SAK-C167CR-L33MTR [INFINEON]

Microcontroller, 16-Bit, MROM, 33MHz, CMOS, PQFP144, MQFP-144;
SAK-C167CR-L33MTR
型号: SAK-C167CR-L33MTR
厂家: Infineon    Infineon
描述:

Microcontroller, 16-Bit, MROM, 33MHz, CMOS, PQFP144, MQFP-144

微控制器
文件: 总74页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V3.2, July 2001  
C167CR  
C167SR  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2001-07  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2001.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V3.2, July 2001  
C167CR  
C167SR  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C167CR  
Revision History:  
2001-07  
V3.2  
Previous Version:  
2000-04  
2000-02  
1999-10  
1999-06  
1999-03  
1998-03  
V3.1  
V3.0  
(Introduction of clock-related timing)  
(Summarizes and replaces all older docs)  
(C167SR/CR, 25 MHz Addendum)  
07.97 / 12.96 (C167CR-4RM)  
12.96  
06.95  
(C167CR-16RM)  
(C167CR, C167SR)  
06.94 / 05.93 (C167)  
Page  
Subjects (major changes since last revision)  
Minor typos corrected  
Several  
4
Pin designations corrected (pins 108, 99, 98)  
Port 8 designations corrected  
5
10  
46  
58  
Direction for P1H.4 P1H.7 corrected  
Note 4 added, notes 8, 9 updated  
Note 2 detailed  
69  
Package drawing updated1)  
1)  
New package due to new assembly line. P-MQFP-144-1 for current deliveries only, will be discontinued.  
Controller Area Network (CAN): License of Robert Bosch GmbH  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
16-Bit Single-Chip Microcontroller  
C166 Family  
C167CR/C167SR  
C167CR/C167SR  
• High Performance 16-bit CPU with 4-Stage Pipeline  
– 80/60 ns Instruction Cycle Time at 25/33 MHz CPU Clock  
– 400/303 ns Multiplication (16 × 16 bit), 800/606 ns Division (32 / 16 bit)  
– Enhanced Boolean Bit Manipulation Facilities  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Single-Cycle Context Switching Support  
– 16 MBytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area  
• 16-Priority-Level Interrupt System with 56 Sources, Sample-Rate down to 40/30 ns  
• 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC)  
• Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5),  
via prescaler or via direct clock input  
• On-Chip Memory Modules  
– 2 KBytes On-Chip Internal RAM (IRAM)  
– 2 KBytes On-Chip Extension RAM (XRAM)  
– 128/32 KBytes On-Chip Mask ROM  
• On-Chip Peripheral Modules  
– 16-Channel 10-bit A/D Converter with Programmable Conversion Time  
down to 7.8 µs  
– Two 16-Channel Capture/Compare Units  
– 4-Channel PWM Unit  
– Two Multi-Functional General Purpose Timer Units with 5 Timers  
– Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)  
– On-Chip CAN Interface (Rev. 2.0B active) with 15 Message Objects  
(Full CAN / Basic CAN)  
• Up to 16 MBytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit  
Data Bus Width  
– Five Programmable Chip-Select Signals  
– Hold- and Hold-Acknowledge Bus Arbitration Support  
• Idle and Power Down Modes  
• Programmable Watchdog Timer and Oscillator Watchdog  
• Up to 111 General Purpose I/O Lines,  
partly with Selectable Input Thresholds and Hysteresis  
Data Sheet  
1
V3.2, 2001-07  
C167CR  
C167SR  
• Supported by a Large Range of Development Tools like C-Compilers,  
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,  
Simulators, Logic Analyzer Disassemblers, Programming Boards  
• On-Chip Bootstrap Loader  
• 144-Pin MQFP Package  
This document describes several derivatives of the C167 group. Table 1 enumerates  
these derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
Table 1  
Derivative1)  
C167CR Derivative Synopsis  
Program Memory  
XRAM  
CAN Interface  
SAK-C167SR-LM  
SAB-C167SR-LM  
SAK-C167SR-L33M  
SAB-C167SR-L33M  
---  
2 KByte  
---  
SAK-C167CR-LM  
SAF-C167CR-LM  
SAB-C167CR-LM  
SAK-C167CR-L33M  
SAB-C167CR-L33M  
---  
2 KByte  
CAN1  
SAK-C167CR-4RM  
SAB-C167CR-4RM  
SAK-C167CR-4R33M  
SAB-C167CR-4R33M  
32 KByte ROM  
128 KByte ROM  
2 KByte  
2 KByte  
CAN1  
CAN1  
SAK-C167CR-16RM  
SAK-C167CR-16R33M  
1)  
This Data Sheet is valid for devices manufactured in 0.5 µm technology, i.e. devices starting with and including  
design step GA(-T)6.  
For simplicity all versions are referred to by the term C167CR throughout this document.  
Data Sheet  
2
V3.2, 2001-07  
C167CR  
C167SR  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
• the package and the type of delivery.  
For the available ordering codes for the C167CR please refer to the “Product Catalog  
Microcontrollers”, which summarizes all available microcontroller variants.  
Note: The ordering codes for Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Introduction  
The C167CR derivatives are high performance derivatives of the Infineon C166 Family  
of full featured single-chip CMOS microcontrollers. They combine high CPU  
performance (up to 16.5 million instructions per second) with high peripheral functionality  
and enhanced IO-capabilities. They also provide clock generation via PLL and various  
on-chip memory modules such as program ROM, internal RAM, and extension RAM.  
VAREF VAGND VDD  
VSS  
Port 0  
16 Bit  
XTAL1  
XTAL2  
Port 1  
16 Bit  
RSTIN  
RSTOUT  
Port 2  
16 Bit  
NMI  
Port 3  
15 Bit  
EA  
C167CR  
Port 4  
8 Bit  
READY  
ALE  
Port 6  
8 Bit  
RD  
WR/WRL  
Port 7  
8 Bit  
Port 5  
16 Bit  
Port 8  
8 Bit  
MCL04411  
Figure 1  
Logic Symbol  
Data Sheet  
3
V3.2, 2001-07  
C167CR  
C167SR  
Pin Configuration  
(top view)  
P6.0/CS0  
P6.1/CS1  
P6.2/CS2  
P6.3/CS3  
P6.4/CS4  
P6.5/HOLD  
P6.6/HLDA  
P6.7/BREQ  
P8.0/CC16IO  
P8.1/CC17IO  
P8.2/CC18IO  
P8.3/CC19IO  
P8.4/CC20IO  
P8.5/CC21IO  
P8.6/CC22IO  
P8.7/CC23IO  
VDD  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
P0H.0/AD8  
P0L.7/AD7  
P0L.6/AD6  
P0L.5/AD5  
P0L.4/AD4  
P0L.3/AD3  
P0L.2/AD2  
P0L.1/AD1  
P0L.0/AD0  
EA  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
ALE  
READY  
WR/WRL  
RD  
VSS  
VDD  
P4.7/A23  
VSS  
P4.6/A22/CAN1_TxD  
P4.5/A21/CAN1_RxD  
P4.4/A20  
P4.3/A19  
P4.2/A18  
P4.1/A17  
P4.0/A16  
OWE  
VSS  
C167CR  
P7.0/POUT0  
P7.1/POUT1  
P7.2/POUT2  
P7.3/POUT3  
P7.4/CC28IO  
P7.5/CC29IO  
P7.6/CC30IO  
P7.7/CC31IO  
P5.0/AN0  
P5.1/AN1  
P5.2/AN2  
P5.3/AN3  
P5.4/AN4  
VDD  
P3.15/CLKOUT  
P3.13/SCLK  
P3.12/BHE/WRH  
P3.111/RxD0  
P3.10/TxD0  
P3.9/MTSR  
P3.8/MRST  
P3.7/T2IN  
P5.5/AN5  
P5.6/AN6  
P5.7/AN7  
P5.8/AN8  
74  
73  
P5.9/AN9  
P3.6/T3IN  
MCP04410  
Figure 2  
Data Sheet  
4
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions  
Input Function  
Symbol Pin  
Num. Outp.  
P6  
IO  
Port 6 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 6 outputs can be configured as push/  
pull or open drain drivers.  
The Port 6 pins also serve for alternate functions:  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
1
2
3
4
5
6
7
O
O
O
O
O
I
CS0  
CS1  
CS2  
CS3  
CS4  
HOLD  
HLDA  
Chip Select 0 Output  
Chip Select 1 Output  
Chip Select 2 Output  
Chip Select 3 Output  
Chip Select 4 Output  
External Master Hold Request Input  
Hold Acknowledge Output (master mode)  
or Input (slave mode)  
I/O  
P6.7  
8
O
BREQ  
Bus Request Output  
P8  
IO  
Port 8 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 8 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 8 is  
selectable (TTL or special).  
The following Port 8 pins also serve for alternate functions:  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CC16IO  
CC17IO  
CC18IO  
CC19IO  
CC20IO  
CC21IO  
CC22IO  
CC23IO  
CAPCOM2: CC16 Capture Inp./Compare Outp.  
CAPCOM2: CC17 Capture Inp./Compare Outp.  
CAPCOM2: CC18 Capture Inp./Compare Outp.  
CAPCOM2: CC19 Capture Inp./Compare Outp.  
CAPCOM2: CC20 Capture Inp./Compare Outp.  
CAPCOM2: CC21 Capture Inp./Compare Outp.  
CAPCOM2: CC22 Capture Inp./Compare Outp.  
CAPCOM2: CC23 Capture Inp./Compare Outp.  
10  
11  
12  
13  
14  
15  
16  
Data Sheet  
5
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
P7  
IO  
Port 7 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 7 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 7 is  
selectable (TTL or special).  
The following Port 7 pins also serve for alternate functions:  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
19  
20  
21  
22  
23  
24  
25  
26  
O
O
O
O
I/O  
I/O  
I/O  
I/O  
POUT0  
POUT1  
POUT2  
POUT3  
CC28IO  
CC29IO  
CC30IO  
CC31IO  
PWM Channel 0 Output  
PWM Channel 1 Output  
PWM Channel 2 Output  
PWM Channel 3 Output  
CAPCOM2: CC28 Capture Inp./Compare Outp.  
CAPCOM2: CC29 Capture Inp./Compare Outp.  
CAPCOM2: CC30 Capture Inp./Compare Outp.  
CAPCOM2: CC31 Capture Inp./Compare Outp.  
P5  
I
Port 5 is a 16-bit input-only port with Schmitt-Trigger  
characteristic.  
The pins of Port 5 also serve as analog input channels for the  
A/D converter, or they serve as timer inputs:  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
39  
40  
41  
42  
43  
44  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10,  
AN11,  
AN12,  
AN13,  
AN14,  
AN15,  
P5.8  
P5.9  
P5.10  
P5.11  
P5.12  
P5.13  
P5.14  
P5.15  
T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.  
T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.  
T6IN  
T5IN  
GPT2 Timer T6 Count Inp.  
GPT2 Timer T5 Count Inp.  
T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.  
T2EUD GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.  
Data Sheet  
6
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
P2  
IO  
Port 2 is a 16-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 2 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 2 is  
selectable (TTL or special).  
The following Port 2 pins also serve for alternate functions:  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
47  
48  
49  
50  
51  
52  
53  
54  
57  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
CC0IO  
CC1IO  
CC2IO  
CC3IO  
CC4IO  
CC5IO  
CC6IO  
CC7IO  
CC8IO  
EX0IN  
CC9IO  
EX1IN  
CC10IO  
EX2IN  
CC11IO  
EX3IN  
CC12IO  
EX4IN  
CC13IO  
EX5IN  
CC14IO  
EX6IN  
CC15IO  
EX7IN  
T7IN  
CAPCOM1: CC0 Capture Inp./Compare Output  
CAPCOM1: CC1 Capture Inp./Compare Output  
CAPCOM1: CC2 Capture Inp./Compare Output  
CAPCOM1: CC3 Capture Inp./Compare Output  
CAPCOM1: CC4 Capture Inp./Compare Output  
CAPCOM1: CC5 Capture Inp./Compare Output  
CAPCOM1: CC6 Capture Inp./Compare Output  
CAPCOM1: CC7 Capture Inp./Compare Output  
CAPCOM1: CC8 Capture Inp./Compare Output,  
Fast External Interrupt 0 Input  
CAPCOM1: CC9 Capture Inp./Compare Output,  
Fast External Interrupt 1 Input  
CAPCOM1: CC10 Capture Inp./Compare Outp.,  
Fast External Interrupt 2 Input  
CAPCOM1: CC11 Capture Inp./Compare Outp.,  
Fast External Interrupt 3 Input  
CAPCOM1: CC12 Capture Inp./Compare Outp.,  
Fast External Interrupt 4 Input  
P2.9  
58  
59  
60  
61  
62  
63  
64  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
I/O  
I
I/O  
I
I/O  
I
I
CAPCOM1: CC13 Capture Inp./Compare Outp.,  
Fast External Interrupt 5 Input  
CAPCOM1: CC14 Capture Inp./Compare Outp.,  
Fast External Interrupt 6 Input  
CAPCOM1: CC15 Capture Inp./Compare Outp.,  
Fast External Interrupt 7 Input,  
CAPCOM2: Timer T7 Count Input  
Data Sheet  
7
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
P3  
IO  
Port 3 is a 15-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 3 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 3 is  
selectable (TTL or special).  
The following Port 3 pins also serve for alternate functions:  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
65  
66  
67  
68  
69  
70  
73  
74  
75  
76  
77  
78  
79  
I
O
I
O
I
I
T0IN  
CAPCOM1 Timer T0 Count Input  
GPT2 Timer T6 Toggle Latch Output  
T6OUT  
CAPIN  
T3OUT  
T3EUD  
T4IN  
GPT2 Register CAPREL Capture Input  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 External Up/Down Control Input  
GPT1 Timer T4 Count/Gate/Reload/Capture Inp  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Count/Gate/Reload/Capture Inp  
SSC Master-Receive/Slave-Transmit Inp./Outp.  
SSC Master-Transmit/Slave-Receive Outp./Inp.  
ASC0 Clock/Data Output (Async./Sync.)  
ASC0 Data Input (Async.) or Inp./Outp. (Sync.)  
External Memory High Byte Enable Signal,  
External Memory High Byte Write Strobe  
SSC Master Clock Output / Slave Clock Input.  
I
I
T3IN  
T2IN  
I/O  
I/O  
O
I/O  
O
O
I/O  
O
MRST  
MTSR  
T×D0  
R×D0  
BHE  
WRH  
SCLK  
P3.13  
P3.15  
80  
81  
CLKOUT System Clock Output (= CPU Clock)  
OWE  
(VPP)  
84  
I
Oscillator Watchdog Enable. This input enables the oscillator  
watchdog when high or disables it when low e.g. for testing  
purposes. An internal pullup device holds this input high if  
nothing is driving it.  
For normal operation pin OWE should be high or not  
connected.  
In order to drive pin OWE low draw a current of at least  
200 µA.  
Data Sheet  
8
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
P4  
IO  
Port 4 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
Port 4 can be used to output the segment address lines and  
for serial bus interfaces:  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
85  
86  
87  
88  
89  
90  
O
O
O
O
O
O
I
O
O
O
A16  
A17  
A18  
A19  
A20  
A21  
Least Significant Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line,  
CAN1_RxD CAN 1 Receive Data Input  
A22 Segment Address Line,  
CAN1_TxD CAN 1 Transmit Data Output  
P4.6  
91  
P4.7  
RD  
92  
95  
A23  
Most Significant Segment Address Line  
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
WR/  
WRL  
96  
O
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a  
16-bit bus, and for every data write access on an 8-bit bus.  
See WRCFG in register SYSCON for mode selection.  
READY 97  
I
Ready Input. When the Ready function is enabled, a high  
level at this pin during an external memory access will force  
the insertion of memory cycle time waitstates until the pin  
returns to a low level.  
An internal pullup device will hold this pin high when nothing  
is driving it.  
ALE  
EA  
98  
99  
O
I
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
External Access Enable pin. A low level at this pin during and  
after Reset forces the C167CR to begin instruction execution  
out of external memory. A high level forces execution out of  
the internal program memory.  
ROMlessversions must have this pin tied to 0.  
Data Sheet  
9
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
PORT0  
P0L.0-7 100-  
107  
P0H.0-7 108,  
111-  
IO  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state.  
In case of an external bus configuration, PORT0 serves as  
the address (A) and address/data (AD) bus in multiplexed  
bus modes and as the data (D) bus in demultiplexed bus  
modes.  
117  
Demultiplexed bus modes:  
Data Path Width:  
P0L.0 P0L.7:  
P0H.0 P0H.7:  
8-bit  
D0 D7  
I/O  
16-bit  
D0 D7  
D8 D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 P0L.7:  
P0H.0 P0H.7:  
8-bit  
16-bit  
AD0 AD7 AD0 AD7  
A8 A15 AD8 AD15  
PORT1  
P1L.0-7 118-  
IO  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the  
16-bit address bus (A) in demultiplexed bus modes and also  
after switching from a demultiplexed bus mode to a  
multiplexed bus mode.  
125  
P1H.0-7 128-  
135  
The following PORT1 pins also serve for alternate functions:  
P1H.4 132  
P1H.5 133  
P1H.6 134  
P1H.7 135  
I
I
I
I
CC24IO  
CC25IO  
CC26IO  
CC27IO  
CAPCOM2: CC24 Capture Input  
CAPCOM2: CC25 Capture Input  
CAPCOM2: CC26 Capture Input  
CAPCOM2: CC27 Capture Input  
XTAL2 137  
XTAL1 138  
O
I
XTAL2:  
XTAL1:  
Output of the oscillator amplifier circuit.  
Input to the oscillator amplifier and input to  
the internal clock generator  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
Data Sheet  
10  
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
RSTIN 140  
I/O  
Reset Input with Schmitt-Trigger characteristics. A low level  
at this pin while the oscillator is running resets the C167CR.  
An internal pullup resistor permits power-on reset using only  
a capacitor connected to VSS.  
A spike filter suppresses input pulses <10 ns. Input pulses  
>100 ns safely pass the filter. The minimum duration for a  
safe recognition should be 100 ns + 2 CPU clock cycles.  
In bidirectional reset mode (enabled by setting bit BDRSTEN  
in register SYSCON) the RSTIN line is internally pulled low  
for the duration of the internal reset sequence upon any reset  
(HW, SW, WDT). See note below this table.  
Note: To let the reset configuration of PORT0 settle and to  
let the PLL lock a reset duration of ca. 1 ms is  
recommended.  
RST  
OUT  
141  
142  
O
I
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or  
a watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C167CR to go into  
power down mode. If NMI is high, when PWRDN is  
executed, the part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
VAREF 37  
VAGND 38  
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
Data Sheet  
11  
V3.2, 2001-07  
C167CR  
C167SR  
Table 2  
Pin Definitions and Functions (contd)  
Symbol Pin  
Input Function  
Num. Outp.  
VDD  
17, 46, –  
Digital Supply Voltage:  
56, 72,  
82, 93,  
109,  
+5 V during normal operation and idle mode.  
2.5 V during power down mode.  
126,  
136,  
144  
VSS  
18, 45, –  
55, 71,  
83, 94,  
110,  
Digital Ground.  
127,  
139,  
143  
Note: The following behavioural differences must be observed when the bidirectional  
reset is active:  
Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared  
automatically after a reset.  
The reset indication flags always indicate a long hardware reset.  
The PORT0 configuration is treated as if it were a hardware reset. In particular, the  
bootstrap loader may be activated when P0L.4 is low.  
Pin RSTIN may only be connected to external reset devices with an open drain output  
driver.  
A short hardware reset is extended to the duration of the internal reset sequence.  
Data Sheet  
12  
V3.2, 2001-07  
C167CR  
C167SR  
Functional Description  
The architecture of the C167CR combines advantages of both RISC and CISC  
processors and of advanced peripheral subsystems in a very well-balanced way. In  
addition the on-chip memory blocks allow the design of compact systems with maximum  
performance.  
The following block diagram gives an overview of the different on-chip components and  
of the advanced, high bandwidth internal bus structure of the C167CR.  
Note: All time specifications refer to a CPU clock of 33 MHz  
(see definition in the AC Characteristics section).  
C166-Core  
ProgMem  
IRAM  
Internal  
RAM  
16  
16  
Data  
Data  
32  
16  
ROM  
128/32  
KByte  
Instr. / Data  
CPU  
2 KByte  
XTAL  
Osc / PLL  
WDT  
XRAM  
PEC  
External Instr. / Data  
2 KByte  
16-Level  
Priority  
Interrupt Controller  
16  
Interrupt Bus  
Peripheral Data Bus  
16  
CAN  
Rev 2.0B active  
ADC ASC0 SSC  
GPT PWM CCOM2CCOM1  
10-Bit  
(USART)  
(SPI)  
T2  
T3  
T4  
T7  
T0  
16  
Channels  
EBC  
T8  
T1  
8
8
XBUS Control  
External Bus  
Control  
16  
T5  
T6  
BRGen  
BRGen  
Port 0  
Port 1  
Port 5  
Port 3  
Port 7  
8
Port 8  
8
16  
16  
16  
15  
Figure 3  
Block Diagram  
The program memory, the internal RAM (IRAM) and the set of generic peripherals are  
connected to the CPU via separate buses. A fourth bus, the XBUS, connects external  
resources as well as additional on-chip resources, the X-Peripherals (see Figure 3).  
Data Sheet  
13  
V3.2, 2001-07  
C167CR  
C167SR  
Memory Organization  
The memory space of the C167CR is configured in a Von Neumann architecture which  
means that code memory, data memory, registers and I/O ports are organized within the  
same linear address space which includes 16 MBytes. The entire memory space can be  
accessed bytewise or wordwise. Particular portions of the on-chip memory have  
additionally been made directly bitaddressable.  
The C167CR incorporates 128/32 KBytes (depending on the derivative) of on-chip  
mask-programmable ROM for code or constant data. The lower 32 KBytes of the on-chip  
ROM can be mapped either to segment 0 or segment 1.  
2 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined  
variables, for the system stack, general purpose register banks and even for code. A  
register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0,  
, RL7, RH7) so-called General Purpose Registers (GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the C166 Family.  
2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user  
stacks, or code. The XRAM is accessed like external memory and therefore cannot be  
used for the system stack or for register banks and is not bitaddressable. The XRAM  
permits 16-bit accesses with maximum speed.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the  
microcontroller.  
Data Sheet  
14  
V3.2, 2001-07  
C167CR  
C167SR  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). It can be programmed either to Single Chip Mode when no external  
memory is required, or to one of four different external memory access modes, which are  
as follows:  
16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed  
16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed  
16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed  
16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/  
output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses  
and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time,  
Memory Tri-State Time, Length of ALE and Read Write Delay) have been made  
programmable to allow the user the adaption of a wide range of different types of  
memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs  
ADDRSELx / BUSCONx) which control the access to different resources with different  
bus characteristics. These address windows are arranged hierarchically where  
BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to  
locations not covered by these 4 address windows are controlled by BUSCON0.  
Up to 5 external CS signals (4 windows plus default) can be generated in order to save  
external glue logic. The C167CR offers the possibility to switch the CS outputs to an  
unlatched mode. In this mode the internal filter logic is switched off and the CS signals  
are directly generated from the address. The unlatched CS mode is enabled by setting  
CSCFG (SYSCON.6).  
Access to very slow memories or memories with varying access times is supported via  
a particular Readyfunction.  
A HOLD/HLDA protocol is available for bus arbitration and allows to share external  
resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN  
in register PSW. After setting HLDEN once, pins P6.7 P6.5 (BREQ, HLDA, HOLD)  
are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA  
pin is an output. By setting bit DP6.7 to 1the Slave Mode is selected where pin HLDA  
is switched to input. This allows to directly connect the slave controller to another master  
controller without glue logic.  
For applications which require less than 16 MBytes of external memory space, this  
address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case  
Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an  
address space of 16 MBytes is used.  
Data Sheet  
15  
V3.2, 2001-07  
C167CR  
C167SR  
Note: When the on-chip CAN Module is to be used the segment address output on  
Port 4 must be limited to 4 bits (i.e. A19 … A16) in order to enable the alternate  
function of the CAN interface pins. CS lines can be used to increase the total  
amount of addressable external memory.  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic  
and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a  
separate multiply and divide unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C167CRs instructions can be  
executed in just one machine cycle which requires 60 ns at 33 MHz CPU clock. For  
example, shift and rotate instructions are always processed during one machine cycle  
independent of the number of bits to be shifted. All multiple-cycle instructions have been  
optimized so that they can be executed very fast as well: branches in 2 cycles, a  
16 × 16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another  
pipeline optimization, the so-called Jump Cache, allows reducing the execution time of  
repeatedly performed jumps in a loop from 2 cycles to 1 cycle.  
CPU  
16  
Internal  
RAM  
SP  
STKOV  
STKUN  
MDH  
MDL  
R15  
Exec. Unit  
Instr. Ptr.  
Instr. Reg.  
Mul/Div-HW  
Bit-Mask Gen  
General  
Purpose  
Registers  
R15  
ALU  
32  
4-Stage  
Pipeline  
(16-bit)  
ROM  
Barrel - Shifter  
Context Ptr.  
R0  
PSW  
SYSCON  
BUSCON 0  
BUSCON 1  
BUSCON 2  
BUSCON 3  
BUSCON 4  
16  
R0  
ADDRSEL 1  
ADDRSEL 2  
ADDRSEL 3  
ADDRSEL 4  
Data Page Ptr.  
Code Seg. Ptr.  
MCB02147  
Figure 4  
CPU Block Diagram  
Data Sheet  
16  
V3.2, 2001-07  
C167CR  
C167SR  
The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal.  
These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer  
(CP) register determines the base address of the active register bank to be accessed by  
the CPU at any time. The number of register banks is only restricted by the available  
internal RAM space. For easy parameter passing, a register bank may overlap others.  
A system stack of up to 1024 words is provided as a storage for temporary data. The  
system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the  
stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly  
compared against the stack pointer value upon each stack access for the detection of a  
stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient C167CR instruction set which  
includes the following instruction classes:  
Arithmetic Instructions  
Logical Instructions  
Boolean Bit Manipulation Instructions  
Compare and Loop Control Instructions  
Shift and Rotate Instructions  
Prioritize Instruction  
Data Movement Instructions  
System Stack Instructions  
Jump and Call Instructions  
Return Instructions  
System Control Instructions  
Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
17  
V3.2, 2001-07  
C167CR  
C167SR  
Interrupt System  
With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of  
internal program execution), the C167CR is capable of reacting very fast to the  
occurrence of non-deterministic events.  
The architecture of the C167CR supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
stolenfrom the current CPU activity to perform a PEC service. A PEC service implies a  
single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source or the destination pointer. An individual PEC transfer  
counter is implicitly decremented for each PEC service except when performing in the  
continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The C167CR has 8 PEC channels each of which offers such fast interrupt-driven data  
transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via  
its related register, each source can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt sources has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge or both edges).  
Software interrupts are supported by means of the TRAPinstruction in combination with  
an individual trap (interrupt) number.  
Table 3 shows all of the possible C167CR interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not used by associated peripherals, may be used to  
generate software controlled interrupt requests by setting the respective interrupt  
request bit (xIR).  
Data Sheet  
18  
V3.2, 2001-07  
C167CR  
C167SR  
Table 3  
C167CR Interrupt Nodes  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
000040H 10H  
000044H 11H  
000048H 12H  
00004CH 13H  
000050H 14H  
000054H 15H  
000058H 16H  
00005CH 17H  
000060H 18H  
000064H 19H  
CAPCOM Register 0  
CAPCOM Register 1  
CAPCOM Register 2  
CAPCOM Register 3  
CAPCOM Register 4  
CAPCOM Register 5  
CAPCOM Register 6  
CAPCOM Register 7  
CAPCOM Register 8  
CAPCOM Register 9  
CC0IR  
CC1IR  
CC2IR  
CC3IR  
CC4IR  
CC5IR  
CC6IR  
CC7IR  
CC8IR  
CC9IR  
CC0IE  
CC0INT  
CC1INT  
CC2INT  
CC3INT  
CC4INT  
CC5INT  
CC6INT  
CC7INT  
CC8INT  
CC9INT  
CC1IE  
CC2IE  
CC3IE  
CC4IE  
CC5IE  
CC6IE  
CC7IE  
CC8IE  
CC9IE  
CAPCOM Register 10 CC10IR  
CAPCOM Register 11 CC11IR  
CAPCOM Register 12 CC12IR  
CAPCOM Register 13 CC13IR  
CAPCOM Register 14 CC14IR  
CAPCOM Register 15 CC15IR  
CAPCOM Register 16 CC16IR  
CAPCOM Register 17 CC17IR  
CAPCOM Register 18 CC18IR  
CAPCOM Register 19 CC19IR  
CAPCOM Register 20 CC20IR  
CAPCOM Register 21 CC21IR  
CAPCOM Register 22 CC22IR  
CAPCOM Register 23 CC23IR  
CAPCOM Register 24 CC24IR  
CAPCOM Register 25 CC25IR  
CAPCOM Register 26 CC26IR  
CAPCOM Register 27 CC27IR  
CAPCOM Register 28 CC28IR  
CAPCOM Register 29 CC29IR  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
CC16IE  
CC17IE  
CC18IE  
CC19IE  
CC20IE  
CC21IE  
CC22IE  
CC23IE  
CC24IE  
CC25IE  
CC26IE  
CC27IE  
CC28IE  
CC29IE  
CC10INT 000068H 1AH  
CC11INT 00006CH 1BH  
CC12INT 000070H 1CH  
CC13INT 000074H 1DH  
CC14INT 000078H 1EH  
CC15INT 00007CH 1FH  
CC16INT 0000C0H 30H  
CC17INT 0000C4H 31H  
CC18INT 0000C8H 32H  
CC19INT 0000CCH 33H  
CC20INT 0000D0H 34H  
CC21INT 0000D4H 35H  
CC22INT 0000D8H 36H  
CC23INT 0000DCH 37H  
CC24INT 0000E0H 38H  
CC25INT 0000E4H 39H  
CC26INT 0000E8H 3AH  
CC27INT 0000ECH 3BH  
CC28INT 0000E0H 3CH  
CC29INT 000110H 44H  
Data Sheet  
19  
V3.2, 2001-07  
C167CR  
C167SR  
Table 3  
C167CR Interrupt Nodes (contd)  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Vector Location Number  
Trap  
CAPCOM Register 30 CC30IR  
CAPCOM Register 31 CC31IR  
CC30IE  
CC31IE  
T0IE  
CC30INT 000114H 45H  
CC31INT 000118H 46H  
CAPCOM Timer 0  
CAPCOM Timer 1  
CAPCOM Timer 7  
CAPCOM Timer 8  
GPT1 Timer 2  
T0IR  
T1IR  
T7IR  
T8IR  
T2IR  
T3IR  
T4IR  
T5IR  
T6IR  
CRIR  
ADCIR  
T0INT  
T1INT  
T7INT  
T8INT  
T2INT  
T3INT  
T4INT  
T5INT  
T6INT  
CRINT  
ADCINT  
000080H 20H  
000084H 21H  
0000F4H 3DH  
0000F8H 3EH  
000088H 22H  
00008CH 23H  
000090H 24H  
000094H 25H  
000098H 26H  
00009CH 27H  
0000A0H 28H  
T1IE  
T7IE  
T8IE  
T2IE  
GPT1 Timer 3  
T3IE  
GPT1 Timer 4  
T4IE  
GPT2 Timer 5  
T5IE  
GPT2 Timer 6  
T6IE  
GPT2 CAPREL Reg.  
CRIE  
ADCIE  
A/D Conversion  
Complete  
A/D Overrun Error  
ASC0 Transmit  
ADEIR  
S0TIR  
ADEIE  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
PWMIE  
XP0IE  
XP1IE  
XP2IE  
XP3IE  
ADEINT  
S0TINT  
0000A4H 29H  
0000A8H 2AH  
ASC0 Transmit Buffer S0TBIR  
S0TBINT 00011CH 47H  
ASC0 Receive  
ASC0 Error  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
PWMIR  
XP0IR  
XP1IR  
XP2IR  
XP3IR  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
0000ACH 2BH  
0000B0H 2CH  
0000B4H 2DH  
0000B8H 2EH  
0000BCH 2FH  
SSC Transmit  
SSC Receive  
SSC Error  
PWM Channel 0 3  
CAN Interface 1  
Unassigned node  
Unassigned node  
PLL/OWD  
PWMINT 0000FCH 3FH  
XP0INT  
XP1INT  
XP2INT  
XP3INT  
000100H 40H  
000104H 41H  
000108H 42H  
00010CH 43H  
Data Sheet  
20  
V3.2, 2001-07  
C167CR  
C167SR  
The C167CR also provides an excellent mechanism to identify and to process  
exceptions or error conditions that arise during run-time, so-called Hardware Traps.  
Hardware traps cause immediate non-maskable system reaction which is similar to a  
standard interrupt service (branching to a dedicated vector table location). The  
occurrence of a hardware trap is additionally signified by an individual bit in the trap flag  
register (TFR). Except when another higher prioritized trap service is in progress, a  
hardware trap will interrupt any actual program execution. In turn, hardware trap services  
can normally not be interrupted by standard or PEC interrupts.  
Table 4 shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Table 4  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
Hardware Reset  
Software Reset  
W-dog Timer Overflow  
RESET  
RESET  
RESET  
000000H  
000000H  
000000H  
00H  
00H  
00H  
III  
III  
III  
Class A Hardware Traps:  
Non-Maskable Interrupt NMI  
NMITRAP 000008H  
STOTRAP 000010H  
STUTRAP 000018H  
02H  
04H  
06H  
II  
II  
II  
Stack Overflow  
Stack Underflow  
STKOF  
STKUF  
Class B Hardware Traps:  
Undefined Opcode  
Protected Instruction  
Fault  
UNDOPC BTRAP  
PRTFLT BTRAP  
000028H  
000028H  
0AH  
0AH  
I
I
Illegal Word Operand  
Access  
Illegal Instruction  
Access  
Illegal External Bus  
Access  
ILLOPA  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
BTRAP  
000028H  
000028H  
000028H  
0AH  
0AH  
0AH  
I
I
I
Reserved  
[2CH –  
3CH]  
[0BH –  
0FH]  
Software Traps  
TRAP Instruction  
Any  
Any  
Current  
CPU  
Priority  
[000000H [00H –  
0001FCH] 7FH]  
in steps  
of 4H  
Data Sheet  
21  
V3.2, 2001-07  
C167CR  
C167SR  
Capture/Compare (CAPCOM) Units  
The CAPCOM units support generation and control of timing sequences on up to  
32 channels with a maximum resolution of 16 TCL. The CAPCOM units are typically  
used to handle high speed I/O tasks such as pulse and waveform generation, pulse  
width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time  
recording relative to external events.  
Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time  
bases for the capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal  
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.  
This provides a wide range of variation for the timer period and resolution and allows  
precise adjustments to the application specific requirements. In addition, external count  
inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare  
registers relative to external events.  
Both of the two capture/compare register arrays contain 16 dual purpose capture/  
compare registers, each of which may be individually allocated to either CAPCOM timer  
T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function.  
Each register has one port pin associated with it which serves as an input pin for  
triggering the capture function, or as an output pin (except for CC24 CC27) to indicate  
the occurrence of a compare event.  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (captured) into the capture/compare  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event. The contents of all registers  
which have been selected for one of the five compare modes are continuously compared  
with the contents of the allocated timers. When a match occurs between the timer value  
and the value in a capture/compare register, specific actions will be taken based on the  
selected compare mode.  
Data Sheet  
22  
V3.2, 2001-07  
C167CR  
C167SR  
Table 5  
Compare Modes (CAPCOM)  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
several compare events per timer period are possible  
Interrupt-only compare mode;  
only one compare interrupt per timer period is generated  
Pin set 1on match; pin reset 0on compare time overflow;  
only one compare event per timer period is generated  
Double  
Two registers operate on one pin;  
Register Mode  
pin toggles on each compare match;  
several compare events per timer period are possible.  
Data Sheet  
23  
V3.2, 2001-07  
C167CR  
C167SR  
Reload Reg. TxREL  
CAPCOM Timer Tx  
fCPU  
TxIN  
2n : 1  
Tx  
Input  
Control  
Interrupt  
Request  
(TxIR)  
GPT2 Timer T6  
Over/Underflow  
CCxIO  
Mode  
Control  
(Capture  
or  
16-Bit  
16 Capture Inputs  
16 Compare Outputs  
Capture/  
Compare  
Registers  
16 Capture/Compare  
Interrupt Request  
Compare)  
CCxIO  
fCPU  
2n : 1  
Ty  
Input  
Control  
Interrupt  
Request  
(TyIR)  
CAPCOM Timer Ty  
Reload Reg. TyREL  
GPT2 Timer T6  
Over/Underflow  
MCB02143B  
x = 0, 7  
y = 1, 8  
n = 3 10  
Figure 5  
CAPCOM Unit Block Diagram  
PWM Module  
The Pulse Width Modulation Module can generate up to four PWM output signals using  
edge-aligned or center-aligned PWM. In addition the PWM module can generate PWM  
burst signals and single shot outputs. The frequency range of the PWM signals covers  
4 Hz to 16.5 MHz (referred to a CPU clock of 33 MHz), depending on the resolution of  
the PWM output signal. The level of the output signals is selectable and the PWM  
module can generate interrupt requests.  
Data Sheet  
24  
V3.2, 2001-07  
C167CR  
C167SR  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate  
modules, GPT1 and GPT2. Each timer in each module may operate independently in a  
number of different modes, or may be concatenated with another timer of the same  
module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer  
to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the gatelevel on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 16 TCL.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-  
flow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components, or may be used internally to clock timers  
T2 and T4 for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a  
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2  
or T4 triggered either by an external signal or by a selectable state transition of its toggle  
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite  
state transitions of T3OTL with the low and high times of a PWM signal, this signal can  
be constantly generated without software intervention.  
Data Sheet  
25  
V3.2, 2001-07  
C167CR  
C167SR  
T2EUD  
fCPU  
T2IN  
U/D  
Interrupt  
Request  
2n : 1  
GPT1 Timer T2  
T2  
Mode  
Control  
Reload  
Capture  
Interrupt  
Request  
fCPU  
2n : 1  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
T3IN  
GPT1 Timer T3  
T3OUT  
U/D  
T3EUD  
Other  
Timers  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
2n : 1  
GPT1 Timer T4  
U/D  
fCPU  
T4EUD  
MCT02141  
n = 3 10  
Figure 6  
Block Diagram of GPT1  
With its maximum resolution of 8 TCL, the GPT2 module provides precise event control  
and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU  
clock via a programmable prescaler or with external signals. The count direction (up/  
down) for each timer is programmable by software or may additionally be altered  
dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is  
supported via the output toggle latch (T6OTL) of timer T6, which changes its state on  
each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the  
CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The  
CAPREL register may capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared  
after the capture procedure. This allows the C167CR to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
Data Sheet  
26  
V3.2, 2001-07  
C167CR  
C167SR  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of  
GPT1 timer T3s inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
T5EUD  
fCPU  
T5IN  
2n : 1  
T5  
Mode  
Control  
U/D  
Interrupt  
Request  
GPT2 Timer T5  
Clear  
Capture  
Interrupt  
Request  
T3  
MUX  
CT3  
CAPIN  
GPT2 CAPREL  
Interrupt  
Request  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6IN  
T6  
Mode  
Control  
Other  
Timers  
fCPU  
2n : 1  
T6EUD  
MCB03999  
n = 2 9  
Figure 7  
Block Diagram of GPT2  
Data Sheet  
27  
V3.2, 2001-07  
C167CR  
C167SR  
A/D Converter  
For analog signal measurement, a 10-bit A/D converter with 16 multiplexed input  
channels and a sample and hold circuit has been integrated on-chip. It uses the method  
of successive approximation. The sample time (for loading the capacitors) and the  
conversion time is programmable and can so be adjusted to the external circuitry.  
Overrun error detection/protection is provided for the conversion result register  
(ADDAT): either an interrupt request will be generated when the result of a previous  
conversion has not been read from the result register at the time the next conversion is  
complete, or the next conversion is suspended in such a case until the previous result  
has been read.  
For applications which require less than 16 analog input channels, the remaining  
channel inputs can be used as digital input port pins.  
The A/D converter of the C167CR supports four different conversion modes. In the  
standard Single Channel conversion mode, the analog level on a specified channel is  
sampled once and converted to a digital result. In the Single Channel Continuous mode,  
the analog level on a specified channel is repeatedly sampled and converted without  
software intervention. In the Auto Scan mode, the analog levels on a prespecified  
number of channels are sequentially sampled and converted. In the Auto Scan  
Continuous mode, the number of prespecified channels is repeatedly sampled and  
converted. In addition, the conversion of a specific channel can be inserted (injected) into  
a running sequence without disturbing this sequence. This is called Channel Injection  
Mode.  
The Peripheral Event Controller (PEC) may be used to automatically store the  
conversion results into a table in memory for later evaluation, without requiring the  
overhead of entering and exiting interrupt routines for each data transfer.  
After each reset and also during normal operation the ADC automatically performs  
calibration cycles. This automatic self-calibration constantly adjusts the converter to  
changing operating conditions (e.g. temperature) and compensates process variations.  
These calibration cycles are part of the conversion cycle, so they do not affect the normal  
operation of the A/D converter.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise  
those pins used for analog input can be disconnected from the digital IO or input stages  
under software control. This can be selected for each pin separately via register P5DIDIS  
(Port 5 Digital Input Disable).  
Data Sheet  
28  
V3.2, 2001-07  
C167CR  
C167SR  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external  
peripheral components is provided by two serial interfaces with different functionality, an  
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous  
Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller  
families and supports full-duplex asynchronous communication at up to 781 Kbit/s/  
1.03 Mbit/s and half-duplex synchronous communication at up to 3.1/4.1 Mbit/s (@ 25/  
33 MHz CPU clock).  
A dedicated baud rate generator allows to set up all standard baud rates without  
oscillator tuning. For transmission, reception and error handling 4 separate interrupt  
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or  
received, preceded by a start bit and terminated by one or two stop bits. For  
multiprocessor communication, a mechanism to distinguish address from data bytes has  
been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a  
shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop  
back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. A parity bit can automatically be generated on  
transmission or be checked on reception. Framing error detection allows to recognize  
data frames with missing stop bits. An overrun error will be generated, if the last  
character received has not been read out of the receive buffer register at the time the  
reception of a new character is complete.  
The SSC supports full-duplex synchronous communication at up to 6.25/8.25 Mbit/s  
(@ 25/33 MHz CPU clock). It may be configured so it interfaces with serially linked  
peripheral components. A dedicated baud rate generator allows to set up all standard  
baud rates without oscillator tuning. For transmission, reception, and error handling three  
separate interrupt vectors are provided.  
The SSC transmits or receives characters of 2 16 bits length synchronously to a shift  
clock which can be generated by the SSC (master mode) or by an external master (slave  
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection  
of shifting and latching clock edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. Transmit and receive error supervise the correct handling  
of the data buffer. Phase and baudrate error detect incorrect serial data.  
Data Sheet  
29  
V3.2, 2001-07  
C167CR  
C167SR  
CAN-Module  
The integrated CAN-Module handles the completely autonomous transmission and  
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),  
i.e. the on-chip CAN-Module can receive and transmit standard frames with 11-bit  
identifiers as well as extended frames with 29-bit identifiers.  
The module provides Full CAN functionality on up to 15 message objects. Message  
object 15 may be configured for Basic CAN functionality. Both modes provide separate  
masks for acceptance filtering which allows to accept a number of identifiers in Full CAN  
mode and also allows to disregard a number of identifiers in Basic CAN mode. All  
message objects can be updated independent from the other objects and are equipped  
for the maximum message length of 8 bytes.  
The bit timing is derived from the XCLK and is programmable up to a data rate of 1 Mbit/  
s. The CAN-Module uses two pins of Port 4 to interface to an external bus transceiver.  
Note: When the CAN interface is to be used the segment address output on Port 4 must  
be limited to 4 bits, i.e. A19 A16. This is necessary to enable the alternate  
function of the CAN interface pins.  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be  
disabled in the time interval until the EINIT (end of initialization) instruction has been  
executed. Thus, the chips start-up procedure is always monitored. The software has to  
be designed to service the Watchdog Timer before it overflows. If, due to hardware or  
software related failures, the software fails to do so, the Watchdog Timer overflows and  
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow  
external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2  
or by 128. The high byte of the Watchdog Timer register can be set to a prespecified  
reload value (stored in WDTREL) in order to allow further variation of the monitored time  
interval. Each time it is serviced by the application software, the high byte of the  
Watchdog Timer is reloaded. Thus, time intervals between 15.5 µs and 254 ms can be  
monitored (@ 33 MHz).  
The default Watchdog Timer interval after reset is 3.97 ms (@ 33 MHz).  
Data Sheet  
30  
V3.2, 2001-07  
C167CR  
C167SR  
Parallel Ports  
The C167CR provides up to 111 I/O lines which are organized into eight input/output  
ports and one input port. All port lines are bit-addressable, and all input/output lines are  
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O  
ports are true bidirectional ports which are switched to high impedance state when  
configured as inputs. The output drivers of five I/O ports can be configured (pin by pin)  
for push/pull operation or open-drain operation via control registers. During the internal  
reset, all port pins are configured as inputs.  
The input threshold of Port 2, Port 3, Port 7, and Port 8 is selectable (TTL or CMOS like),  
where the special CMOS like input threshold reduces noise sensitivity due to the input  
hysteresis. The input threshold may be selected individually for each byte of the  
respective ports.  
All port lines have programmable alternate input or output functions associated with  
them. All port lines that are not used for these alternate functions may be used as general  
purpose IO lines.  
PORT0 and PORT1 may be used as address and data lines when accessing external  
memory, while Port 4 outputs the additional segment address bits A23/19/17 A16 in  
systems where segmentation is enabled to access more than 64 KBytes of memory.  
Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or  
compare outputs of the CAPCOM units and/or with the outputs of the PWM module.  
Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select  
signals.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control  
signal BHE/WRH, and the system clock output (CLKOUT).  
Port 5 is used for the analog input channels to the A/D converter or timer control signals.  
The edge characteristics (transition time) of the C167CRs port drivers can be selected  
via the Port Driver Control Register (PDCR). Two bits select fast edges (0) or reduced  
edges (1) for bus interface pins and non-bus pins separately.  
PDCR.0 = BIPEC controls PORT0, PORT1, Port 4, RD, WR, ALE, CLKOUT, BHE/WRH.  
PDCR.4 = NBPEC controls Port 3, Port 8, RSTOUT, RSTIN (bidir. reset mode).  
Data Sheet  
31  
V3.2, 2001-07  
C167CR  
C167SR  
Oscillator Watchdog  
The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip  
oscillator (either with a crystal or via external clock drive). For this operation the PLL  
provides a clock signal which is used to supervise transitions on the oscillator clock. This  
PLL clock is independent from the XTAL1 clock. When the expected oscillator clock  
transitions are missing the OWD activates the PLL Unlock / OWD interrupt node and  
supplies the CPU with the PLL clock signal. Under these circumstances the PLL will  
oscillate with its basic frequency.  
In direct drive mode the PLL base frequency is used directly (fCPU = 2 5 MHz).  
In prescaler mode the PLL base frequency is divided by 2 (fCPU = 1 2.5 MHz).  
Note: The CPU clock source is only switched back to the oscillator clock after a  
hardware reset.  
The oscillator watchdog can be disabled via hardware by (externally) pulling low pin  
OWE (internal pullup provides high level if not connected). In this case (OWE = 0) the  
PLL remains idle and provides no clock signal, while the CPU clock signal is derived  
directly from the oscillator clock or via prescaler. Also no interrupt request will be  
generated in case of a missing oscillator clock.  
Data Sheet  
32  
V3.2, 2001-07  
C167CR  
C167SR  
Instruction Set Summary  
Table 6 lists the instructions of the C167CR in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the C166 Family Instruction Set Manual.  
This document also provides a detailed description of each instruction.  
Table 6  
Mnemonic  
ADD(B)  
ADDC(B)  
SUB(B)  
SUBC(B)  
MUL(U)  
DIV(U)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
Add word (byte) operands  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit) 2  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
NEG(B)  
AND(B)  
OR(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
4
BAND, BOR,  
BXOR  
4
BCMP  
Compare direct bit to direct bit  
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Data Sheet  
33  
V3.2, 2001-07  
C167CR  
C167SR  
Table 6  
Instruction Set Summary (cont’d)  
Description  
Mnemonic  
MOV(B)  
MOVBS  
MOVBZ  
Bytes  
Move word (byte) data  
2 / 4  
Move byte operand to word operand with sign extension 2 / 4  
Move byte operand to word operand with zero extension 2 / 4  
JMPA, JMPI,  
JMPR  
Jump absolute/indirect/relative if condition is met  
4
JMPS  
J(N)B  
JBC  
Jump absolute to a code segment  
4
4
4
4
Jump relative if direct bit is (not) set  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
JNBS  
CALLA, CALLI,  
CALLR  
Call absolute/indirect/relative subroutine if condition is met 4  
CALLS  
PCALL  
Call absolute subroutine in any code segment  
4
4
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
SRST  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
DISWDT  
EINIT  
Enter Power Down Mode (supposes NMI-pin being low)  
Service Watchdog Timer  
4
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Data Sheet  
34  
V3.2, 2001-07  
C167CR  
C167SR  
Special Function Registers Overview  
The following table lists all SFRs which are implemented in the C167CR in alphabetical  
order.  
Bit-addressable SFRs are marked with the letter bin column Name. SFRs within the  
Extended SFR-Space (ESFRs) are marked with the letter Ein column Physical  
Address. Registers within on-chip X-peripherals are marked with the letter Xin column  
Physical Address.  
An SFR can be specified via its individual mnemonic name. Depending on the selected  
addressing mode, an SFR can be accessed via its physical address (using the Data  
Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).  
Note: Registers within device specific interface modules (CAN) are only present in the  
corresponding device, of course.  
Table 7  
Name  
C167CR Registers, Ordered by Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
ADCIC  
b FF98H  
CCH A/D Converter End of Conversion  
Interrupt Control Register  
0000H  
ADCON  
b FFA0H  
D0H  
50H  
A/D Converter Control Register  
A/D Converter Result Register  
A/D Converter 2 Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
ADDAT  
FEA0H  
ADDAT2  
F0A0H E 50H  
ADDRSEL1  
ADDRSEL2  
ADDRSEL3  
ADDRSEL4  
ADEIC  
FE18H  
FE1AH  
0CH  
0DH  
0EH  
0FH  
FE1CH  
FE1EH  
b FF9AH  
CDH A/D Converter Overrun Error Interrupt  
Control Register  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
86H  
8AH  
8BH  
8CH  
8DH  
Bus Configuration Register 0  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
CAN1 Bit Timing Register  
CAN1 Control / Status Register  
CAN1 Global Mask Short  
0XX0H  
0000H  
0000H  
0000H  
0000H  
UUUUH  
XX01H  
UFUUH  
XXH  
C1BTR  
C1CSR  
C1GMS  
C1IR  
EF04H X ---  
EF00H X ---  
EF06H X ---  
EF02H X ---  
CAN1 Interrupt Register  
Data Sheet  
35  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
C1LGML  
C1LMLM  
C1UAR  
EF0AH X ---  
EF0EH X ---  
EFn2H X ---  
CAN1 Lower Global Mask Long  
UUUUH  
UUUUH  
UUUUH  
CAN1 Lower Mask of Last Message  
CAN1 Upper Arbitration Register  
(message n)  
C1UGML  
C1UMLM  
CAPREL  
CC0  
EF08H X ---  
EF0CH X ---  
CAN1 Upper Global Mask Long  
CAN1 Upper Mask of Last Message  
GPT2 Capture/Reload Register  
CAPCOM Register 0  
UUUUH  
UUUUH  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FE4AH  
FE80H  
25H  
40H  
CC0IC  
CC1  
b FF78H  
FE82H  
BCH CAPCOM Register 0 Interrupt Ctrl. Reg.  
41H  
4AH  
C6H  
4BH  
C7H  
4CH  
C8H  
4DH  
C9H  
4EH  
CAPCOM Register 1  
CC10  
FE94H  
CAPCOM Register 10  
CC10IC  
CC11  
b FF8CH  
FE96H  
CAPCOM Reg. 10 Interrupt Ctrl. Reg.  
CAPCOM Register 11  
CC11IC  
CC12  
b FF8EH  
FE98H  
CAPCOM Reg. 11 Interrupt Ctrl. Reg.  
CAPCOM Register 12  
CC12IC  
CC13  
b FF90H  
FE9AH  
CAPCOM Reg. 12 Interrupt Ctrl. Reg.  
CAPCOM Register 13  
CC13IC  
CC14  
b FF92H  
FE9CH  
CAPCOM Reg. 13 Interrupt Ctrl. Reg.  
CAPCOM Register 14  
CC14IC  
CC15  
b FF94H  
FE9EH  
CAH CAPCOM Reg. 14 Interrupt Ctrl. Reg.  
4FH CAPCOM Register 15  
CBH CAPCOM Reg. 15 Interrupt Ctrl. Reg.  
CC15IC  
CC16  
b FF96H  
FE60H  
30H  
CAPCOM Register 16  
CC16IC  
CC17  
b F160H E B0H  
FE62H 31H  
b F162H E B1H  
FE64H 32H  
b F164H E B2H  
FE66H 33H  
b F166H E B3H  
CAPCOM Reg. 16 Interrupt Ctrl. Reg.  
CAPCOM Register 17  
CC17IC  
CC18  
CAPCOM Reg. 17 Interrupt Ctrl. Reg.  
CAPCOM Register 18  
CC18IC  
CC19  
CAPCOM Reg. 18 Interrupt Ctrl. Reg.  
CAPCOM Register 19  
CC19IC  
CAPCOM Reg. 19 Interrupt Ctrl. Reg.  
Data Sheet  
36  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
b FF7AH  
FE84H  
Addr.  
CC1IC  
CC2  
BDH CAPCOM Reg. 1 Interrupt Ctrl. Reg.  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
42H  
34H  
CAPCOM Register 2  
CC20  
FE68H  
CAPCOM Register 20  
CC20IC  
CC21  
b F168H E B4H  
FE6AH 35H  
b F16AH E B5H  
FE6CH 36H  
b F16CH E B6H  
FE6EH 37H  
b F16EH E B7H  
FE70H 38H  
b F170H E B8H  
FE72H 39H  
b F172H E B9H  
FE74H 3AH  
b F174H E BAH  
FE76H 3BH  
b F176H E BBH  
FE78H 3CH  
CAPCOM Reg. 20 Interrupt Ctrl. Reg.  
CAPCOM Register 21  
CC21IC  
CC22  
CAPCOM Reg. 21 Interrupt Ctrl. Reg.  
CAPCOM Register 22  
CC22IC  
CC23  
CAPCOM Reg. 22 Interrupt Ctrl. Reg.  
CAPCOM Register 23  
CC23IC  
CC24  
CAPCOM Reg. 23 Interrupt Ctrl. Reg.  
CAPCOM Register 24  
CC24IC  
CC25  
CAPCOM Reg. 24 Interrupt Ctrl. Reg.  
CAPCOM Register 25  
CC25IC  
CC26  
CAPCOM Reg. 25 Interrupt Ctrl. Reg.  
CAPCOM Register 26  
CC26IC  
CC27  
CAPCOM Reg. 26 Interrupt Ctrl. Reg.  
CAPCOM Register 27  
CC27IC  
CC28  
CAPCOM Reg. 27 Interrupt Ctrl. Reg.  
CAPCOM Register 28  
CC28IC  
CC29  
b F178H E BCH CAPCOM Reg. 28 Interrupt Ctrl. Reg.  
FE7AH  
3DH  
CAPCOM Register 29  
CC29IC  
CC2IC  
CC3  
b F184H E C2H  
CAPCOM Reg. 29 Interrupt Ctrl. Reg.  
CAPCOM Reg. 2 Interrupt Ctrl. Reg.  
CAPCOM Register 3  
b FF7CH  
FE86H  
BEH  
43H  
3EH  
CC30  
FE7CH  
CAPCOM Register 30  
CC30IC  
CC31  
b F18CH E C6H  
FE7EH 3FH  
CAPCOM Reg. 30 Interrupt Ctrl. Reg.  
CAPCOM Register 31  
CC31IC  
CC3IC  
CC4  
b F194H E CAH CAPCOM Reg. 31 Interrupt Ctrl. Reg.  
b FF7EH  
BFH  
44H  
CAPCOM Reg. 3 Interrupt Ctrl. Reg.  
CAPCOM Register 4  
FE88H  
Data Sheet  
37  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
C0H  
45H  
CC4IC  
CC5  
b FF80H  
CAPCOM Reg. 4 Interrupt Ctrl. Reg.  
CAPCOM Register 5  
0000H  
0000H  
0000H  
FE8AH  
CC5IC  
b FF82H  
C1H  
CAPCOM Register 5 Interrupt Control  
Register  
CC6  
FE8CH  
b FF84H  
FE8EH  
46H  
C2H  
47H  
C3H  
48H  
C4H  
49H  
C5H  
A9H  
AAH  
ABH  
CAPCOM Register 6  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FC00H  
0000H  
0000H  
CC6IC  
CC7  
CAPCOM Reg. 6 Interrupt Ctrl. Reg.  
CAPCOM Register 7  
CC7IC  
CC8  
b FF86H  
FE90H  
CAPCOM Reg. 7 Interrupt Ctrl. Reg.  
CAPCOM Register 8  
CC8IC  
CC9  
b FF88H  
FE92H  
CAPCOM Reg. 8 Interrupt Ctrl. Reg.  
CAPCOM Register 9  
CC9IC  
CCM0  
CCM1  
CCM2  
CCM3  
CCM4  
CCM5  
CCM6  
CCM7  
CP  
b FF8AH  
b FF52H  
b FF54H  
b FF56H  
b FF58H  
b FF22H  
b FF24H  
b FF26H  
b FF28H  
FE10H  
CAPCOM Reg. 9 Interrupt Ctrl. Reg.  
CAPCOM Mode Control Register 0  
CAPCOM Mode Control Register 1  
CAPCOM Mode Control Register 2  
ACH CAPCOM Mode Control Register 3  
91H  
92H  
93H  
94H  
08H  
B5H  
04H  
CAPCOM Mode Control Register 4  
CAPCOM Mode Control Register 5  
CAPCOM Mode Control Register 6  
CAPCOM Mode Control Register 7  
CPU Context Pointer Register  
CRIC  
CSP  
b FF6AH  
FE08H  
GPT2 CAPREL Interrupt Ctrl. Register  
CPU Code Segment Pointer Register  
(read only)  
DP0L  
DP0H  
DP1L  
DP1H  
DP2  
b F100H E 80H  
b F102H E 81H  
b F104H E 82H  
b F106H E 83H  
P0L Direction Control Register  
P0H Direction Control Register  
P1L Direction Control Register  
P1H Direction Control Register  
Port 2 Direction Control Register  
Port 3 Direction Control Register  
00H  
00H  
00H  
00H  
b FFC2H  
b FFC6H  
E1H  
E3H  
0000H  
0000H  
DP3  
Data Sheet  
38  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
b FFCAH  
b FFCEH  
b FFD2H  
b FFD6H  
FE00H  
Addr.  
E5H  
E7H  
E9H  
EBH  
00H  
01H  
02H  
03H  
DP4  
Port 4 Direction Control Register  
Port 6 Direction Control Register  
Port 7 Direction Control Register  
Port 8 Direction Control Register  
CPU Data Page Pointer 0 Reg. (10 bits)  
CPU Data Page Pointer 1 Reg. (10 bits)  
CPU Data Page Pointer 2 Reg. (10 bits)  
CPU Data Page Pointer 3 Reg. (10 bits)  
External Interrupt Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Reg. High Word  
CPU Multiply Divide Reg. Low Word  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 6 Open Drain Control Register  
Port 7 Open Drain Control Register  
Port 8 Open Drain Control Register  
Constant Value 1s Register (read only)  
Port 0 High Reg. (Upper half of PORT0)  
Port 0 Low Reg. (Lower half of PORT0)  
Port 1 High Reg. (Upper half of PORT1)  
Port 1 Low Reg. (Lower half of PORT1)  
Port 2 Register  
00H  
00H  
DP6  
DP7  
00H  
DP8  
00H  
DPP0  
DPP1  
DPP2  
DPP3  
EXICON  
MDC  
MDH  
MDL  
ODP2  
ODP3  
ODP6  
ODP7  
ODP8  
ONES  
P0H  
0000H  
0001H  
0002H  
0003H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
FE02H  
FE04H  
FE06H  
b F1C0H E E0H  
b FF0EH  
FE0CH  
87H  
06H  
07H  
FE0EH  
b F1C2H E E1H  
b F1C6H E E3H  
b F1CEH E E7H  
b F1D2H E E9H  
b F1D6H E EBH  
00H  
00H  
FF1EH  
b FF02H  
b FF00H  
b FF06H  
b FF04H  
b FFC0H  
b FFC4H  
b FFC8H  
b FFA2H  
8FH  
81H  
80H  
83H  
82H  
E0H  
E2H  
E4H  
D1H  
D2H  
E6H  
E8H  
EAH  
FFFFH  
00H  
P0L  
00H  
P1H  
00H  
P1L  
00H  
P2  
0000H  
0000H  
00H  
P3  
Port 3 Register  
P4  
Port 4 Register (8 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
0000H  
00H  
P5DIDIS b FFA4H  
Port 5 Digital Input Disable Register  
Port 6 Register (8 bits)  
P6  
P7  
P8  
b FFCCH  
b FFD0H  
b FFD4H  
Port 7 Register (8 bits)  
00H  
Port 8 Register (8 bits)  
00H  
Data Sheet  
39  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
FEC0H  
FEC2H  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
FECEH  
Addr.  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PICON  
PDCR  
PP0  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
Port Input Threshold Control Register  
Pin Driver Control Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
XXH  
b F1C4H E E2H  
F0AAH E 55H  
F038H E 1CH  
F03AH E 1DH  
F03CH E 1EH  
F03EH E 1FH  
PWM Module Period Register 0  
PWM Module Period Register 1  
PWM Module Period Register 2  
PWM Module Period Register 3  
CPU Program Status Word  
PP1  
PP2  
PP3  
PSW  
b FF10H  
88H  
PT0  
F030H E 18H  
F032H E 19H  
F034H E 1AH  
F036H E 1BH  
PWM Module Up/Down Counter 0  
PWM Module Up/Down Counter 1  
PWM Module Up/Down Counter 2  
PWM Module Up/Down Counter 3  
PWM Module Pulse Width Register 0  
PWM Module Pulse Width Register 1  
PWM Module Pulse Width Register 2  
PWM Module Pulse Width Register 3  
PWM Module Control Register 0  
PWM Module Control Register 1  
PWM Module Interrupt Control Register  
System Start-up Config. Reg. (Rd. only)  
PT1  
PT2  
PT3  
PW0  
FE30H  
FE32H  
FE34H  
FE36H  
18H  
19H  
1AH  
1BH  
98H  
99H  
PW1  
PW2  
PW3  
PWMCON0b FF30H  
PWMCON1b FF32H  
PWMIC  
RP0H  
b F17EH E BFH  
b F108H E 84H  
S0BG  
FEB4H  
5AH  
Serial Channel 0 Baudrate Generator  
Reload Register  
0000H  
S0CON  
b FFB0H  
D8H  
Serial Channel 0 Control Register  
0000H  
Data Sheet  
40  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
S0EIC  
b FF70H  
B8H  
Serial Chan. 0 Error Interrupt Ctrl. Reg.  
0000H  
XXH  
S0RBUF  
FEB2H  
59H  
Serial Channel 0 Receive Buffer Reg.  
(read only)  
S0RIC  
b FF6EH  
B7H  
Serial Channel 0 Receive Interrupt  
Control Register  
0000H  
0000H  
00H  
S0TBIC  
S0TBUF  
S0TIC  
b F19CH E CEH Serial Channel 0 Transmit Buffer  
Interrupt Control Register  
FEB0H  
b FF6CH  
FE12H  
58H  
B6H  
09H  
Serial Channel 0 Transmit Buffer Reg.  
(write only)  
Serial Channel 0 Transmit Interrupt  
Control Register  
0000H  
SP  
CPU System Stack Pointer Register  
SSC Baudrate Register  
FC00H  
0000H  
0000H  
0000H  
XXXXH  
0000H  
0000H  
0000H  
FA00H  
FC00H  
1)0xx0H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
SSCBR  
F0B4H E 5AH  
SSCCON b FFB2H  
D9H  
BBH  
SSC Control Register  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
SSC Error Interrupt Control Register  
SSC Receive Buffer  
F0B2H E 59H  
b FF74H  
BAH  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
89H  
28H  
A8H  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
CAPCOM Timer 0 Register  
FE14H  
FE16H  
SYSCON b FF12H  
T0 FE50H  
T01CON b FF50H  
CAPCOM Timer 0 and Timer 1 Ctrl. Reg.  
T0IC  
T0REL  
T1  
b FF9CH  
FE54H  
CEH CAPCOM Timer 0 Interrupt Ctrl. Reg.  
2AH  
29H  
CFH  
2BH  
20H  
A0H  
CAPCOM Timer 0 Reload Register  
CAPCOM Timer 1 Register  
FE52H  
T1IC  
T1REL  
T2  
b FF9EH  
FE56H  
CAPCOM Timer 1 Interrupt Ctrl. Reg.  
CAPCOM Timer 1 Reload Register  
GPT1 Timer 2 Register  
FE40H  
T2CON  
b FF40H  
GPT1 Timer 2 Control Register  
Data Sheet  
41  
V3.2, 2001-07  
C167CR  
C167SR  
Table 7  
Name  
C167CR Registers, Ordered by Name (contd)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
23H  
A3H  
B3H  
24H  
A4H  
B4H  
T2IC  
T3  
b FF60H  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
2)00XXH  
0000H  
0000H  
0000H  
0000H  
0000H  
FE42H  
b FF42H  
b FF62H  
FE44H  
T3CON  
T3IC  
T4  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4CON  
T4IC  
T5  
b FF44H  
b FF64H  
FE46H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
T5CON  
T5IC  
T6  
b FF46H  
b FF66H  
FE48H  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
T6CON  
T6IC  
T7  
b FF48H  
b FF68H  
GPT2 Timer 6 Control Register  
GPT2 Timer 6 Interrupt Control Register  
CAPCOM Timer 7 Register  
F050H E 28H  
T78CON b FF20H  
90H  
CAPCOM Timer 7 and 8 Ctrl. Reg.  
CAPCOM Timer 7 Interrupt Ctrl. Reg.  
CAPCOM Timer 7 Reload Register  
CAPCOM Timer 8 Register  
T7IC  
b F17AH E BEH  
F054H E 2AH  
T7REL  
T8  
F052H E 29H  
b F17CH E BFH  
F056H E 2BH  
T8IC  
CAPCOM Timer 8 Interrupt Ctrl. Reg.  
CAPCOM Timer 8 Reload Register  
Trap Flag Register  
T8REL  
TFR  
b FFACH  
FEAEH  
D6H  
57H  
D7H  
WDT  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
CAN1 Module Interrupt Control Register  
Unassigned Interrupt Control Register  
WDTCON  
XP0IC  
XP1IC  
XP2IC  
XP3IC  
FFAEH  
b F186H E C3H  
b F18EH E C7H  
b F196H E CBH Unassigned Interrupt Control Register  
b F19EH E CFH  
b FF1CH 8EH  
PLL/OWD Interrupt Control Register  
ZEROS  
Constant Value 0s Register (read only)  
1)  
The system configuration is selected during reset.  
2)  
The reset value depends on the indicated reset source.  
Data Sheet  
42  
V3.2, 2001-07  
C167CR  
C167SR  
Absolute Maximum Ratings  
Table 8  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
150  
150  
6.5  
Storage temperature  
Junction temperature  
TST  
TJ  
-65  
-40  
-0.5  
°C  
°C  
V
under bias  
Voltage on VDD pins with VDD  
respect to ground (VSS)  
Voltage on any pin with  
respect to ground (VSS)  
VIN  
-0.5  
-10  
V
DD + 0.5 V  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Power dissipation  
PDISS  
1.5  
W
Note: Stresses above those listed under Absolute Maximum Ratingsmay cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDD or VIN < VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
43  
V3.2, 2001-07  
C167CR  
C167SR  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the C167CR. All parameters specified in the following sections refer to these  
operating conditions, unless otherwise noticed.  
Table 9  
Operating Condition Parameters  
Symbol Limit Values Unit Notes  
min. max.  
4.5 5.5  
Parameter  
Digital supply voltage  
VDD  
V
Active mode,  
CPUmax = 33 MHz  
f
2.51) 5.5  
0
V
V
Power Down mode  
Digital ground voltage  
Overload current  
VSS  
IOV  
Reference voltage  
5
mA Per pin 2)3)  
3)  
Absolute sum of overload Σ|IOV|  
currents  
50  
mA  
External Load Capacitance CL  
50  
pF  
pF  
pF  
Pin drivers in  
fast edge mode  
(PDCR.BIPEC = 0)  
30  
Pin drivers in  
reduced edge mode  
(PDCR.BIPEC = 1)3)  
100  
Pin drivers in  
fast edge mode,  
f
CPUmax = 25 MHz4)  
Ambient temperature  
TA  
0
70  
°C  
°C  
°C  
SAB-C167CR …  
SAF-C167CR …  
SAK-C167CR …  
-40  
-40  
85  
125  
1)  
Output voltages and output currents will be reduced when VDD leaves the range defined for active mode.  
2)  
Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input overload  
currents on all pins may not exceed 50 mA. The supply voltage must remain within the specified limits.  
Proper operation is not guaranteed if overload conditions occur on functional pins like XTAL1, RD, WR, etc.  
3)  
4)  
Not 100% tested, guaranteed by design and characterization.  
The increased capacitive load is valid for the 25 MHz-derivatives up to a CPU clock frequency of 25 MHz.  
Under these circumstances the timing parameters as specified in the C167CR Data Sheet 1999-06are valid.  
Data Sheet  
44  
V3.2, 2001-07  
C167CR  
C167SR  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C167CR  
and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column Symbol:  
CC (Controller Characteristics):  
The logic of the C167CR will provide signals with the respective timing characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to  
the C167CR.  
DC Characteristics  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
max.  
Input low voltage (TTL,  
all except XTAL1)  
VIL SR -0.5  
0.2 VDD  
- 0.1  
V
Input low voltage XTAL1  
VIL2 SR -0.5  
0.3 VDD  
V
V
Input low voltage  
VILS SR -0.5  
2.0  
(Special Threshold)  
Input high voltage (TTL,  
all except RSTIN and XTAL1)  
VIH SR 0.2 VDD VDD  
+ 0.9 0.5  
+
+
+
+
V
V
V
V
Input high voltage RSTIN  
(when operated as input)  
VIH1 SR 0.6 VDD VDD  
0.5  
Input high voltage XTAL1  
VIH2 SR 0.7 VDD VDD  
0.5  
Input high voltage  
(Special Threshold)  
VIHS SR 0.8 VDD VDD  
- 0.2  
0.5  
Input Hysteresis  
HYS  
400  
mV Series resistance  
(Special Threshold)  
= 0 Ω  
Output low voltage  
VOL CC –  
0.45  
0.45  
V
I
OL = 2.4 mA  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT, RSTIN2))  
Output low voltage  
(all other outputs)  
VOL1CC –  
V
I
OL = 1.6 mA  
Data Sheet  
45  
V3.2, 2001-07  
C167CR  
C167SR  
DC Characteristics (contd)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values Unit Test Condition  
min.  
VOH CC 2.4  
0.9 VDD  
max.  
Output high voltage3)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
V
V
I
I
OH = -2.4 mA  
OH = -0.5 mA  
Output high voltage3)  
(all other outputs)  
V
OH1CC 2.4  
0.9 VDD  
OZ1 CC –  
OZ2 CC –  
V
V
I
I
OH = -1.6 mA  
OH = -0.5 mA  
Input leakage current (Port 5)  
I
I
200  
500  
nA 0 V < VIN < VDD  
Input leakage current  
(all other)4)  
nA 0.45 V < VIN < VDD  
6)  
RSTIN inactive current5)  
RSTIN active current5)  
READY/RD/WR inact. current8) IRWH  
READY/RD/WR active current8) IRWL  
ALE inactive current8)  
ALE active current8)  
Port 6 inactive current8)  
Port 6 active current8)  
IRSTH  
-10  
µA VIN = VIH1  
7)  
IRSTL  
-100  
µA VIN = VIL  
6)  
-40  
µA VOUT = 2.4 V  
µA VOUT = VOLmax  
µA VOUT = VOLmax  
µA VOUT = 2.4 V  
µA VOUT = 2.4 V  
µA VOUT = VOL1max  
µA VIN = VIHmin  
µA VIN = VILmax  
µA 0 V < VIN < VDD  
7)  
-500  
6)  
IALEL  
40  
7)  
IALEH  
500  
6)  
IP6H  
-40  
7)  
IP6L  
-500  
6)  
PORT0 configuration current9) IP0H  
-10  
7)  
IP0L  
-100  
XTAL1 input current  
Pin capacitance10)  
(digital inputs/outputs)  
IIL CC –  
CIO CC –  
20  
10  
pF f = 1 MHz  
TA = 25 °C  
1)  
Keeping signal levels within the levels specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications also refer to the specification of the overload current IOV  
.
2)  
3)  
Valid in bidirectional reset mode only.  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
4)  
5)  
6)  
7)  
This parameter is not valid for pins READY, ALE, RD, and WR while the respective pull device is on.  
These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 k.  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
Data Sheet  
46  
V3.2, 2001-07  
C167CR  
C167SR  
8)  
This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins  
are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The  
READY-pullup is always active, except for Powerdown mode.  
9)  
This specification is valid during Reset and during Adapt-mode.  
Not 100% tested, guaranteed by design and characterization.  
10)  
Power Consumption C167CR  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
min. max.  
15 + 2.5 × mA RSTIN = VIL  
CPU in [MHz]1)  
Unit Test Condition  
Power supply current (active) IDD  
with all peripherals active  
fCPU  
f
Idle mode supply current  
IID  
10 + 1.0 × mA RSTIN = VIH1  
fCPU  
f
CPU in [MHz]1)  
2)  
Power-down mode supply  
current  
IPD  
50  
µA  
VDD = VDDmax  
1)  
The supply current is a function of the operating frequency. This dependency is illustrated in Figure 8.  
These parameters are tested at VDDmax and maximum CPU clock with all outputs disconnected and all inputs  
at VIL or VIH.  
2)  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD - 0.1 V to VDD, all outputs (including pins configured as outputs) disconnected.  
Data Sheet  
47  
V3.2, 2001-07  
C167CR  
C167SR  
I [mA]  
140  
IDDmax  
120  
100  
IDDtyp  
80  
60  
40  
20  
IIDmax  
IIDtyp  
10  
20  
30  
40  
f
CPU [MHz]  
Figure 8  
Supply/Idle Current as a Function of Operating Frequency  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C167CR is controlled by the internal CPU clock fCPU. Both  
edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles)  
operations.  
Data Sheet  
48  
V3.2, 2001-07  
C167CR  
C167SR  
The specification of the external timing (AC Characteristics) therefore depends on the  
time between two consecutive edges of the CPU clock, called TCL(see Figure 9).  
Phase Locked Loop Operation  
fOSC  
TCL  
fCPU  
TCL  
Direct Clock Drive  
fOSC  
TCL  
fCPU  
TCL  
Prescaler Operation  
fOSC  
TCL  
fCPU  
MCT04338  
TCL  
Figure 9  
Generation Mechanisms for the CPU Clock  
The CPU clock signal fCPU can be generated from the oscillator clock signal fOSC via  
different mechanisms. The duration of TCLs and their variation (and also the derived  
external timing) depends on the used mechanism to generate fCPU. This influence must  
be regarded when calculating the timings for the C167CR.  
Note: The example for PLL operation shown in Figure 9 refers to a PLL factor of 4.  
The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG  
in register RP0H.7-5.  
Upon a long hardware reset register RP0H is loaded with the logic levels present on the  
upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins  
P0.15-13 (P0H.7-5).  
Table 10 associates the combinations of these three bits with the respective clock  
generation mode.  
Data Sheet  
49  
V3.2, 2001-07  
C167CR  
C167SR  
Table 10  
C167CR Clock Generation Modes  
CPU Frequency External Clock  
f
CLKCFG  
(P0H.7-5)  
Notes  
CPU = fOSC × F Input Range1)  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
fOSC × 4  
fOSC × 3  
fOSC × 2  
fOSC × 5  
fOSC × 1  
fOSC × 1.5  
2.5 to 8.25 MHz  
3.33 to 11 MHz  
5 to 16.5 MHz  
2 to 6.6 MHz  
1 to 33 MHz  
Default configuration  
Direct drive2)  
6.66 to 22 MHz  
2 to 66 MHz  
f
OSC / 2  
CPU clock via prescaler  
0 0 0  
fOSC × 2.5  
4 to 13.2 MHz  
1)  
The external clock input range refers to a CPU clock range of 10 33 MHz (PLL operation).  
2)  
The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When prescaler operation is configured (CLKCFG = 001B) the CPU clock is derived from  
the internal oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of fCPU is half the frequency of fOSC and the high and low time of fCPU (i.e.  
the duration of an individual TCL) is defined by the period of the input clock fOSC  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be  
calculated using the period of fOSC for any TCL.  
Phase Locked Loop  
When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is  
enabled and provides the CPU clock (see Table 10). The PLL multiplies the input  
frequency by the factor F which is selected via the combination of pins P0.15-13 (i.e.  
f
CPU = fOSC × F). With every Fth transition of fOSC the PLL circuit synchronizes the CPU  
clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock  
frequency does not change abruptly.  
Due to this adaptation to the input clock the frequency of fCPU is constantly adjusted so  
it is locked to fOSC. The slight variation causes a jitter of fCPU which also effects the  
duration of individual TCLs.  
The timings listed in the AC Characteristics that refer to TCLs therefore must be  
calculated using the minimum TCL that is possible under the respective circumstances.  
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is  
constantly adjusting its output frequency so it corresponds to the applied input frequency  
(crystal or oscillator) the relative deviation for periods of more than one TCL is lower than  
Data Sheet  
50  
V3.2, 2001-07  
C167CR  
C167SR  
for one single TCL (see formula and Figure 10).  
For a period of N × TCL the minimum value is computed using the corresponding  
deviation D :  
N
(N × TCL)min = N × TCLNOM - D  
D [ns] = (13.3 + N × 6.3) / fCPU [MHz],  
N
N
where N = number of consecutive TCLs and 1 N 40.  
So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D = (13.3 + 3 × 6.3) / 25 = 1.288 ns,  
3
and (3TCL)min = 3TCLNOM - 1.288 ns = 58.7 ns (@ fCPU = 25 MHz).  
This is especially important for bus cycles using waitstates and e.g. for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is neglectible.  
Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 10).  
Max. jitter DN  
30  
10 MHz  
26.5  
This approximated formula is valid for  
ns  
20  
1
N
40 and 10 MHz fCPU 33 MHz.  
16 MHz  
20 MHz  
25 MHz  
33 MHz  
10  
1
N
1
5
10  
20  
40  
MCD04413  
Figure 10  
Approximated Maximum Accumulated PLL Jitter  
Data Sheet  
51  
V3.2, 2001-07  
C167CR  
C167SR  
Direct Drive  
When direct drive is configured (CLKCFG = 011B) the on-chip phase locked loop is  
disabled and the CPU clock is directly driven from the internal oscillator with the input  
clock signal.  
The frequency of fCPU directly follows the frequency of fOSC so the high and low time of  
f
CPU (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock  
fOSC  
.
The timings listed below that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances. This minimum value  
can be calculated via the following formula:  
TCLmin = 1/fOSC × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fOSC is compensated  
so the duration of 2TCL is always 1/fOSC. The minimum value TCLmin therefore has to  
be used only once for timings that require an odd number of TCLs (1, 3, ). Timings that  
require an even number of TCLs (2, 4, ) may use the formula 2TCL = 1/fOSC  
.
Data Sheet  
52  
V3.2, 2001-07  
C167CR  
C167SR  
AC Characteristics  
External Clock Drive XTAL1  
(Operating Conditions apply)  
Table 11  
External Clock Drive Characteristics  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
PLL  
1:N  
Unit  
min.  
Oscillator period tOSC SR 30  
max.  
min.  
max.  
min.  
451)  
10  
10  
max.  
5001) ns  
8
8
15  
5
5
5
High time2)  
Low time2)  
Rise time2)  
t1  
t2  
t3  
t4  
SR 153)  
SR 153)  
SR –  
ns  
ns  
ns  
ns  
5
10  
10  
Fall time2)  
SR –  
1)  
The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation  
mode. Please see respective table above.  
2)  
3)  
The clock input signal must reach the defined levels VIL2 and VIH2  
.
The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (fCPU) in  
direct drive mode depends on the duty cycle of the clock input signal.  
t1  
t3  
t4  
VIH2  
VIL  
0.5 VDD  
t2  
tOSC  
MCT02534  
Figure 11  
External Clock Drive XTAL1  
Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is  
limited to a range of 4 MHz to 40 MHz.  
It is strongly recommended to measure the oscillation allowance (or margin) in the  
final target system (layout) to determine the optimum parameters for the oscillator  
operation. Please refer to the limits specified by the crystal supplier.  
When driven by an external clock signal it will accept the specified frequency  
range. Operation at lower input frequencies is possible but is guaranteed by  
design only (not 100% tested).  
Data Sheet  
53  
V3.2, 2001-07  
C167CR  
C167SR  
A/D Converter Characteristics  
(Operating Conditions apply)  
Table 12  
A/D Converter Characteristics  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test  
Condition  
1)  
Analog reference supply  
Analog reference ground  
VAREF SR 4.0  
V
DD + 0.1 V  
VAGND SR VSS - 0.1 VSS + 0.2 V  
2)  
Analog input voltage range VAIN SR VAGND  
VAREF  
V
3)  
4)  
Basic clock frequency  
Conversion time  
fBC  
tC  
0.5  
CC –  
6.25  
MHz  
40tBC +tS  
+ 2tCPU  
t
CPU = 1/fCPU  
5)  
Calibration time after reset tCAL CC –  
3328 tBC  
1)  
Total unadjusted error  
TUE CC –  
RAREF SR –  
2
LSB  
kΩ  
Internal resistance of  
reference voltage source  
t
BC / 60  
- 0.25  
t
BC in [ns]6)7)  
Internal resistance of  
analog source  
RASRC SR –  
CAIN CC –  
tS / 450  
- 0.25  
kΩ  
tS in [ns]7)8)  
7)  
ADC input capacitance  
33  
pF  
1)  
TUE is tested at VAREF = 5.0 V, VAGND = 0 V, VDD = 4.9 V. It is guaranteed by design for all other voltages  
within the defined voltage range.  
If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V  
(i.e. VAREF = VDD + 0.2 V) the maximum TUE is increased to 3 LSB. This range is not 100% tested.  
The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see IOV  
specification) does not exceed 10 mA.  
During the reset calibration sequence the maximum TUE may be 4 LSB.  
2)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in  
these cases will be X000 or X3FF , respectively.  
H
H
3)  
4)  
The limit values for fBC must not be exceeded when selecting the CPU frequency and the ADCTC setting.  
This parameter includes the sample time tS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the basic clock tBC depend on programming and can be taken from Table 13.  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
5)  
6)  
During the reset calibration conversions can be executed (with the current accuracy). The time required for  
these conversions is added to the total reset calibration time.  
During the conversion the ADCs capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within each conversion step. The maximum internal resistance results from the programmed conversion  
timing.  
7)  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
54  
V3.2, 2001-07  
C167CR  
C167SR  
8)  
During the sample time the input capacitance CAIN can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result.  
Values for the sample time tS depend on programming and can be taken from Table 13.  
Sample time and conversion time of the C167CRs A/D Converter are programmable.  
Table 13 should be used to calculate the above timings.  
The limit values for fBC must not be exceeded when selecting ADCTC.  
Table 13  
A/D Converter Computation Table  
ADCON.15|14  
(ADCTC)  
A/D Converter  
Basic clock fBC  
ADCON.13|12  
(ADSTC)  
Sample time  
tS  
00  
01  
10  
11  
f
f
f
f
CPU / 4  
CPU / 2  
CPU / 16  
CPU / 8  
00  
01  
10  
11  
tBC × 8  
tBC × 16  
tBC × 32  
tBC × 64  
Converter Timing Example:  
Assumptions:  
fCPU = 25 MHz (i.e. tCPU = 40 ns), ADCTC = 00, ADSTC = 00.  
Basic clock  
Sample time  
Conversion time tC  
fBC  
tS  
= fCPU / 4 = 6.25 MHz, i.e. tBC = 160 ns.  
= tBC × 8 = 1280 ns.  
= tS + 40 tBC + 2 tCPU = (1280 + 6400 + 80) ns = 7.8 µs.  
Data Sheet  
55  
V3.2, 2001-07  
C167CR  
C167SR  
Testing Waveforms  
2.4 V  
1.8 V  
0.8 V  
1.8 V  
0.8 V  
Test Points  
0.45 V  
AC inputs during testing are driven at 2.4 V for a logic 1and 0.45 V for a logic 0.  
Timing measurements are made at IH min for a logic 1and IL max for a logic 0.  
V
V
MCA04414  
Figure 12  
Input Output Waveforms  
VLoad + 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VLoad - 0.1 V  
VOL + 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs,  
but begins to float when a 100 mV change from the loaded VOH  
/
VOL level occurs (IOH  
/
I
OL = 20 mA).  
MCA00763  
Figure 13  
Float Waveforms  
Data Sheet  
56  
V3.2, 2001-07  
C167CR  
C167SR  
AC Characteristics  
Table 14  
CLKOUT Reference Signal  
Parameter  
Symbol  
Limits  
min. max.  
Unit  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
tc5 CC  
301)  
ns  
ns  
ns  
ns  
ns  
tc6 CC 8  
tc7 CC 6  
tc8 CC –  
tc9 CC –  
4
4
1)  
The CLKOUT cycle time is influenced by the PLL jitter.  
For a single CLKOUT cycle (2 TCL) the deviation caused by the PLL jitter is below 1 ns (for fCPU > 25 MHz).  
For longer periods the relative deviation decreases (see PLL deviation formula).  
tc9  
tc7  
tc8  
tc5  
tc6  
CLKOUT  
MCT04415  
Figure 14  
CLKOUT Signal Timing  
Variable Memory Cycles  
The bus timing shown below is programmable via the BUSCONx registers. The duration  
of ALE and two types of waitstates can be selected. This table summarizes the possible  
bus cycle durations.  
Table 15  
Variable Memory Cycles  
Bus Cycle Type  
Bus Cycle Duration  
Unit 25/33 MHz, 0 Waitstates  
Demultiplexed bus cycle  
with normal ALE  
4 + 2 × (15 - <MCTC>) TCL 80 ns / 60.6 ns  
+ 2 × (1 - <MTTC>)  
Demultiplexed bus cycle  
with extended ALE  
6 + 2 × (15 - <MCTC>) TCL 120 ns / 90.9 ns  
+ 2 × (1 - <MTTC>)  
Multiplexed bus cycle with 6 + 2 × (15 - <MCTC>) TCL 120 ns / 90.9 ns  
normal ALE + 2 × (1 - <MTTC>)  
Multiplexed bus cycle with 8 + 2 × (15 - <MCTC>) TCL 160 ns / 121.2 ns  
extended ALE  
+ 2 × (1 - <MTTC>)  
Data Sheet  
57  
V3.2, 2001-07  
C167CR  
C167SR  
Table 16  
External Bus Cycle Timing (Operating Conditions apply)  
Symbol Limits  
Parameter  
Unit  
min.  
max.  
Output delay from CLKOUT falling edge  
Valid for: address, BHE, early CS, write data out, ALE  
tc10 CC -2  
tc11 CC -2  
tc12 CC -2  
11  
ns  
ns  
ns  
Output delay from CLKOUT rising edge  
Valid for: latched CS, ALE low  
6
8
Output delay from CLKOUT rising edge  
Valid for: WR low (no RW delay), RD low (no RW  
delay)  
Output delay from CLKOUT falling edge  
Valid for: RD/WR low (with RW delay), RD high (with  
RW delay)  
tc13 CC -2  
6
ns  
Input setup time to CLKOUT falling edge  
Valid for: read data in  
tc14 SR 14  
tc15 SR 0  
tc17 CC -2  
tc18 CC -2  
tc19 CC -2  
tc20 CC –  
tc21 CC -5  
6
4
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input hold time after CLKOUT falling edge  
Valid for: read data in1)  
Output hold time after CLKOUT falling edge  
Valid for: address, BHE, early CS2)  
Output hold time after CLKOUT edge3)  
Valid for: write data out  
Output delay from CLKOUT falling edge  
Valid for: WR high  
Turn off delay after CLKOUT edge3)  
Valid for: write data out  
Turn on delay after CLKOUT falling edge3)  
Valid for: write data out  
1)  
Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge  
of RD. Therefore the read data may be removed immediately after the rising edge of RD. Address changes  
before the end of RD have also no impact on (demultiplexed) read cycles.  
2)  
3)  
Due to comparable propagation delays (at comparable capacitive loads) the address does not change before  
WR goes high. The minimum output delay (tc17min) is therefore the actual value of tc19.  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
58  
V3.2, 2001-07  
C167CR  
C167SR  
General Notes For The Following Timing Figures  
These standard notes apply to all subsequent timing figures. Additional individual notes  
are placed at the respective figure.  
1)  
The falling edge of signals RD and WR/WRH/WRL/WrCS is controlled by the Read/Write delay feature (bit  
BUSCON.RWDCx).  
2)  
A bus cycle is extended here, if MCTC waitstates are selected or if the READY input is sampled inactive.  
A bus cycle is extended here, if an MTTC waitstate is selected.  
3)  
CLKOUT  
Normal ALE Cycle  
tc11  
tc10  
Normal ALE  
Extended ALE Cycle  
tc10  
tc10  
Extended ALE  
CSxL  
tc11  
tc11  
tc11  
tc10  
tc10  
tc17  
A23-A0  
BHE, CSxE  
Valid  
tc13  
tc12  
tc19  
WRL, WRH,  
WR, WrCS  
1)  
tc10  
tc20  
tc21  
tc18  
D15-D0  
Data OUT  
2)  
MCTC  
3)  
MTTC  
MCT04416  
Figure 15  
Demultiplexed Bus, Write Access  
Data Sheet  
59  
V3.2, 2001-07  
C167CR  
C167SR  
CLKOUT  
Normal ALE Cycle  
tc11  
tc10  
Normal ALE  
Extended ALE Cycle  
tc10  
tc10  
Extended ALE  
CSxL  
tc11  
tc11  
tc11  
tc10  
tc10  
tc17  
A23-A0,  
BHE, CSxE  
Valid  
tc13  
tc12  
tc13  
RD,  
RdCS  
1)  
tc15  
tc14  
D15-D0  
Data IN  
2)  
MCTC  
3)  
MTTC  
MCT04417  
Figure 16  
Demultiplexed Bus, Read Access  
Data Sheet  
60  
V3.2, 2001-07  
C167CR  
C167SR  
CLKOUT  
Normal ALE Cycle  
tc11  
tc10  
Normal ALE  
Extended ALE Cycle  
tc10  
tc10  
Extended ALE  
CSxL  
tc11  
tc11  
tc10  
tc10  
tc17  
A23-A16  
BHE, CSxE  
Valid  
tc13  
tc12  
tc19  
WRL, WRH,  
WR, WrCS  
1)  
tc10  
tc10  
tc17  
tc20  
tc21  
tc18  
AD15-AD0  
Low Address  
Data OUT  
Data OUT  
(Normal ALE)  
tc10  
tc10  
tc20  
tc21  
tc17  
tc18  
AD15-AD0  
(Extended ALE)  
Low Address  
2)  
MCTC  
3)  
MTTC  
MCT04418  
Figure 17  
Multiplexed Bus, Write Access  
Data Sheet  
61  
V3.2, 2001-07  
C167CR  
C167SR  
CLKOUT  
Normal ALE Cycle  
tc11  
tc10  
Normal ALE  
Extended ALE Cycle  
tc10  
tc10  
Extended ALE  
CSxL  
tc11  
tc11  
tc10  
tc10  
tc17  
A23-A16  
BHE, CSxE  
Valid  
tc13  
tc12  
tc13  
RD,  
RdCS  
1)  
tc10  
tc20  
tc17  
tc15  
tc21  
tc14  
AD15-AD0  
(Normal ALE)  
Low Address  
Data IN  
tc10  
tc20  
tc15  
tc21  
tc17  
tc14  
AD15-AD0  
(Extended ALE)  
Low Address  
Data IN  
2)  
MCTC  
3)  
MTTC  
MCT04419  
Figure 18  
Multiplexed Bus, Read Access  
Data Sheet  
62  
V3.2, 2001-07  
C167CR  
C167SR  
Bus Cycle Control via READY Input  
The duration of an external bus cycle can be controlled by the external circuitry via the  
READY input signal.  
Synchronous READY permits the shortest possible bus cycle but requires the input  
signal to be synchronous to the reference signal CLKOUT.  
Asynchronous READY puts no timing constraints on the input signal but incurs one  
waitstate minimum due to the additional synchronization stage.  
Table 17  
READY Timing (Operating Conditions apply)  
Parameter  
Symbol  
Limits  
max.  
Unit  
min.  
tc25 CC 12  
Input setup time to CLKOUT rising edge  
Valid for: READY input  
ns  
ns  
ns  
Input hold time after CLKOUT rising edge  
Valid for: READY input  
Asynchronous READY input low time6)  
tc26 CC 0  
tc27 CC tc5 + tc25  
Notes (Valid also for Figure 19)  
4)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
READY sampled HIGH at this sampling point generates a READY controlled waitstate,  
READY sampled LOW at this sampling point terminates the currently running bus cycle.  
These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT,  
it must fulfill tc27 in order to be safely synchronized.  
5)  
6)  
Proper deactivation of READY is guaranteed if READY is deactivated in response to the trailing (rising) edge  
of the corresponding command (RD or WR).  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here. For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a  
demultiplexed bus without MTTC waitstate this delay is zero.  
If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first  
valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current  
cycle, and on the MCTC waitstates and the ALE mode of the next following cycle. If the current cycle uses a  
multiplexed bus the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.  
7)  
8)  
Data Sheet  
63  
V3.2, 2001-07  
C167CR  
C167SR  
Running Cycle4)  
READY WS  
MUX/MTTC  
7)  
CLKOUT  
D15-D0  
tc15  
tc14  
Data IN  
tc10  
tc20  
tc18  
tc21  
D15-D0  
Data OUT  
tc13  
tc12  
tc13  
/
tc19  
Command  
(RD, WR)  
1)  
6)  
tc26  
tc26  
tc25  
tc25  
Synchronous  
READY  
5)  
5)  
tc27  
tc26  
tc25  
tc26  
tc25  
Asynchronous  
READY  
5)  
5)  
8)  
MCT04420  
Figure 19  
READY Timings  
Data Sheet  
64  
V3.2, 2001-07  
C167CR  
C167SR  
External Bus Arbitration  
Table 18  
Bus Arbitration Timing (Operating Conditions apply)  
Symbol Limits  
max.  
Parameter  
Unit  
min.  
HOLD input setup time to CLKOUT falling edge tc28 SR 18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT to BREQ delay  
CLKOUT to HLDA delay  
CSx release1)  
tc29 CC -4  
tc30 CC -4  
tc31 CC 0  
tc32 CC -2  
tc33 CC 0  
tc34 CC 0  
6
6
10  
6
CSx drive  
Other signals release1)  
Other signals drive1)  
10  
6
1)  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
65  
V3.2, 2001-07  
C167CR  
C167SR  
CLKOUT  
HOLD  
HLDA  
BREQ  
CS  
tc28  
tc30  
1)  
tc29  
2)  
tc31  
3)  
tc33  
Other  
Signals  
MCT04421  
Figure 20  
External Bus Arbitration, Releasing the Bus  
Notes  
1)  
The C167CR will complete the currently running bus cycle before granting bus access.  
This is the first possibility for BREQ to get active.  
2)  
3)  
The CS outputs will be resistive high (pullup) after t33. Latched CS outputs are driven high for 1 TCL before  
the output drivers are switched off.  
Data Sheet  
66  
V3.2, 2001-07  
C167CR  
C167SR  
CLKOUT  
HOLD  
HLDA  
BREQ  
CS  
5)  
tc28  
tc30  
tc29  
tc29  
tc29  
4)  
tc32  
tc34  
Other  
Signals  
MCT04422  
Figure 21  
External Bus Arbitration, (Regaining the Bus)  
Notes  
4)  
This is the last chance for BREQ to trigger the indicated regain-sequence.  
Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high.  
Please note that HOLD may also be deactivated without the C167CR requesting the bus.  
The next C167CR driven bus cycle may start here.  
5)  
Data Sheet  
67  
V3.2, 2001-07  
C167CR  
C167SR  
External XRAM Access  
If XPER-Share mode is enabled the on-chip XRAM of the C167CR can be accessed  
(during hold states) by an external master like an asynchronous SRAM.  
Table 19  
XRAM Access Timing (Operating Conditions apply)1)  
Symbol Limits  
Parameter  
Unit  
min.  
max.  
Address setup time before RD/WR falling edge  
Address hold time after RD/WR rising edge  
Data turn on delay after RD falling edge  
Data output valid delay after address latched  
Data turn off delay after RD rising edge  
Write data setup time before WR rising edge  
Write data hold time after WR rising edge  
WR pulse width  
t40 SR 4  
t41 SR 0  
t42 CC 1  
t43 CC –  
t44 CC 1  
t45 SR 10  
t46 SR 2  
t47 SR 20  
t48 SR t40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
14  
WR signal recovery time  
1)  
The minimum access cycle time is 60 ns.  
t40  
t41  
Address  
t47  
t48  
Command  
(RD, WR)  
t46  
t45  
Write Data  
t43  
t42  
t44  
Read Data  
MCT04423  
Figure 22  
External Access to the XRAM  
Data Sheet  
68  
V3.2, 2001-07  
C167CR  
C167SR  
Package Outlines  
P-MQFP-144-6  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book Package Information.  
Dimensions in mm  
V3.2, 2001-07  
SMD = Surface Mounted Device  
Data Sheet  
69  
Infineon goes for Business Excellence  
Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAK-C167CR-LM

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C167CR-LMHA

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C167CR-LMHA+

16-BIT, 25MHz, MICROCONTROLLER, PQFP144, PLASTIC, MQFP-144
ROCHESTER

SAK-C167CR-LMHA+

Microcontroller, 16-Bit, C166 CPU, 25MHz, CMOS, PQFP144, PLASTIC, MQFP-144
INFINEON

SAK-C167CS-4R33M

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C167CS-4R33M-BA

Microcontroller, 16-Bit, MROM, 33MHz, CMOS, PQFP144, METRIC, PLASTIC, QFP-144
INFINEON
INFINEON

SAK-C167CS-4R40M

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C167CS-4R40M-BA

Microcontroller, 16-Bit, MROM, 40MHz, CMOS, PQFP144, METRIC, PLASTIC, QFP-144
INFINEON
INFINEON

SAK-C167CS-4RM

16-Bit Single-Chip Microcontroller
INFINEON

SAK-C167CS-L33M

16-Bit Single-Chip Microcontroller
INFINEON