provide signals with the respective timing characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to  
the C161PI.  
DC Characteristics (Standard Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
Input low voltage XTAL1,  
P3.0, P3.1, P6.5, P6.6, P6.7  
9IL1 SR – 0.5  
9IL SR – 0.5  
9ILS SR – 0.5  
0.3 VDD  
V
Input low voltage  
(TTL)  
0.2 9DD  
– 0.1  
V
Input low voltage  
2.0  
V
(Special Threshold)  
Input high voltage RSTIN  
9IH1 SR 0.6 9DD 9DD  
+
+
+
+
V
0.5  
Input high voltage XTAL1,  
P3.0, P3.1, P6.5, P6.6, P6.7  
9IH2 SR 0.7 9DD 9DD  
V
0.5  
Input high voltage  
(TTL)  
9IH SR 0.2 9DD 9DD  
V
+ 0.9  
0.5  
Input high voltage  
(Special Threshold)  
9IHS SR 0.8 9DD 9DD  
V
- 0.2  
400  
0.5  
Input Hysteresis  
(Special Threshold)  
HYS  
mV  
V
Output low voltage  
9OL CC –  
0.45  
,OL = 2.4 mA  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
Output low voltage  
9OL2 CC –  
0.4  
V
,OL2 = 3 mA  
(P3.0, P3.1, P6.5, P6.6, P6.7)  
Data Sheet  
38  
1999-07  
&ꢀꢁꢀ3,  
DC Characteristics (Standard Supply Voltage Range) (continued)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
min. max.  
0.45  
Unit Test Condition  
Output low voltage  
(all other outputs)  
Output high voltage 1)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
9
OL1 CC –  
9OH CC 2.4  
0.9 9DD  
V
V
V
,OL = 1.6 mA  
,
,
OH = -2.4 mA  
OH = -0.5 mA  
Output high voltage 1)  
(all other outputs)  
9
OH1 CC 2.4  
0.9 9DD  
CC –  
V
V
,
,
OH = -1.6 mA  
OH = -0.5 mA  
Input leakage current (Port 5)  
Input leakage current (all other)  
,
±200  
±500  
-10  
nA 0.45V < 9IN < 9DD  
nA 0.45V < 9IN < 9DD  
µA 9IN = 9IH1  
OZ1  
,
,
,
,
,
,
,
,
,
,
,
,
CC –  
OZ2  
2)  
3)  
RSTIN inactive current  
RSTIN active current 2)  
RSTH  
RSTL  
RWH  
RWL  
ALEL  
ALEH  
P6H  
4)  
-100  
µA 9IN = 9IL  
5)  
3)  
4)  
Read/Write inactive current  
Read/Write active current 5)  
-40  
µA  
µA  
µA  
µA  
µA  
µA  
9
9
9
9
9
9
OUT = 2.4 V  
OUT = 9OLmax  
OUT = 9OLmax  
OUT = 2.4 V  
OUT = 2.4 V  
OUT = 9OL1max  
-500  
5)  
3)  
4)  
3)  
ALE inactive current  
40  
ALE active current 5)  
500  
5)  
Port 6 inactive current  
-40  
5)  
4)  
3)  
4)  
Port 6 active current  
-500  
P6L  
P0H  
P0L  
IL  
5)  
PORT0 configuration current  
-10  
µA 9IN = 9IHmin  
µA 9IN = 9ILmax  
µA 0 V < 9IN < 9DD  
-100  
XTAL1 input current  
CC –  
CC –  
±20  
10  
6)  
Pin capacitance  
&
pF  
I = 1 MHz  
7A = 25 °C  
IO  
(digital inputs/outputs)  
Power supply current (5V active) ,DD5  
with all peripherals active  
1 +  
2*ICPU  
mA RSTIN = 9IL2  
CPU in [MHz] 7)  
mA RSTIN = 9IH1  
CPU in [MHz] 7)  
µA RSTIN = 9IH1  
OSC in [MHz] 7)  
I
Idle mode supply current (5V)  
with all peripherals active  
,
,
1 +  
0.8*ICPU  
IDX5  
I
8)  
Idle mode supply current (5V)  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
500 +  
50*IOSC  
IDO5  
I
Data Sheet  
39  
1999-07  
&ꢀꢁꢀ3,  
DC Characteristics (Standard Supply Voltage Range) (continued)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
8)  
Power-down mode supply  
current (5V) with RTC running  
,
200 +  
25*IOSC  
µA  
µA  
9
DD = 9DDmax  
PDR5  
9)  
9)  
IOSC in [MHz]  
Power-down mode supply  
,
50  
9DD = 9DDmax  
PDO5  
current (5V) with RTC disabled  
1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
2) These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 K.  
3) The maximum current may be drawn while the respective signal line remains inactive.  
4) The minimum current must be drawn in order to drive the respective signal line active.  
5) This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are  
only affected, if they are used (configured) for CS output and the open drain function is not enabled.  
6) Not 100% tested, guaranteed by design characterization.  
7) The supply current is a function of the operating frequency. This dependency is illustrated in the figure below.  
These parameters are tested at 9DDmax and maximum CPU clock with all outputs disconnected and all inputs  
at 9IL or 9IH.  
The oscillator also contributes to the total supply current. The given values refer to the worst case, ie. IPDRmax  
.
For lower oscillator frequencies the respective supply current can be reduced accordingly.  
8) This parameter is determined mainly by the current consumed by the oscillator. This current, however, is  
influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry  
and may change in case of a not optimized external oscillator circuitry.  
9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at 9DD – 0.1 V to 9DD, 9REF = 0 V, all outputs (including pins configured as outputs) disconnected.  
Data Sheet  
40  
1999-07  
&ꢀꢁꢀ3,  
DC Characteristics (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Input low voltage XTAL1,  
P3.0, P3.1, P6.5, P6.6, P6.7  
9IL1 SR – 0.5  
9IL SR – 0.5  
9ILS SR – 0.5  
0.3 VDD  
V
Input low voltage  
(TTL)  
0.8  
1.3  
V
Input low voltage  
V
(Special Threshold)  
Input high voltage RSTIN  
9IH1 SR 0.6 9DD 9DD  
+
+
+
+
V
0.5  
Input high voltage XTAL1,  
P3.0, P3.1, P6.5, P6.6, P6.7  
9IH2 SR 0.7 9DD 9DD  
V
0.5  
Input high voltage  
(TTL)  
9IH SR 1.8  
9DD  
0.5  
V
Input high voltage  
(Special Threshold)  
9IHS SR 0.8 9DD 9DD  
V
- 0.2  
0.5  
Input Hysteresis  
(Special Threshold)  
HYS  
250  
mV  
V
Output low voltage  
9OL CC –  
0.45  
,OL = 1.6 mA  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
Output low voltage  
P3.0, P3.1, P6.5, P6.6, P6.7  
9
OL2 CC –  
OL1 CC –  
0.4  
0.45  
V
V
V
,
OL2 = 1.6 mA  
Output low voltage  
(all other outputs)  
Output high voltage 1)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
9
,OL = 1.0 mA  
9OH CC 0.9 9DD  
,
,
OH = -0.5 mA  
OH = -0.25 mA  
Output high voltage 1)  
(all other outputs)  
9OH1 CC 0.9 9DD  
V
Input leakage current (Port 5)  
,
CC –  
±200  
±500  
-10  
nA 0.45V < 9IN < 9DD  
nA 0.45V < 9IN < 9DD  
µA 9IN = 9IH1  
OZ1  
Input leakage current (all other)  
,
,
CC –  
OZ2  
2)  
3)  
RSTIN inactive current  
RSTH  
Data Sheet  
41  
1999-07  
&ꢀꢁꢀ3,  
DC Characteristics (continued) (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
-100  
max.  
4)  
RSTIN active current 2)  
,
µA 9IN = 9IL  
RSTL  
5)  
3)  
Read/Write inactive current  
Read/Write active current 5)  
,
-10  
µA  
µA  
µA  
µA  
µA  
µA  
9OUT = 2.4 V  
9OUT = 9OLmax  
9OUT = 9OLmax  
9OUT = 2.4 V  
9OUT = 2.4 V  
9OUT = 9OL1max  
RWH  
4)  
,
-500  
RWL  
5)  
3)  
ALE inactive current  
,
20  
ALEL  
4)  
ALE active current 5)  
,
500  
ALEH  
5)  
3)  
Port 6 inactive current  
,
-10  
P6H  
5)  
4)  
Port 6 active current  
,
-500  
P6L  
5)  
3)  
PORT0 configuration current  
,
-5  
µA 9IN = 9IHmin  
µA 9IN = 9ILmax  
µA 0 V < 9IN < 9DD  
P0H  
4)  
,
-100  
P0L  
XTAL1 input current  
,
CC –  
CC –  
±20  
10  
IL  
6)  
Pin capacitance  
&
pF  
I = 1 MHz  
7A = 25 °C  
IO  
(digital inputs/outputs)  
Power supply current (3V active) ,DD3  
with all peripherals active  
1 +  
1.1*ICPU  
mA RSTIN = 9IL2  
CPU in [MHz] 7)  
mA RSTIN = 9IH1  
CPU in [MHz] 7)  
µA RSTIN = 9IH1  
OSC in [MHz] 7)  
I
Idle mode supply current (3V)  
with all peripherals active  
,
,
1 +  
0.5*ICPU  
IDX3  
IDO3  
I
8)  
Idle mode supply current (3V)  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
300 +  
30*IOSC  
I
8)  
Power-down  
current (3V) with RTC running  
Power-down mode supply ,PDO3  
current (3V) with RTC disabled  
mode  
supply ,PDR3  
100 +  
10*IOSC  
µA  
µA  
9DD = 9DDmax  
9)  
9)  
IOSC in [MHz]  
30  
9DD = 9DDmax  
1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
2) These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 K.  
3) The maximum current may be drawn while the respective signal line remains inactive.  
4) The minimum current must be drawn in order to drive the respective signal line active.  
5) This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are  
only affected, if they are used (configured) for CS output and the open drain function is not enabled.  
6) Not 100% tested, guaranteed by design characterization.  
Data Sheet  
42  
1999-07  
&ꢀꢁꢀ3,  
7) The supply current is a function of the operating frequency. This dependency is illustrated in the figure below.  
These parameters are tested at 9DDmax and maximum CPU clock with all outputs disconnected and all inputs  
at 9IL or 9IH.  
The oscillator also contributes to the total supply current. The given values refer to the worst case, ie. IPDRmax  
.
For lower oscillator frequencies the respective supply current can be reduced accordingly.  
8) This parameter is determined mainly by the current consumed by the oscillator. This current, however, is  
influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry  
and may change in case of a not optimized external oscillator circuitry.  
9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at 9DD – 0.1 V to 9DD, 9REF = 0 V, all outputs (including pins configured as outputs) disconnected.  
1500  
,
1250  
1000  
,
750  
,
500  
,
250  
,
I
OSC [MHz]  
4
8
12  
16  
Figure 9  
Idle and Power Down Supply Current as a Function of Oscillator  
Frequency  
Data Sheet  
43  
1999-07  
&ꢀꢁꢀ3,  
IDD5max  
50  
IDD5typ  
25  
IDD3max  
IDD3typ  
IID5max  
IID5typ  
IID3max  
IID3typ  
5
5
10  
15  
20  
25  
I
CPU [MHz]  
Figure 10  
Supply/Idle Current as a Function of Operating Frequency  
Data Sheet  
44  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C161PI is controlled by the internal CPU clock fCPU. Both  
edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles)  
operations.  
The specification of the external timing (AC Characteristics) therefore depends on the  
time between two consecutive edges of the CPU clock, called “TCL” (see figure below).  
3KDVHꢂ/RFNHGꢂ/RRSꢂ2SHUDWLRQ  
I
I
TCLTCL  
'LUHFWꢂ&ORFNꢂ'ULYH  
I
I
TCLTCL  
3UHVFDOHUꢂ2SHUDWLRQ  
I
I
TCL  
TCL  
Figure 11  
Generation Mechanisms for the CPU Clock  
The CPU clock signal ICPU can be generated from the oscillator clock signal IOSC via  
different mechanisms. The duration of TCLs and their variation (and also the derived  
external timing) depends on the used mechanism to generate ICPU. This influence must  
be regarded when calculating the timings for the C161PI.  
Note: The example for PLL operation shown in the fig. above refers to a PLL factor of 4.  
The used mechanism to generate the CPU clock is selected during reset via the logic  
levels on pins P0.15-13 (P0H.7-5).  
The table below associates the combinations of these three bits with the respective clock  
generation mode.  
Data Sheet  
45  
1999-07  
&ꢀꢁꢀ3,  
Table 8  
C161PI Clock Generation Modes  
CPU Frequency External Clock  
P0.15-13  
(P0H.7-5)  
Notes  
I
CPU = IOSC * F  
Input Range 1)  
2.5 to 6.25 MHz  
3.33 to 8.33 MHz  
5 to 12.5 MHz  
2 to 5 MHz  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
I
I
I
I
I
OSC * 4  
OSC * 3  
OSC * 2  
OSC * 5  
OSC * 1  
Default configuration  
1 to 25 MHz  
Direct drive 2)  
I
OSC * 1.5  
OSC / 2  
OSC * 2.5  
6.66 to 16.6 MHz  
2 to 50 MHz  
I
CPU clock via prescaler  
I
4 to 10 MHz  
1) The external clock input range refers to a CPU clock range of 10...25 MHz.  
2) The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When pins P0.15-13 (P0H.7-5) equal 001B during reset the CPU clock is derived from  
the internal oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of ICPU is half the frequency of IOSC and the high and low time of ICPU (i.e.  
the duration of an individual TCL) is defined by the period of the input clock IOSC  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be  
calculated using the period of IOSC for any TCL.  
Phase Locked Loop  
For all combinations of pins P0.15-13 (P0H.7-5) except for 001B and 011B the on-chip  
phase locked loop is enabled and provides the CPU clock (see table above). The PLL  
multiplies the input frequency by the factor F which is selected via the combination of  
pins P0.15-13 (i.e. ICPU = IOSC * F). With every F’th transition of IOSC the PLL circuit  
synchronizes the CPU clock to the input clock. This synchronization is done smoothly,  
i.e. the CPU clock frequency does not change abruptly.  
Due to this adaptation to the input clock the frequency of ICPU is constantly adjusted so  
it is locked to IOSC. The slight variation causes a jitter of ICPU which also effects the  
duration of individual TCLs.  
Data Sheet  
46  
1999-07  
&ꢀꢁꢀ3,  
The timings listed in the AC Characteristics that refer to TCLs therefore must be  
calculated using the minimum TCL that is possible under the respective circumstances.  
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is  
constantly adjusting its output frequency so it corresponds to the applied input frequency  
(crystal or oscillator) the relative deviation for periods of more than one TCL is lower than  
for one single TCL (see formula and figure below).  
For a period of N * TCL the minimum value is computed using the corresponding  
deviation DN:  
(N * TCL)min = N * TCLNOM - DN  
DN [ns] = ±(13.3 + N*6.3) / ICPU [MHz],  
where N = number of consecutive TCLs and 1 N 40.  
So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D3 = (13.3 + 3 * 6.3) / 25 = 1.288 ns,  
and (3TCL)min = 3TCLNOM - 1.288 ns = 58.7 ns (@ ICPU = 25 MHz).  
This is especially important for bus cycles using waitstates and e.g. for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is neglectible.  
Note: For all periods longer than 40 TCL the N=40 value can be used (see figure below).  
Max.jitter D [ns]  
10 MHz  
±26.5  
This approximated formula is valid for  
1 1 40 and 10MHz fCPU 25MHz.  
±20  
16 MHz  
20 MHz  
±10  
±1  
25 MHz  
1
5
10  
20  
40  
N
Figure 12  
Approximated Maximum Accumulated PLL Jitter  
Data Sheet  
47  
1999-07  
&ꢀꢁꢀ3,  
Direct Drive  
When pins P0.15-13 (P0H.7-5) equal 011B during reset the on-chip phase locked loop is  
disabled and the CPU clock is directly driven from the internal oscillator with the input  
clock signal.  
The frequency of ICPU directly follows the frequency of IOSC so the high and low time of  
I
CPU (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock  
IOSC  
.
The timings listed below that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances. This minimum value  
can be calculated via the following formula:  
TCLmin = 1/IOSC * DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of IOSC is compensated  
so the duration of 2TCL is always 1/IOSC. The minimum value TCLmin therefore has to be  
used only once for timings that require an odd number of TCLs (1,3,...). Timings that  
require an even number of TCLs (2,4,...) may use the formula 2TCL = 1/IOSC  
.
Note: The address float timings in Multiplexed bus mode (W11 and W45) use the maximum  
duration of TCL (TCLmax = 1/IOSC * DCmax) instead of TCLmin.  
Data Sheet  
48  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristicsꢂꢂ  
External Clock Drive XTAL1 (Standard Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
PLL  
1:N  
Unit  
min.  
Oscillator period WOSCSR 40  
max.  
min.  
max.  
min.  
60 1)  
max.  
500 1) ns  
20  
6
6
6
High time 2)  
Low time 2)  
Rise time 2)  
Fall time 2)  
W1 SR 20 3)  
W2 SR 20 3)  
10  
10  
ns  
ns  
ns  
ns  
6
W3 SR  
W4 SR  
10  
10  
10  
10  
1) The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation  
mode. Please see respective table above.  
2) The clock input signal must reach the defined levels 9IL and 9IH2  
.
3) The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (ICPU) in  
direct drive mode depends on the duty cycle of the clock input signal.  
AC Characteristicsꢂꢂ  
External Clock Drive XTAL1 (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
PLL  
1:N  
Unit  
min.  
max.  
min.  
max.  
min.  
60 1)  
max.  
500 1) ns  
Oscillator period WOSCSR 50  
25  
8
6
6
High time 2)  
Low time 2)  
Rise time 2)  
Fall time 2)  
W1 SR 25 3)  
W2 SR 25 3)  
10  
10  
ns  
ns  
ns  
ns  
8
W3 SR  
W4 SR  
10  
10  
10  
10  
1) The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation  
mode. Please see respective table above.  
2) The clock input signal must reach the defined levels 9IL and 9IH2  
.
3) The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (ICPU) in  
direct drive mode depends on the duty cycle of the clock input signal.  
Data Sheet  
49  
1999-07  
&ꢀꢁꢀ3,  
Figure 13  
External Clock Drive XTAL1  
Note: The main oscillator is optimized for oscillation with a crystal within a frequency  
range of 4...16 MHz. When driven by an external clock signal it will accept the  
specified frequency range. Operation at lower input frequencies is possible but is  
guaranteed by design only (not 100% tested).  
It is strongly recommended to measure the oscillation allowance (or margin) in the  
final target system (layout) to determine the optimum parameters for the oscillator  
operation.  
Data Sheet  
50  
1999-07  
&ꢀꢁꢀ3,  
A/D Converter Characteristics  
(Operating Conditions apply)  
4.0V (2.6V)9AREF 9DD + 0.1V (Note the influence on TUE.)  
9SS - 0.1V 9AGND 9SS + 0.2V  
Parameter  
Symbol  
Limit Values  
min. max.  
9AIN SR 9AGND  
Unit Test Condition  
1)  
Analog input voltage range  
Basic clock frequency  
Conversion time  
9AREF  
V
2)  
IBC  
WC  
0.5  
CC –  
6.25  
MHz  
3)  
40 WBC  
+
WS+2WCPU  
WCPU = 1 / ICPU  
LSB 9AREF 4.0 V 5)  
Total unadjusted error  
TUE CC –  
± 2  
4)  
± 4  
LSB 9AREF 2.6 V  
Internal resistance of  
5AREF SR –  
WBC / 60  
k  
W
BC in [ns] 6) 7)  
reference voltage source  
- 0.25  
Internal resistance of analog 5ASRC SR –  
source  
WS / 450 kWS in [ns] 7) 8)  
- 0.25  
7)  
ADC input capacitance  
&
CC –  
33  
pF  
AIN  
1) 9AIN may exceed 9AGND or 9AREF up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000H or X3FFH, respectively.  
2) The limit values for IBC must not be exceeded when selecting the CPU frequency and the ADCTC setting.  
3) This parameter includes the sample time WS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the basic clock WBC depend on the conversion time programming.  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
4) TUE is tested at 9AREF=5.0V (3.3V),9AGND=0V, 9DD=4.9V (3.2V). It is guaranteed by design for all other  
voltages within the defined voltage range.  
The specified TUE is guaranteed only if an overload condition (see ,OV specification) occurs on maximum 2 not  
selected analog input pins and the absolute sum of input overload currents on all analog input pins does not  
exceed 10 mA.  
During the reset calibration sequence the maximum TUE may be ±4 LSB (±8 LSB @ 3V).  
5) This case is not applicable for the reduced supply voltage range.  
6) During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within each conversion step. The maximum internal resistance results from the programmed conversion timing.  
7) Not 100% tested, guaranteed by design.  
8) During the sample time the input capacitance &I can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within WS.  
After the end of the sample time WS, changes of the analog input voltage have no effect on the conversion result.  
Values for the sample time WS depend on programming and can be taken from the table below.  
Data Sheet  
51  
1999-07  
&ꢀꢁꢀ3,  
Sample time and conversion time of the C161PI’s A/D Converter are programmable. The  
table below should be used to calculate the above timings.  
The limit values for IBC must not be exceeded when selecting ADCTC.  
Table 9  
A/D Converter Computation Table  
ADCON.15|14 A/D Converter  
ADCON.13|12 Sample time  
(ADCTC)  
Basic clock IBC  
(ADSTC)  
WS  
00  
01  
10  
11  
ICPU / 4  
ICPU / 2  
ICPU / 16  
ICPU / 8  
00  
01  
10  
11  
W
W
W
W
BC * 8  
BC * 16  
BC * 32  
BC * 64  
Converter Timing Example:  
Assumptions:  
ICPU = 25 MHz (i.e. WCPU = 40 ns), ADCTC = ’00’, ADSTC = ’00’.  
Basic clock  
Sample time  
IBC  
WS  
= ICPU / 4 = 6.25 MHz, i.e. WBC = 160 ns.  
= WBC * 8 = 1280 ns.  
Conversion time WC  
= WS + 40 WBC + 2 WCPU = (1280 + 6400 + 80) ns = 7.8 µs.  
Memory Cycle Variables  
The timing tables below use three variables which are derived from the BUSCONx  
registers and represent the special characteristics of the programmed memory cycle.  
The following table describes, how these variables are to be computed.  
Table 10  
Memory Cycle Variables  
Symbol Values  
Description  
ALE Extension  
WA  
TCL * <ALECTL>  
Memory Cycle Time Waitstates WC  
2TCL * (15 - <MCTC>)  
2TCL * (1 - <MTTC>)  
Memory Tristate Time  
WF  
Data Sheet  
52  
1999-07  
&ꢀꢁꢀ3,  
Testing Waveforms  
2.4 V  
1.8 V  
0.8 V  
1.8 V  
0.8 V  
Test Points  
0.45 V  
AC inputs during testing are driven at 2.4 V for a logic ‘1’ and 0.45 V for a logic ‘0’.  
Timing measurements are made at 9IH min for a logic ’1’ and 9IL max for a logic ’0’.  
Figure 14  
Input Output Waveforms  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs,  
but begins to float when a 100 mV change from the loaded 9OH/9OL level occurs (,OH/,OL = 20 mA).  
Figure 15  
Float Waveforms  
Data Sheet  
53  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristics  
Multiplexed Bus (Standard Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2WA + WC + WF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
min.  
max.  
ALE high time  
W5 CC 10 + WA  
W6 CC 4 +WA  
W7 CC 10 +WA  
W8 CC 10 +WA  
W9 CC -10 +WA  
W10 CC –  
TCL - 10  
+WA  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
TCL - 16  
+WA  
TCL - 10  
+WA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+WA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10 +WA  
Address float after RD,  
WR (with RW-delay)  
6
Address float after RD,  
WR (no RW-delay)  
W11 CC –  
26  
TCL + 6  
RD, WR low time  
(with RW-delay)  
W12 CC 30 +WC  
W13 CC 50 +WC  
W14 SR –  
2TCL - 10 –  
+WC  
RD, WR low time  
(no RW-delay)  
3TCL-  
10+WC  
RD to valid data in  
(with RW-delay)  
20 +WC  
40 +WC  
0
2TCL - 20 ns  
+WC  
RD to valid data in  
(no RW-delay)  
W15 SR –  
3TCL - 20 ns  
+WC  
ALE low to valid data in  
W16 SR –  
40 + WA  
+ WC  
3TCL - 20 ns  
+WA +WC  
Address to valid data in  
W17 SR –  
50 + 2WA  
+ WC  
4TCL - 30 ns  
+2WA +WC  
Data hold after RD  
rising edge  
W18 SR 0  
ns  
Data float after RD  
W19 SR –  
26 +WF  
2TCL - 14 ns  
+WF  
Data Sheet  
54  
1999-07  
&ꢀꢁꢀ3,  
Multiplexed Bus (Standard Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2WA + WC + WF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
min.  
max.  
Data valid to WR  
W22 CC 20 +WC  
2TCL - 20 –  
+WC  
ns  
ns  
ns  
ns  
ns  
Data hold after WR  
W23 CC 26 +WF  
2TCL - 14 –  
+WF  
ALE rising edge after RD, W25 CC 26 +WF  
WR  
2TCL - 14 –  
+WF  
Address hold after RD,  
WR  
ALE falling edge to CS 1) W38 CC -4 -WA  
CS low to Valid Data In 1) W39 SR –  
W27 CC 26 +WF  
2TCL - 14 –  
+WF  
10 - WA  
-4 -WA  
10 -WA  
40  
3TCL - 20 ns  
+WCꢂ  
+2WA  
+WC + 2WA  
CS hold after RD, WR 1) W40 CC 46 +WF  
3TCL - 14 –  
ns  
ns  
ns  
ns  
ns  
+WF  
ALE fall. edge to RdCS, W42 CC 16 +WA  
WrCS (with RW delay)  
TCL - 4  
+WA  
ALE fall. edge to RdCS, W43 CC -4 +WA  
WrCS (no RW delay)  
-4  
+WA  
Address float after RdCS, W44 CC –  
WrCS (with RW delay)  
0
0
Address float after RdCS, W45 CC –  
WrCS (no RW delay)  
20  
TCL  
RdCS to Valid Data In  
(with RW delay)  
W46 SR –  
W47 SR –  
16 +WC  
2TCL - 24 ns  
+WC  
RdCS to Valid Data In  
(no RW delay)  
36 +WC  
3TCL - 24 ns  
+WC  
RdCS, WrCS Low Time W48 CC 30 +WC  
(with RW delay)  
2TCL - 10 –  
+WC  
ns  
ns  
RdCS, WrCS Low Time W49 CC 50 +WC  
3TCL - 10 –  
(no RW delay)  
+WC  
Data Sheet  
55  
1999-07  
&ꢀꢁꢀ3,  
Multiplexed Bus (Standard Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2WA + WC + WF (120 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
min.  
max.  
Data valid to WrCS  
W50 CC 26 +WC  
2TCL - 14 –  
ns  
+WC  
Data hold after RdCS  
Data float after RdCS  
W51 SR 0  
W52 SR –  
0
ns  
20 +WF  
2TCL - 20 ns  
+WF  
Address hold after  
RdCS, WrCS  
W54 CC 20 +WF  
W56 CC 20 +WF  
2TCL - 20 –  
+WF  
ns  
ns  
Data hold after WrCS  
2TCL - 20 –  
+WF  
1) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
56  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristics  
Multiplexed Bus (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2WA + WC + WF (150 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max.  
min.  
max.  
ALE high time  
W5 CC 11 + WA  
W6 CC 5 +WA  
W7 CC 15 +WA  
W8 CC 15 +WA  
W9 CC -10 +WA  
W10 CC –  
TCL - 14  
+WA  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
TCL - 20  
+WA  
TCL - 10  
+WA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+WA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10 +WA  
Address float after RD,  
WR (with RW-delay)  
6
Address float after RD,  
WR (no RW-delay)  
W11 CC –  
31  
TCL + 6  
RD, WR low time  
(with RW-delay)  
W12 CC 34 +WC  
W13 CC 59 +WC  
W14 SR –  
2TCL - 16 –  
+WC  
RD, WR low time  
(no RW-delay)  
3TCL - 16 –  
+ WC  
RD to valid data in  
(with RW-delay)  
22 +WC  
47 +WC  
0
2TCL - 28 ns  
+WC  
RD to valid data in  
(no RW-delay)  
W15 SR –  
3TCL - 28 ns  
+WC  
ALE low to valid data in  
W16 SR –  
49 + WA  
+ WC  
3TCL - 30 ns  
+WA +WC  
Address to valid data in  
W17 SR –  
57 + 2WA  
+ WC  
4TCL - 43 ns  
+2WA +WC  
Data hold after RD  
rising edge  
W18 SR 0  
ns  
Data float after RD  
W19 SR –  
36 +WF  
2TCL - 14 ns  
+WF  
Data Sheet  
57  
1999-07  
&ꢀꢁꢀ3,  
Multiplexed Bus (Reduced Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2WA + WC + WF (150 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max.  
min.  
max.  
Data valid to WR  
W22 CC 24 +WC  
2TCL - 26 –  
+WC  
ns  
ns  
ns  
ns  
ns  
Data hold after WR  
W23 CC 36 +WF  
2TCL - 14 –  
+WF  
ALE rising edge after RD, W25 CC 36 +WF  
WR  
2TCL - 14 –  
+WF  
Address hold after RD,  
WR  
ALE falling edge to CS 1) W38 CC -8 -WA  
CS low to Valid Data In 1) W39 SR –  
W27 CC 36 +WF  
2TCL - 14 –  
+WF  
10 - WA  
-8 -WA  
10 -WA  
47  
3TCL - 28 ns  
+WC+2WA  
+WC + 2WA  
CS hold after RD, WR 1) W40 CC 57 +WF  
3TCL - 18 –  
ns  
ns  
ns  
ns  
ns  
+ WF  
ALE fall. edge to RdCS, W42 CC 19 +WA  
WrCS (with RW delay)  
TCL - 6  
+WA  
ALE fall. edge to RdCS, W43 CC -6 +WA  
WrCS (no RW delay)  
-6  
+WA  
Address float after RdCS, W44 CC –  
WrCS (with RW delay)  
0
0
Address float after RdCS, W45 CC –  
WrCS (no RW delay)  
25  
TCL  
RdCS to Valid Data In  
(with RW delay)  
W46 SR –  
W47 SR –  
20 +WC  
2TCL - 30 ns  
+WC  
RdCS to Valid Data In  
(no RW delay)  
45 +WC  
3TCL - 30 ns  
+WC  
RdCS, WrCS Low Time W48 CC 38 +WC  
(with RW delay)  
2TCL - 12 –  
+WC  
ns  
ns  
ns  
RdCS, WrCS Low Time W49 CC 63 +WC  
(no RW delay)  
3TCL - 12 –  
+WC  
Data valid to WrCS  
W50 CC 28 +WC  
2TCL - 22 –  
+WC  
Data Sheet  
58  
1999-07  
&ꢀꢁꢀ3,  
Multiplexed Bus (Reduced Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2WA + WC + WF (150 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max. min. max.  
Data hold after RdCS  
W51 SR 0  
W52 SR –  
0
ns  
Data float after RdCS  
30 +WF  
2TCL - 20 ns  
+WF  
Address hold after  
RdCS, WrCS  
W54 CC 30 +WF  
W56 CC 30 +WF  
2TCL - 20 –  
+WF  
ns  
ns  
Data hold after WrCS  
2TCL - 20 –  
+WF  
1) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
59  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W25  
ALE  
W38  
W39  
W40  
CSxL  
W17  
W27  
A22-A16  
(A15-A8)  
BHE, CSxE  
Address  
W6  
W7  
W54  
W19  
W18  
5HDGꢂ&\FOH  
BUS  
Address  
Data In  
W10  
W8  
W14  
W12  
W46  
W48  
RD  
W51  
W44  
W42  
W5  
2
RdCSx  
:ULWHꢂ&\FOH  
W23  
BUS  
Address  
Data Out  
W56  
W10  
W8  
W22  
WR,  
WRL,  
WRH  
W12  
W44  
W42  
W50  
WrCSx  
W48  
Figure 16  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
60  
1999-07  
&ꢀꢁꢀ3,  
W5  
W38  
W16  
W25  
ALE  
W39  
W40  
CSxL  
W17  
W27  
A22-A16  
(A15-A8)  
Address  
BHE, CSxE  
W6  
W7  
W54  
W19  
W18  
5HDGꢂ&\FOH  
BUS  
Address  
Data In  
W10  
W8  
W14  
W12  
W46  
W48  
RD  
W51  
W44  
W42  
W52  
RdCSx  
:ULWHꢂ&\FOH  
W23  
BUS  
Address  
Data Out  
W56  
W10  
W8  
W22  
WR,  
WRL,  
WRH  
W12  
W44  
W42  
W50  
WrCSx  
W48  
Figure 17  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
61  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W25  
ALE  
W38  
W39  
W40  
CSxL  
W17  
W27  
A22-A16  
(A15-A8)  
Address  
BHE, CSxE  
W6  
W7  
W54  
W19  
W18  
5HDGꢂ&\FOH  
BUS  
Address  
Data In  
W9  
W11  
W15  
W13  
W47  
W49  
RD  
W51  
W43  
W45  
W52  
RdCSx  
:ULWHꢂ&\FOH  
W23  
BUS  
Address  
Data Out  
W56  
W9  
W11  
W22  
WR,  
WRL,  
WRH  
W13  
W50  
W43  
W45  
WrCSx  
W49  
Figure 18  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
62  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W25  
ALE  
W38  
W39  
W40  
CSxL  
W17  
W27  
A22-A16  
(A15-A8)  
Address  
BHE, CSxE  
W6  
W7  
W54  
W19  
W18  
5HDGꢂ&\FOH  
BUS  
Address  
Data In  
W9  
W11  
W15  
W13  
W47  
W49  
RD  
W51  
W43  
W45  
W52  
RdCSx  
:ULWHꢂ&\FOH  
W23  
BUS  
Address  
Data Out  
W56  
W9  
W11  
W22  
WR,  
WRL,  
WRH  
W13  
W43  
W45  
W50  
WrCSx  
W49  
Figure 19  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
63  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristics  
Demultiplexed Bus (Standard Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2WA + WC + WF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
min.  
max.  
ALE high time  
W5 CC 10 +WA  
W6 CC 4 +WA  
W8 CC 10 +WA  
W9 CC -10 +WA  
W12 CC 30 +WC  
W13 CC 50 +WC  
W14 SR –  
TCL - 10  
+WA  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
TCL - 16  
+WA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+WA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10  
+WA  
RD, WR low time  
(with RW-delay)  
2TCL - 10 –  
+WC  
RD, WR low time  
(no RW-delay)  
3TCL - 10 –  
+WC  
RD to valid data in  
(with RW-delay)  
20 +WC  
40 +WC  
0
2TCL - 20 ns  
+WC  
RD to valid data in  
(no RW-delay)  
W15 SR –  
3TCL - 20 ns  
+WC  
ALE low to valid data in  
W16 SR –  
40 +  
WA +WC  
3TCL - 20 ns  
+WA +WC  
Address to valid data in  
W17 SR –  
50 +  
2WA +WC  
4TCL - 30 ns  
+2WA +WC  
Data hold after RD  
rising edge  
W18 SR 0  
ns  
Data float after RD rising W20 SR –  
26 +  
2TCL - 14 ns  
+22WA  
+WF  
edge (with RW-delay 1))  
2WA +WF  
1)  
1)  
Data float after RD rising W21 SR –  
10 +  
2WA +WF  
TCL - 10  
ns  
ns  
edge (no RW-delay 1))  
+22WA  
1)  
1)  
+WF  
Data valid to WR  
W22 CC 20 +WC  
2TCL - 20 –  
+WC  
Data Sheet  
64  
1999-07  
&ꢀꢁꢀ3,  
Demultiplexed Bus (Standard Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2WA + WC + WF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max.  
W24 CC 10 +WF  
min.  
max.  
Data hold after WR  
TCL - 10  
ns  
ns  
+WF  
ALE rising edge after RD, W26 CC -10 +WF  
WR  
Address hold after WR 2) W28 CC 0 +WF  
ALE falling edge to CS 3) W38 CC -4 -WA  
CS low to Valid Data In 3) W39 SR –  
-10 +WF  
0 +WF  
-4 -WA  
ns  
ns  
10 -WA  
10 -WA  
40 +  
3TCL - 20 ns  
WC+2WA  
+WC + 2WA  
CS hold after RD, WR 3) W41 CC 6 +WF  
TCL - 14  
ns  
ns  
+WF  
ALE falling edge to  
RdCS, WrCS (with RW-  
delay)  
W42 CC 16 +WA  
W43 CC -4 +WA  
TCL - 4  
+WA  
ALE falling edge to  
RdCS, WrCS (no RW-  
delay)  
-4  
+WA  
ns  
RdCS to Valid Data In  
(with RW-delay)  
W46 SR –  
W47 SR –  
16 +WC  
2TCL - 24 ns  
+WC  
RdCS to Valid Data In  
(no RW-delay)  
36 +WC  
3TCL - 24 ns  
+WC  
RdCS, WrCS Low Time W48 CC 30 +WC  
(with RW-delay)  
2TCL - 10 –  
+WC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time W49 CC 50 +WC  
(no RW-delay)  
3TCL - 10 –  
+WC  
Data valid to WrCS  
W50 CC 26 +WC  
2TCL - 14 –  
+WC  
Data hold after RdCS  
W51 SR 0  
W53 SR –  
0
Data float after RdCS  
(with RW-delay) 1)  
20 +WF  
2TCL - 20 ns  
1)  
+2WA +WF  
Data float after RdCS  
(no RW-delay) 1)  
W68 SR –  
0 +WF  
TCL - 20  
+2WA +WF  
ns  
1)  
Data Sheet  
65  
1999-07  
&ꢀꢁꢀ3,  
Demultiplexed Bus (Standard Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2WA + WC + WF (80 ns at 25 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max. min. max.  
-6 +WF  
Address hold after  
RdCS, WrCS  
W55 CC -6 +WF  
W57 CC 6 +WF  
ns  
ns  
Data hold after WrCS  
TCL - 14 +–  
WF  
1) RW-delay and WA refer to the next following bus cycle (including an access to an on-chip X-Peripheral).  
2) Read data are latched with the same clock edge that triggers the address change and the rising RD edge.  
Therefore address changes before the end of RD have no impact on read cycles.  
3) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
66  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristics  
Demultiplexed Bus (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2WA + WC + WF (100 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max.  
min.  
max.  
ALE high time  
W5 CC 11 +WA  
W6 CC 5 +WA  
W8 CC 15 +WA  
W9 CC -10 +WA  
W12 CC 34 +WC  
W13 CC 59 +WC  
W14 SR –  
TCL - 14  
+WA  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
TCL - 20  
+WA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+WA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10  
+WA  
RD, WR low time  
(with RW-delay)  
2TCL - 16 –  
+WC  
RD, WR low time  
(no RW-delay)  
3TCL - 16 –  
+WC  
RD to valid data in  
(with RW-delay)  
22 +WC  
47 +WC  
0
2TCL - 28 ns  
+WC  
RD to valid data in  
(no RW-delay)  
W15 SR –  
3TCL - 28 ns  
+WC  
ALE low to valid data in  
W16 SR –  
49 +  
WA +WC  
3TCL - 30 ns  
+WA +WC  
Address to valid data in  
W17 SR –  
57 +  
2WA +WC  
4TCL - 43 ns  
+2WA +WC  
Data hold after RD  
rising edge  
W18 SR 0  
ns  
Data float after RD rising W20 SR –  
36 +  
2TCL - 14 ns  
edge (with RW-delay 1))  
2WA +WF  
+2WA +WF  
1)  
1)  
Data float after RD rising W21 SR –  
15 +  
2WA +WF  
TCL - 10  
ns  
ns  
edge (no RW-delay 1))  
+2WA  
1)  
1)  
+WF  
Data valid to WR  
W22 CC 24 +WC  
2TCL - 26 –  
+WC  
Data Sheet  
67  
1999-07  
&ꢀꢁꢀ3,  
Demultiplexed Bus (Reduced Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2WA + WC + WF (100 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max.  
W24 CC 15 +WF  
min.  
max.  
Data hold after WR  
TCL - 10  
ns  
ns  
+WF  
ALE rising edge after RD, W26 CC -12 +WF  
WR  
Address hold after WR 2) W28 CC 0 +WF  
ALE falling edge to CS 3) W38 CC -8 -WA  
CS low to Valid Data In 3) W39 SR –  
-12 +WF  
0 +WF  
-8 -WA  
ns  
ns  
10 -WA  
10 -WA  
47 +  
3TCL - 28 ns  
WC+2WA  
+WC + 2WA  
CS hold after RD, WR 3) W41 CC 9 +WF  
TCL - 16  
ns  
ns  
+WF  
ALE falling edge to  
RdCS, WrCS (with RW-  
delay)  
W42 CC 19 +WA  
W43 CC -6 +WA  
TCL - 6  
+WA  
ALE falling edge to  
RdCS, WrCS (no RW-  
delay)  
-6  
+WA  
ns  
RdCS to Valid Data In  
(with RW-delay)  
W46 SR –  
W47 SR –  
20 +WC  
2TCL - 30 ns  
+WC  
RdCS to Valid Data In  
(no RW-delay)  
45 +WC  
3TCL - 30 ns  
+WC  
RdCS, WrCS Low Time W48 CC 38 +WC  
(with RW-delay)  
2TCL - 12 –  
+WC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time W49 CC 63 +WC  
(no RW-delay)  
3TCL - 12 –  
+WC  
Data valid to WrCS  
W50 CC 28 +WC  
2TCL - 22 –  
+WC  
Data hold after RdCS  
W51 SR 0  
W53 SR –  
0
Data float after RdCS  
(with RW-delay) 1)  
30 +WF  
2TCL - 20 ns  
1)  
+2WA +WF  
Data float after RdCS  
(no RW-delay) 1)  
W68 SR –  
5 +WF  
TCL - 20  
+2WA +WF  
ns  
1)  
Data Sheet  
68  
1999-07  
&ꢀꢁꢀ3,  
Demultiplexed Bus (Reduced Supply Voltage Range) (continued)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2WA + WC + WF (100 ns at 20 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max.  
min.  
max.  
Address hold after  
RdCS, WrCS  
W55 CC -16 +WF  
-16 +WF  
ns  
Data hold after WrCS  
W57 CC 9 +WF  
TCL - 16  
ns  
+WF  
1) RW-delay and WA refer to the next following bus cycle (including an access to an on-chip X-Peripheral).  
2) Read data are latched with the same clock edge that triggers the address change and the rising RD edge.  
Therefore address changes before the end of RD have no impact on read cycles.  
3) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
69  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W26  
ALE  
W38  
W39  
W41  
CSxL  
W17  
W28  
A22-A16  
A15-A0  
Address  
BHE, CSxE  
W6  
W55  
W20  
W18  
5HDGꢂ&\FOH  
BUS  
Data In  
(D15-D8)  
D7-D0  
W8  
W14  
RD  
W12  
W46  
W48  
W51  
W42  
W53  
RdCSx  
:ULWHꢂ&\FOH  
BUS  
(D15-D8)  
D7-D0  
W24  
Data Out  
W57  
W8  
W22  
WR,  
WRL,  
WRH  
W12  
W42  
W50  
WrCSx  
W48  
Figure 20  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
70  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W39  
W17  
W26  
ALE  
W38  
W41  
CSxL  
W28  
A22-A16  
A15-A0  
BHE,  
Address  
W6  
W55  
CSxE  
W20  
W18  
5HDGꢂ&\FOH  
BUS  
Data In  
(D15-D8)  
D7-D0  
W8  
W14  
W12  
W46  
W48  
RD  
W51  
W42  
W53  
RdCSx  
:ULWHꢂ&\FOH  
BUS  
(D15-D8)  
D7-D0  
W24  
Data Out  
W57  
W8  
W22  
WR,  
WRL,  
WRH  
W12  
W42  
W50  
WrCSx  
W48  
Figure 21  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
71  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W26  
ALE  
W38  
W39  
W41  
CSxL  
W17  
W28  
A22-A16  
A15-A0  
Address  
BHE, CSxE  
W6  
W55  
W21  
W18  
5HDGꢂ&\FOH  
BUS  
Data In  
(D15-D8)  
D7-D0  
W9  
W15  
W13  
W47  
W49  
RD  
W51  
W43  
W68  
RdCSx  
:ULWHꢂ&\FOH  
BUS  
(D15-D8)  
D7-D0  
W24  
Data Out  
W57  
W9  
W22  
WR,  
WRL,WRH  
W13  
W50  
W43  
WrCSx  
W49  
Figure 22  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
72  
1999-07  
&ꢀꢁꢀ3,  
W5  
W16  
W39  
W17  
W26  
ALE  
W38  
W41  
CSxL  
W28  
A22-A16  
A15-A0  
Address  
BHE,CSxE  
W6  
W55  
W21  
W18  
5HDGꢂ&\FOH  
BUS  
Data In  
(D15-D8)  
D7-D0  
W9  
W15  
W13  
W47  
W49  
RD  
W51  
W43  
W68  
RdCSx  
:ULWHꢂ&\FOH  
BUS  
(D15-D8)  
D7-D0  
W24  
Data Out  
W57  
W9  
W22  
WR,  
WRL, WRH  
W13  
W43  
W50  
WrCSx  
W49  
Figure 23  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
73  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristicsꢂ  
CLKOUT and READY (Standard Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 25 MHz 1 / 2TCL = 1 to 25 MHz  
min. max. min. max.  
2TCL 2TCL  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
W29 CC 40  
W30 CC 14  
W31 CC 10  
W32 CC –  
40  
ns  
ns  
ns  
ns  
ns  
ns  
TCL – 6  
TCL – 10  
4
4
W33 CC –  
4
4
CLKOUT rising edge to  
ALE falling edge  
W34 CC 0 +WA  
10 +WA 0 +WA  
10 +WA  
Synchronous READY  
setup time to CLKOUT  
W35 SR 14  
W36 SR 4  
W37 SR 54  
W58 SR 14  
W59 SR 4  
14  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous READY  
hold time after CLKOUT  
4
Asynchronous READY  
low time  
2TCL + W58  
Asynchronous READY  
setup time 1)  
14  
4
Asynchronous READY  
hold time 1)  
Async. READY hold time W60 SR 0  
after RD, WR high  
0
0
TCL - 20  
+ 2WA + WC  
+ WF  
+ 2WA +  
WC + WF  
(Demultiplexed Bus) 2)  
2)  
2)  
1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
2) Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This  
adds even more time for deactivating READY.  
The 2WA and WC refer to the next following bus cycle,ꢂWF refers to the current bus cycle.  
The maximum limit for W60 must be fulfilled if the next following bus cycle is READY controlled.  
Data Sheet  
74  
1999-07  
&ꢀꢁꢀ3,  
AC Characteristicsꢂ  
CLKOUT and READY (Reduced Supply Voltage Range)  
(Operating Conditions apply)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 20 MHz 1 / 2TCL = 1 to 20 MHz  
min. max. min. max.  
2TCL 2TCL  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
W29 CC 40  
W30 CC 15  
W31 CC 13  
W32 CC –  
40  
ns  
ns  
ns  
ns  
ns  
ns  
TCL – 10  
TCL – 12  
12  
8
12  
W33 CC –  
8
CLKOUT rising edge to  
ALE falling edge  
W34 CC 0 +WA  
8 +WA  
0 +WA  
8 +WA  
Synchronous READY  
setup time to CLKOUT  
W35 SR 18  
W36 SR 4  
W37 SR 68  
W58 SR 18  
W59 SR 4  
18  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous READY  
hold time after CLKOUT  
4
Asynchronous READY  
low time  
2TCL + W58  
Asynchronous READY  
setup time 1)  
18  
4
Asynchronous READY  
hold time 1)  
Async. READY hold time W60 SR 0  
after RD, WR high  
0
0
TCL - 25  
+ 2WA + WC  
+ WF  
+ 2WA +  
WC + WF  
(Demultiplexed Bus) 2)  
2)  
2)  
1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
2) Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This  
adds even more time for deactivating READY.  
The 2WA and WC refer to the next following bus cycle,ꢂWF refers to the current bus cycle.  
The maximum limit for W60 must be fulfilled if the next following bus cycle is READY controlled.  
Data Sheet  
75  
1999-07  
&ꢀꢁꢀ3,  
READY  
waitstate  
MUX/Tristate 6)  
Running cycle 1)  
W32  
W33  
W31  
CLKOUT  
ALE  
W30  
W34  
W29  
7)  
2)  
Command  
RD, WR  
W35  
W36  
W35  
W36  
Sync  
3)  
3)  
READY  
4)  
W60  
W58  
W59  
W58  
W59  
3)  
Async  
3)  
READY  
W37  
5)  
see 6)  
Figure 24  
CLKOUT and READY  
Notes  
1)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
The leading edge of the respective command depends on RW-delay.  
2)  
READY sampled HIGH at this sampling point generates a READY controlled waitstate,  
READY sampled LOW at this sampling point terminates the currently running bus cycle.  
READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or  
WR).  
If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT  
(e.g. because CLKOUT is not enabled), it must fulfill W37 in order to be safely synchronized. This is guaranteed,  
if READY is removed in reponse to the command (see Note 4)).  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here.  
3)  
4)  
5)  
6)  
For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without  
MTTC waitstate this delay is zero.  
The next external bus cycle may start here.  
7)  
Data Sheet  
76  
1999-07  
&ꢀꢁꢀ3,  
Package Outlines  
Plastic Package, P-MQFP-100-2 (SMD)  
(Plastic Metric Quad Flat Package)  
Figure 25  
Data Sheet  
77  
1999-07  
C161PI  
Package Outlines (continued)  
Plastic Package, P-TQFP-100-1 (SMD)  
(Plastic Thin Metric Quad Flat Package)  
Figure 26  
Sorts of Packing  
Package outlines for tubes, trays, etc. are contained in our  
Data Book “Package Information”  
SMD = Surface Mounted Device  
Dimensions in mm  
1999-07  
Data Sheet  
78  
&ꢀꢁꢀ3,  
Data Sheet  
79  
1999-07  
&ꢀꢁꢀ3,  
Published by Infineon Technologies AG  
Data Sheet  
80  
1999-07  

相关型号:

SAF-C161PI-LFCA

暂无描述
INFINEON

SAF-C161PI-LM

Microcontroller, 16-Bit, 80166 CPU, 25MHz, CMOS, PQFP100, METRIC, PLASTIC, QFP-100
INFINEON

SAF-C161PI-LM

Microcontroller, 16-Bit, 25MHz, CMOS, PQFP100, METRIC, PLASTIC, QFP-100
INTEL

SAF-C161PI-LM3VCA

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP100, GREEN, PLASTIC, MQFP-100
INFINEON

SAF-C161PI-LMCA

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP100, GREEN, PLASTIC, MQFP-100
INFINEON

SAF-C161RI

16-Bit CMOS Single-Chip Microcontroller
INFINEON

SAF-C161RI-LF

Microcontroller, 16-Bit, 80166 CPU, 20MHz, CMOS, PQFP100, METRIC, PLASTIC, TQFP-100
INFINEON

SAF-C161RI-LF

Microcontroller, 16-Bit, 20MHz, CMOS, PQFP100, METRIC, PLASTIC, TQFP-100
INTEL

SAF-C161RI-LM

暂无描述
INFINEON

SAF-C161S

16-Bit Single-Chip Microcontroller
INFINEON

SAF-C161S-L25M

16-Bit Single-Chip Microcontroller
INFINEON

SAF-C161S-L25MAA

Microcontroller, 16-Bit, 25MHz, CMOS, PQFP80, GREEN, PLASTIC, MQFP-80
INFINEON