SAK-C164CI-L16M3V [INFINEON]

RISC Microcontroller, 16-Bit, MROM, C166 CPU, 16MHz, CMOS, PQFP80, 0.65 MM, PLASTIC, MQFP-80;
SAK-C164CI-L16M3V
型号: SAK-C164CI-L16M3V
厂家: Infineon    Infineon
描述:

RISC Microcontroller, 16-Bit, MROM, C166 CPU, 16MHz, CMOS, PQFP80, 0.65 MM, PLASTIC, MQFP-80

微控制器
文件: 总75页 (文件大小:1166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V1.0, Jan. 2003  
C164CI-3V  
Low Power  
16-Bit Single-Chip Microcontroller  
Preliminary  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2003-01  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V1.0, Jan. 2003  
C164CI-3V  
Low Power  
16-Bit Single-Chip Microcontroller  
Preliminary  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C164CI-3V  
Preliminary  
Revision History:  
2003-01  
V1.0  
Previous Version:  
---  
Page  
Subjects (major changes since last revision)  
Controller Area Network (CAN): License of Robert Bosch GmbH  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Preliminary  
16-Bit Single-Chip Microcontroller  
C166 Family  
C164CI-3V  
C164CI/SI, C164CL/SL  
• High Performance 16-bit CPU with 4-Stage Pipeline  
– 125 ns Instruction Cycle Time at 16 MHz CPU Clock  
– 625 ns Multiplication (16 × 16 bit), 1250 ns Division (32 / 16 bit)  
– Enhanced Boolean Bit Manipulation Facilities  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Single-Cycle Context Switching Support  
– 16 Mbytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area  
• 16-Priority-Level Interrupt System with 32 Sources, Sample-Rate down to 62 ns  
• 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC)  
• Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5),  
via prescaler or via direct clock input  
• On-Chip Memory Modules  
– 2 Kbytes On-Chip Internal RAM (IRAM)  
– 2 Kbytes On-Chip Extension RAM (XRAM)  
– up to 64 Kbytes On-Chip Program Mask ROM  
• On-Chip Peripheral Modules  
– 8-Channel 10-bit A/D Converter with Programmable Conversion Time  
down to 7.8 µs  
– 8-Channel General Purpose Capture/Compare Unit (CAPCOM2)  
– Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6)  
(3/6 Capture/Compare Channels and 1 Compare Channel)  
– Multi-Functional General Purpose Timer Unit with 3 Timers  
– Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)  
– On-Chip CAN Interface (Rev. 2.0B active) with 15 Message Objects  
(Full CAN/Basic CAN)  
– On-Chip Real Time Clock  
• Up to 4 Mbytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit  
Data Bus Width  
– Four Optional Programmable Chip-Select Signals  
• Idle, Sleep, and Power Down Modes with Flexible Power Management  
• Programmable Watchdog Timer and Oscillator Watchdog  
• Up to 59 General Purpose I/O Lines,  
partly with Selectable Input Thresholds and Hysteresis  
Data Sheet  
1
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
• Supported by a Large Range of Development Tools like C-Compilers,  
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,  
Simulators, Logic Analyzer Disassemblers, Programming Boards  
• On-Chip Bootstrap Loader  
• 80-Pin MQFP Package, 0.65 mm pitch  
This document describes several derivatives of the C164 group. Table 1 enumerates  
these derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
Table 1  
C164CI-3V Derivative Synopsis  
Derivative1)  
Program  
Memory  
CAPCOM6 CAN Interf. Operating  
Frequency  
SAK-C164CI-8R16M3V 64 Kbytes ROM Full function CAN1  
SAF-C164CI-8R16M3V  
16 MHz  
SAK-C164SI-8R16M3V 64 Kbytes ROM Full function ---  
SAF-C164SI-8R16M3V  
16 MHz  
16 MHz  
16 MHz  
16 MHz  
16 MHz  
16 MHz  
SAK-C164CL-8R16M3V 64 Kbytes ROM Reduced fct. CAN1  
SAF-C164CL-8R16M3V  
SAK-C164SL-8R16M3V 64 Kbytes ROM Reduced fct. ---  
SAF-C164SL-8R16M3V  
SAK-C164CL-6R16M3V 48 Kbytes ROM Reduced fct. CAN1  
SAF-C164CL-6R16M3V  
SAK-C164SL-6R16M3V 48 Kbytes ROM Reduced fct. ---  
SAF-C164SL-6R16M3V  
SAK-C164CI-L16M3V  
SAF-C164CI-L16M3V  
---  
Full function CAN1  
1)  
This Data Sheet is valid for ROM(less) devices starting with and including design step AB, and for OTP devices  
starting with and including design step DA.  
For simplicity all versions are referred to by the term C164CI-3V throughout this  
document.  
Data Sheet  
2
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
• the package and the type of delivery.  
For the available ordering codes for the C164CI-3V please refer to the “Product  
Catalog Microcontrollers”, which summarizes all available microcontroller variants.  
Note: The ordering codes for Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Introduction  
The C164CI-3V derivatives of the Infineon C166 Family of full featured single-chip  
CMOS microcontrollers are especially suited for cost sensitive applications. They  
combine high CPU performance (up to 8 million instructions per second) with high  
peripheral functionality and enhanced IO-capabilities. They also provide clock  
generation via PLL and various on-chip memory modules such as program ROM or  
OTP, internal RAM, and extension RAM.  
VAREF VAGND VDD VSS  
Port 0  
16 Bit  
XTAL1  
XTAL2  
Port 1  
16 Bit  
RSTIN  
Port 3  
9 Bit  
RSTOUT  
NMI  
C164CI-3V  
Port 4  
6 Bit  
EA  
ALE  
RD  
Port 8  
4 Bit  
Port 5  
8 Bit  
WR/WRL  
MCL04869  
Figure 1  
Logic Symbol  
Data Sheet  
3
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Pin Configuration  
(top view)  
VAREF  
P5.4/AN4/T2EUD  
P5.5/AN5/T4EUD  
P5.6/AN6/T2IN  
VSS  
1
2
3
4
5
6
7
8
9
60  
59 P1H.0/A8/CC6POS0/EX0IN  
58 P1L.7/A7/CTRAP  
57 P1L.6/A6/COUT63  
VSS  
56  
P5.7/AN7/T4IN  
VSS  
55 XTAL1  
54 XTAL2  
VDD  
P3.4/T3EUD  
P3.6/T3IN  
P3.8/MRST 10  
P3.9/MTSR 11  
VDD  
53  
52 P1L.5/A5/COUT62  
51 P1L.4/A4/CC62  
50 P1L.3/A3/COUT61  
49 P1L.2/A2/CC61  
48 P1L.1/A1/COUT60  
47 P1L.0/A0/CC60  
46 P0H.7/AD15  
C164CI-3V  
P3.10/TxD0 12  
P3.11/RxD0 13  
P3.12/BHE/WRH 14  
P3.13/SCLK 15  
P3.15/CLKOUT/FOUT 16  
P4.0/A16/CS3 17  
P4.1/A17/CS2 18  
P4.2/A18/CS1 19  
45 P0H.6/AD14  
44 P0H.5/AD13  
43 P0H.4/AD12  
42 P0H.3/AD11  
VSS  
VSS  
20  
41  
MCP04870  
Figure 2  
*) The marked pins of Port 4 and Port 8 can have CAN interface lines assigned to them.  
Table 2 on the pages below lists the possible assignments.  
The marked input signals are available only in devices with a full-function CAPCOM6.  
They are not available in devices with a reduced-function CAPCOM6.  
Data Sheet  
4
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 2  
Pin Definitions and Functions  
Symbol Pin  
No.  
Input Function  
Outp.  
P5  
I
Port 5 is an 8-bit input-only port with Schmitt-Trigger charact.  
The pins of Port 5 also serve as analog input channels for the  
A/D converter, or they serve as timer inputs:  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
76  
77  
78  
79  
2
I
I
I
I
I
I
I
AN0  
AN1  
AN2  
AN3  
AN4,  
AN5,  
AN6,  
T2EUD GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.  
T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.  
3
4
T2IN  
GPT1 Timer T2 Input for  
Count/Gate/Reload/Capture  
GPT1 Timer T4 Input for  
Count/Gate/Reload/Capture  
P5.7  
5
I
AN7,  
T4IN  
P3  
IO  
Port 3 is a 9-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 3 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 3 is  
selectable (TTL or special).  
The following Port 3 pins also serve for alternate functions:  
P3.4  
P3.6  
8
9
I
I
T3EUD  
T3IN  
GPT1 Timer T3 External Up/Down Control Input  
GPT1 Timer T3 Count/Gate Input  
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
10  
11  
12  
13  
14  
I/O  
I/O  
O
I/O  
O
O
I/O  
O
MRST  
MTSR  
TxD0  
RxD0  
BHE  
SSC Master-Receive/Slave-Transmit Inp./Outp.  
SSC Master-Transmit/Slave-Receive Outp./Inp.  
ASC0 Clock/Data Output (Async./Sync.)  
ASC0 Data Input (Async.) or Inp./Outp. (Sync.)  
External Memory High Byte Enable Signal,  
External Memory High Byte Write Strobe  
SSC Master Clock Output / Slave Clock Input.  
WRH  
SCLK  
P3.13  
P3.15  
15  
16  
CLKOUT System Clock Output (= CPU Clock),  
FOUT Programmable Frequency Output  
O
Data Sheet  
5
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P4  
IO  
Port 4 is a 6-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 4 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 4 is  
selectable (TTL or special).  
Port 4 can be used to output the segment address lines, the  
optional chip select lines, and for serial interface lines:1)  
P4.0  
P4.1  
P4.2  
P4.3  
P4.5  
P4.6  
17  
18  
19  
22  
23  
24  
O
O
O
O
O
O
O
O
O
I
A16  
CS3  
A17  
CS2  
A18  
CS1  
A19  
CS0  
A20  
Least Significant Segment Address Line,  
Chip Select 3 Output  
Segment Address Line,  
Chip Select 2 Output  
Segment Address Line,  
Chip Select 1 Output  
Segment Address Line,  
Chip Select 0 Output  
Segment Address Line,  
CAN1_RxD CAN 1 Receive Data Input  
A21  
CAN1_TxD CAN 1 Transmit Data Output  
O
O
Most Significant Segment Address Line,  
RD  
25  
26  
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
WR/  
WRL  
O
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a  
16-bit bus, and for every data write access on an 8-bit bus.  
See WRCFG in register SYSCON for mode selection.  
ALE  
27  
O
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
Data Sheet  
6
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
EA  
28  
I
External Access Enable pin.  
A low level at this pin during and after Reset forces the  
C164CI-3V to latch the configuration from PORT0 and pin  
RD, and to begin instruction execution out of external  
memory.  
A high level forces the C164CI-3V to latch the configuration  
from pins RD and ALE, and to begin instruction execution out  
of the internal program memory.  
“ROMless” versions must have this pin tied to ‘0’.  
PORT0  
P0L.0-7 29-  
36  
P0H.0-7 37-39,  
42-46  
IO  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state.  
In case of an external bus configuration, PORT0 serves as  
the address (A) and address/data (AD) bus in multiplexed  
bus modes and as the data (D) bus in demultiplexed bus  
modes.  
Demultiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
D0 – D7  
I/O  
16-bit  
D0 – D7  
D8 – D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
16-bit  
AD0 – AD7 AD0 – AD7  
A8 – A15 AD8 – AD15  
Data Sheet  
7
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
PORT1  
P1L.0-7 47-52,  
57-59  
P1H.0-7 59,  
62-68  
IO  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the  
16-bit address bus (A) in demultiplexed bus modes and also  
after switching from a demultiplexed bus mode to a  
multiplexed bus mode.  
The following PORT1 pins also serve for alt. functions:  
P1L.0  
P1L.1  
P1L.2  
P1L.3  
P1L.4  
P1L.5  
P1L.6  
P1L.7  
47  
48  
49  
50  
51  
52  
57  
58  
I/O  
O
I/O  
O
I/O  
O
O
CC60  
COUT60 CAPCOM6: Output of Channel 0  
CC61 CAPCOM6: Input / Output of Channel 1  
COUT61 CAPCOM6: Output of Channel 1  
CC62 CAPCOM6: Input / Output of Channel 2  
CAPCOM6: Input / Output of Channel 0  
COUT62 CAPCOM6: Output of Channel 2  
COUT63 Output of 10-bit Compare Channel  
I
CTRAP  
CAPCOM6: Trap Input  
CTRAP is an input pin with an internal pullup resistor. A low  
level on this pin switches the compare outputs of the  
CAPCOM6 unit to the logic level defined by software.  
CC6POS0 CAPCOM6: Position 0 Input, **)  
P1H.0 59  
P1H.1 62  
P1H.2 63  
P1H.3 64  
I
I
I
I
I
I
I
EX0IN  
CC6POS1 CAPCOM6: Position 1 Input, **)  
EX1IN Fast External Interrupt 1 Input  
CC6POS2 CAPCOM6: Position 2 Input, **)  
Fast External Interrupt 0 Input  
EX2IN  
Fast External Interrupt 2 Input  
EX3IN  
Fast External Interrupt 3 Input,  
T7IN  
CAPCOM2: Timer T7 Count Input  
P1H.4 65  
P1H.5 66  
P1H.6 67  
P1H.7 68  
I/O  
I/O  
I/O  
I/O  
CC24IO  
CC25IO  
CC26IO  
CC27IO  
CAPCOM2: CC24 Capture Inp./Compare Outp.  
CAPCOM2: CC25 Capture Inp./Compare Outp.  
CAPCOM2: CC26 Capture Inp./Compare Outp.  
CAPCOM2: CC27 Capture Inp./Compare Outp.  
Note: The marked (**) input signals are available only in  
devices with a full function CAPCOM6.  
Data Sheet  
8
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
XTAL2 54  
XTAL1 55  
O
I
XTAL2:  
XTAL1:  
Output of the oscillator amplifier circuit.  
Input to the oscillator amplifier and input to  
the internal clock generator  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
RSTIN 69  
I/O  
Reset Input with Schmitt-Trigger characteristics. A low level  
at this pin while the oscillator is running resets the C164CI-  
3V. An internal pullup resistor permits power-on reset using  
only a capacitor connected to VSS.  
A spike filter suppresses input pulses <10 ns. Input pulses  
>100 ns safely pass the filter. The minimum duration for a  
safe recognition should be 100 ns + 2 CPU clock cycles.  
In bidirectional reset mode (enabled by setting bit BDRSTEN  
in register SYSCON) the RSTIN line is internally pulled low  
for the duration of the internal reset sequence upon any reset  
(HW, SW, WDT). See note below this table.  
RST  
OUT  
70  
71  
O
I
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or  
a watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C164CI-3V to go into  
power down mode. If NMI is high, when PWRDN is  
executed, the part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
Data Sheet  
9
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
No.  
Input Function  
Outp.  
P8  
IO  
Port 8 is a 4-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 8 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 8 is  
selectable (TTL or special). Port 8 pins provide inputs/  
outputs for CAPCOM2 and serial interface lines.1)  
P8.0  
P8.1  
P8.2  
P8.3  
72  
73  
74  
75  
I/O  
I
I/O  
O
I/O  
I
I/O  
O
CC16IO  
CAPCOM2: CC16 Capture Inp./Compare Outp.,  
CAN1_RxD CAN 1 Receive Data Input  
CC17IO  
CAN1_TxD CAN 1 Transmit Data Output  
CC18IO  
CAN1_RxD CAN 1 Receive Data Input  
CC19IO  
CAN1_TxD CAN 1 Transmit Data Output  
CAPCOM2: CC17 Capture Inp./Compare Outp.,  
CAPCOM2: CC18 Capture Inp./Compare Outp.,  
CAPCOM2: CC19 Capture Inp./Compare Outp.,  
VAREF  
1
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
VAGND 80  
VDD  
7, 21,  
Digital Supply Voltage:  
40, 53,  
61  
+3.3 V during normal operation and idle mode.  
2.5 V during power down mode.  
VSS  
6, 20,  
41, 56,  
60  
Digital Ground.  
1)  
The CAN interface lines are assigned to ports P4 and P8 under software control. Within the CAN module  
several assignments can be selected.  
Note: The following behavioural differences must be observed when the bidirectional  
reset is active:  
• Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared  
automatically after a reset.  
• The reset indication flags always indicate a long hardware reset.  
• The PORT0 configuration is treated as if it were a hardware reset. In particular, the  
bootstrap loader may be activated when P0L.4 is low.  
• Pin RSTIN may only be connected to external reset devices with an open drain output  
driver.  
• A short hardware reset is extended to the duration of the internal reset sequence.  
Data Sheet  
10  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Functional Description  
The architecture of the C164CI-3V combines advantages of both RISC and CISC  
processors and of advanced peripheral subsystems in a very well-balanced way. In  
addition the on-chip memory blocks allow the design of compact systems with maximum  
performance.  
The following block diagram gives an overview of the different on-chip components and  
of the advanced, high bandwidth internal bus structure of the C164CI-3V.  
Note: All time specifications refer to a CPU clock of 16 MHz  
(see definition in the AC Characteristics section).  
C166-Core  
ProgMem  
IRAM  
Internal  
RAM  
16  
16  
Data  
Data  
32  
16  
ROM: 48/64  
OTP: 64  
KByte  
Instr. / Data  
CPU  
2 KByte  
Osc / PLL  
XTAL  
XRAM  
2 KByte  
PEC  
External Instr. / Data  
16-Level  
Priority  
Interrupt Controller  
RTC WDT  
16  
Interrupt Bus  
Peripheral Data Bus  
16  
CAN  
Rev 2.0B active  
ADC ASC0 SSC GPT1  
CCOM2CCOM6  
10-Bit  
(USART)  
(SPI)  
T2  
T3  
T4  
T7  
T8  
T12  
T13  
8
EBC  
Channels  
XBUS Control  
External Bus  
Control  
6
16  
BRGen  
BRGen  
Port 0  
16  
Port 5  
Port 3  
Port 8  
4
8
9
MCB04323_4ci  
Figure 3  
Block Diagram  
The program memory, the internal RAM (IRAM) and the set of generic peripherals are  
connected to the CPU via separate buses. A fourth bus, the XBUS, connects external  
resources as well as additional on-chip resoures, the X-Peripherals (see Figure 3).  
The XBUS resources (XRAM, CAN) of the C164CI-3V can be enabled or disabled during  
initialization by setting the general X-Peripheral enable bit XPEN (SYSCON.2). Modules  
that are disabled consume neither address space nor port pins.  
Data Sheet  
11  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Memory Organization  
The memory space of the C164CI-3V is configured in a Von Neumann architecture  
which means that code memory, data memory, registers and I/O ports are organized  
within the same linear address space which includes 16 Mbytes. The entire memory  
space can be accessed bytewise or wordwise. Particular portions of the on-chip memory  
have additionally been made directly bitaddressable.  
The C164CI-3V incorporates 64/48 Kbytes of on-chip mask-programmable ROM (not in  
the ROM-less derivative, of course) for code or constant data. The lower 32 Kbytes of  
the on-chip ROM can be mapped either to segment 0 or segment 1.  
2 Kbytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined  
variables, for the system stack, general purpose register banks and even for code. A  
register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0,  
…, RL7, RH7) so-called General Purpose Registers (GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the C166 Family.  
2 Kbytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks,  
or code. The XRAM is accessed like external memory and therefore cannot be used for  
the system stack or for register banks and is not bitaddressable. The XRAM permits 16-  
bit accesses with maximum speed.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 4 Mbytes of external RAM and/or ROM can be connected to the  
microcontroller.  
Data Sheet  
12  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). It can be programmed either to Single Chip Mode when no external  
memory is required, or to one of four different external memory access modes, which are  
as follows:  
– 16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed  
– 16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed  
– 16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed  
– 16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/  
output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses  
and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time,  
Memory Tri-State Time, Length of ALE and Read Write Delay) have been made  
programmable to allow the user the adaption of a wide range of different types of  
memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs  
ADDRSELx / BUSCONx) which control the access to different resources with different  
bus characteristics. These address windows are arranged hierarchically where  
BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to  
locations not covered by these 4 address windows are controlled by BUSCON0.  
Up to 4 external CS signals (3 windows plus default) can be generated in order to save  
external glue logic. The C164CI-3V offers the possibility to switch the CS outputs to an  
unlatched mode. In this mode the internal filter logic is switched off and the CS signals  
are directly generated from the address. The unlatched CS mode is enabled by setting  
CSCFG (SYSCON.6).  
For applications which require less than 4 Mbytes of external memory space, this  
address space can be restricted to 1 Mbyte, 256 Kbyte, or to 64 Kbyte. In this case  
Port 4 outputs four, two, or no address lines at all. It outputs all 6 address lines, if an  
address space of 4 Mbytes is used.  
Note: When the on-chip CAN Module is used with the interface lines assigned to Port 4,  
the CAN lines override the segment address lines and the segment address  
output on Port 4 is therefore limited to 4 bits i.e. address lines A19 … A16.  
Data Sheet  
13  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic  
and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a  
separate multiply and divide unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C164CI-3V’s instructions can be  
executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example,  
shift and rotate instructions are always processed during one machine cycle  
independent of the number of bits to be shifted. All multiple-cycle instructions have been  
optimized so that they can be executed very fast as well: branches in 2 cycles, a 16 × 16  
bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline  
optimization, the so-called ‘Jump Cache’, reduces the execution time of repeatedly  
performed jumps in a loop from 2 cycles to 1 cycle.  
Figure 4  
CPU Block Diagram  
Data Sheet  
14  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal.  
These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer  
(CP) register determines the base address of the active register bank to be accessed by  
the CPU at any time. The number of register banks is only restricted by the available  
internal RAM space. For easy parameter passing, a register bank may overlap others.  
A system stack of up to 1024 words is provided as a storage for temporary data. The  
system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the  
stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly  
compared against the stack pointer value upon each stack access for the detection of a  
stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient C164CI-3V instruction set which  
includes the following instruction classes:  
– Arithmetic Instructions  
– Logical Instructions  
– Boolean Bit Manipulation Instructions  
– Compare and Loop Control Instructions  
– Shift and Rotate Instructions  
– Prioritize Instruction  
– Data Movement Instructions  
– System Stack Instructions  
– Jump and Call Instructions  
– Return Instructions  
– System Control Instructions  
– Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
15  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Interrupt System  
With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of  
internal program execution), the C164CI-3V is capable of reacting very fast to the  
occurrence of non-deterministic events.  
The architecture of the C164CI-3V supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
‘stolen’ from the current CPU activity to perform a PEC service. A PEC service implies a  
single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source or the destination pointer. An individual PEC transfer  
counter is implicity decremented for each PEC service except when performing in the  
continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The C164CI-3V has 8 PEC channels each of which offers such fast interrupt-driven data  
transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via  
its related register, each source can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt sources has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with  
an individual trap (interrupt) number.  
Table 3 shows all of the possible C164CI-3V interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not used by associated peripherals, may be used to  
generate software controlled interrupt requests by setting the respective interrupt  
request bit (xIR).  
Data Sheet  
16  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 3  
C164CI-3V Interrupt Nodes  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
Fast External Interrupt 0 CC8IR  
Fast External Interrupt 1 CC9IR  
Fast External Interrupt 2 CC10IR  
Fast External Interrupt 3 CC11IR  
CC8IE  
CC9IE  
CC10IE  
CC11IE  
T2IE  
CC8INT  
CC9INT  
00’0060H 18H  
00’0064H 19H  
CC10INT 00’0068H 1AH  
CC11INT 00’006CH 1BH  
GPT1 Timer 2  
GPT1 Timer 3  
GPT1 Timer 4  
T2IR  
T2INT  
T3INT  
T4INT  
ADCINT  
00’0088H 22H  
00’008CH 23H  
00’0090H 24H  
00’00A0H 28H  
T3IR  
T3IE  
T4IR  
T4IE  
A/D Conversion  
Complete  
ADCIR  
ADCIE  
A/D Overrun Error  
ASC0 Transmit  
ADEIR  
S0TIR  
ADEIE  
S0TIE  
ADEINT  
S0TINT  
00’00A4H 29H  
00’00A8H 2AH  
ASC0 Transmit Buffer S0TBIR  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
CC16IE  
CC17IE  
CC18IE  
CC19IE  
CC24IE  
CC25IE  
CC26IE  
CC27IE  
T7IE  
S0TBINT 00’011CH 47H  
ASC0 Receive  
ASC0 Error  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
00’00ACH 2BH  
00’00B0H 2CH  
00’00B4H 2DH  
00’00B8H 2EH  
00’00BCH 2FH  
SSC Transmit  
SSC Receive  
SSC Error  
CAPCOM Register 16 CC16IR  
CAPCOM Register 17 CC17IR  
CAPCOM Register 18 CC18IR  
CAPCOM Register 19 CC19IR  
CAPCOM Register 24 CC24IR  
CAPCOM Register 25 CC25IR  
CAPCOM Register 26 CC26IR  
CAPCOM Register 27 CC27IR  
CC16INT 00’00C0H 30H  
CC17INT 00’00C4H 31H  
CC18INT 00’00C8H 32H  
CC19INT 00’00CCH 33H  
CC24INT 00’00E0H 38H  
CC25INT 00’00E4H 39H  
CC26INT 00’00E8H 3AH  
CC27INT 00’00ECH 3BH  
CAPCOM Timer 7  
CAPCOM Timer 8  
CAPCOM6 Interrupt  
CAN Interface 1  
T7IR  
T7INT  
00’00F4H 3DH  
00’00F8H 3EH  
00’00FCH 3FH  
00’0100H 40H  
00’010CH 43H  
T8IR  
T8IE  
T8INT  
CC6IR  
XP0IR  
XP3IR  
CC6IE  
XP0IE  
XP3IE  
CC6INT  
XP0INT  
XP3INT  
PLL/OWD and RTC  
Data Sheet  
17  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 3  
C164CI-3V Interrupt Nodes (cont’d)  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
T12INT  
T13INT  
Location Number  
CAPCOM 6 Timer 12  
CAPCOM 6 Timer 13  
T12IR  
T13IR  
T12IE  
00’0134H 4DH  
00’0138H 4EH  
T13IE  
CAPCOM 6 Emergency CC6EIR  
CC6EIE  
CC6EINT 00’013CH 4FH  
Data Sheet  
18  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
The C164CI-3V also provides an excellent mechanism to identify and to process  
exceptions or error conditions that arise during run-time, so-called ‘Hardware Traps’.  
Hardware traps cause immediate non-maskable system reaction which is similar to a  
standard interrupt service (branching to a dedicated vector table location). The  
occurence of a hardware trap is additionally signified by an individual bit in the trap flag  
register (TFR). Except when another higher prioritized trap service is in progress, a  
hardware trap will interrupt any actual program execution. In turn, hardware trap services  
can normally not be interrupted by standard or PEC interrupts.  
Table 4 shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Table 4  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
– Hardware Reset  
– Software Reset  
– W-dog Timer Overflow  
RESET  
RESET  
RESET  
00’0000H  
00’0000H  
00’0000H  
00H  
00H  
00H  
III  
III  
III  
Class A Hardware Traps:  
– Non-Maskable Interrupt NMI  
NMITRAP 00’0008H  
STOTRAP 00’0010H  
STUTRAP 00’0018H  
02H  
04H  
06H  
II  
II  
II  
– Stack Overflow  
– Stack Underflow  
STKOF  
STKUF  
Class B Hardware Traps:  
– Undefined Opcode  
– Protected Instruction  
Fault  
UNDOPC BTRAP  
PRTFLT BTRAP  
00’0028H  
00’0028H  
0AH  
0AH  
I
I
– Illegal Word Operand  
Access  
– Illegal Instruction  
Access  
– Illegal External Bus  
Access  
ILLOPA  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
BTRAP  
00’0028H  
00’0028H  
00’0028H  
0AH  
0AH  
0AH  
I
I
I
Reserved  
[2CH –  
3CH]  
[0BH –  
0FH]  
Software Traps  
– TRAP Instruction  
Any  
Any  
Current  
CPU  
Priority  
[00’0000H – [00H –  
00’01FCH] 7FH]  
in steps  
of 4H  
Data Sheet  
19  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
The Capture/Compare Unit CAPCOM2  
The general purpose CAPCOM2 unit supports generation and control of timing  
sequences on up to 8 channels with a maximum resolution of 16 TCL. The CAPCOM  
units are typically used to handle high speed I/O tasks such as pulse and waveform  
generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software  
timing, or time recording relative to external events.  
Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for  
the capture/compare register array.  
Each dual purpose capture/compare register, which may be individually allocated to  
either CAPCOM timer and programmed for capture or compare function, has one port  
pin associated with it which serves as an input pin for triggering the capture function, or  
as an output pin to indicate the occurrence of a compare event.  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘capture’d) into the capture/compare  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event. The contents of all registers  
which have been selected for one of the five compare modes are continuously compared  
with the contents of the allocated timers. When a match occurs between the timer value  
and the value in a capture/compare register, specific actions will be taken based on the  
selected compare mode.  
Table 5  
Compare Modes (CAPCOM2)  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
several compare events per timer period are possible  
Interrupt-only compare mode;  
only one compare interrupt per timer period is generated  
Pin set ‘1’ on match; pin reset ‘0’ on compare time overflow;  
only one compare event per timer period is generated  
Double  
Register Mode  
Two registers operate on one pin; pin toggles on each compare  
match;  
several compare events per timer period are possible.  
Registers CC16 & CC24 pin CC16IO  
Registers CC17 & CC25 pin CC17IO  
Registers CC18 & CC26 pin CC18IO  
Registers CC19 & CC27 pin CC19IO  
Data Sheet  
20  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
The Capture/Compare Unit CAPCOM6  
The CAPCOM6 unit supports generation and control of timing sequences on up to three  
16-bit capture/compare channels plus one 10-bit compare channel.  
In compare mode the CAPCOM6 unit provides two output signals per channel which  
have inverted polarity and non-overlapping pulse transitions. The compare channel can  
generate a single PWM output signal and is further used to modulate the capture/  
compare output signals.  
In capture mode the contents of compare timer 12 is stored in the capture registers upon  
a signal transition at pins CCx.  
Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked  
by the prescaled CPU clock.  
Mode  
Select Register  
CC6MSEL  
Period Register  
Trap Register  
CTRAP  
T12P  
CC60  
COUT60  
Offset Register  
T12OF  
CC Channel 0  
CC60  
fCPU  
CC61  
COUT61  
CC Channel 1  
CC61  
Port  
Control  
Logic  
Compare  
Timer T12  
16-Bit  
CC62  
COUT62  
CC Channel 2  
CC62  
Control Register  
CTCON  
Compare  
Timer T13  
10-Bit  
fCPU  
Compare Register  
CMP13  
COUT63  
Block  
Commutation  
Control  
CC6POS0  
CC6POS1  
CC6POS2  
Period Register  
T13P  
CC6MCON.H  
MCB04109  
The timer registers (T12, T13) are not directly accessible.  
The period and offset registers are loading a value into the timer registers.  
The shaded blocks are available in the full function module only.  
Figure 5  
CAPCOM6 Block Diagram  
For motor control applications both subunits may generate versatile multichannel PWM  
signals which are basically either controlled by compare timer 12 or by a typical hall  
sensor pattern at the interrupt inputs (block commutation).  
Note: Multichannel signal generation is provided only in devices with a full CAPCOM6.  
Data Sheet  
21  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates three 16-bit timers. Each timer may operate independently in  
a number of different modes, or may be concatenated with another timer.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer  
to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 16 TCL.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-  
flow/underflow. The state of this latch may be used internally to clock timers T2 and T4  
for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a  
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2  
or T4 triggered either by an external signal or by a selectable state transition of its toggle  
latch T3OTL.  
Data Sheet  
22  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
T2EUD  
U/D  
Interrupt  
Request  
(T2IR)  
2n : 1  
GPT1 Timer T2  
fCPU  
T2IN  
T2  
Mode  
Control  
Reload  
Capture  
Interrupt  
Request  
(T3IR)  
fCPU  
2n : 1  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
T3IN  
GPT1 Timer T3  
U/D  
T3EUD  
Other  
Timers  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
(T4IR)  
2n : 1  
GPT1 Timer T4  
U/D  
fCPU  
T4EUD  
MCT04825_4  
n = 3 … 10  
Figure 6  
Block Diagram of GPT1  
Data Sheet  
23  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Real Time Clock  
The Real Time Clock (RTC) module of the C164CI-3V consists of a chain of 3 divider  
blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer  
(accessible via registers RTCH and RTCL). The RTC module is directly clocked with the  
on-chip oscillator frequency divided by 32 via a separate clock driver (fRTC = fOSC/32)  
and is therefore independent from the selected clock generation mode of the C164CI-  
3V. All timers count up.  
The RTC module can be used for different purposes:  
• System clock to determine the current time and date  
• Cyclic time based interrupt  
• 48-bit timer for long term measurements  
T14REL  
Reload  
fRTC  
T14  
8:1  
Interrupt  
Request  
RTCH  
RTCL  
MCD04432  
Figure 7  
RTC Block Diagram  
Note: The registers associated with the RTC are not affected by a reset in order to  
maintain the correct system time even when intermediate resets are executed.  
Data Sheet  
24  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
A/D Converter  
For analog signal measurement, a 10-bit A/D converter with 8 multiplexed input channels  
and a sample and hold circuit has been integrated on-chip. It uses the method of  
successive approximation. The sample time (for loading the capacitors) and the  
conversion time is programmable and can so be adjusted to the external circuitry.  
Overrun error detection/protection is provided for the conversion result register  
(ADDAT): either an interrupt request will be generated when the result of a previous  
conversion has not been read from the result register at the time the next conversion is  
complete, or the next conversion is suspended in such a case until the previous result  
has been read.  
For applications which require less than 8 analog input channels, the remaining channel  
inputs can be used as digital input port pins.  
The A/D converter of the C164CI-3V supports four different conversion modes. In the  
standard Single Channel conversion mode, the analog level on a specified channel is  
sampled once and converted to a digital result. In the Single Channel Continuous mode,  
the analog level on a specified channel is repeatedly sampled and converted without  
software intervention. In the Auto Scan mode, the analog levels on a prespecified  
number of channels (standard or extension) are sequentially sampled and converted. In  
the Auto Scan Continuous mode, the number of prespecified channels is repeatedly  
sampled and converted. In addition, the conversion of a specific channel can be inserted  
(injected) into a running sequence without disturbing this sequence. This is called  
Channel Injection Mode.  
The Peripheral Event Controller (PEC) may be used to automatically store the  
conversion results into a table in memory for later evaluation, without requiring the  
overhead of entering and exiting interrupt routines for each data transfer.  
After each reset and also during normal operation the ADC automatically performs  
calibration cycles. This automatic self-calibration constantly adjusts the converter to  
changing operating conditions (e.g. temperature) and compensates process variations.  
These calibration cycles are part of the conversion cycle, so they do not affect the normal  
operation of the A/D converter.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise  
those pins used for analog input can be disconnected from the digital IO or input stages  
under software control. This can be selected for each pin separately via register P5DIDIS  
(Port 5 Digital Input Disable).  
Data Sheet  
25  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external  
peripheral components is provided by two serial interfaces with different functionality, an  
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous  
Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller  
families and supports full-duplex asynchronous communication at up to 500 Kbit/s and  
half-duplex synchronous communication at up to 2.0 Mbit/s (@ 16 MHz CPU clock).  
A dedicated baud rate generator allows to set up all standard baud rates without  
oscillator tuning. For transmission, reception and error handling 4 separate interrupt  
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or  
received, preceded by a start bit and terminated by one or two stop bits. For  
multiprocessor communication, a mechanism to distinguish address from data bytes has  
been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a  
shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop  
back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. A parity bit can automatically be generated on  
transmission or be checked on reception. Framing error detection allows to recognize  
data frames with missing stop bits. An overrun error will be generated, if the last  
character received has not been read out of the receive buffer register at the time the  
reception of a new character is complete.  
The SSC supports full-duplex synchronous communication at up to 4.0 Mbit/s  
(@ 16 MHz CPU clock). It may be configured so it interfaces with serially linked  
peripheral components. A dedicated baud rate generator allows to set up all standard  
baud rates without oscillator tuning. For transmission, reception and error handling  
3 separate interrupt vectors are provided.  
The SSC transmits or receives characters of 2 … 16 bits length synchronously to a shift  
clock which can be generated by the SSC (master mode) or by an external master (slave  
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection  
of shifting and latching clock edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. Transmit and receive error supervise the correct handling  
of the data buffer. Phase and baudrate error detect incorrect serial data.  
Data Sheet  
26  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
CAN-Module  
The integrated CAN-Module handles the completely autonomous transmission and  
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),  
i.e. the on-chip CAN-Modules can receive and transmit standard frames with 11-bit  
identifiers as well as extended frames with 29-bit identifiers.  
The module provides Full CAN functionality on up to 15 message objects. Message  
object 15 may be configured for Basic CAN functionality. Both modes provide separate  
masks for acceptance filtering which allows to accept a number of identifiers in Full CAN  
mode and also allows to disregard a number of identifiers in Basic CAN mode. All  
message objects can be updated independent from the other objects and are equipped  
for the maximum message length of 8 bytes.  
The bit timing is derived from the XCLK and is programmable up to a data rate of 1 Mbit/  
s. Each CAN-Module uses two pins of Port 4 or Port 8 to interface to an external bus  
transceiver. The interface pins are assigned via software.  
Note: When the CAN interface is assigned to Port 4, the respective segment address  
lines on Port 4 cannot be used. This will limit the external address space.  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be  
disabled in the time interval until the EINIT (end of initialization) instruction has been  
executed. Thus, the chip’s start-up procedure is always monitored. The software has to  
be designed to service the Watchdog Timer before it overflows. If, due to hardware or  
software related failures, the software fails to do so, the Watchdog Timer overflows and  
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow  
external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/  
256. The high byte of the Watchdog Timer register can be set to a prespecified reload  
value (stored in WDTREL) in order to allow further variation of the monitored time  
interval. Each time it is serviced by the application software, the high byte of the  
Watchdog Timer is reloaded. Thus, time intervals between 32 µs and 1049 ms can be  
monitored (@ 16 MHz).  
The default Watchdog Timer interval after reset is 8.2 ms (@ 16 MHz).  
Data Sheet  
27  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Parallel Ports  
The C164CI-3V provides up to 59 I/O lines which are organized into five input/output  
ports and one input port. All port lines are bit-addressable, and all input/output lines are  
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O  
ports are true bidirectional ports which are switched to high impedance state when  
configured as inputs. The output drivers of three I/O ports can be configured (pin by pin)  
for push/pull operation or open-drain operation via control registers. During the internal  
reset, all port pins are configured as inputs.  
The input threshold of Port 3, Port 4, and Port 8 is selectable (TTL or CMOS like), where  
the special CMOS like input threshold reduces noise sensitivity due to the input  
hysteresis. The input threshold may be selected individually for each byte of the  
respective ports.  
All port lines have programmable alternate input or output functions associated with  
them. All port lines that are not used for these alternate functions may be used as general  
purpose IO lines.  
PORT0 and PORT1 may be used as address and data lines when accessing external  
memory, while Port 4 outputs the additional segment address bits A21/19/17 … A16 and  
the optional chip select signals in systems where segmentation is enabled to access  
more than 64 Kbytes of memory.  
Ports P1L, P1H, and P8 are associated with the capture inputs or compare outputs of  
the CAPCOM units and/or serve as external interrupt inputs.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control  
signal BHE/WRH, and the system clock output CLKOUT (or the programmable  
frequency output FOUT).  
Port 5 is used for the analog input channels to the A/D converter or timer control signals.  
The edge characteristics (transition time) and driver characteristics (output current) of  
the C164CI-3V’s port drivers can be selected via the Port Output Control registers  
(POCONx).  
Data Sheet  
28  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Oscillator Watchdog  
The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip  
oscillator (either with a crystal or via external clock drive). For this operation the PLL  
provides a clock signal which is used to supervise transitions on the oscillator clock. This  
PLL clock is independent from the XTAL1 clock. When the expected oscillator clock  
transitions are missing the OWD activates the PLL Unlock/OWD interrupt node and  
supplies the CPU with the PLL clock signal. Under these circumstances the PLL will  
oscillate with its basic frequency.  
In direct drive mode the PLL base frequency is used directly (fCPU = 2 … 5 MHz).  
In prescaler mode the PLL base frequency is divided by 2 (fCPU = 1 … 2.5 MHz).  
Note: The CPU clock source is only switched back to the oscillator clock after a  
hardware reset.  
The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON.  
In this case (OWDDIS = ‘1’) the PLL remains idle and provides no clock signal, while the  
CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also  
no interrupt request will be generated in case of a missing oscillator clock.  
Note: At the end of a reset bit OWDDIS reflects the inverted level of pin RD at that time.  
Thus the oscillator watchdog may also be disabled via hardware by (externally)  
pulling the RD line low upon a reset, similar to the standard reset configuration via  
PORT0.  
Data Sheet  
29  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Power Management  
The C164CI-3V provides several means to control the power it consumes either at a  
given time or averaged over a certain timespan. Three mechanisms can be used (partly  
in parallel):  
Power Saving Modes switch the C164CI-3V into a special operating mode (control  
via instructions).  
Idle Mode stops the CPU while the peripherals can continue to operate.  
Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may  
optionally continue running). Sleep Mode can be terminated by external interrupt  
signals.  
Clock Generation Management controls the distribution and the frequency of  
internal and external clock signals (control via register SYSCON2).  
Slow Down Mode lets the C164CI-3V run at a CPU clock frequency of fOSC/1 … 32  
(half for prescaler operation) which drastically reduces the consumed power. The PLL  
can be optionally disabled while operating in Slow Down Mode.  
External circuitry can be controlled via the programmable frequency output FOUT.  
Peripheral Management permits temporary disabling of peripheral modules (control  
via register SYSCON3).  
Each peripheral can separately be disabled/enabled. A group control option disables  
a major part of the peripheral set by setting one single bit.  
The on-chip RTC supports intermittend operation of the C164CI-3V by generating cyclic  
wakeup signals. This offers full performance to quickly react on action requests while the  
intermittend sleep phases greatly reduce the average power consumption of the system.  
Data Sheet  
30  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Instruction Set Summary  
Table 6 lists the instructions of the C164CI-3V in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the “C166 Family Instruction Set Manual”.  
This document also provides a detailled description of each instruction.  
Table 6  
Mnemonic  
ADD(B)  
ADDC(B)  
SUB(B)  
SUBC(B)  
MUL(U)  
DIV(U)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit)  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
2
DIVL(U)  
CPL(B)  
NEG(B)  
AND(B)  
OR(B)  
2
2
2
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
4
BAND, BOR,  
BXOR  
4
BCMP  
Compare direct bit to direct bit  
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
2 / 4  
2 / 4  
2
Compare word data to GPR and decrement GPR by 1/2  
Compare word data to GPR and increment GPR by 1/2  
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Data Sheet  
31  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 6  
Instruction Set Summary (cont’d)  
Description  
Mnemonic  
MOV(B)  
MOVBS  
MOVBZ  
Bytes  
Move word (byte) data  
2 / 4  
Move byte operand to word operand with sign extension  
Move byte operand to word operand with zero extension  
Jump absolute/indirect/relative if condition is met  
2 / 4  
2 / 4  
4
JMPA, JMPI,  
JMPR  
JMPS  
J(N)B  
JBC  
Jump absolute to a code segment  
4
4
4
4
4
Jump relative if direct bit is (not) set  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
JNBS  
CALLA, CALLI, Call absolute/indirect/relative subroutine if condition is met  
CALLR  
CALLS  
PCALL  
Call absolute subroutine in any code segment  
4
4
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack und update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
SRST  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
DISWDT  
EINIT  
Enter Power Down Mode (supposes NMI-pin being low)  
Service Watchdog Timer  
4
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Data Sheet  
32  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Special Function Registers Overview  
Table 7 lists all SFRs which are implemented in the C164CI-3V in alphabetical order.  
The following markings assist in classifying the listed registers:  
b” in the “Name” column marks Bit-addressable SFRs.  
E” in the “Physical Address” column marks (E)SFRs within the Extended SFR-Space.  
X” in the “Physical Address” column marks registers within the on-chip X-peripherals.  
m” in the “Physical Address” column marks SFRs without short 8-bit address.  
An SFR can be specified via its individual mnemonic name. Depending on the selected  
addressing mode, an SFR can be accessed via its physical address (using the Data  
Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
ADCIC  
b FF98H  
CCH A/D Converter End of Conversion  
Interrupt Control Register  
0000H  
ADCON  
b FFA0H  
D0H  
50H  
A/D Converter Control Register  
A/D Converter Result Register  
A/D Converter 2 Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
ADDAT  
FEA0H  
ADDAT2  
F0A0H E 50H  
ADDRSEL1  
ADDRSEL2  
ADDRSEL3  
ADDRSEL4  
ADEIC  
FE18H  
FE1AH  
0CH  
0DH  
0EH  
0FH  
FE1CH  
FE1EH  
b FF9AH  
CDH A/D Converter Overrun Error Interrupt  
Control Register  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
86H  
8AH  
8BH  
8CH  
8DH  
Bus Configuration Register 0  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
CAN1 Bit Timing Register  
CAN1 Control / Status Register  
CAN1 Global Mask Short  
0000H  
0000H  
0000H  
0000H  
0000H  
UUUUH  
XX01H  
UFUUH  
C1BTR  
EF04H X ---  
EF00H X ---  
C1CSR  
C1GMS  
C1LARn  
C1LGML  
EF06H X ---  
EFn4H X ---  
EF0AH X ---  
CAN Lower Arbitration Register (msg. n) UUUUH  
CAN Lower Global Mask Long  
UUUUH  
Data Sheet  
33  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
C1LMLM  
EF0EH X ---  
EFn6H X ---  
CAN Lower Mask of Last Message  
UUUUH  
UUH  
C1MCFGn  
CAN Message Configuration Register  
(msg. n)  
C1MCRn  
C1PCIR  
C1UARn  
C1UGML  
C1UMLM  
CC10IC  
CC11IC  
CC16  
EFn0H X ---  
EF02H X ---  
EFn2H X ---  
EF08H X ---  
EF0CH X ---  
CAN Message Control Register (msg. n) UUUUH  
CAN1 Port Control / Interrupt Register XXXXH  
CAN Upper Arbitration Register (msg. n) UUUUH  
CAN Upper Global Mask Long  
CAN Upper Mask of Last Message  
External Interrupt 2 Control Register  
External Interrupt 3 Control Register  
CAPCOM Register 16  
UUUUH  
UUUUH  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
b FF8CH  
C6H  
C7H  
30H  
b FF8EH  
FE60H  
CC16IC  
CC17  
b F160H E B0H  
FE62H 31H  
b F162H E B1H  
FE64H 32H  
b F164H E B2H  
FE66H 33H  
b F166H E B3H  
CAPCOM Reg. 16 Interrupt Ctrl. Reg.  
CAPCOM Register 17  
CC17IC  
CC18  
CAPCOM Reg. 17 Interrupt Ctrl. Reg.  
CAPCOM Register 18  
CC18IC  
CC19  
CAPCOM Reg. 18 Interrupt Ctrl. Reg.  
CAPCOM Register 19  
CC19IC  
CC20  
CAPCOM Reg. 19 Interrupt Ctrl. Reg.  
CAPCOM Register 20  
FE68H  
FE6AH  
FE6CH  
FE6EH  
FE70H  
34H  
35H  
36H  
37H  
38H  
CC21  
CAPCOM Register 21  
CC22  
CAPCOM Register 22  
CC23  
CAPCOM Register 23  
CC24  
CAPCOM Register 24  
CC24IC  
CC25  
b F170H E B8H  
FE72H 39H  
b F172H E B9H  
FE74H 3AH  
b F174H E BAH  
FE76H 3BH  
b F176H E BBH  
CAPCOM Reg. 24 Interrupt Ctrl. Reg.  
CAPCOM Register 25  
CC25IC  
CC26  
CAPCOM Reg. 25 Interrupt Ctrl. Reg.  
CAPCOM Register 26  
CC26IC  
CC27  
CAPCOM Reg. 26 Interrupt Ctrl. Reg.  
CAPCOM Register 27  
CC27IC  
CAPCOM Reg. 27 Interrupt Ctrl. Reg.  
Data Sheet  
34  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
FE78H  
FE7AH  
FE7CH  
FE7EH  
FE30H  
FE32H  
FE34H  
Addr.  
3CH  
3DH  
3EH  
3FH  
18H  
CC28  
CC29  
CC30  
CC31  
CC60  
CC61  
CC62  
CC6EIC  
CAPCOM Register 28  
CAPCOM Register 29  
CAPCOM Register 30  
CAPCOM Register 31  
CAPCOM 6 Register 0  
CAPCOM 6 Register 1  
CAPCOM 6 Register 2  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
19H  
1AH  
b F188H E C4H  
CAPCOM 6 Emergency Interrrupt  
Control Register  
0000H  
CC6CIC  
b F17EH E BFH  
CAPCOM 6 Interrupt Control Register  
CAPCOM 6 Mode Control Register  
CAPCOM 6 Mode Interrupt Ctrl. Reg.  
CAPCOM 6 Mode Select Register  
External Interrupt 0 Control Register  
External Interrupt 1 Control Register  
CAPCOM Mode Control Register 4  
CAPCOM Mode Control Register 5  
CAPCOM Mode Control Register 6  
CAPCOM Mode Control Register 7  
CAPCOM 6 Timer 13 Compare Reg.  
CPU Context Pointer Register  
0000H  
00FFH  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FC00H  
0000H  
CC6MCON b FF32H  
99H  
9BH  
CC6MIC  
CC6MSEL  
CC8IC  
CC9IC  
CCM4  
CCM5  
CCM6  
CCM7  
CMP13  
CP  
b FF36H  
F036H E 1BH  
b FF88H  
C4H  
C5H  
91H  
92H  
93H  
94H  
1BH  
08H  
04H  
b FF8AH  
b FF22H  
b FF24H  
b FF26H  
b FF28H  
FE36H  
FE10H  
CSP  
FE08H  
CPU Code Segment Pointer Register  
(8 bits, not directly writeable)  
CTCON  
DP0H  
DP0L  
DP1H  
DP1L  
DP3  
b FF30H  
98H  
CAPCOM 6 Compare Timer Ctrl. Reg.  
P0H Direction Control Register  
P0L Direction Control Register  
P1H Direction Control Register  
P1L Direction Control Register  
Port 3 Direction Control Register  
Port 4 Direction Control Register  
1010H  
00H  
b F102H E 81H  
b F100H E 80H  
b F106H E 83H  
b F104H E 82H  
00H  
00H  
00H  
b FFC6H  
b FFCAH  
E3H  
E5H  
0000H  
00H  
DP4  
Data Sheet  
35  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
b FFD6H  
FE00H  
Addr.  
EBH  
00H  
DP8  
Port 8 Direction Control Register  
00H  
DPP0  
DPP1  
DPP2  
DPP3  
EXICON  
EXISEL  
FOCON  
IDCHIP  
IDMANUF  
IDMEM  
IDPROG  
IDMEM2  
ISNC  
CPU Data Page Pointer 0 Reg. (10 bits)  
CPU Data Page Pointer 1 Reg. (10 bits)  
CPU Data Page Pointer 2 Reg. (10 bits)  
CPU Data Page Pointer 3 Reg. (10 bits)  
External Interrupt Control Register  
External Interrupt Source Select Reg.  
Frequency Output Control Register  
Identifier  
0000H  
0001H  
0002H  
0003H  
0000H  
0000H  
0000H  
XXXXH  
1820H  
XXXXH  
XXXXH  
XXXXH  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
FE02H  
01H  
FE04H  
02H  
FE06H  
03H  
b F1C0H E E0H  
b F1DAH E EDH  
b FFAAH  
D5H  
F07CH E 3EH  
F07EH E 3FH  
F07AH E 3DH  
F078H E 3CH  
F076H E 3BH  
b F1DEH E EFH  
Identifier  
Identifier  
Identifier  
Identifier  
Interrupt Subnode Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Reg. – High Word  
CPU Multiply Divide Reg. – Low Word  
Port 3 Open Drain Control Register  
Port 4 Open Drain Control Register  
Port 8 Open Drain Control Register  
Constant Value 1’s Register (read only)  
Port 0 High Reg. (Upper half of PORT0)  
Port 0 Low Reg. (Lower half of PORT0)  
Port 1 High Reg. (Upper half of PORT1)  
Port 1 Low Reg. (Lower half of PORT1)  
Port 3 Register  
MDC  
b FF0EH  
FE0CH  
87H  
06H  
07H  
MDH  
MDL  
FE0EH  
ODP3  
ODP4  
ODP8  
ONES  
P0H  
b F1C6H E E3H  
b F1CAH E E5H  
b F1D6H E EBH  
00H  
b FF1EH  
b FF02H  
b FF00H  
b FF06H  
b FF04H  
b FFC4H  
b FFC8H  
b FFA2H  
b FFA4H  
b FFD4H  
8FH  
81H  
80H  
83H  
82H  
E2H  
E4H  
D1H  
D2H  
EAH  
FFFFH  
00H  
P0L  
00H  
P1H  
00H  
P1L  
00H  
P3  
0000H  
00H  
P4  
Port 4 Register (7 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
0000H  
00H  
P5DIDIS  
P8  
Port 5 Digital Input Disable Register  
Port 8 Register (8 bits)  
Data Sheet  
36  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
PDCR  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PICON  
PSW  
F0AAH E 55H  
Port Driver Control Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FEC0H  
FEC2H  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
FECEH  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
b F1C4H E E2H  
Port Input Threshold Control Register  
CPU Program Status Word  
Port Temperature Compensation Reg.  
System Startup Config. Reg. (Rd. only)  
Reset Control Register  
0000H  
0000H  
0000H  
XXH  
b FF10H  
b F0AEH  
88H  
57H  
PTCR  
RP0H  
b F108H E 84H  
RSTCON b F1E0H m ---  
00XXH  
no  
RTCH  
RTCL  
S0BG  
F0D6H E 6BH  
F0D4H E 6AH  
RTC High Register  
RTC Low Register  
no  
FEB4H  
5AH  
Serial Channel 0 Baud Rate Generator  
Reload Register  
0000H  
S0CON  
S0EIC  
b FFB0H  
b FF70H  
D8H  
B8H  
Serial Channel 0 Control Register  
0000H  
0000H  
Serial Channel 0 Error Interrupt Ctrl.  
Reg.  
S0RBUF  
S0RIC  
FEB2H  
59H  
B7H  
Serial Channel 0 Receive Buffer Reg.  
(read only)  
XXXXH  
0000H  
0000H  
0000H  
0000H  
b FF6EH  
Serial Channel 0 Receive Interrupt  
Control Register  
S0TBIC  
S0TBUF  
S0TIC  
b F19CH E CEH  
Serial Channel 0 Transmit Buffer  
Interrupt Control Register  
FEB0H  
58H  
B6H  
Serial Channel 0 Transmit Buffer Reg.  
(write only)  
b FF6CH  
Serial Channel 0 Transmit Interrupt  
Control Register  
Data Sheet  
37  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
SP  
FE12H  
09H  
CPU System Stack Pointer Register  
FC00H  
0000H  
0000H  
0000H  
XXXXH  
0000H  
0000H  
0000H  
FA00H  
FC00H  
1)0xx0H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
no  
SSCBR  
F0B4H E 5AH  
SSC Baudrate Register  
SSCCON b FFB2H  
D9H  
BBH  
SSC Control Register  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
SSC Error Interrupt Control Register  
SSC Receive Buffer  
F0B2H E 59H  
b FF74H  
BAH  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
89H  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
CPU System Configuration Register 1  
CPU System Configuration Register 2  
CPU System Configuration Register 3  
CAPCOM 6 Timer 12 Interrupt Ctrl. Reg.  
CAPCOM 6 Timer 12 Offset Register  
CAPCOM 6 Timer 12 Period Register  
FE14H  
FE16H  
SYSCON b FF12H  
SYSCON1 b F1DCH E EEH  
SYSCON2 b F1D0H E E8H  
SYSCON3 b F1D4H E EAH  
T12IC  
T12OF  
T12P  
T13IC  
T13P  
T14  
b F190H E C8H  
F034H E 1AH  
F030H E 18H  
b F198H E CCH CAPCOM 6 Timer 13 Interrupt Ctrl. Reg.  
F032H E 19H  
F0D2H E 69H  
F0D0H E 68H  
CAPCOM 6 Timer 13 Period Register  
RTC Timer 14 Register  
T14REL  
T2  
RTC Timer 14 Reload Register  
GPT1 Timer 2 Register  
no  
FE40H  
b FF40H  
b FF60H  
FE42H  
20H  
A0H  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
T2CON  
T2IC  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
T3  
T3CON  
T3IC  
b FF42H  
b FF62H  
FE44H  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4  
T4CON  
T4IC  
b FF44H  
b FF64H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
Data Sheet  
38  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 7  
Name  
C164CI-3V Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
T7  
F050H E 28H  
CAPCOM Timer 7 Register  
0000H  
T78CON  
T7IC  
b FF20H  
90H  
b F17AH E BDH  
F054H E 2AH  
F052H E 29H  
CAPCOM Timer 7 and 8 Ctrl. Reg.  
CAPCOM Timer 7 Interrupt Ctrl. Reg.  
CAPCOM Timer 7 Reload Register  
CAPCOM Timer 8 Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00XXH  
0000H  
2)00xxH  
0000H  
0000H  
0000H  
0000H  
T7REL  
T8  
T8IC  
b F17CH E BEH  
F056H E 2BH  
CAPCOM Timer 8 Interrupt Ctrl. Reg.  
CAPCOM Timer 8 Reload Register  
Trap Flag Register  
T8REL  
TFR  
b FFACH  
b FF34H  
FEAEH  
D6H  
9AH  
57H  
D7H  
TRCON  
WDT  
CAPCOM 6 Trap Enable Ctrl. Reg.  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
CAN1 Module Interrupt Control Register  
Unassigned Interrupt Control Reg.  
PLL/RTC Interrupt Control Register  
Constant Value 0’s Register (read only)  
WDTCON  
XP0IC  
XP1IC  
XP3IC  
FFAEH  
b F186H E C3H  
b F18EH E C7H  
b F19EH E CFH  
ZEROS  
b FF1CH  
8EH  
1)  
The system configuration is selected during reset.  
2)  
The reset value depends on the indicated reset source.  
Data Sheet  
39  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Absolute Maximum Ratings  
Table 8  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit  
Notes  
min.  
max.  
150  
150  
6.5  
Storage temperature  
Junction temperature  
TST  
TJ  
-65  
-40  
-0.5  
°C  
°C  
V
under bias  
Voltage on VDD pins with VDD  
respect to ground (VSS)  
Voltage on any pin with  
respect to ground (VSS)  
VIN  
-0.5  
-10  
V
DD + 0.5 V  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Power dissipation  
PDISS  
1.5  
W
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDD or VIN < VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
40  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the C164CI-3V. All parameters specified in the following sections refer to  
these operating conditions, unless otherwise noticed.  
Table 9  
Operating Condition Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
3.0 3.6  
Unit Notes  
Digital supply voltage  
VDD  
V
Active mode,  
CPUmax = 16 MHz  
f
2.51)  
3.6  
V
V
PowerDown mode  
Digital ground voltage  
Overload current  
VSS  
IOV  
0
Reference voltage  
±5  
mA Per pin2)3)  
3)  
Absolute sum of overload Σ|IOV  
|
50  
mA  
currents  
External Load  
Capacitance  
CL  
TA  
0
100  
70  
pF  
Pin drivers in  
default mode4)5)  
Ambient temperature  
°C  
SAB-C164CI-3V  
-40  
-40  
85  
°C  
°C  
SAF-C164CI-3V …  
125  
SAK-C164CI-3V  
1)  
Output voltages and output currents will be reduced when VDD leaves the range defined for active mode.  
2)  
Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input overload  
currents on all pins may not exceed 50 mA. The supply voltage must remain within the specified limits.  
Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR,  
etc.  
3)  
4)  
Not 100% tested, guaranteed by design and characterization.  
The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output  
current may lead to increased delays or reduced driving capability (CL).  
5)  
The current version of the C164CI-3V is equipped with port drivers, which provide reduced driving capability  
and reduced control. Please refer to the actual errata sheet for details.  
Data Sheet  
41  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C164CI-  
3V and partly its demands on the system. To aid in interpreting the parameters right,  
when evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C164CI-3V will provide signals with the respective characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective characteristics to the  
C164CI-3V.  
DC Characteristics  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
min.  
max.  
Input low voltage (TTL,  
all except XTAL1)  
VIL SR -0.5  
0.8  
V
Input low voltage XTAL1  
VIL2 SR -0.5  
VILS SR -0.5  
0.3 VDD  
V
V
Input low voltage  
1.3  
(Special Threshold)  
Input high voltage (TTL,  
all except RSTIN, XTAL1)  
VIH SR 1.8  
VDD  
0.5  
+
+
+
+
V
V
V
V
Input high voltage RSTIN  
(when operated as input)  
VIH1 SR 0.6 VDD VDD  
0.5  
Input high voltage XTAL1  
VIH2 SR 0.7 VDD VDD  
0.5  
Input high voltage  
(Special Threshold)  
VIHS SR 0.8 VDD VDD  
- 0.2  
0.5  
Input Hysteresis  
HYS  
150  
mV Series resistance  
(Special Threshold)  
= 0 Ω  
Output low voltage2)  
Output high voltage4)  
VOL CC –  
0.45  
V
V
I
I
OL IOLnom  
3)  
3)  
VOH CC VDD  
-
OH IOHnom  
0.45  
Input leakage current (Port 5)  
IOZ1 CC –  
±200  
±500  
nA 0 V < VIN < VDD  
Input leakage current (all other) IOZ2 CC –  
nA 0.45 V < VIN <  
VDD  
RSTIN inactive current5)  
Data Sheet  
IRSTH  
-5  
µA VIN = VIH1  
6)  
42  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
DC Characteristics (cont’d)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
min.  
max.  
RSTIN active current5)  
RD/WR inact. current8)  
RD/WR active current8)  
ALE inactive current8)  
ALE active current8)  
Port 4 inactive current8)  
Port 4 active current8)  
PORT0 configuration current9)  
IRSTL  
-100  
µA VIN = VIL  
7)  
6)  
IRWH  
-10  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
V
V
OUT = 2.4 V  
7)  
IRWL  
-500  
OUT = VOLmax  
OUT = VOLmax  
OUT = 2.4 V  
6)  
IALEL  
20  
7)  
IALEH  
500  
6)  
IP4H  
-10  
OUT = 2.4 V  
7)  
IP4L  
-500  
OUT = VOL1max  
6)  
IP0H  
-5  
µA VIN = VIHmin  
µA VIN = VILmax  
µA 0 V < VIN < VDD  
7)  
IP0L  
-100  
XTAL1 input current  
Pin capacitance10)  
IIL CC –  
CIO CC –  
±20  
10  
pF  
f = 1 MHz  
(digital inputs/outputs)  
TA = 25 °C  
1)  
Keeping signal levels within the levels specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications also refer to the specification of the overload current IOV  
.
2)  
3)  
For pin RSTIN this specification is only valid in bidirectional reset mode.  
As a rule, with decreasing output current the output levels approach the respective supply level (VOL VSS  
VOH VDD). However, only the levels for nominal output currents are guaranteed.  
See Table 10, Current Limits for Port Output Drivers.  
,
4)  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
5)  
6)  
7)  
8)  
These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 k.  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is valid during Reset and during Adapt-mode. The Port 4 current values are only valid for  
pins P4.3-0, which can act as CS outputs.  
9)  
This specification is valid during Reset if required for configuration, and during Adapt-mode.  
10) Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
43  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Table 10  
Current Limits for Port Output Drivers  
Port Output Driver  
Mode  
Maximum Output Current  
Nominal Output Current  
(IOLnom, -IOHnom)  
1)  
(IOLmax, -IOHmax  
)
(PORT0, PORT1,  
Port 2, Port 4, ALE,  
RD, WR, BHE,  
-----  
1.6 mA  
CLKOUT, RSTOUT,  
RSTIN2))  
All other outputs  
-----  
0.5 mA  
1)  
An output current above |IOXnom| is not specified for the C164CI-3V.  
Valid for VOL in bidirectional reset mode only.  
2)  
Power Consumption C164CI-3V  
(Operating Conditions apply)  
Parameter  
Sym-  
bol  
Limit Values  
Unit Test  
Conditions  
min.  
max.  
Power supply current (active)  
with all peripherals active  
IDD  
1 +  
1.5 × fCPU  
mA RSTIN = VIL  
CPU in [MHz]1)  
mA RSTIN = VIH1  
CPU in [MHz]1)  
µA RSTIN = VIH1  
OSC in [MHz]1)  
f
Idle mode supply current  
with all peripherals active  
IIDX  
1 +  
0.7 × fCPU  
f
2)  
Idle mode supply current  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
IIDO  
500 +  
50 × fOSC  
f
2)  
Sleep and Power-down mode  
supply current with RTC running  
IPDR  
200 +  
25 × fOSC  
µA  
µA  
V
f
DD = VDDmax  
OSC in [MHz]3)  
3)  
Sleep and Power-down mode  
IPDO  
30  
VDD = VDDmax  
supply current with RTC disabled  
1)  
The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9.  
These parameters are tested at VDDmax and maximum CPU clock with all outputs disconnected and all inputs  
at VIL or VIH.  
2)  
3)  
This parameter is determined mainly by the current consumed by the oscillator (see Figure 8). This current,  
however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical  
circuitry and may change in case of a not optimized external oscillator circuitry.  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD - 0.1 V to VDD, all outputs (including pins configured as outputs) disconnected.  
Data Sheet  
44  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
I [µA]  
3000  
2000  
1000  
IIDOmax  
IIDOtyp  
IPDRmax  
IPDOmax  
10  
20  
30  
40  
f
OSC [MHz]  
Figure 8  
Idle and Power Down Supply Current as a Function of Oscillator  
Frequency  
Data Sheet  
45  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
I [mA]  
100  
80  
60  
40  
20  
IDD3max  
IDD3typ  
IIDX3max  
IIDX3typ  
10  
15  
20  
25  
f
CPU [MHz]  
Figure 9  
Supply/Idle Current as a Function of Operating Frequency  
for ROM Derivatives  
Data Sheet  
46  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C164CI-3V is controlled by the internal CPU clock fCPU  
.
Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus  
cycles) operations.  
The specification of the external timing (AC Characteristics) therefore depends on the  
time between two consecutive edges of the CPU clock, called “TCL” (see Figure 10).  
Phase Locked Loop Operation  
fOSC  
TCL  
fCPU  
TCL  
Direct Clock Drive  
fOSC  
TCL  
fCPU  
TCL  
Prescaler Operation  
fOSC  
TCL  
fCPU  
MCT04338  
TCL  
Figure 10  
Generation Mechanisms for the CPU Clock  
The CPU clock signal fCPU can be generated from the oscillator clock signal fOSC via  
different mechanisms. The duration of TCLs and their variation (and also the derived  
external timing) depends on the used mechanism to generate fCPU. This influence must  
be regarded when calculating the timings for the C164CI-3V.  
Note: The example for PLL operation shown in Figure 10 refers to a PLL factor of 4.  
The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG  
in register RP0H.7-5.  
Upon a long hardware reset register RP0H is loaded with the logic levels present on the  
upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins  
Data Sheet  
47  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register  
RSTCON under software control.  
Table 11 associates the combinations of these three bits with the respective clock  
generation mode.  
Table 11  
C164CI-3V Clock Generation Modes  
CLKCFG1) CPU Frequency External Clock  
Notes  
(RP0H.7-5) fCPU = fOSC × F  
Input Range2)  
2.5 to 4 MHz  
3.33 to 5.33 MHz  
5 to 8 MHz  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
f
f
f
f
f
f
f
f
OSC × 4  
OSC × 3  
OSC × 2  
OSC × 5  
OSC × 1  
OSC × 1.5  
OSC / 2  
Default configuration  
2 to 3.2 MHz  
1 to 16 MHz  
Direct drive3)  
6.66 to 10.66 MHz  
2 to 32 MHz  
CPU clock via prescaler  
OSC × 2.5  
4 to 6.4 MHz  
1)  
2)  
3)  
Please note that pin P0.15 (corresponding to RP0H.7) is inverted in emulation mode, and thus also in EHM.  
The external clock input range refers to a CPU clock range of 10 … 16 MHz.  
The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When prescaler operation is configured (CLKCFG = 001B) the CPU clock is derived from  
the internal oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of fCPU is half the frequency of fOSC and the high and low time of fCPU (i.e.  
the duration of an individual TCL) is defined by the period of the input clock fOSC  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be  
calculated using the period of fOSC for any TCL.  
Phase Locked Loop  
When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is  
enabled and provides the CPU clock (see Table 11). The PLL multiplies the input  
frequency by the factor F which is selected via the combination of pins P0.15-13 (i.e.  
f
CPU = fOSC × F). With every F’th transition of fOSC the PLL circuit synchronizes the CPU  
clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock  
frequency does not change abruptly.  
Data Sheet  
48  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Due to this adaptation to the input clock the frequency of fCPU is constantly adjusted so  
it is locked to fOSC. The slight variation causes a jitter of fCPU which also effects the  
duration of individual TCLs.  
The timings listed in the AC Characteristics that refer to TCLs therefore must be  
calculated using the minimum TCL that is possible under the respective circumstances.  
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is  
constantly adjusting its output frequency so it corresponds to the applied input frequency  
(crystal or oscillator) the relative deviation for periods of more than one TCL is lower than  
for one single TCL (see formula and Figure 11).  
For a period of N × TCL the minimum value is computed using the corresponding  
deviation D :  
N
(N × TCL)min = N × TCLNOM - D ; D [ns] = ±(13.3 + N × 6.3)/fCPU [MHz],  
N
N
where N = number of consecutive TCLs and 1 N 40.  
So for a period of 3 TCLs @ 16 MHz (i.e. N = 3): D = (13.3 + 3 × 6.3)/16 = 2.013 ns,  
3
and (3TCL)min = 3TCLNOM - 2.013 ns = 91.7 ns (@ fCPU = 16 MHz).  
This is especially important for bus cycles using waitstates and e.g. for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is neglectible.  
Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 11).  
Max. jitter DN  
ns  
This approximated formula is valid for  
±30  
<
<
<
<
25 MHz.  
CPU  
1
N
40 and 10 MHz  
f
10 MHz  
16 MHz  
±26.5  
±20  
20 MHz  
25 MHz  
±10  
±1  
N
1
10  
20  
30  
40  
MCD04455  
Figure 11  
Approximated Maximum Accumulated PLL Jitter  
Data Sheet  
49  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Direct Drive  
When direct drive is configured (CLKCFG = 011B) the on-chip phase locked loop is  
disabled and the CPU clock is directly driven from the internal oscillator with the input  
clock signal.  
The frequency of fCPU directly follows the frequency of fOSC so the high and low time of  
f
CPU (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock  
fOSC  
.
The timings listed below that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances. This minimum value  
can be calculated via the following formula:  
TCLmin = 1/fOSC × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fOSC is compensated  
so the duration of 2TCL is always 1/fOSC. The minimum value TCLmin therefore has to  
be used only once for timings that require an odd number of TCLs (1, 3, …). Timings that  
require an even number of TCLs (2, 4, …) may use the formula 2TCL = 1/fOSC  
.
Data Sheet  
50  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
AC Characteristics  
External Clock Drive XTAL1  
(Operating Conditions apply)  
Table 12  
External Clock Drive Characteristics  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
PLL  
1:N  
Unit  
min.  
Oscillator period tOSC SR 62  
max. min.  
max. min.  
max.  
5001) ns  
1000  
31  
8
500  
941)  
10  
10  
High time2)  
Low time2)  
Rise time2)  
t1  
t2  
t3  
t4  
SR 313)  
SR 313)  
SR –  
8
8
ns  
ns  
ns  
ns  
8
6
10  
10  
Fall time2)  
SR –  
6
1)  
The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation  
mode. Please see respective table above.  
2)  
3)  
The clock input signal must reach the defined levels VIL2 and VIH2  
.
The minimum high and low time refers to a duty cycle of 50%. The maximum operating freqency (fCPU) in direct  
drive mode depends on the duty cycle of the clock input signal.  
t1  
t3  
t4  
VIH2  
VIL  
0.5 VDD  
t2  
tOSC  
MCT02534  
Figure 12  
External Clock Drive XTAL1  
Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is  
limited to a range of 4 MHz to 16 MHz.  
It is strongly recommended to measure the oscillation allowance (or margin) in the  
final target system (layout) to determine the optimum parameters for the oscillator  
operation. Please refer to the limits specified by the crystal supplier.  
When driven by an external clock signal it will accept the specified frequency  
range (see Table 12). Operation at lower input frequencies is possible but is  
guaranteed by design only (not 100% tested).  
Data Sheet  
51  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
A/D Converter Characteristics  
(Operating Conditions apply)  
Table 13  
A/D Converter Characteristics  
Symbol Limit Values  
min. max.  
AREF SR 2.6 DD + 0.1 V  
AGNDSR VSS - 0.1 VSS + 0.2 V  
Parameter  
Unit Test  
Conditions  
1)  
Analog reference supply  
Analog reference ground  
V
V
V
2)  
Analog input voltage range VAIN SR VAGND  
VAREF  
6.25  
V
3)  
4)  
Basic clock frequency  
Conversion time  
fBC  
tC  
0.5  
CC –  
MHz  
40 tBC  
+
tS + 2tCPU  
3328 tBC  
±4  
tCPU = 1 / fCPU  
5)  
Calibration time after reset tCAL CC –  
1)  
Total unadjusted error  
TUE CC –  
AREF SR –  
LSB  
kΩ  
Internal resistance of  
R
t
BC / 60  
t
BC in [ns]6)7)  
reference voltage source  
- 0.25  
Internal resistance of analog RASRCSR –  
tS / 450  
ktS in [ns]7)8)  
source  
- 0.25  
7)  
ADC input capacitance  
CAIN CC –  
33  
pF  
1)  
TUE is tested at VAREF = VDD + 0.1 V, VAGND = 0 V. It is guaranteed by design for all other voltages within the  
defined voltage range.  
If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V  
(i.e. VAREF = VDD +0.2 V) the maximum TUE is increased to ±5 LSB. This range is not 100% tested.  
The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see IOV  
specification) does not exceed 10 mA.  
During the reset calibration sequence the maximum TUE may be ±8 LSB.  
2)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in  
these cases will be X000H or X3FFH, respectively.  
3)  
4)  
The limit values for fBC must not be exceeded when selecting the CPU frequency and the ADCTC setting.  
This parameter includes the sample time tS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the basic clock tBC depend on programming and can be taken from Table 14.  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
5)  
6)  
During the reset calibration conversions can be executed (with the current accuracy). The time required for  
these conversions is added to the total reset calibration time.  
During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within each conversion step. The maximum internal resistance results from the programmed conversion  
timing.  
7)  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
52  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
8)  
During the sample time the input capacitance CAIN can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result.  
Values for the sample time tS depend on programming and can be taken from Table 14.  
Sample time and conversion time of the C164CI-3V’s A/D Converter are programmable.  
Table 14 should be used to calculate the above timings.  
The limit values for fBC must not be exceeded when selecting ADCTC.  
Table 14  
A/D Converter Computation Table  
ADCON.13|12 Sample time  
ADCON.15|14 A/D Converter  
(ADCTC)  
Basic Clock fBC  
(ADSTC)  
tS  
00  
01  
10  
11  
fCPU / 4  
fCPU / 2  
fCPU / 16  
fCPU / 8  
00  
01  
10  
11  
t
t
t
t
BC × 8  
BC × 16  
BC × 32  
BC × 64  
Converter Timing Example:  
Assumptions:  
fCPU = 12.5 MHz (i.e. tCPU = 80 ns), ADCTC = ‘01’, ADSTC = ‘00’.  
Basic clock  
Sample time  
fBC  
tS  
= fCPU / 2 = 6.25 MHz, i.e. tBC = 160 ns.  
= tBC × 8 = 1280 ns.  
Conversion time tC  
= tS + 40 tBC + 2 tCPU = (1280 + 6400 + 160) ns = 7.8 µs.  
Data Sheet  
53  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Testing Waveforms  
2.4 V  
1.8 V  
0.8 V  
1.8 V  
0.8 V  
Test Points  
0.45 V  
AC inputs during testing are driven at 2.4 V for a logic ’1’ and 0.45 V for a logic ’0’.  
Timing measurements are made at IH min for a logic ’1’ and IL max for a logic ’0’.  
V
V
MCA04414  
Figure 13  
Input Output Waveforms  
VLoad + 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VLoad - 0.1 V  
VOL + 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs,  
but begins to float when a 100 mV change from the loaded VOH  
/
VOL level occurs (IOH  
/
I
OL = 20 mA).  
MCA00763  
Figure 14  
Float Waveforms  
Data Sheet  
54  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Memory Cycle Variables  
The timing tables below use three variables which are derived from the BUSCONx  
registers and represent the special characteristics of the programmed memory cycle.  
The following table describes, how these variables are to be computed.  
Table 15  
Memory Cycle Variables  
Symbol Values  
Description  
ALE Extension  
tA  
TCL × <ALECTL>  
Memory Cycle Time Waitstates tC  
Memory Tristate Time  
2TCL × (15 - <MCTC>)  
2TCL × (1 - <MTTC>)  
tF  
Note: Please respect the maximum operating frequency of the respective derivative.  
AC Characteristics  
Multiplexed Bus  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (187.5 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz 1 / 2TCL = 1 to 16 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 17 + tA  
t6 CC 11 + tA  
t7 CC 21 + tA  
t8 CC 21 + tA  
t9 CC -10 + tA  
t10 CC –  
TCL - 14  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
TCL - 20  
+ tA  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10 + tA  
Address float after RD,  
WR (with RW-delay)  
6
6
Address float after RD,  
WR (no RW-delay)  
t11 CC –  
37  
TCL + 6  
RD, WR low time  
(with RW-delay)  
t12 CC 46 + tC  
2TCL - 16 –  
+ tC  
Data Sheet  
55  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Multiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (187.5 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz 1 / 2TCL = 1 to 16 MHz  
min. max.  
min.  
max.  
RD, WR low time  
(no RW-delay)  
t13 CC 78 + tC  
3TCL - 16 –  
+ tC  
ns  
RD to valid data in  
(with RW-delay)  
t14 SR –  
35 + tC  
66 + tC  
0
2TCL - 28 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 28 ns  
+ tC  
ALE low to valid data in  
t16 SR –  
64 + tA  
+ tC  
3TCL - 30 ns  
+ tA + tC  
Address to valid data in  
t17 SR –  
82 + 2tA  
+ tC  
4TCL - 43 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD  
Data valid to WR  
Data hold after WR  
t19 SR –  
49 + tF  
2TCL - 14 ns  
+ tF  
t22 CC 37 + tC  
t23 CC 49 + tF  
2TCL - 26 –  
+ tC  
ns  
ns  
ns  
ns  
ns  
2TCL - 14 –  
+ tF  
ALE rising edge after RD, t25 CC 49 + tF  
WR  
2TCL - 14 –  
+ tF  
Address hold after RD,  
WR  
ALE falling edge to CS1) t38 CC -8 - tA  
CS low to Valid Data In1) t39 SR –  
t27 CC 49 + tF  
2TCL - 14 –  
+ tF  
10 - tA  
-8 - tA  
10 - tA  
66  
3TCL - 28 ns  
+ tC  
+ 2tA  
+ tC + 2tA  
CS hold after RD, WR1) t40 CC 76 + tF  
3TCL - 18 –  
+ tF  
ns  
ns  
ALE fall. edge to RdCS, t42 CC 25 + tA  
TCL - 6  
WrCS (with RW delay)  
+ tA  
Data Sheet  
56  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Multiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 6 TCL + 2tA + tC + tF (187.5 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz 1 / 2TCL = 1 to 16 MHz  
min.  
max.  
min.  
max.  
ALE fall. edge to RdCS, t43 CC -6 + tA  
WrCS (no RW delay)  
-6  
+ tA  
ns  
ns  
ns  
Address float after RdCS, t44 CC –  
WrCS (with RW delay)  
0
0
Address float after RdCS, t45 CC –  
WrCS (no RW delay)  
31  
TCL  
RdCS to Valid Data In  
(with RW delay)  
t46 SR –  
t47 SR –  
33 + tC  
2TCL - 30 ns  
+ tC  
RdCS to Valid Data In  
(no RW delay)  
64 + tC  
3TCL - 30 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 51 + tC  
(with RW delay)  
2TCL - 12 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 82 + tC  
(no RW delay)  
3TCL - 12 –  
+ tC  
Data valid to WrCS  
t50 CC 41 + tC  
2TCL - 22 –  
+ tC  
Data hold after RdCS  
Data float after RdCS  
t51 SR 0  
t52 SR –  
0
43 + tF  
2TCL - 20 ns  
+ tF  
Address hold after  
RdCS, WrCS  
t54 CC 43 + tF  
t56 CC 43 + tF  
2TCL - 20 –  
+ tF  
ns  
ns  
Data hold after WrCS  
2TCL - 20 –  
+ tF  
1)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
57  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A21-A16  
(A15-A8)  
BHE, CSxE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
Data In  
t10  
t8  
t14  
t12  
t46  
t48  
RD  
t51  
t44  
t42  
t52  
RdCSx  
Write Cycle  
BUS  
t23  
Address  
Data Out  
t56  
t10  
t8  
t22  
WR,  
WRL,  
WRH  
t12  
t50  
t44  
t42  
WrCSx  
t48  
Figure 15  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
58  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t38  
t16  
t25  
t40  
t27  
ALE  
t39  
CSxL  
t17  
A21-A16  
(A15-A8)  
Address  
BHE, CSxE  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
Data In  
t10  
t8  
t14  
t12  
t46  
t48  
RD  
t51  
t52  
t4  
t42  
RdCSx  
Write Cycle  
BUS  
t23  
Address  
Data Out  
t56  
t10  
t8  
t22  
WR,  
WRL,  
WRH  
t12  
t50  
t44  
t42  
WrCSx  
t48  
Figure 16  
External Memory Cycle:  
Multiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
59  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t25  
ALE  
t38  
t39  
t40  
CSxL  
t17  
t27  
A21-A16  
(A15-A8)  
Address  
BHE, CSxE  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
Data In  
t9  
t11  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t45  
t52  
RdCSx  
Write Cycle  
BUS  
t23  
Address  
Data Out  
t56  
t9  
t11  
t22  
WR,  
WRL,  
WRH  
t13  
t50  
t43  
t45  
WrCSx  
t49  
Figure 17  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
60  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t25  
t40  
t27  
ALE  
t38  
t39  
CSxL  
t17  
A21-A16  
(A15-A8)  
Address  
BHE, CSxE  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
Data In  
t9  
t11  
t15  
t13  
t47  
t49  
RD  
t51  
t52  
t43  
t45  
RdCSx  
Write Cycle  
BUS  
t23  
Address  
Data Out  
t56  
t9  
t11  
t22  
WR,  
WRL,  
WRH  
t13  
t50  
t43  
t45  
WrCSx  
t49  
Figure 18  
External Memory Cycle:  
Multiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
61  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
AC Characteristics  
Demultiplexed Bus  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (125 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz  
1 / 2TCL = 1 to 16 MHz  
min.  
max.  
min.  
max.  
ALE high time  
t5 CC 17 + tA  
t6 CC 11 + tA  
t8 CC 21 + tA  
t9 CC -10 + tA  
t12 CC 47 + tC  
t13 CC 78 + tC  
t14 SR –  
TCL - 14  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
TCL - 20  
+ tA  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
ALE falling edge to RD,  
WR (no RW-delay)  
-10  
+ tA  
RD, WR low time  
(with RW-delay)  
2TCL - 16 –  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 16 –  
+ tC  
RD to valid data in  
(with RW-delay)  
35 + tC  
66 + tC  
0
2TCL - 28 ns  
+ tC  
RD to valid data in  
(no RW-delay)  
t15 SR –  
3TCL - 28 ns  
+ tC  
ALE low to valid data in  
t16 SR –  
64 +  
tA + tC  
3TCL - 30 ns  
+ tA + tC  
Address to valid data in  
t17 SR –  
82 +  
2tA + tC  
4TCL - 43 ns  
+ 2tA + tC  
Data hold after RD  
rising edge  
t18 SR 0  
ns  
Data float after RD rising t20 SR –  
49 +  
2tA + tF  
2TCL - 14 ns  
+ 2tA  
+ tF  
edge (with RW-delay1))  
1)  
1)  
Data float after RD rising t21 SR –  
21 +  
2tA + tF  
TCL - 10  
ns  
edge (no RW-delay1))  
+ 2tA  
1)  
1)  
+ tF  
Data Sheet  
62  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Demultiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (125 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz  
1 / 2TCL = 1 to 16 MHz  
min.  
max.  
min. max.  
Data valid to WR  
t22 CC 37 + tC  
2TCL - 26 –  
+ tC  
ns  
ns  
ns  
Data hold after WR  
t24 CC 21 + tF  
TCL - 10  
+ tF  
ALE rising edge after RD, t26 CC -12 + tF  
-12 + tF  
WR  
Address hold after WR2) t28 CC 0 + tF  
ALE falling edge to CS3) t38 CC -8 - tA  
CS low to Valid Data In3) t39 SR –  
0 + tF  
-8 - tA  
ns  
ns  
10 - tA  
10 - tA  
66 +  
3TCL - 28 ns  
tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR3) t41 CC 15 + tF  
TCL - 16  
+ tF  
ns  
ns  
ns  
ALE falling edge to RdCS, t42 CC 25 + tA  
WrCS (with RW-delay)  
TCL - 6  
+ tA  
ALE falling edge to RdCS, t43 CC -6 + tA  
-6  
WrCS (no RW-delay)  
+ tA  
RdCS to Valid Data In  
(with RW-delay)  
t46 SR –  
t47 SR –  
33 + tC  
2TCL - 30 ns  
+ tC  
RdCS to Valid Data In  
(no RW-delay)  
64 + tC  
3TCL - 30 ns  
+ tC  
RdCS, WrCS Low Time t48 CC 51 + tC  
(with RW-delay)  
2TCL - 12 –  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time t49 CC 82 + tC  
(no RW-delay)  
3TCL - 12 –  
+ tC  
Data valid to WrCS  
t50 CC 41 + tC  
2TCL - 22 –  
+ tC  
Data hold after RdCS  
t51 SR 0  
t53 SR –  
0
Data float after RdCS  
(with RW-delay)1)  
43 + tF  
2TCL - 20 ns  
1)  
+ 2tA + tF  
Data Sheet  
63  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Demultiplexed Bus (cont’d)  
(Operating Conditions apply)  
ALE cycle time = 4 TCL + 2tA + tC + tF (125 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz  
1 / 2TCL = 1 to 16 MHz  
min.  
t68 SR –  
max.  
min.  
max.  
Data float after RdCS  
(no RW-delay)1)  
11 + tF  
TCL - 20  
+ 2tA + tF  
ns  
ns  
ns  
1)  
Address hold after  
RdCS, WrCS  
t55 CC -16 + tF  
t57 CC 15 + tF  
-16 + tF  
Data hold after WrCS  
TCL - 16  
+ tF  
1)  
RW-delay and tA refer to the next following bus cycle (including an access to an on-chip X-Peripheral).  
2)  
Read data are latched with the same clock edge that triggers the address change and the rising RD edge.  
Therefore address changes before the end of RD have no impact on read cycles.  
3)  
These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are  
specified together with the address and signal BHE (see figures below).  
Data Sheet  
64  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t17  
t28  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t20  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t8  
t14  
RD  
t12  
t46  
t48  
t51  
t53  
t42  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t8  
t22  
WR,  
WRL,  
WRH  
t12  
t50  
t42  
WrCSx  
t48  
Figure 19  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Normal ALE  
Data Sheet  
65  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t39  
t17  
t26  
ALE  
t38  
t41  
CSxL  
t28  
A21-A16  
A15-A0  
BHE,  
Address  
t6  
t55  
t20  
t18  
CSxE  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t8  
t14  
t12  
t46  
t48  
RD  
t51  
t53  
t42  
RdCSx  
Write Cycle  
t24  
BUS  
(D15-D8)  
D7-D0  
Data Out  
t57  
t8  
t22  
WR,  
WRL,  
WRH  
t12  
t50  
t42  
WrCSx  
t48  
Figure 20  
External Memory Cycle:  
Demultiplexed Bus, With Read/Write Delay, Extended ALE  
Data Sheet  
66  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t26  
ALE  
t38  
t39  
t41  
CSxL  
t17  
t28  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t21  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t9  
t15  
t13  
t47  
t49  
RD  
t51  
t68  
t43  
RdCSx  
Write Cycle  
t24  
BUS  
(D15-D8)  
D7-D0  
Data Out  
t57  
t9  
t22  
WR,  
WRL,WRH  
t13  
t50  
t43  
WrCSx  
t49  
Figure 21  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Normal ALE  
Data Sheet  
67  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
t5  
t16  
t39  
t17  
t26  
ALE  
t38  
t41  
CSxL  
t28  
A21-A16  
A15-A0  
Address  
BHE, CSxE  
t6  
t55  
t21  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t9  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t68  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t9  
t22  
WR,  
WRL, WRH  
t13  
t50  
t43  
WrCSx  
t49  
Figure 22  
External Memory Cycle:  
Demultiplexed Bus, No Read/Write Delay, Extended ALE  
Data Sheet  
68  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
AC Characteristics  
CLKOUT  
(Operating Conditions apply)  
Parameter  
Symbol Max. CPU Clock Variable CPU Clock Unit  
= 16 MHz 1 / 2TCL = 1 to 16 MHz  
min.  
max.  
63  
min.  
max.  
2TCL  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t29 CC 63  
t30 CC 21  
t31 CC 19  
t32 CC –  
2TCL  
TCL - 10  
TCL - 12  
ns  
ns  
ns  
ns  
ns  
ns  
12  
12  
t33 CC –  
8
8
CLKOUT rising edge to  
ALE falling edge  
t34 CC 0 + tA  
8 + tA  
0 + tA  
8 + tA  
Running cycle1)  
t33  
MUX/Tristate 3)  
t32  
CLKOUT  
ALE  
t30  
t34  
t29  
t31  
4)  
2)  
Command  
RD, WR  
Figure 23  
CLKOUT Timing  
Notes  
1)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
The leading edge of the respective command depends on RW-delay.  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here.  
2)  
3)  
For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without  
MTTC waitstate this delay is zero.  
The next external bus cycle may start here.  
4)  
Data Sheet  
69  
V1.0, 2003-01  
C164CI-L16M3V  
Low Power  
Preliminary  
Package Outlines  
P-MQFP-80-7  
(Plastic Metric Quad Flat Package)  
H
0.65  
±0.15  
0.88  
C
0.1  
12.35  
±0.08  
0.3  
M
0.12 A-B D C 80x  
17.2  
141)  
0.2 A-B D 4x  
0.2 A-B D H 4x  
D
B
A
80  
Index Marking  
1
0.6 x 45˚  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
V1.0, 2003-01  
SMD = Surface Mounted Device  
Data Sheet  
70  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAK-C164CI-L25M

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C164CI-LM

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C164CL-6R16M3V

RISC Microcontroller, 16-Bit, MROM, C166 CPU, 16MHz, CMOS, PQFP80, 0.65 MM, PLASTIC, MQFP-80
INFINEON

SAK-C164CL-6R25M

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C164CL-6RM

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C164CL-8R16M3V

RISC Microcontroller, 16-Bit, MROM, C166 CPU, 16MHz, CMOS, PQFP80, 0.65 MM, PLASTIC, MQFP-80
INFINEON

SAK-C164CL-8R25M

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C164CL-8RM

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C164CM-4EF

16-Bit Single-Chip Microcontrol ler
INFINEON

SAK-C164CM-4R25F

16-Bit Single-Chip Microcontrol ler
INFINEON

SAK-C164CM-4RF

16-Bit Single-Chip Microcontrol ler
INFINEON

SAK-C164SI-8R16M3V

RISC Microcontroller, 16-Bit, MROM, C166 CPU, 16MHz, CMOS, PQFP80, 0.65 MM, PLASTIC, MQFP-80
INFINEON