SAK-TC1767-256F133HL [INFINEON]

32-Bit Single-Chip Microcontroller; 32位单芯片微控制器
SAK-TC1767-256F133HL
型号: SAK-TC1767-256F133HL
厂家: Infineon    Infineon
描述:

32-Bit Single-Chip Microcontroller
32位单芯片微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总126页 (文件大小:832K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
32-Bit  
TC1767  
32-Bit Single-Chip Microcontroller  
Data Sheet  
V1.3 2009-09  
Microcontrollers  
Edition 2009-09  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2009 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
32-Bit  
TC1767  
32-Bit Single-Chip Microcontroller  
Data Sheet  
V1.3 2009-09  
Microcontrollers  
TC1767  
TC1767 Data Sheet  
Revision History: V1.3, 2009-09  
Previous Version: V1.2  
Page  
Subjects (major changes since last revision)  
98  
IDD at 80MHz for Infineon Power Loop and text for test condition are  
updated.  
104  
118  
Footnotes for application reset boot time, tB are enhanced.  
The method used for the specified thermal resistance values is  
included.  
Trademarks  
TriCore® is a trademark of Infineon Technologies AG.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.3, 2009-09  
TC1767  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
2.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
About this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Related Documentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Reserved, Undefined, and Unimplemented Terminology . . . . . . . . . . . . 9  
Register Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
System Architecture of the TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TC1767 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
System Features of the TC1767 device . . . . . . . . . . . . . . . . . . . . . . . . 15  
On Chip CPU Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
High-performance 32-bit CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
High-performance 32-bit Peripheral Control Processor . . . . . . . . . . . 17  
On Chip System Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Flexible Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features of the Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
External Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General Purpose I/O Ports and Peripheral I/O Lines . . . . . . . . . . . . . . . 22  
Program Memory Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Boot ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overlay RAM and Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Emulation Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Tuning Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program and Data Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data Access Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
TC1767 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
On-Chip Peripheral Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Asynchronous/Synchronous Serial Interfaces . . . . . . . . . . . . . . . . . . . . 29  
High-Speed Synchronous Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . 31  
Micro Second Channel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
MultiCAN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Micro Link Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
General Purpose Timer Array (GPTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.2.3.1  
2.2.3.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.4.1  
2.3.4.2  
2.3.4.3  
2.3.4.4  
2.3.4.5  
2.3.5  
2.3.6  
2.3.6.1  
2.3.6.2  
2.3.6.3  
2.3.6.4  
2.3.6.5  
2.3.7  
2.3.8  
2.4  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
Data Sheet  
1
V1.3, 2009-09  
TC1767  
Table of Contents  
2.4.6.1  
2.4.7  
2.4.7.1  
2.4.7.2  
2.5  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
Functionality of GPTA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
FADC Short Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Real Time Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Calibration Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Tool Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Self-Test Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
FAR Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3
3.1  
3.1.1  
3.1.2  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
TC1767 Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
TC1767 Pin Configuration: PG-LQFP-176-5 . . . . . . . . . . . . . . . . . . . . . 53  
Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4
Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
5
5.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Analog to Digital Converters (ADC0/ADC1) . . . . . . . . . . . . . . . . . . . . . 88  
Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . . . 93  
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . 115  
SSC Master / Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.8.1  
5.3.8.2  
5.3.8.3  
Data Sheet  
2
V1.3, 2009-09  
TC1767  
Table of Contents  
5.4  
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
Data Sheet  
3
V1.3, 2009-09  
TC1767  
Summary of Features  
1
Summary of Features  
• High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline  
– Superior real-time performance  
– Strong bit handling  
– Fully integrated DSP capabilities  
– Single precision Floating Point Unit (FPU)  
– 133 MHz operation at full temperature range  
• 32-bit Peripheral Control Processor with single cycle instruction (PCP2)  
– 8 Kbyte Parameter Memory (PRAM)  
– 16 Kbyte Code Memory (CMEM)  
– 133 MHz operation at full temperature range  
• Multiple on-chip memories  
– 72 Kbyte Data Memory (LDRAM)  
– 24 Kbyte Code Scratchpad Memory (SPRAM)  
– 2 Mbyte Program Flash Memory (PFlash)  
– 64 Kbyte Data Flash Memory (DFlash, represents 16 Kbyte EEPROM)  
– Instruction Cache: up to 8 Kbyte (ICACHE, configurable)  
– Data Cache: up to 4 Kbyte (DCACHE, configurable)  
– 8 Kbyte Overlay Memory (OVRAM)  
– 16 Kbyte BootROM (BROM)  
• 8-Channel DMA Controller  
• Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels  
serviced by CPU or PCP2  
• High performing on-chip bus structure  
– 64-bit Local Memory Buses between CPU, Flash and Data Memory  
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units  
– One bus bridge (LFI Bridge)  
• Versatile On-chip Peripheral Units  
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,  
parity, framing and overrun error detection  
– Two High-Speed Synchronous Serial Channels (SSC) with programmable data  
length and shift direction  
– One serial Micro Second Bus interface (MSC) for serial port expansion to external  
power devices  
– One High-Speed Micro Link interface (MLI) for serial inter-processor  
communication  
– One MultiCAN Module with 2 CAN nodes and 64 free assignable message objects  
for high efficiency data handling via FIFO buffering and gateway data transfer  
– One General Purpose Timer Array Modules (GPTA) with additional Local Timer  
Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer  
functionality to realize autonomous and complex Input/Output management  
• 32 analog input lines for ADC  
Data Sheet  
4
V1.3, 2009-09  
TC1767  
Summary of Features  
– 2 independent kernels (ADC0, ADC1)  
– Analog supply voltage range from 3.3 V to 5 V (single supply)  
– Performance for 12 bit resolution (@fADCI = 10 MHz)  
• 4 different FADC input channels  
• Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz)  
– 10-bit A/D conversion (higher resolution can be achieved by averaging of  
consecutive conversions in digital data reduction filter)  
• 88 digital general purpose I/O lines (GPIO), 4 input lines  
• Digital I/O ports with 3.3 V capability  
• On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)  
• Dedicated Emulation Device chip available (TC1767ED)  
– multi-core debugging, real time tracing, and calibration  
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface  
• Power Management System  
• Clock Generation Unit with PLL  
• Core supply voltage of 1.5 V  
• I/O voltage of 3.3 V  
• Full automotive temperature range: -40° to +125°C  
• Package variant: PG-LQFP-176-5  
Data Sheet  
5
V1.3, 2009-09  
TC1767  
Summary of Features  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• The derivative itself, i.e. its function set, the temperature range, and the supply  
voltage  
• The package and the type of delivery.  
For the available ordering codes for the TC1767 please refer to the “Product Catalog  
Microcontrollers”, which summarizes all available microcontroller variants.  
This document describes the derivatives of the device.The Table 1 enumerates these  
derivatives and summarizes the differences.  
Table 1  
TC1767 Derivative Synopsis  
Derivative  
Ambient Temperature Range  
TA = -40oC to +125oC  
TA = -40oC to +125oC  
CPU frequency  
133 MHz  
SAK-TC1767-256F133HL  
SAK-TC1767-256F80HL  
80 MHz  
Data Sheet  
6
V1.3, 2009-09  
TC1767  
Introduction  
2
Introduction  
This Data Sheet describes the Infineon TC1767, a 32-bit microcontroller DSP, based on  
the Infineon TriCore Architecture.  
2.1  
About this Document  
This document is designed to be read primarily by design engineers and software  
engineers who need a detailed description of the interactions of the TC1767 functional  
units, registers, instructions, and exceptions.  
This TC1767 Data Sheet describes the features of the TC1767 with respect to the  
TriCore Architecture. Where the TC1767 directly implements TriCore architectural  
functions, this manual simply refers to those functions as features of the TC1767. In all  
cases where this manual describes a TC1767 feature without referring to the TriCore  
Architecture, this means that the TC1767 is a direct implementation of the TriCore  
Architecture.  
Where the TC1767 implements a subset of TriCore architectural features, this manual  
describes the TC1767 implementation, and then describes how it differs from the TriCore  
Architecture. Such differences between the TC1767 and the TriCore Architecture are  
documented in the section covering each such subject.  
2.1.1  
Related Documentations  
A complete description of the TriCore architecture is found in the document entitled  
“TriCore Architecture Manual”. The architecture of the TC1767 is described separately  
this way because of the configurable nature of the TriCore specification: Different  
versions of the architecture may contain a different mix of systems components. The  
TriCore architecture, however, remains constant across all derivative designs in order to  
preserve compatibility.  
This Data Sheets together with the “TriCore Architecture Manual” are required to  
understand the complete TC1767 micro controller functionality.  
2.1.2  
Text Conventions  
This document uses the following text conventions for named components of the  
TC1767:  
• Functional units of the TC1767 are given in plain UPPER CASE. For example: “The  
SSC supports full-duplex and half-duplex synchronous communication”.  
• Pins using negative logic are indicated by an overline. For example: “The external  
reset pin, ESR0, has a dual function.”.  
• Bit fields and bits in registers are in general referenced as  
“Module_Register name.Bit field” or “Module_Register name.Bit”. For example: “The  
Current CPU Priority Number bit field CPU_ICR.CCPN is cleared”. Most of the  
Data Sheet  
7
V1.3, 2009-09  
TC1767  
Introduction  
register names contain a module name prefix, separated by an underscore character  
“_” from the actual register name (for example, “ASC0_CON”, where “ASC0” is the  
module name prefix, and “CON” is the kernel register name). In chapters describing  
the kernels of the peripheral modules, the registers are mainly referenced with their  
kernel register names. The peripheral module implementation sections mainly refer  
to the actual register names with module prefixes.  
• Variables used to describe sets of processing units or registers appear in mixed  
upper and lower cases. For example, register name “MSGCFGn” refers to multiple  
“MSGCFG” registers with variable n. The bounds of the variables are always given  
where the register expression is first used (for example, “n = 0-31”), and are repeated  
as needed in the rest of the text.  
• The default radix is decimal. Hexadecimal constants are suffixed with a subscript  
letter “H”, as in 100H. Binary constants are suffixed with a subscript letter “B”, as in:  
111B.  
• When the extent of register fields, groups register bits, or groups of pins are  
collectively named in the body of the document, they are represented as  
“NAME[A:B]”, which defines a range for the named group from B to A. Individual bits,  
signals, or pins are given as “NAME[C]” where the range of the variable C is given in  
the text. For example: CFG[2:0] and SRPN[0].  
• Units are abbreviated as follows:  
MHz = Megahertz  
µs = Microseconds  
kBaud, kbit = 1000 characters/bits per second  
MBaud, Mbit = 1,000,000 characters/bits per second  
Kbyte, KB = 1024 bytes of memory  
Mbyte, MB = 1048576 bytes of memory  
In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by  
1024. Hence, the Kbyte unit scales the expression preceding it by 1024. The  
kBaud unit scales the expression preceding it by 1000. The M prefix scales by  
1,000,000 or 1048576, and µ scales by .000001. For example, 1 Kbyte is  
1024 bytes, 1 Mbyte is 1024 × 1024 bytes, 1 kBaud/kbit are 1000 characters/bits  
per second, 1 MBaud/Mbit are 1000000 characters/bits per second, and 1 MHz is  
1,000,000 Hz.  
• Data format quantities are defined as follows:  
Byte = 8-bit quantity  
Half-word = 16-bit quantity  
Word = 32-bit quantity  
Double-word = 64-bit quantity  
Data Sheet  
8
V1.3, 2009-09  
TC1767  
Introduction  
2.1.3  
Reserved, Undefined, and Unimplemented Terminology  
In tables where register bit fields are defined, the following conventions are used to  
indicate undefined and unimplemented function. Furthermore, types of bits and bit fields  
are defined using the abbreviations as shown in Table 2.  
Table 2  
Bit Function Terminology  
Function of Bits  
Description  
Unimplemented,  
Reserved  
Register bit fields named 0 indicate unimplemented functions  
with the following behavior.  
• Reading these bit fields returns 0.  
• These bit fields should be written with 0 if the bit field is  
defined as r or rh.  
• These bit fields have to be written with 0 if the bit field is  
defined as rw.  
These bit fields are reserved. The detailed description of these  
bit fields can be found in the register descriptions.  
rw  
rwh  
r
The bit or bit field can be read and written.  
As rw, but bit or bit field can be also set or reset by hardware.  
The bit or bit field can only be read (read-only).  
w
The bit or bit field can only be written (write-only). A read to this  
register will always give a default value back.  
rh  
s
This bit or bit field can be modified by hardware (read-hardware,  
typical example: status flags). A read of this bit or bit field give  
the actual status of this bit or bit field back. Writing to this bit or  
bit field has no effect to the setting of this bit or bit field.  
Bits with this attribute are “sticky” in one direction. If their reset  
value is once overwritten by software, they can be switched  
again into their reset state only by a reset operation. Software  
cannot switch this type of bit into its reset state by writing the  
register. This attribute can be combined to “rws” or “rwhs”.  
f
Bits with this attribute are readable only when they are accessed  
by an instruction fetch. Normal data read operations will return  
other values.  
2.1.4  
Register Access Modes  
Read and write access to registers and memory locations are sometimes restricted. In  
memory and register access tables, the terms as defined in Table 3 are used.  
Data Sheet  
9
V1.3, 2009-09  
TC1767  
Introduction  
Table 3  
Symbol  
U
Access Terms  
Description  
Access Mode: Access permitted in User Mode 0 or 1.  
Reset Value: Value or bit is not changed by a reset operation.  
Access permitted in Supervisor Mode.  
SV  
R
Read-only register.  
32  
Only 32-bit word accesses are permitted to this register/address range.  
Endinit-protected register/address.  
E
PW  
NC  
BE  
nBE  
Password-protected register/address.  
No change, indicated register is not changed.  
Indicates that an access to this address range generates a Bus Error.  
Indicates that no Bus Error is generated when accessing this address  
range, even though it is either an access to an undefined address or the  
access does not follow the given rules.  
nE  
Indicates that no Error is generated when accessing this address or  
address range, even though the access is to an undefined address or  
address range. True for CPU accesses (MTCR/MFCR) to undefined  
addresses in the CSFR range.  
2.1.5  
Abbreviations and Acronyms  
The following acronyms and terms are used in this document:  
ADC  
Analog-to-Digital Converter  
Address General Purpose Register  
Arithmetic and Logic Unit  
Asynchronous/Synchronous Serial Controller  
Bus Control Unit  
AGPR  
ALU  
ASC  
BCU  
BROM  
CAN  
Boot ROM & Test ROM  
Controller Area Network  
CMEM  
CISC  
CPS  
PCP Code Memory  
Complex Instruction Set Computing  
CPU Slave Interface  
CPU  
Central Processing Unit  
Data Sheet  
10  
V1.3, 2009-09  
TC1767  
Introduction  
CSA  
Context Save Area  
CSFR  
DAP  
Core Special Function Register  
Device Access Port  
DAS  
Device Access Server  
DCACHE  
DFLASH  
DGPR  
DMA  
DMI  
Data Cache  
Data Flash Memory  
Data General Purpose Register  
Direct Memory Access  
Data Memory Interface  
External Request Unit  
ERU  
EMI  
Electro-Magnetic Interference  
Fast Analog-to-Digital Converter  
Flash Array Module  
FADC  
FAM  
FCS  
Flash Command State Machine  
Flash Interface and Control Module  
Flexible Peripheral Interconnect (Bus)  
Floating Point Unit  
FIM  
FPI  
FPU  
GPIO  
GPR  
GPTA  
ICACHE  
I/O  
General Purpose Input/Output  
General Purpose Register  
General Purpose Timer Array  
Instruction Cache  
Input / Output  
JTAG  
LBCU  
LDRAM  
LFI  
Joint Test Action Group = IEEE1149.1  
Local Memory Bus Control Unit  
Local Data RAM  
Local Memory-to-FPI Bus Interface  
Local Memory Bus  
LMB  
LTC  
Local Timer Cell  
MLI  
Micro Link Interface  
MMU  
MSB  
MSC  
Memory Management Unit  
Most Significant Bit  
Micro Second Channel  
Data Sheet  
11  
V1.3, 2009-09  
TC1767  
Introduction  
NC  
Non Connect  
NMI  
Non-Maskable Interrupt  
On-Chip Debug Support  
Overlay Memory  
OCDS  
OVRAM  
PCP  
Peripheral Control Processor  
Program Memory Unit  
Phase Locked Loop  
PMU  
PLL  
PFLASH  
PMI  
Program Flash Memory  
Program Memory Interface  
Program Memory Unit  
PCP Parameter RAM  
Random Access Memory  
Reduced Instruction Set Computing  
System Peripheral Bus Control Unit  
System Control Unit  
PMU  
PRAM  
RAM  
RISC  
SBCU  
SCU  
SFR  
Special Function Register  
System Peripheral Bus  
Scratch-Pad RAM  
SPB  
SPRAM  
SRAM  
SRN  
Static Data Memory  
Service Request Node  
Synchronous Serial Controller  
System Timer  
SSC  
STM  
WDT  
Watchdog Timer  
Data Sheet  
12  
V1.3, 2009-09  
TC1767  
Introduction  
2.2  
System Architecture of the TC1767  
The TC1767 combines three powerful technologies within one silicon die, achieving new  
levels of power, speed, and economy for embedded applications:  
• Reduced Instruction Set Computing (RISC) processor architecture  
• Digital Signal Processing (DSP) operations and addressing modes  
• On-chip memories and peripherals  
DSP operations and addressing modes provide the computational power necessary to  
efficiently analyze complex real-world signals. The RISC load/store architecture  
provides high computational bandwidth with low system cost. On-chip memory and  
peripherals are designed to support even the most demanding high-bandwidth real-time  
embedded control-systems tasks.  
Additional high-level features of the TC1767 include:  
• Program Memory Unit – instruction memory and instruction cache  
• Serial communication interfaces – flexible synchronous and asynchronous modes  
• Peripheral Control Processor – standalone data operations and interrupt servicing  
• DMA Controller – DMA operations and interrupt servicing  
• General-purpose timers  
• High-performance on-chip buses  
• On-chip debugging and emulation facilities  
• Flexible interconnections to external components  
• Flexible power-management  
TC1767 clock frequencies:  
• Maximum CPU clock frequency: 133 MHz1)  
• Maximum PCP clock frequency: 133 MHz2)  
• Maximum SPB frequency: 80 MHz3)  
The TC1767 is a high-performance microcontroller with TriCore CPU, program and data  
memories, buses, bus arbitration, an interrupt controller, a peripheral control processor,  
a DMA controller and several on-chip peripherals. The TC1767 is designed to meet the  
needs of the most demanding embedded control systems applications where the  
competing issues of price/performance, real-time responsiveness, computational power,  
data bandwidth, and power consumption are key design elements.  
The TC1767 offers several versatile on-chip peripheral units such as serial controllers,  
timer units, and Analog-to-Digital converters. Within the TC1767, all these peripheral  
units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect  
(FPI) Bus and the Local Memory Bus (LMB). Several I/O lines on the TC1767 ports are  
reserved for these peripheral units to communicate with the external world.  
1) For CPU frequencies > 80 MHz, 2:1 mode has to be enabled. CPU 2:1 mode means: fSPB = 0.5 * fCPU  
2) For PCP frequencies > 80 MHz, 2:1 mode has to be enabled. PCP 2:1 mode means: fSPB = 0.5 * fPCP  
3) CPU 1:1 Mode means: fSPB = fCPU . PCP 1:1 mode means: fSPB = fPCP  
Data Sheet  
13  
V1.3, 2009-09  
TC1767  
Introduction  
2.2.1  
TC1767 Block Diagram  
Figure 1 shows the block diagram of the TC1767.  
Abbreviations:  
ICACHE:  
DCACHE  
SPRAM :  
LDRAM:  
OVRAM:  
BROM:  
Instruction Cache  
Data Cache  
Scratch-Pad RAM  
Local Data RAM  
Overlay RAM  
Boot ROM  
Program Flash  
Data Flash  
Parameter RAM in PCP  
Code RAM in PCP  
FPU  
PMI  
DMI  
68KB LDRAM  
4 KB DCACHE  
16 KB SPRAM  
8 KB ICACHE  
(Configurable)  
TriCore  
CPU  
PFlash:  
(Configurable)  
DFlash:  
PRAM:  
CPS  
CMEM:  
LBCU  
Local Memory Bus(LMB)  
1,5V, 3.3V  
Ext. supply  
M
PMU  
2 MB PFlash  
64 KB DFlash  
8 KB OVRAM  
16 KB BROM  
DMA  
LFI Bridge  
(8 Channels)  
OCDS Debug  
Interface/  
JTAG  
M/S  
MLI0  
8 KB PRAM  
STM  
SCU  
Memcheck  
Interrupt  
System  
PCP2  
Core  
ASC0  
ASC1  
5V  
Ports  
Ext. ADC supply  
16 KB CMEM  
ADC0  
16 Channels  
28  
(5V max)  
SSC0  
SSC1  
ADC1  
fPLL  
SBCU  
PLL  
16 Channels  
GTPA0  
LTCA2  
4
FADC (3.3V)  
4diff ch .  
(3.3V max)  
4
Multi  
Ext.  
Request  
Unit  
MSC0  
CAN  
(LVDS)  
(2 Nodes,  
64 Buffer)  
BlockDiagram  
TC 1767  
LQFP -176  
Figure 1  
TC1767 Block Diagram  
Data Sheet  
14  
V1.3, 2009-09  
TC1767  
Introduction  
2.2.2  
System Features of the TC1767 device  
The TC1767 has the following features:  
Packages  
• PG-LQFP-176-5 package, 0.5 mm pitch  
Clock Frequencies  
• Maximum CPU clock frequency: 133 MHz1)  
• Maximum PCP clock frequency: 133 MHz2)  
• Maximum SPB clock frequency: 80 MHz3)  
1) For CPU frequencies > 80 MHz, 2:1 mode has to be enabled. CPU 2:1 mode means: fSPB = 0.5 * fCPU  
2) For PCP frequencies > 80 MHz, 2:1 mode has to be enabled. PCP 2:1 mode means: fSPB = 0.5 * fPCP  
3) CPU 1:1 Mode means: fSPB = fCPU . PCP 1:1 mode means: fSPB = fPCP  
Data Sheet  
15  
V1.3, 2009-09  
TC1767  
Introduction  
2.2.3  
On Chip CPU Cores  
The TC1767 includes a high Performance CPU and a Peripheral Control Processor.  
.
2.2.3.1  
High-performance 32-bit CPU  
This chapter gives an overview about the TriCore 1 architecture.  
TriCore (TC1.3.1) Architectural Highlights  
• Unified RISC MCU/DSP  
• 32-bit architecture with 4 Gbytes unified data, program, and input/output address  
space  
• Fast automatic context-switching  
• Multiply-accumulate unit  
• Floating point unit  
• Saturating integer arithmetic  
• High-performance on-chip peripheral bus (FPI Bus)  
• Register based design with multiple variable register banks  
• Bit handling  
• Packed data operations  
• Zero overhead loop  
• Precise exceptions  
• Flexible power management  
High-efficiency TriCore Instruction Set  
• 16/32-bit instructions for reduced code size  
• Data types include: Boolean, array of bits, character, signed and unsigned integer,  
integer with saturation, signed fraction, double-word integers, and IEEE-754 single-  
precision floating point  
• Data formats include: Bit, 8-bit byte, 16-bit half-word, 32-bit word, and 64-bit double-  
word data formats  
• Powerful instruction set  
• Flexible and efficient addressing mode for high code density  
Integrated CPU related On-Chip Memories  
• Instruction memory: 24 KB total. After reset, configured into:1)  
– 24 Kbyte Scratch-Pad RAM (SPRAM)  
– 0 Kbyte Instruction Cache (ICACHE)  
• Data memory: 72 KB total. After reset, configured into:1)  
1) Software configurable. Available options are described in the CPU chapter.  
Data Sheet  
16  
V1.3, 2009-09  
TC1767  
Introduction  
– 72 Kbyte Local Data RAM (LDRAM)  
– 0 Kbyte Data Cache (DACHE)  
• On-chip SRAMs with parity error detection  
2.2.3.2  
High-performance 32-bit Peripheral Control Processor  
The PCP is a flexible Peripheral Control Processor optimized for interrupt handling and  
thus unloading the CPU.  
Features  
• Data move between any two memory or I/O locations  
• Data move with predefined limit supported  
• Read-Modify-Write capabilities  
• Full computation capabilities including basic MUL/DIV  
• Read/move data and accumulate it to previously read data  
• Read two data values and perform arithmetic or logical operation and store result  
• Bit-handling capabilities (testing, setting, clearing)  
• Flow control instructions (conditional/unconditional jumps, breakpoint)  
• Dedicated Interrupt System  
• PCP SRAMs with parity error detection  
• PCP/FPI clock mode 1:1 and 2:1 available  
Integrated PCP related On-Chip Memories  
• 16 Kbyte Code Memory (CMEM)  
• 8 Kbyte Parameter Memory (PRAM)  
2.3  
On Chip System Units  
The TC1767 micro controller offers several versatile on-chip system peripheral units  
such as DMA controller, embedded Flash module, interrupt system and ports.  
2.3.1  
Flexible Interrupt System  
The TC1767 includes a programmable interrupt system with the following features:  
Features  
• Fast interrupt response  
• Hardware arbitration  
• Independent interrupt systems for CPU and PCP  
• Programmable service request nodes (SRNs)  
Data Sheet  
17  
V1.3, 2009-09  
TC1767  
Introduction  
• Each SRN can be mapped to the CPU or PCP interrupt system  
• Flexible interrupt-prioritizing scheme with 255 interrupt priority levels per SRN to  
choose from  
2.3.2  
Direct Memory Access Controller  
The TC1767 includes a fast and flexible DMA controller with independant DMA channels  
( DMA Move engine).  
Features  
independent DMA channels  
– Up to 16 selectable request inputs per DMA channel  
– 2-level programmable priority of DMA channels within the DMA Sub-Block  
– Software and hardware DMA request  
– Hardware requests by selected on-chip peripherals and external inputs  
• 3-level programmable priority of the DMA Sub-Block at the on chip bus interfaces  
• Buffer capability for move actions on the buses (at least 1 move per bus is buffered)  
• Individually programmable operation modes for each DMA channel  
– Single Mode: stops and disables DMA channel after a predefined number of DMA  
transfers  
– Continuous Mode: DMA channel remains enabled after a predefined number of  
DMA transfers; DMA transaction can be repeated  
– Programmable address modification  
– Two shadow register modes (with / w/o automatic re-set and direct write access).  
• Full 32-bit addressing capability of each DMA channel  
– 4 Gbyte address range  
– Data block move supports > 32 Kbyte moves per DMA transaction  
– Circular buffer addressing mode with flexible circular buffer sizes  
• Programmable data width of DMA transfer/transaction: 8-bit, 16-bit, or 32-bit  
• Register set for each DMA channel  
– Source and destination address register  
– Channel control and status register  
– Transfer count register  
• Flexible interrupt generation (the service request node logic for the MLI channel is  
also implemented in the DMA module)  
• DMA module is working on SPB frequency, LMB interface on LMB frequency.  
• Dependant on the target/destination address, Read/write requests from the Move  
Engine are directed to the SPB, LMB, MLI or to the the Cerberus.  
Data Sheet  
18  
V1.3, 2009-09  
TC1767  
Introduction  
2.3.3  
System Timer  
The TC1767’s STM is designed for global system timing applications requiring both high  
precision and long range.  
Features  
• Free-running 56-bit counter  
• All 56 bits can be read synchronously  
• Different 32-bit portions of the 56-bit counter can be read synchronously  
• Flexible interrupt generation based on compare match with partial STM content  
• Driven by maximum 80 MHz (= fSYS, default after reset = fSYS/2)  
• Counting starts automatically after a reset operation  
• STM registers are reset by an application reset if bit ARSTDIS.STMDIS is cleared. If  
bit ARSTDIS.STMDIS is set, the STM is not reset.  
• STM can be halted in debug/suspend mode  
Special STM register semantics provide synchronous views of the entire 56-bit counter,  
or 32-bit subsets at different levels of resolution.  
The maximum clock period is 256 × fSTM. At fSTM = 80 MHz, for example, the STM counts  
28.56 years before overflowing. Thus, it is capable of continuously timing the entire  
expected product life time of a system without overflowing.  
In case of a power-on reset, a watchdog reset, or a software reset, the STM is reset. After  
one of these reset conditions, the STM is enabled and immediately starts counting up. It  
is not possible to affect the content of the timer during normal operation of the TC1767.  
The timer registers can only be read but not written to.  
The STM can be optionally disabled for power-saving purposes, or suspended for  
debugging purposes via its clock control register. In suspend mode of the TC1767  
(initiated by writing an appropriate value to STM_CLC register), the STM clock is  
stopped but all registers are still readable.  
Due to the 56-bit width of the STM, it is not possible to read its entire content with one  
instruction. It needs to be read with two load instructions. Since the timer would continue  
to count between the two load operations, there is a chance that the two values read are  
not consistent (due to possible overflow from the low part of the timer to the high part  
between the two read operations). To enable a synchronous and consistent reading of  
the STM content, a capture register (STM_CAP) is implemented. It latches the content  
of the high part of the STM each time when one of the registers STM_TIM0 to STM_TIM5  
is read. Thus, STM_CAP holds the upper value of the timer at exactly the same time  
when the lower part is read. The second read operation would then read the content of  
the STM_CAP to get the complete timer value.  
The content of the 56-bit System Timer can be compared against the content of two  
compare values stored in the STM_CMP0 and STM_CMP1 registers. Interrupts can be  
Data Sheet  
19  
V1.3, 2009-09  
TC1767  
Introduction  
generated on a compare match of the STM with the STM_CMP0 or STM_CMP1  
registers.  
Figure 2 provides an overview on the STM module. It shows the options for reading  
parts of STM content.  
STM Module  
31  
23  
15  
7
0
STM_CMP0  
Compare Register 0  
to DMA etc.  
31  
23  
15  
7
0
STM_CMP1  
Compare Register1  
STM  
IRQ0  
55  
47  
39  
31  
23  
15  
7
0
Interrupt  
Control  
STM  
IRQ1  
56-bit System Timer  
Enable /  
Disable  
00H  
00H  
STM_CAP  
STM_TIM6  
Clock  
Control  
fSTM  
STM_TIM5  
STM_TIM4  
Address  
Decoder  
STM_TIM3  
STM_TIM2  
STM_TIM1  
STM_TIM0  
PORST  
MCB06185_mod  
Figure 2  
General Block Diagram of the STM Module Registers  
Data Sheet  
20  
V1.3, 2009-09  
TC1767  
Introduction  
2.3.4  
System Control Unit  
The following SCU introduction gives an overview about the TC1767 System Control  
Unit (SCU).  
2.3.4.1 Clock Generation Unit  
The Clock Generation Unit (CGU) allows a very flexible clock generation for the TC1767.  
During user program execution the frequency can be programmed for an optimal ratio  
between performance and power consumption.  
2.3.4.2 Features of the Watchdog Timer  
The main features of the WDT are summarized here.  
• 16-bit Watchdog counter  
• Selectable input frequency: fFPI/256 or fFPI/16384  
• 16-bit user-definable reload value for normal Watchdog operation, fixed reload value  
for Time-Out and Prewarning Modes  
• Incorporation of the ENDINIT bit and monitoring of its modifications  
• Sophisticated Password Access mechanism with fixed and user-definable password  
fields  
• Access Error Detection: Invalid password (during first access) or invalid guard bits  
(during second access) trigger the Watchdog reset generation  
• Overflow Error Detection: An overflow of the counter triggers the Watchdog reset  
generation  
• Watchdog function can be disabled; access protection and ENDINIT monitor function  
remain enabled  
• Double Reset Detection: If a Watchdog induced reset occurs twice, a severe system  
malfunction is assumed and the TC1767 is held in reset until a system / class 0 reset  
occurs.  
2.3.4.3 Reset Operation  
The following reset request triggers are available:  
• 1 External power-on hardware reset request trigger; PORST, (cold reset)  
• 2 External System Request reset triggers; ESR0 and ESR1 (warm reset)  
• Watchdog Timer (WDT) reset request trigger, (warm reset)  
• Software reset (SW), (warm reset)  
• Debug (OCDS) reset request trigger, (warm reset)  
• JTAG reset (special reset)  
• Resets via the JTAG interface  
Note: The JTAG and OCDS resets are described in the OCDS chapter.  
There are two basic types of reset request triggers:  
Data Sheet  
21  
V1.3, 2009-09  
TC1767  
Introduction  
• Trigger sources that do not depend on a clock, such as the PORST. This trigger force  
the device into an asynchronous reset assertion independently of any clock. The  
activation of an asynchronous reset is asynchronous to the system clock, whereas  
its de-assertion is synchronized.  
• Trigger sources that need a clock in order to be asserted, such as the input signals  
ESR0, and ESR1, the WDT trigger, the parity trigger, or the SW trigger.  
2.3.4.4 External Interface  
The SCU provides interface pads for system purpose. Various functions are covered by  
these pins. Due to the different tasks some of the pads can not be shared with other  
functions but most of them can be shared with other functions. The following functions  
are covered by the SCU controlled pads:  
• Reset request triggers  
• Reset indication  
• Trap request triggers  
• Interrupt request triggers  
• Non SCU module triggers  
The first three points are covered by the ESR pads and the last two points by the ERU  
pads.  
2.3.4.5 Die Temperature Measurement  
The Die Temperature Sensor (DTS) generates a measurement result that indicates  
directly the current temperature. The result of the measurement can be read via an DTS  
register.  
2.3.5  
General Purpose I/O Ports and Peripheral I/O Lines  
The TC1767 includes a flexible Ports structure with the following features:  
Features  
• Digital General-Purpose Input/Output (GPIO) port lines  
• Input/output functionality individually programmable for each port line  
• Programmable input characteristics (pull-up, pull-down, no pull device)  
• Programmable output driver strength for EMI minimization (weak, medium, strong)  
• Programmable output characteristics (push-pull, open drain)  
• Programmable alternate output functions  
• Output lines of each port can be updated port-wise or set/reset/toggled bit-wise  
Data Sheet  
22  
V1.3, 2009-09  
TC1767  
Introduction  
2.3.6  
Program Memory Unit (PMU)  
The devices of the AudoF family contain at least one Program Memory Unit. This is  
named “PMU0”. Some devices contain additional PMUs which are named “PMU1”, …  
In the TC1767, the PMU0 contains the following submodules:  
• The Flash command and fetch control interface for Program Flash and Data Flash.  
• The Overlay RAM interface with Online Data Acquisition (OLDA) support.  
• The Boot ROM interface.  
• The Emulation Memory interface.  
• The Local Memory Bus LMB slave interface.  
Following memories are controlled by and belong to the PMU0:  
• 2 Mbyte of Program Flash memory (PFlash)  
• 64 Kbyte of Data Flash memory (DFlash, represents 16 Kbyte EEPROM)  
• 16 Kbyte of Boot ROM (BROM)  
• 8 Kbyte Overlay RAM (OVRAM)  
The following figure shows the block diagram of the PMU0:  
To/From  
Local Memory Bus  
64  
LMB Interface  
PMU0  
Slave  
Overlay RAM  
PMU  
Control  
Interface  
64  
64  
ROM Control  
64  
64  
OVRAM  
Flash Interface Module  
64  
64  
BROM  
DFLASH  
PFLASH  
Emulation  
Memory  
Interface  
PMU0_BasicBlockDiag_generic  
Emulation Memory  
(ED chip only)  
Figure 3  
PMU0 Basic Block Diagram  
Data Sheet  
23  
V1.3, 2009-09  
TC1767  
Introduction  
2.3.6.1 Boot ROM  
The internal 16 Kbyte Boot ROM (BROM) is divided into two parts, used for:  
• firmware (Boot ROM), and  
• factory test routines (Test ROM).  
The different sections of the firmware in Boot ROM provide startup and boot operations  
after reset. The TestROM is reserved for special routines, which are used for testing,  
stressing and qualification of the component.  
2.3.6.2 Overlay RAM and Data Acquisition  
The overlay memory OVRAM is provided in the PMU especially for redirection of data  
accesses to program memory to the OVRAM by using the data overlay function. The  
data overlay functionality itself is controlled in the DMI module.  
For online data acquisition (OLDA) of application or calibration data a virtual 32 KB  
memory range is provided which can be accessed without error reporting. Accesses to  
this OLDA range can also be redirected to an overlay memory.  
2.3.6.3 Emulation Memory Interface  
In TC1767 Emulation Device, an Emulation Memory (EMEM) is provided, which can fully  
be used for calibration via program memory or OLDA overlay. The Emulation Memory  
interface shown in Figure 3 is a 64-bit wide memory interface that controls the CPU-  
accesses to the Emulation Memory in the TC1767 Emulation Device. In the TC1767  
production device, the EMEM interface is always disabled.  
2.3.6.4 Tuning Protection  
Tuning protection is required by the user to absolutely protect control data (e.g. for  
engine control), serial number and user software, stored in the Flash, from being  
manipulated, and to safely detect changed or disturbed data. For the internal Flash,  
these protection requirements are excellently fulfilled in the TC1767 with  
• Flash read and write protection with user-specific protection levels, and with  
• dedicated HW and firmware, supporting the internal Flash read protection, and with  
• the Alternate Boot Mode.  
Special tuning protection support is provided for external Flash, which must also be  
protected.  
2.3.6.5 Program and Data Flash  
The embedded Flash module of PMU0 includes 2 Mbyte of Flash memory for code or  
constant data (called Program Flash) and additionally 64 Kbyte of Flash memory used  
for emulation of EEPROM data (called Data Flash). The Program Flash is realized as  
Data Sheet  
24  
V1.3, 2009-09  
TC1767  
Introduction  
one independent Flash bank, whereas the Data Flash is built of two Flash banks,  
allowing the following combinations of concurrent Flash operations:  
• Read code or data from Program Flash, while one bank of Data Flash is busy with a  
program or erase operation.  
• Read data from one bank of Data Flash, while the other bank of Data Flash is busy  
with a program or erase operation.  
• Program one bank of Data Flash while erasing the other bank of Data Flash, read  
from Program Flash.  
Both, the Program Flash and the Data Flash, provide error correction of single-bit errors  
within a 64-bit read double-word, resulting in an extremely low failure rate. Read  
accesses to Program Flash are executed in 256-bit width, to Data Flash in 64-bit width  
(both plus ECC). Single-cycle burst transfers of up to 4 double-words and sequential  
prefetching with control of prefetch hit are supported for Program Flash.  
The minimum programming width is the page, including 256 bytes in Program Flash and  
128 bytes in Data Flash. Concurrent programming and erasing in Data Flash is  
performed using an automatic erase suspend and resume function.  
A basic block diagram of the Flash Module is shown in the following figure.  
Redundancy  
Control  
FSI  
Voltage Control  
Control  
Control  
Flash Command  
State Machine FCS  
SFRs  
FSRAM  
Microcode  
Address  
Addr Bus  
Write Bus  
Page  
Write  
Buffers  
256 byte  
and  
Program  
Flash  
64  
64  
WR_DATA  
128 byte  
8
8
PF-Read  
Buffer  
256+32 bit  
and  
ECC Code  
Bank 0  
Bank 1  
ECC Block  
Data  
Flash  
64  
DF-Read  
Buffer  
64+8 bit  
Read Bus  
64  
RD_DATA  
Flash Array Module  
FAM  
Flash Interface&Control Module  
FIM  
PMU  
Flash FSI & Array  
Flash_BasicBlockDiagram_generic.vsd  
Figure 4  
Basic Block Diagram of Flash Module  
All Flash operations are controlled simply by transferring command sequences to the  
Flash which are based on JEDEC standard. This user interface of the embedded Flash  
is very comfortable, because all operations are controlled with high level commands,  
such as “Erase Sector”. State transitions, such as termination of command execution, or  
errors are reported to the user by maskable interrupts. Command sequences are  
Data Sheet  
25  
V1.3, 2009-09  
TC1767  
Introduction  
normally written to Flash by the CPU, but may also be issued by the DMA controller (or  
OCDS).  
The Flash also features an advanced read/write protection architecture, including a read  
protection for the whole Flash array (optionally without Data Flash) and separate write  
protection for all sectors (only Program Flash). Write protected sectors can be made re-  
programmable (enabled with passwords), or they can be locked for ever (ROM function).  
Each sector can be assigned to up to three different users for write protection. The  
different users are organized hierarchically.  
Program Flash Features and Functions  
• 2 Mbyte on-chip Program Flash in PMU0.  
• Any use for instruction code or constant data.  
• 256 bit read interface (burst transfer operation).  
• Dynamic correction of single-bit errors during read access.  
• Transfer rate in burst mode: One 64-bit double-word per clock cycle.  
• Sector architecture:  
– Eight 16 Kbyte, one 128 Kbyte and seven 256 Kbyte sectors.  
– Each sector separately erasable.  
– Each sector lockable for protection against erase and program (write protection).  
• One additional configuration sector (not accessible to the user).  
• Optional read protection for whole Flash, with sophisticated read access supervision.  
Combined with whole Flash write protection — thus supporting protection against  
Trojan horse programs.  
• Sector specific write protection with support of re-programmability or locked forever.  
• Comfortable password checking for temporary disable of write or read protection.  
• User controlled configuration blocks (UCB) in configuration sector for keywords and  
for sector-specific lock bits (one block for every user; up to three users).  
• Pad supply voltage (VDDP) also used for program and erase (no VPP pin).  
• Efficient 256 byte page program operation.  
• All Flash operations controlled by CPU per command sequences (unlock sequences)  
for protection against unintended operation.  
• End-of-busy as well as error reporting with interrupt and bus error trap.  
• Write state machine for automatic program and erase, including verification of  
operation quality.  
• Support of margin check.  
• Delivery in erased state (read all zeros).  
• Global and sector status information.  
• Overlay support with SRAM for calibration applications.  
• Configurable wait state selection for different CPU frequencies.  
• Endurance = 1000; minimum 1000 program/erase cycles per physical sector;  
reduced endurance of 100 per 16 KB sector.  
• Operating lifetime (incl. Retention): 20 years with endurance=1000.  
Data Sheet  
26  
V1.3, 2009-09  
TC1767  
Introduction  
• For further operating conditions see data sheet section “Flash Memory Parameters”.  
Data Flash Features and Functions  
• 64 Kbyte on-chip Flash, configured in two independent Flash banks of equal size.  
• 64 bit read interface.  
• Erase/program one bank while data read access from the other bank.  
• Programming one bank while erasing the other bank using an automatic  
suspend/resume function.  
• Dynamic correction of single-bit errors during read access.  
• Sector architecture:  
– Two sectors of equal size.  
– Each sector separately erasable.  
• 128 byte pages to be written in one step.  
• Operational control per command sequences (unlock sequences, same as those of  
Program Flash) for protection against unintended operation.  
• End-of-busy as well as error reporting with interrupt and bus error trap.  
• Write state machine for automatic program and erase.  
• Margin check for detection of problematic Flash bits.  
• Endurance = 30000 (can be device dependent); i.e. 30000 program/erase cycles per  
sector are allowed, with a retention of min. 5 years.  
• Dedicated DFlash status information.  
• Other characteristics: Same as Program Flash.  
2.3.7  
Data Access Overlay  
The data overlay functionality provides the capability to redirect data accesses by the  
TriCore to program memory (segments 8H and AH) called “target memory” to a different  
memory called “overlay memory”.  
Depending on the device the following overlay memories can be available:  
• Overlay SRAM in the PMU.  
• Emulation Memory1).  
• External memory2).  
This functionality makes it possible, for example, to modify the application’s test and  
calibration parameters (which are typically stored in the program memory) during run  
time of a program.  
As the address translation is implemented in the DMI, it affects only data accesses  
(reads and writes) of the TriCore. Instruction fetches by the TriCore or accesses by any  
other master (including the debug interface) are not redirected.  
1) Only available in Emulation Device “ED”.  
2) Only available in Emulation Device with EBU.  
Data Sheet  
27  
V1.3, 2009-09  
TC1767  
Introduction  
Summary of Features and Functions  
• 16 overlay ranges (“blocks”) configurable.  
• Support of 8 Kbyte embedded Overlay SRAM (OVRAM) in PMU.  
• Support of up to 256 Kbyte overlay/calibration memory (EMEM)1).  
• Support of up to 2 MB overlay memory in external memory (EBU space)2).  
• Support of Online Data Acquisition into range of up to 32 KB and of its overlay.  
• Support of different overlay memory selections for every enabled overlay block.  
• Sizes of overlay blocks selectable depending on the overlay memory:  
– OVRAM: from 16 byte to 2 Kbyte.  
– EMEM1) and external memory2): 1 Kbyte to 128 Kbyte.  
• All configured overlay ranges can be enabled with only one register write access.  
• Programmable flush (invalidate) control for data cache in DMI.  
2.3.8  
TC1767 Development Support  
Overview about the TC1767 development environment:  
Complete Development Support  
A variety of software and hardware development tools for the 32-bit microcontroller  
TC1767 are available from experienced international tool suppliers. The development  
environment for the Infineon 32-bit microcontroller includes the following tools:  
• Embedded Development Environment for TriCore Products  
• The TC1767 On-chip Debug Support (OCDS) provides a JTAG port for  
communication between external hardware and the system  
• The System Timer (STM) with high-precision, long-range timing capabilities  
• The TC1767 includes a power management system, a watchdog timer as well as  
reset logic  
Data Sheet  
28  
V1.3, 2009-09  
TC1767  
Introduction  
2.4  
On-Chip Peripheral Units  
The TC1767 micro controller offers several versatile on-chip peripheral units such as  
serial controllers, timer units, and Analog-to-Digital converters. Several I/O lines on the  
TC1767 ports are reserved for these peripheral units to communicate with the external  
world.  
On-Chip Peripheral Units  
• Two Asynchronous/Synchronous Serial Channels (ASC) with baud-rate generator,  
parity, framing and overrun error detection  
• Two Synchronous Serial Channels (SSC) with programmable data length and shift  
direction  
• One Micro Second Bus Interface (MSC) for serial communication  
• One CAN Module (MultiCAN) for high-efficiency data handling via FIFO buffering and  
gateway data transfer  
• One Micro Link Serial Bus Interfaces (MLI) for serial multiprocessor communication  
• One General Purpose Timer Array (GPTA) with a powerful set of digital signal filtering  
and timer functionality to accomplish autonomous and complex Input/Output  
management  
• Two Analog-to-Digital Converter Units (ADC0, ADC1) with 8-bit, 10-bit, or 12-bit  
resolution.  
• One fast Analog-to-Digital Converter Unit (FADC)  
2.4.1  
Asynchronous/Synchronous Serial Interfaces  
The TC1767 includes two Asynchronous/Synchronous Serial Interfaces, ASC0 and  
ASC1. Both ASC modules have the same functionality.  
Figure 5 shows a global view of the Asynchronous/Synchronous Serial Interface (ASC).  
Data Sheet  
29  
V1.3, 2009-09  
TC1767  
Introduction  
fASC  
Clock  
Control  
RXD  
TXD  
RXD  
TXD  
Address  
Decoder  
ASC  
Module  
(Kernel)  
Port  
Control  
EIR  
TBIR  
TIR  
RIR  
Interrupt  
Control  
To DMA  
MCB05762_mod  
Figure 5  
General Block Diagram of the ASC Interface  
The ASC provides serial communication between the TC1767 and other  
microcontrollers, microprocessors, or external peripherals.  
The ASC supports full-duplex asynchronous communication and half-duplex  
synchronous communication. In Synchronous Mode, data is transmitted or received  
synchronous to a shift clock that is generated by the ASC internally. In Asynchronous  
Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be  
selected. Parity, framing, and overrun error detection are provided to increase the  
reliability of data transfers. Transmission and reception of data is double-buffered. For  
multiprocessor communication, a mechanism is included to distinguish address bytes  
from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator  
provides the ASC with a separate serial clock signal, which can be accurately adjusted  
by a prescaler implemented as fractional divider.  
Data Sheet  
30  
V1.3, 2009-09  
TC1767  
Introduction  
Features  
• Full-duplex asynchronous operating modes  
– 8-bit or 9-bit data frames, LSB first  
– Parity-bit generation/checking  
– One or two stop bits  
– Baud rate from 5.0 Mbit/s to 1.19 bit/s (@ 80 MHz module clock)  
– Multiprocessor mode for automatic address/data byte detection  
– Loop-back capability  
• Half-duplex 8-bit synchronous operating mode  
– Baud rate from 10.0 Mbit/s to 813.8 bit/s (@ 80 MHz module clock)  
• Double-buffered transmitter/receiver  
• Interrupt generation  
– On a transmit buffer empty condition  
– On a transmit last bit of a frame condition  
– On a receive buffer full condition  
– On an error condition (frame, parity, overrun error)  
• Implementation features  
– Connections to DMA Controller  
– Connections of receiver input to GPTA (LTC) for baud rate detection and LIN break  
signal measuring  
2.4.2  
High-Speed Synchronous Serial Interfaces  
The TC1767 includes two High-Speed Synchronous Serial Interfaces, SSC0 and SSC1.  
Both SSC modules have the same functionality.  
Figure 6 shows a global view of the Synchronous Serial interface (SSC).  
Data Sheet  
31  
V1.3, 2009-09  
TC1767  
Introduction  
MRSTA  
MRSTB  
MTSR  
fSSC  
fCLC  
Master  
Clock  
Control  
MTSR  
MTSRA  
MTSRB  
MRST  
Slave  
Slave  
MRST  
Address  
Decoder  
SCLKA  
SCLKB  
SCLK  
SSC  
Module  
(Kernel)  
Port  
Control  
RIR  
TIR  
EIR  
Master  
Slave  
SCLK  
SLSI[7:1]  
Interrupt  
Control  
SLSI[7:1]  
SLSO[7:0]  
SLSOANDO[7:0]  
SLSOANDI[7:0]  
SLSO[7:0]  
SLSOANDO[7:0]  
Master  
DMA Requests  
Enable  
M/S Select  
MCB06058_mod  
Figure 6  
General Block Diagram of the SSC Interface  
The SSC supports full-duplex and half-duplex serial synchronous communication up to  
40 Mbit/s (@ 80 MHz module clock, Master Mode). The serial clock signal can be  
generated by the SSC itself (Master Mode) or can be received from an external master  
(Slave Mode). Data width, shift direction, clock polarity and phase are programmable.  
This allows communication with SPI-compatible devices. Transmission and reception of  
data are double-buffered. A shift clock generator provides the SSC with a separate serial  
clock signal. One slave select input is available for slave mode operation. Eight  
programmable slave select outputs (chip selects) are supported in Master Mode.  
Data Sheet  
32  
V1.3, 2009-09  
TC1767  
Introduction  
Features  
• Master and Slave Mode operation  
– Full-duplex or half-duplex operation  
– Automatic pad control possible  
• Flexible data format  
– Programmable number of data bits: 2 to 16 bits  
– Programmable shift direction: LSB or MSB shift first  
– Programmable clock polarity: Idle low or idle high state for the shift clock  
– Programmable clock/data phase: Data shift with leading or trailing edge of the shift  
clock  
• Baud rate generation  
– Master Mode: 40.0 Mbit/s to 610.36 bit/s (@ 80 MHz module clock)  
– Slave Mode: 20 Mbit/s to 610.36 bit/s (@ 80 MHz module clock)  
• Interrupt generation  
– On a transmitter empty condition  
– On a receiver full condition  
– On an error condition (receive, phase, baud rate, transmit error)  
• Flexible SSC pin configuration  
• Seven slave select inputs SLSI[7:1] in Slave Mode  
• Eight programmable slave select outputs SLSO in Master Mode  
– Automatic SLSO generation with programmable timing  
– Programmable active level and enable control  
Data Sheet  
33  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.3  
Micro Second Channel Interface  
The Micro Second Channel (MSC) interface provides serial communication links  
typically used to connect power switches or other peripheral devices. The serial  
communication link includes a fast synchronous downstream channel and a slow  
asynchronous upstream channel. Figure 7 shows a global view of the interface signals  
of the MSC interface.  
fMSC  
Clock  
Control  
fCLC  
FCLP  
FCLN  
SOP  
SON  
EN0  
Address  
Decoder  
MSC  
Module  
(Kernel)  
SR[3:0]  
16  
Interrupt  
Control  
EN1  
4
EN2  
To DMA  
EN3  
ALTINL[15:0]  
ALTINH[15:0]  
EMGSTOPMSC  
8
SDI[7:0]  
16  
MCB06059  
Figure 7  
General Block Diagram of the MSC Interface  
The downstream and upstream channels of the MSC module communicate with the  
external world via nine I/O lines. Eight output lines are required for the serial  
communication of the downstream channel (clock, data, and enable signals). One out of  
eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The  
source of the serial data to be transmitted by the downstream channel can be MSC  
register contents or data that is provided on the ALTINL/ALTINH input lines. These input  
lines are typically connected with other on-chip peripheral units (for example with a timer  
unit such as the GPTA). An emergency stop input signal makes it possible to set bits of  
the serial data stream to dedicated values in an emergency case.  
Clock control, address decoding, and interrupt service request control are managed  
outside the MSC module kernel. Service request outputs are able to trigger an interrupt  
or a DMA request.  
Data Sheet  
34  
V1.3, 2009-09  
TC1767  
Introduction  
Features  
• Fast synchronous serial interface to connect power switches in particular, or other  
peripheral devices via serial buses  
• High-speed synchronous serial transmission on downstream channel  
– Serial output clock frequency: fFCL = fMSC/2  
– Fractional clock divider for precise frequency control of serial clock fMSC  
– Command, data, and passive frame types  
– Start of serial frame: Software-controlled, timer-controlled, or free-running  
– Programmable upstream data frame length (16 or 12 bits)  
– Transmission with or without SEL bit  
– Flexible chip select generation indicates status during serial frame transmission  
– Emergency stop without CPU intervention  
• Low-speed asynchronous serial reception on upstream channel  
– Baud rate: fMSC divided by 4, 8, 16, 32, 64, 128, or 256  
– Standard asynchronous serial frames  
– Parity error checker  
– 8-to-1 input multiplexer for SDI lines  
– Built-in spike filter on SDI lines  
• Selectable pin types of downstream channel interface:  
four LVDS differential output drivers or four digital GPIO pins  
Data Sheet  
35  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.4  
MultiCAN Controller  
The MultiCAN module provides two independent CAN nodes in the PG-LQFP-176-5  
package, representing two serial communication interfaces. The number of available  
message objects is 64.  
MultiCAN Module Kernel  
fCAN  
Clock  
Control  
fCLC  
Message  
Object  
Buffer  
Linked  
List  
Control  
Address  
Decoder  
TXDC1  
CAN  
Node 1  
64  
RXDC1  
TXDC0  
Port  
Control  
Objects  
CAN  
Node 0  
RXDC0  
Interrupt  
Control  
CAN Control  
MCA06060_N2  
Figure 8  
Overview of the MultiCAN Module  
The MultiCAN module contains two independently operating CAN nodes with Full-CAN  
functionality that are able to exchange Data and Remote Frames via a gateway function.  
Transmission and reception of CAN frames is handled in accordance to CAN  
specification V2.0 B (active). Each CAN node can receive and transmit standard frames  
with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All two CAN nodes share a common set of message objects. Each message object can  
be individually allocated to one of the CAN nodes. Besides serving as a storage  
container for incoming and outgoing frames, message objects can be combined to build  
gateways between the CAN nodes or to set up a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN  
node has its own list of message objects. A CAN node stores frames only into message  
objects that are allocated to the message object list of the CAN node, and it transmits  
only messages belonging to this message object list. A powerful, command-driven list  
controller performs all message object list operations.  
Data Sheet  
36  
V1.3, 2009-09  
TC1767  
Introduction  
The bit timings for the CAN nodes are derived from the module timer clock (fCAN) and are  
programmable up to a data rate of 1 Mbit/s. External bus transceivers are connected to  
a CAN node via a pair of receive and transmit pins.  
Features  
• Compliant with ISO 11898  
• CAN functionality according to CAN specification V2.0 B active  
• Dedicated control registers for each CAN node  
• Data transfer rates up to 1 Mbit/s  
• Flexible and powerful message transfer control and error handling capabilities  
• Advanced CAN bus bit timing analysis and baud rate detection for each CAN node  
via a frame counter  
• Full-CAN functionality: A set of 64 message objects can be individually  
– Allocated (assigned) to any CAN node  
– Configured as transmit or receive object  
– Setup to handle frames with 11-bit or 29-bit identifier  
– Identified by a timestamp via a frame counter  
– Configured to remote monitoring mode  
• Advanced Acceptance Filtering  
– Each message object provides an individual acceptance mask to filter incoming  
frames.  
– A message object can be configured to accept standard or extended frames or to  
accept both standard and extended frames.  
– Message objects can be grouped into four priority classes for transmission and  
reception.  
– The selection of the message to be transmitted first can be based on frame  
identifier, IDE bit and RTR bit according to CAN arbitration rules, or on its order in  
the list.  
• Advanced message object functionality  
– Message objects can be combined to build FIFO message buffers of arbitrary size,  
limited only by the total number of message objects.  
– Message objects can be linked to form a gateway that automatically transfers  
frames between 2 different CAN buses. A single gateway can link any two CAN  
nodes. An arbitrary number of gateways can be defined.  
• Advanced data management  
– The message objects are organized in double-chained lists.  
– List reorganizations can be performed at any time, even during full operation of the  
CAN nodes.  
– A powerful, command-driven list controller manages the organization of the list  
structure and ensures consistency of the list.  
– Message FIFOs are based on the list structure and can easily be scaled in size  
during CAN operation.  
Data Sheet  
37  
V1.3, 2009-09  
TC1767  
Introduction  
– Static allocation commands offer compatibility with MultiCAN applications that are  
not list-based.  
• Advanced interrupt handling  
– Up to 16 interrupt output lines are available. Interrupt requests can be routed  
individually to one of the 16 interrupt output lines.  
– Message post-processing notifications can be combined flexibly into a dedicated  
register field of 256 notification bits.  
Data Sheet  
38  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.5  
Micro Link Interface  
This TC1767 contains one Micro Link Interface, MLI0.  
The Micro Link Interface (MLI) is a fast synchronous serial interface to exchange data  
between microcontrollers or other devices, such as stand-alone peripheral components.  
Figure 9 shows how two microcontrollers are typically connected together via their MLI  
interfaces.  
Controller 1  
CPU  
Controller 2  
CPU  
Peripheral  
A
Peripheral  
B
Peripheral  
C
Peripheral  
D
Memory  
MLI  
MLI  
Memory  
System Bus  
System Bus  
MCA06061  
Figure 9  
Features  
Typical Micro Link Interface Connection  
• Synchronous serial communication between an MLI transmitter and an MLI receiver  
• Different system clock speeds supported in MLI transmitter and MLI receiver due to  
full handshake protocol (4 lines between a transmitter and a receiver)  
• Fully transparent read/write access supported (= remote programming)  
• Complete address range of target device available  
• Specific frame protocol to transfer commands, addresses and data  
• Error detection by parity bit  
• 32-bit, 16-bit, or 8-bit data transfers supported  
• Programmable baud rate: fMLI/2 (max. fMLI = fSYS  
)
• Address range protection scheme to block unauthorized accesses  
• Multiple receiving devices supported  
Data Sheet  
39  
V1.3, 2009-09  
TC1767  
Introduction  
Figure 10 shows a general block diagram of the MLI module.  
TREADY[D:A]  
4
4
TVALID[D:A]  
TDATA  
fSYS  
Fract.  
Divider  
MLI  
Transmitter  
I/O  
Control  
TCLK  
TR[3:0]  
fMLI  
Port  
Control  
MLI Module  
BRKOUT  
SR[7:0]  
RCLK[D:A]  
4
4
4
4
RREADY[D:A]  
RVALID[D:A]  
RDATA[D:A]  
Move  
Engine  
MLI  
Receiver  
I/O  
Control  
MCB06062_mod  
Figure 10  
General Block Diagram of the MLI Modules  
The MLI transmitter and MLI receiver communicate with other MLI receivers and MLI  
transmitters via a four-line serial connection each. Several I/O lines of these connections  
are available outside the MLI module kernel as a four-line output or input vector with  
index numbering A, B, C and D. The MLI module internal I/O control blocks define which  
signal of a vector is actually taken into account and also allow polarity inversions (to  
adapt to different physical interconnection means).  
Data Sheet  
40  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.6  
General Purpose Timer Array (GPTA)  
The TC1767 contains the General Purpose Timer Array (GPTA0). Figure 11 shows a  
global view of the GPTA module.  
The GPTA provides a set of timer, compare, and capture functionalities that can be  
flexibly combined to form signal measurement and signal generation units. They are  
optimized for tasks typical of engine, gearbox, and electrical motor control applications,  
but can also be used to generate simple and complex signal waveforms required for  
other industrial applications.  
GPTA0  
Clock Generation Cells  
FPC0  
DCM0  
FPC1 PDL0  
DCM1  
FPC2  
DIGITAL  
PLL  
FPC3  
DCM2  
DCM3  
FPC4 PDL1  
FPC5  
fGPTA Clock Distribution Cells  
Clock  
Conn.  
Signal  
Generation Cells  
GT0  
GT1  
LTCA2  
GTC00  
GTC01  
GTC02  
GTC03  
LTC00  
LTC01  
LTC02  
LTC03  
LTC00  
LTC01  
LTC02  
LTC03  
Global  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
GTC30  
GTC31  
LTC62  
LTC63  
LTC30  
LTC31  
I/O Line  
Sharing Block  
I/O Line Sharing Block  
Interrupt Sharing Block  
Interrupt  
Sharing Block  
MCB05910_TC1767_LTC32  
Figure 11  
General Block Diagram of the GPTA Modules in the TC1767  
Data Sheet  
41  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.6.1 Functionality of GPTA0  
The General Purpose Timer Array (GPTA0) provides a set of hardware modules  
required for high-speed digital signal processing:  
• Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation.  
• Phase Discrimination Logic units (PDL) decode the direction information output by a  
rotation tracking system.  
• Duty Cycle Measurement Cells (DCM) provide pulse-width measurement  
capabilities.  
• A Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA  
module clock ticks during an input signal’s period.  
• Global Timer units (GT) driven by various clock sources are implemented to operate  
as a time base for the associated Global Timer Cells.  
• Global Timer Cells (GTC) can be programmed to capture the contents of a Global  
Timer on an external or internal event. A GTC may also be used to control an external  
port pin depending on the result of an internal compare operation. GTCs can be  
logically concatenated to provide a common external port pin with a complex signal  
waveform.  
• Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be  
logically tied together to drive a common external port pin with a complex signal  
waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or  
triggered by various external or internal events.  
• On-chip Trigger and Gating Signals (OTGS) can be configured to provide trigger or  
gating signals to integrated peripherals.  
Input lines can be shared by an LTC and a GTC to trigger their programmed operation  
simultaneously.  
The following list summarizes the specific features of the GPTA units.  
Clock Generation Unit  
• Filter and Prescaler Cell (FPC)  
– Six independent units  
– Three basic operating modes:  
Prescaler, Delayed Debounce Filter, Immediate Debounce Filter  
– Selectable input sources:  
Port lines, GPTA module clock, FPC output of preceding FPC cell  
– Selectable input clocks:  
GPTA module clock, prescaled GPTA module clock, DCM clock, compensated or  
uncompensated PLL clock.  
fGPTA/2 maximum input signal frequency in Filter Modes  
• Phase Discriminator Logic (PDL)  
– Two independent units  
– Two operating modes (2- and 3- sensor signals)  
Data Sheet  
42  
V1.3, 2009-09  
TC1767  
Introduction  
fGPTA/4 maximum input signal frequency in 2-sensor Mode, fGPTA/6 maximum input  
signal frequency in 3-sensor Mode  
• Duty Cycle Measurement (DCM)  
– Four independent units  
– 0 - 100% margin and time-out handling  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Digital Phase Locked Loop (PLL)  
– One unit  
– Arbitrary multiplication factor between 1 and 65535  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Clock Distribution Unit (CDU)  
– One unit  
– Provides nine clock output signals:  
fGPTA, divided fGPTA clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock  
Signal Generation Unit  
• Global Timers (GT)  
– Two independent units  
– Two operating modes (Free-Running Timer and Reload Timer)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Global Timer Cell (GTC)  
– 32 units related to the Global Timers  
– Two operating modes (Capture, Compare and Capture after Compare)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Local Timer Cell (LTC)  
– 64 independent units  
– Three basic operating modes (Timer, Capture and Compare) for 63 units  
– Special compare modes for one unit  
– 16-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Interrupt Sharing Unit  
• 143 interrupt sources, generating up to 46 service requests  
Data Sheet  
43  
V1.3, 2009-09  
TC1767  
Introduction  
On-chip Trigger Unit  
• 16 on-chip trigger signals  
I/O Sharing Unit  
• Interconnecting inputs and outputs from internal clocks, FPC, GTC, LTC, ports, and  
MSC interface  
Data Sheet  
44  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.7  
Analog-to-Digital Converters  
The TC1767 includes two Analog to Digital Converter modules (ADC0, ADC1) and one  
Fast Analog to Digital Converter (FADC).  
2.4.7.1 ADC Block Diagram  
The analog to digital converter module (ADC) allows the conversion of analog input  
values into discrete digital values based on the successive approximation method.  
This module contains 2 independent kernels (ADC0, ADC1) that can operate  
autonomously or can be synchronized to each other. An ADC kernel is a unit used to  
convert an analog input signal (done by an analog part) and provides means for  
triggering conversions, data handling and storage (done by a digital part).  
analog part kernel 0  
digital part kernel 0  
analog  
inputs  
AD  
converter  
data (result)  
handling  
conversion  
control  
request  
control  
bus  
inter-  
face  
analog part kernel 1  
digital part kernel 1  
analog  
inputs  
AD  
converter  
data (result)  
handling  
conversion  
control  
request  
control  
ADC_2_kernels  
Figure 12  
ADC Module with two ADC Kernels  
Features of the analog part of each ADC kernel:  
• Input voltage range from 0V to analog supply voltage  
• Analog supply voltage range from 3.3 V to 5 V (single supply)  
(5V nominal supply voltage, performance degradation accepted for lower voltages)  
• Input multiplexer width of 16 possible analog input channels (not all of them are  
necessarily available on pins)  
• VAREF and 1 alternative reference input at channel 0  
• Programmable sample time (in periods of fADCI  
)
• Wide range of accepted analog clock frequencies fADCI  
Data Sheet  
45  
V1.3, 2009-09  
TC1767  
Introduction  
• Multiplexer test mode (channel 7 input can be connected to ground via a resistor for  
test purposes during run time by specific control bit)  
• Power saving mechanisms  
Features of the digital part of each ADC kernel:  
• Independent result registers (16 independent registers)  
• 5 conversion request sources (e.g. for external events, auto-scan, programmable  
sequence, etc.)  
• Synchronization of the ADC kernels for concurrent conversion starts  
• Control an external analog multiplexer, respecting the additional set up time  
• Programmable sampling times for different channels  
• Possibility to cancel running conversions on demand with automatic restart  
• Flexible interrupt generation (possibility of DMA support)  
• Limit checking to reduce interrupt load  
• Programmable data reduction filter by adding conversion results  
• Support of conversion data FIFO  
• Support of suspend and power down modes  
• Individually programmable reference selection for each channel (with exception of  
dedicated channels always referring to VAREF  
)
Data Sheet  
46  
V1.3, 2009-09  
TC1767  
Introduction  
2.4.7.2 FADC Short Description  
General Features  
• Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz)  
• 10-bit A/D conversion (higher resolution can be achieved by averaging of  
consecutive conversions in digital data reduction filter)  
• Successive approximation conversion method  
• Each differential input channel can also be used as single-ended input  
• Offset calibration support for each channel  
• Programmable gain of 1, 2, 4, or 8 for each channel  
• Free-running (Channel Timers) or triggered conversion modes  
• Trigger and gating control for external signals  
• Built-in Channel Timers for internal triggering  
• Channel timer request periods independently selectable for each channel  
• Selectable, programmable digital anti-aliasing and data reduction filter block with four  
independent filter units  
VDDAF  
VFAGND VSSAF  
VFAREF  
VDDMF VDDIF  
VSSMF  
fFADC  
fCLC  
Data  
Reduction  
Unit  
Clock  
Control  
FAIN0P  
FAIN0N  
FAIN1P  
FAIN1N  
FAIN2P  
FAIN2N  
FAIN3P  
FAIN3N  
input  
channel 0  
A/D  
Control  
input  
channel 1  
A/D  
Converter  
Stage  
SRx  
SRx  
Interrupt  
Control  
input  
channel 2  
input  
channel 3  
DMA  
TS[H:A]  
GS[H:A]  
Channel  
Trigger  
Control  
Channel  
Timers  
MCB06065_m4  
Figure 13  
Block Diagram of the FADC Module with 4 Input Channels  
As shown in Figure 13, the main FADC functional blocks are:  
• An Input Structure containing the differential inputs and impedance control.  
Data Sheet  
47  
V1.3, 2009-09  
TC1767  
Introduction  
• An A/D Converter Stage responsible for the analog-to-digital conversion including an  
input multiplexer to select between the channel amplifiers  
• A Data Reduction Unit containing programmable anti-aliasing and data reduction  
filters  
• A Channel Trigger Control block determining the trigger and gating conditions for the  
FADC channels  
• A Channel Timer for each channel to independently trigger the conversions  
• An A/D Control block responsible for the overall FADC functionality  
FADC Power Supply and References  
The FADC module is supplied by the following power supply and reference voltage lines:  
• VDDMF / VSSMF: FADC Analog Channel Amplifier Power Supply (3.3 V)  
• VDDIF / VSSMF: FADC Analog Input Stage Power Supply (3.3 - 5 V),  
the VDDIF supply does not appear as supply pin, because it is internally connected to  
the VDDM supply of the ADC that is sharing the FADC input pins.  
• VDDAF / VSSAF: FADC Analog Part Power Supply (1.5 V),  
to be fed in externally  
• VFAREF / VFAGND: FADC Reference Voltage (3.3 V max.) and FADC Reference Ground  
Input Structure  
The input structure of the FADC in the TC1767 contains:  
• A differential analog input stage for each input channel to select the input impedance  
(differential or single-ended measurement) and to decouple the FADC input signal  
from the pins.  
• A channel amplifier for each input channel with a settling time (about 5µs) when  
changing the characteristics of an input stage (changing between unused,  
differential, single-ended N, or single-ended P mode).  
Data Sheet  
48  
V1.3, 2009-09  
TC1767  
Introduction  
Analog Input  
Stages  
Channel Amplifier  
Stages  
Converter Stage  
V
DDMF  
FAIN0P  
FAIN0N  
Rp  
conversion  
control  
A/D  
Control  
Rn  
gain  
VSSMF  
CHNR  
Rp  
Rn  
V
DDMF  
FAIN2P  
FAIN2N  
V
SSMF  
A/D  
Rp  
Rn  
V
DDMF  
FAIN1P  
FAIN1N  
V
DDAF  
V
SSAF  
VSSMF  
Rp  
Rn  
V
DDMF  
FAIN3P  
FAIN3N  
VSSMF  
MCA06432_m4n  
V
DDIF  
VSSMF  
Figure 14  
2.5  
FADC Input Structure in TC1767  
On-Chip Debug Support (OCDS)  
The TC1767 contains resources for different kinds of “debugging”, covering needs from  
software development to real-time-tuning. These resources are either embedded in  
specific modules (e.g. breakpoint logic of the TriCore) or part of a central peripheral  
(known as CERBERUS).  
2.5.1  
On-Chip Debug Support  
The classic software debug approach (start/stop, single-stepping) is supported by  
several features labelled “OCDS Level 1”:  
• Run/stop and single-step execution independently for TriCore and PCP.  
• Means to request all kinds of reset without usage of sideband pins.  
• Halt-after-Reset for repeatable debug sessions.  
Data Sheet  
49  
V1.3, 2009-09  
TC1767  
Introduction  
• Different Boot modes to use application software not yet programmed to the Flash.  
• A total of four hardware breakpoints for the TriCore based on instruction address,  
data address or combination of both.  
• Unlimited number of software breakpoints (DEBUG instruction) for TriCore and PCP.  
• Debug event generated by access to a specific address via the system peripheral  
bus.  
• Tool access to all SFRs and internal memories independent of the Cores.  
• Two central Break Switches to collect debug events from all modules (TriCore, PCP,  
DMA, BCU, break input pins) and distribute them selectively to breakable modules  
(TriCore, PCP, break output pins).  
• Central Suspend Switch to suspend parts of the system (TriCore, PCP, Peripherals)  
instead if breaking them as reaction to a debug event.  
• Dedicated interrupt resources to handle debug events inside TriCore (breakpoint  
trap, software interrupt) and Cerberus (can trigger PCP), e.g. for implementing  
Monitor programs.  
• Access to all OCDS Level 1 resources also for TriCore and PCP themselvesitself for  
debug tools integrated into the application code.  
• Triggered Transfer of data in response to a debug event; if target is programmed to  
be a device interface simple variable tracing can be done.  
Additionally, in depth performance analysis and profiling support is provided by the  
Emulation Device through MCDS Event Counters driven by a variety of trigger signals  
(e.g. cache hit, wait state, interrupt accepted).  
2.5.2  
Real Time Trace  
For detailed tracing of the system’s behavior a pin-compatible Emulation Device is  
available.1)  
2.5.3  
Calibration Support  
Two main use cases are catered for by resources in addition the OCDS Level 1  
infrastructure: Overlay of non-volatile on-chip memory and non-intrusive signaling:  
• 8 KB SRAM for Overlay.  
• Can be split into up to 16 blocks which can overlay independent regions of on-chip  
Data Flash.  
• Changing the configuration is triggered by a single SFR access to maintain  
consistency.  
• Overlay configuration switch does not require the TriCore to be stopped or  
suspended.  
1) The OCDS L2 interface of AudoNG is not available.  
Data Sheet  
50  
V1.3, 2009-09  
TC1767  
Introduction  
• Invalidation of the Data Cache (maintaining write-back data) can be done  
concurrently with the same SFR.  
• 256 KB additional Overlay RAM on Emulation Device.  
• The 256 KB Trace memory of the Emulation Device can optionally be used for  
Overlay also.  
• A dedicated trigger SFR with 32 independent status bits is provided to centrally post  
requests from application code to the host computer.  
• The host is notified automatically when the trigger SFR is updated by the TriCore or  
PCP. No polling via a system bus is required.  
2.5.4  
Tool Interfaces  
Three options exist for the communication channel between Tools (e.g. Debugger,  
Calibration Tool) and TC1767:  
• Two wire DAP (Device Access Port) protocol for long connections or noisy  
environments.  
• Four (or five) wire JTAG (IEEE 1149.1) for standardized manufacturing tests.  
• CAN (plus software linked into the application code) for low bandwidth deeply  
embedded purposes.  
• DAP and JTAG are clocked by the tool.  
• Bit clock up to 40 MHz for JTAG, up to 80 MHz for DAP.  
• Hot attach (i.e. physical disconnect/reconnect of the host connection without reset of  
the TC1767) for all interfaces.  
• Infineon standard DAS (Device Access Server) implementation for seamless,  
transparent tool access over any supported interface.  
• Lock mechanism to prevent unauthorized tool access to critical application code.  
2.5.5  
Self-Test Support  
Some manufacturing tests can be invoked by the application (e.g. after power-on) if  
needed:  
• Hardware-accelerated checksum calculation (e.g. for Flash content).  
2.5.6  
FAR Support  
To efficiently locate and identify faults after integration of a TC1767 into a system special  
functions are available:  
• Boundary Scan (IEEE 1149.1) via JTAG and DAP.  
• SSCM (Single Scan Chain Mode1)) for structural scan testing of the chip itself.  
1) This function requires access to some device pins (e.g. TESTMODE) in addition to those needed for OCDS.  
Data Sheet  
51  
V1.3, 2009-09  
TC1767  
Pinning  
3
Pinning  
3.1  
TC1767 Pin Definition and Functions  
Figure 15 shows the Logic Symbol of the device.  
PORST  
TESTMODE  
Alternate Functions  
GPTA, SCU  
General Control  
16  
ESR0  
ESR1  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
16  
14  
16  
4
GPTA, SSC1,  
ADC0, OCDS  
GPTA, SSC0/1,  
MLI0, MSC0  
GPTA, ASC0/1,  
SSC0/1, SCU, CAN  
TRST  
TCK / DAP0  
TDI / BRKIN  
OCDS /  
JTAG Control  
TDO / DAP2 /  
BRKOUT  
TMS / DAP1  
GPTA, SCU  
GPTA, MLI0  
GPTA, MSC0  
16  
4
Analog Inputs  
AN[35:0]  
VDDM  
TC1767  
PG-LQFP-  
176 -x  
VSSM  
VDDMF  
VSSMF  
VDDAF  
VAREF0  
VAGND0  
VFAREF  
Analog Power  
Supply  
XTAL1  
XTAL2  
VDDOSC Oscillator  
VDDOSC3  
VFAGND  
VDDFL3  
9
10  
11  
VDD  
VDDP  
VSS  
Digital Circuitry  
Power Supply  
VSSOSC  
TC1767_LogSym_176  
Figure 15  
TC1767 Logic Symbol for the package variant PG-LQFP-176-5.  
Data Sheet  
52  
V1.3, 2009-09  
TC1767  
Pinning  
3.1.1  
TC1767 Pin Configuration: PG-LQFP-176-5  
This chapter shows the pin configuration of the package variant PG-LQFP-176-51).  
OUT40/OUT8/IN40/IN26/P5.0  
OUT41/OUT9/IN41/IN27/P5.1  
1
2
132  
131  
P3.4/OUT88/MTSR0  
P3.7/SLSI01/OUT89//SLSO02/SLSO12  
OUT42/OUT10/IN42/IN28/P5.2  
OUT43/OUT11/IN43/P5.3  
3
4
130  
129  
P3.3/OUT87/MRST0  
P3.2/OUT86/SCLK0  
OUT44/OUT12/IN44/IN29/P5.4  
OUT45/OUT13/IN45/IN30/P5.5  
5
6
128  
127  
P3.8/SLSO06/OUT90/TXD1  
P3.6/SLSO01/SLSO11/SLSO01&SLSO11  
OUT46/OUT14/IN46/IN31/P5.6  
OUT47/OUT15/IN47/P5.7  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
P3.5/SLSO00/SLSO10/SLSO00&SLSO10  
VSS  
VDDP  
VDD  
TCLK0/OUT95/P5.15  
VDD  
VDDP  
VSS  
ESR0  
PORST  
ESR1  
P1.1/IN17/OUT17/OUT73  
TESTMODE  
P1.15/BRKIN/BRKOUT  
P1.0/IN16/OUT16/OUT72/BRKIN/BRKOUT  
TCK/DAP0  
TRST  
TDO/DAP2/BRKIN/BRKOUT  
TMS/DAP1  
TDI/BRKIN/BRKOUT  
P1.7/IN23/OUT23/OUT79  
P1.6/IN22/OUT22/OUT78  
P1.5/IN21/OUT21/OUT77  
RDATA0B/OUT89/P5.8  
RVALID0B/OUT90/P5.9  
RREADY0B/OUT91/P5.10  
RCLK0B/OUT92/P5.11  
TDATA0/SLSO07/OUT93/P5.12  
TVALID0B/SLSO16/P5.13  
TREADY0B/OUT94/P5.14  
VDDP  
VDD(SB)  
VSS  
VDDAF  
VDDM F  
VSSMF  
VFAREF  
VFAG ND  
AN35  
AN34  
TC1767  
P1.4/IN20/EMGSTOP/OUT20/OUT76  
VDDO SC3  
VDDO SC  
VSSO SC  
105  
104  
AN33  
AN32  
AN31  
AN30  
AN29  
AN28  
30  
31  
32  
33  
34  
35  
103  
102  
101  
100  
99  
98  
XTAL2  
XTAL1  
VSS  
VDDP  
V
P1DD.3/IN19/OUT19/OUT75  
AN7  
AN27  
AN26  
36  
37  
38  
97  
96  
95  
P1.11/IN27/IN51/SCLK1B/OUT27/OUT51  
P1.10/IN26/IN50/OUT26/OUT50/SLSO17  
P1.9/IN25/IN49/MRST1B/OUT25/OUT49  
AN25  
AN24  
39  
40  
94  
93  
P1.8/IN24/IN48/MTSR1B/OUT24/OUT48  
P1.2/IN18/OUT18/OUT74  
AN23  
AN22  
41  
42  
92  
91  
V SS  
VDDP  
AN21  
AN20  
43  
44  
90  
89  
P4.3/IN31/IN55/OUT31/OUT55/EXTCLK0  
VDD  
MCP06067  
Figure 16  
TC1767 Pinning for PG-LQFP-176-5  
1) TC1767 ED: PG-LQFP-176-6  
Data Sheet  
53  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
Port 0  
145 P0.0  
IN0  
Pin Definitions and Functions (PG-LQFP-176-5 Package1))  
Ctrl. Type Function  
I/O0 A1/  
Port 0 General Purpose I/O Line 0  
GPTA0 Input 0  
PU  
I
IN0  
I
LTCA2 Input 0  
HWCFG0  
OUT0  
I
Hardware Configuration Input 0  
GPTA0 Output 0  
O1  
OUT56  
OUT0  
O2  
GPTA0 Output 56  
O3  
LTCA2 Output 0  
146 P0.1  
IN1  
I/O0 A1/  
Port 0 General Purpose I/O Line 1  
GPTA0 Input 1  
PU  
I
IN1  
I
LTCA2 Input 1  
HWCFG1  
OUT1  
I
Hardware Configuration Input 1  
GPTA0 Output 1  
O1  
OUT57  
OUT1  
O2  
GPTA0 Output 57  
O3  
LTCA2 Output 1  
147 P0.2  
IN2  
I/O0 A1/  
Port 0 General Purpose I/O Line 2  
GPTA0 Input 2  
PU  
I
IN2  
I
LTCA2 Input 2  
HWCFG2  
OUT2  
I
Hardware Configuration Input 2  
GPTA0 Output 2  
O1  
OUT58  
OUT2  
O2  
GPTA0 Output 58  
O3  
LTCA2 Output 2  
148 P0.3  
IN3  
I/O0 A1/  
Port 0 General Purpose I/O Line 3  
GPTA0 Input 3  
PU  
I
IN3  
I
LTCA2 Input 3  
HWCFG3  
OUT3  
I
Hardware Configuration Input 3  
GPTA0 Output 3  
O1  
O2  
O3  
OUT59  
OUT3  
GPTA0 Output 59  
LTCA2 Output 3  
Data Sheet  
54  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
166 P0.4  
IN4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
I/O0 A1/  
Port 0 General Purpose I/O Line 4  
PU  
I
GPTA0 Input 4  
IN4  
I
LTCA2 Input 4  
HWCFG4  
OUT4  
I
Hardware Configuration Input 4  
GPTA0 Output 4  
O1  
OUT60  
OUT4  
O2  
GPTA0 Output 60  
O3  
LTCA2 Output 4  
167 P0.5  
IN5  
I/O0 A1/  
Port 0 General Purpose I/O Line 5  
GPTA0 Input 5  
PU  
I
IN5  
I
LTCA2 Input 5  
HWCFG5  
OUT5  
I
Hardware Configuration Input 5  
GPTA0 Output 5  
O1  
OUT61  
OUT5  
O2  
GPTA0 Output 61  
O3  
LTCA2 Output 5  
173 P0.6  
IN6  
I/O0 A1/  
Port 0 General Purpose I/O Line 6  
GPTA0 Input 6  
PU  
I
IN6  
I
LTCA2 Input 6  
HWCFG6  
REQ2  
I
Hardware Configuration Input 6  
External Request Input 2  
GPTA0 Output 6  
I
OUT6  
O1  
OUT62  
OUT6  
O2  
GPTA0 Output 62  
O3  
LTCA2 Output 6  
174 P0.7  
IN7  
I/O0 A1/  
Port 0 General Purpose I/O Line 7  
GPTA0 Input 7  
PU  
I
IN7  
I
LTCA2 Input 7  
HWCFG7  
REQ3  
I
Hardware Configuration Input 7  
External Request Input 3  
GPTA0 Output 7  
I
OUT7  
O1  
O2  
O3  
OUT63  
OUT7  
GPTA0 Output 63  
LTCA2 Output 7  
Data Sheet  
55  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
149 P0.8  
IN8  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
I/O0 A1/  
Port 0 General Purpose I/O Line 8  
PU  
I
GPTA0 Input 8  
IN8  
I
LTCA2 Input 8  
OUT8  
O1  
GPTA0 Output 8  
OUT64  
OUT8  
O2  
GPTA0 Output 64  
LTCA2 Output 8  
O3  
150 P0.9  
IN9  
I/O0 A1/  
Port 0 General Purpose I/O Line 9  
GPTA0 Input 9  
PU  
I
IN9  
I
LTCA2 Input 9  
OUT9  
O1  
GPTA0 Output 9  
OUT65  
OUT9  
O2  
GPTA0 Output 65  
LTCA2 Output 9  
O3  
151 P0.10  
IN10  
I/O0 A1/  
Port 0 General Purpose I/O Line 10  
GPTA0 Input 10  
PU  
I
OUT10  
OUT66  
OUT10  
152 P0.11  
IN11  
O1  
GPTA0 Output 10  
GPTA0 Output 66  
LTCA2 Output 10  
O2  
O3  
I/O0 A1/  
Port 0 General Purpose I/O Line 11  
GPTA0 Input 11  
PU  
I
OUT11  
OUT67  
OUT11  
168 P0.12  
IN12  
O1  
GPTA0 Output 11  
GPTA0 Output 67  
LTCA2 Output 11  
O2  
O3  
I/O0 A1/  
Port 0 General Purpose I/O Line 12  
GPTA0 Input 12  
PU  
I
OUT12  
OUT68  
OUT12  
O1  
O2  
O3  
GPTA0 Output 12  
GPTA0 Output 68  
LTCA2 Output 12  
Data Sheet  
56  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
169 P0.13  
IN13  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
I/O0 A1/  
Port 0 General Purpose I/O Line 13  
PU  
I
GPTA0 Input 13  
OUT13  
OUT69  
OUT13  
175 P0.14  
IN14  
O1  
GPTA0 Output 13  
O2  
GPTA0 Output 69  
O3  
LTCA2 Output 13  
I/O0 A1/  
Port 0 General Purpose I/O Line 14  
GPTA0 Input 14  
PU  
I
REQ4  
I
External Request Input 4  
GPTA0 Output 14  
OUT14  
OUT70  
OUT14  
176 P0.15  
IN15  
O1  
O2  
GPTA0 Output 70  
O3  
LTCA2 Output 14  
I/O0 A1/  
Port 0 General Purpose I/O Line 15  
GPTA0 Input 15  
PU  
I
REQ5  
I
External Request Input 5  
GPTA0 Output 15  
OUT15  
OUT71  
OUT15  
Port 1  
O1  
O2  
O3  
GPTA0 Output 71  
LTCA2 Output 15  
116 P1.0  
IN16  
I/O0 A2/  
Port 1 General Purpose I/O Line 0  
GPTA0 Input 16  
PU  
I
BRKIN  
I
Break Input  
OUT16  
OUT72  
OUT16  
BRKOUT  
119 P1.1  
IN17  
O1  
GPTA0 Output 16  
O2  
GPTA0 Output 72  
O3  
LTCA2 Output 16  
O
Break Output (controlled by OCDS module)  
Port 1 General Purpose I/O Line 1  
GPTA0 Input 17  
I/O0 A1/  
PU  
I
OUT17  
OUT73  
OUT17  
O1  
O2  
O3  
GPTA0 Output 17  
GPTA0 Output 73  
LTCA2 Output 17  
Data Sheet  
57  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
93  
P1.2  
I/O0 A1/  
Port 1 General Purpose I/O Line 2  
PU  
IN18  
I
GPTA0 Input 18  
OUT18  
OUT74  
OUT18  
P1.3  
O1  
GPTA0 Output 18  
O2  
GPTA0 Output 74  
O3  
LTCA2 Output 18  
98  
I/O0 A1/  
Port 1 General Purpose I/O Line 3  
GPTA0 Input 19  
PU  
IN19  
I
IN19  
I
LTCA2 Input 19  
OUT19  
OUT75  
OUT19  
O1  
GPTA0 Output 19  
O2  
GPTA0 Output 75  
O3  
LTCA2 Output 19  
107 P1.4  
IN20  
I/O0 A1/  
Port 1 General Purpose I/O Line 4  
GPTA0 Input 20  
PU  
I
IN20  
I
LTCA2 Input 20  
EMGSTOP  
I
Emergency Stop Input  
GPTA0 Output 20  
OUT20  
OUT76  
OUT20  
O1  
O2  
GPTA0 Output 76  
O3  
LTCA2 Output 20  
108 P1.5  
I/O0 A1/  
Port 1 General Purpose I/O Line 35  
GPTA0 Input 21  
PU  
IN21  
I
IN21  
I
LTCA2 Input 21  
OUT21  
OUT77  
OUT21  
O1  
GPTA0 Output 21  
O2  
GPTA0 Output 77  
O3  
LTCA2 Output 21  
109 P1.6  
I/O0 A1/  
Port 1 General Purpose I/O Line 6  
GPTA0 Input 22  
PU  
IN22  
I
IN22  
I
LTCA2 Input 22  
OUT22  
OUT78  
OUT22  
O1  
O2  
O3  
GPTA0 Output 22  
GPTA0 Output 78  
LTCA2 Output 22  
Data Sheet  
58  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
110 P1.7  
IN23  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
I/O0 A1/  
Port 1 General Purpose I/O Line 7  
PU  
I
GPTA0 Input 23  
IN23  
I
LTCA2 Input 23  
OUT23  
O1  
GPTA0 Output 23  
OUT79  
O2  
GPTA0 Output 79  
OUT23  
O3  
LTCA2 Output 23  
94  
95  
96  
P1.8  
I/O0 A2/  
Port 1 General Purpose I/O Line 8  
GPTA0 Input 24  
PU  
IN24  
I
IN48  
I
GPTA0 Input 48  
MTSR1B  
OUT24  
OUT48  
MTSR1B  
P1.9  
I
SSC1 Slave Receive Input B (Slave Mode)  
GPTA0 Output 24  
O1  
O2  
GPTA0 Output 48  
O3  
SSC1 Master Transmit Output B (Master Mode)  
Port 1 General Purpose I/O Line 9  
GPTA0 Input 25  
I/O0 A2/  
PU  
IN25  
I
IN49  
I
GPTA0 Input 49  
MRST1B  
OUT25  
OUT49  
MRST1B  
P1.10  
I
SSC1 Master Receive Input B (Master Mode)  
GPTA0 Output 25  
O1  
O2  
GPTA0 Output 49  
O3  
SSC1 Slave Transmit Output B (Slave Mode)  
Port 1 General Purpose I/O Line 10  
GPTA0 Input 26  
I/O0 A2/  
PU  
IN26  
I
IN50  
I
GPTA0 Input 50  
OUT26  
OUT50  
SLSO17  
O1  
O2  
O3  
GPTA0 Output 26  
GPTA0 Output 50  
SSC1 Slave Select Output 7  
Data Sheet  
59  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
97  
P1.11  
I/O0 A2/  
Port 1 General Purpose I/O Line 11  
PU  
IN27  
I
GPTA0 Input 27  
IN51  
I
GPTA0 Input 51  
SCLK1B  
OUT27  
OUT51  
SCLK1B  
P1.12  
I
SSC1 Clock Input B  
O1  
GPTA0 Output 27  
O2  
GPTA0 Output 51  
O3  
SSC1 Clock Output B  
73  
72  
71  
I/O0 A1/  
Port 1 General Purpose I/O Line 12  
LTCA2 Input 16  
PU  
IN16  
I
AD0EMUX0  
AD0EMUX0  
OUT16  
P1.13  
O1  
ADC0 External Multiplexer Control Output 0  
ADC0 External Multiplexer Control Output 0  
LTCA2 Output 16  
O2  
O3  
I/O0 A1/  
Port 1 General Purpose I/O Line 13  
LTCA2 Input 17  
PU  
IN17  
I
AD0EMUX1  
AD0EMUX1  
OUT17  
P1.14  
O1  
ADC0 External Multiplexer Control Output 1  
ADC0 External Multiplexer Control Output 1  
LTCA2 Output 17  
O2  
O3  
I/O0 A1/  
Port 1 General Purpose I/O Line 14  
LTCA2 Input 18  
PU  
IN18  
I
AD0EMUX2  
AD0EMUX2  
OUT18  
O1  
ADC0 External Multiplexer Control Output 2  
ADC0 External Multiplexer Control Output 2  
LTCA2 Output 18  
O2  
O3  
117 P1.15  
BRKIN  
I/O0 A2/  
Port 1 General Purpose I/O Line 15  
Break Input  
PU  
I
Reserved  
O1  
O2  
O3  
O
-
Reserved  
Reserved  
BRKOUT  
-
-
Break Output (controlled by OCDS module)  
Port 2  
Data Sheet  
60  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
74  
P2.0  
I/O0 A2/  
Port 2 General Purpose I/O Line 0  
PU  
IN32  
I
GPTA0 Input 32  
OUT32  
TCLK0  
OUT28  
P2.1  
O1  
GPTA0 Output 32  
O2  
MLI0 Transmitter Clock Output 0  
LTCA2 Output 28  
O3  
75  
I/O0 A2/  
Port 2 General Purpose I/O Line 1  
GPTA0 Input 33  
PU  
IN33  
I
TREADY0A  
OUT33  
SLSO03  
SLSO13  
P2.2  
I
MLI0 Transmitter Ready Input A  
GPTA0 Output 33  
O1  
O2  
SSC0 Slave Select Output Line 3  
SSC1 Slave Select Output Line 3  
Port 2 General Purpose I/O Line 2  
GPTA0 Input 34  
O3  
76  
77  
78  
I/O0 A2/  
PU  
IN34  
I
OUT34  
TVALID0  
OUT29  
P2.3  
O1  
GPTA0 Output 34  
O2  
MLI0 Transmitter Valid Output  
LTCA2 Output 29  
O3  
I/O0 A2/  
Port 2 General Purpose I/O Line 3  
GPTA0 Input 35  
PU  
IN35  
I
OUT35  
TDATA0  
OUT30  
P2.4  
O1  
GPTA0 Output 35  
O2  
MLI0 Transmitter Data Output  
LTCA2 Output 30  
O3  
I/O0 A2/  
Port 2 General Purpose I/O Line 4  
GPTA0 Input 36  
PU  
IN36  
I
RCLK0A  
OUT36  
OUT36  
OUT31  
I
MLI Receiver Clock Input A  
GPTA0 Output 36  
O1  
O2  
O3  
GPTA0 Output 36  
LTCA2 Output 31  
Data Sheet  
61  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
79  
P2.5  
I/O0 A2/  
Port 2 General Purpose I/O Line 5  
PU  
IN37  
I
GPTA0 Input 37  
OUT37  
RREADY0A  
OUT110  
P2.6  
O1  
GPTA0 Output 37  
O2  
MLI0 Receiver Ready Output A  
LTCA2 Output 110  
O3  
80  
I/O0 A2/  
Port 2 General Purpose I/O Line 6  
GPTA0 Input 38  
PU  
IN38  
I
RVALID0A  
OUT38  
OUT38  
OUT111  
P2.7  
I
MLI Receiver Valid Input A  
GPTA0 Output 38  
O1  
O2  
GPTA0 Output 38  
O3  
LTCA2 Output 111  
81  
I/O0 A2/  
Port 2 General Purpose I/O Line 7  
GPTA0 Input 39  
PU  
IN39  
I
RDATA0A  
OUT39  
OUT39  
Reserved  
I
MLI Receiver Data Input A  
GPTA0 Output 39  
O1  
O2  
GPTA0 Output 39  
O3  
-
164 P2.8  
SLSO04  
I/O0 A2/  
Port 2 General Purpose I/O Line 8  
SSC0 Slave Select Output 4  
SSC1 Slave Select Output 4  
MSC0 Enable Output 0  
Port 2 General Purpose I/O Line 9  
SSC0 Slave Select Output 5  
SSC1 Slave Select Output 5  
MSC0 Enable Output 1  
PU  
O1  
SLSO14  
EN00  
O2  
O3  
160 P2.9  
I/O0 A2/  
PU  
SLSO05  
SLSO15  
EN01  
O1  
O2  
O3  
Data Sheet  
62  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
161 P2.10  
MRST1A  
IN10  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
I/O0 A2/  
Port 2 General Purpose I/O Line 10  
PU  
I
SSC1 Master Receive Input A  
LTCA2 Input 10  
I
MRST1A  
OUT0  
O1  
SSC1 Slave Transmit Output  
LTCA2 Output 0  
O2  
Reserved  
162 P2.11  
SCLK1A  
IN11  
O3  
-
I/O0 A2/  
Port 2 General Purpose I/O Line 11  
SSC1 Clock Input A  
LTCA2 Input 11  
PU  
I
I
SCLK1A  
OUT1  
O1  
SSC1 Clock Output A  
LTCA2 Output 1  
O2  
FCLP0B  
163 P2.12  
MTSR1A  
IN12  
O3  
MSC0 Clock Output Positive B  
Port 2 General Purpose I/O Line 12  
SSC1 Slave Receive Input A  
LTCA2 Input 12  
I/O0 A2/  
PU  
I
I
MTSR1A  
OUT2  
O1  
SSC1 Master Transmit Output A  
LTCA2 Output 2  
O2  
SOP0B  
O3  
MSC0 Serial Data Output Positive B  
Port 2 General Purpose I/O Line 13  
SSC1 Slave Select Input 1  
MSC0 Serial Data Input  
LTCA2 Input 13  
165 P2.13  
SLSI11  
I/O0 A1/  
PU  
I
SDI0  
I
IN13  
I
OUT3  
O1  
O2  
O3  
LTCA2 Output 3  
Reserved  
Reserved  
Port 3  
-
-
Data Sheet  
63  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Symbol  
136 P3.0  
RXD0A  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
I/O0 A1/  
Port 3 General Purpose I/O Line 0  
PU  
I
ASC0 Receiver Input A (Async. & Sync. Mode)  
ASC0 Output (Sync. Mode)  
RXD0A  
O1  
RXD0A  
O2  
ASC0 Output (Sync. Mode)  
OUT84  
O3  
GPTA0 Output 84  
135 P3.1  
TXD0  
I/O0 A1/  
Port 3 General Purpose I/O Line 1  
ASC0 Output  
PU  
O1  
TXD0  
O2  
ASC0 Output  
OUT85  
O3  
GPTA0 Output 85  
129 P3.2  
SCLK0  
I/O0 A2/  
Port 3 General Purpose I/O Line 2  
SSC0 Clock Input (Slave Mode)  
SSC0 Clock Output (Master Mode)  
SSC0 Clock Input (Master Mode)  
GPTA0 Output 86  
PU  
I
SCLK0  
O1  
SCLK0  
O2  
OUT86  
O3  
130 P3.3  
MRST0  
MRST0  
MRST0  
OUT87  
I/O0 A2/  
Port 3 General Purpose I/O Line 3  
SSC0 Master Receive Input (Master Mode)  
SSC0 Slave Transmit Output (Slave Mode)  
SSC0 Slave Transmit Output (Slave Mode)  
GPTA0 Output 87  
PU  
I
O1  
O2  
O3  
132 P3.4  
MTSR0  
MTSR0  
MTSR0  
OUT88  
I/O0 A2/  
Port 3 General Purpose I/O Line 4  
SSC0 Slave Receive Input (Slave Mode)  
SSC0 Master Transmit Output (Master Mode)  
SSC0 Master Transmit Output (Master Mode)  
GPTA0 Output 88  
PU  
I
O1  
O2  
O3  
126 P3.5  
SLSO00  
SLSO10  
I/O0 A2/  
Port 3 General Purpose I/O Line 5  
SSC0 Slave Select Output 0  
PU  
O1  
O2  
SSC1 Slave Select Output 0  
SLSOANDO0 O3  
SSC0 AND SSC1 Slave Select Output 0  
Data Sheet  
64  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
127 P3.6  
SLSO01  
I/O0 A2/  
Port 3 General Purpose I/O Line 6  
PU  
O1  
SSC0 Slave Select Output 1  
SSC1 Slave Select Output 1  
SSC0 AND SSC1 Slave Select Output 1  
Port 3 General Purpose I/O Line 7  
SSC0 Slave Select Input 1  
SSC0 Slave Select Output 2  
SSC1 Slave Select Output 2  
GPTA0 Output 89  
SLSO11  
O2  
SLSOANDO1 O3  
131 P3.7  
SLSI01  
I/O0 A2/  
PU  
I
SLSO02  
SLSO12  
OUT89  
O1  
O2  
O3  
128 P3.8  
I/O0 A2/  
Port 3 General Purpose I/O Line 8  
SSC0 Slave Select Output 6  
ASC1 Transmit Output  
GPTA0 Output 90  
PU  
SLSO06  
TXD1  
O1  
O2  
OUT90  
O3  
138 P3.9  
I/O0 A1/  
Port 3 General Purpose I/O Line 9  
ASC1 Receiver Input A  
ASC1 Receiver Output A (Synchronous Mode)  
ASC1 Receiver Output A (Synchronous Mode)  
GPTA0 Output 91  
PU  
RXD1A  
RXD1A  
I
O1  
RXD1A  
O2  
OUT91  
O3  
137 P3.10  
REQ0  
I/O0 A1/  
Port 3 General Purpose I/O Line 10  
External Request Input 0  
-
PU  
I
Reserved  
Reserved  
OUT92  
O1  
O2  
-
O3  
GPTA0 Output 92  
144 P3.11  
REQ1  
I/O0 A1/  
Port 3 General Purpose I/O Line 11  
External Request Input 1  
-
PU  
I
Reserved  
Reserved  
OUT93  
O1  
O2  
O3  
-
GPTA0 Output 93  
Data Sheet  
65  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
143 P3.12  
RXDCAN0  
RXD0B  
I/O0 A1/  
Port 3 General Purpose I/O Line 12  
PU  
I
CAN Node 0 Receiver Input  
ASC0 Receiver Input B  
I
RXD0B  
O1  
ASC0 Receiver Output B (Synchronous Mode)  
ASC0 Receiver Output B (Synchronous Mode)  
GPTA0 Output 94  
RXD0B  
O2  
OUT94  
O3  
142 P3.13  
TXDCAN0  
TXD0  
I/O0 A2/  
Port 3 General Purpose I/O Line 13  
CAN Node 0 Transmitter Output  
ASC0 Transmit Output  
PU  
O1  
O2  
OUT95  
O3  
GPTA0 Output 95  
134 P3.14  
RXDCAN1  
RXD1B  
I/O0 A1/  
Port 3 General Purpose I/O Line 14  
CAN Node 1 Receiver Input  
ASC1 Receiver Input B  
PU  
I
I
RXD1B  
O1  
ASC1 Receiver Output B (Synchronous Mode)  
ASC1 Receiver Output B (Synchronous Mode)  
GPTA0 Output 96  
RXD1B  
O2  
OUT96  
O3  
133 P3.15  
TXDCAN1  
TXD1  
I/O0 A2/  
Port 3 General Purpose I/O Line 15  
CAN Node 1 Transmitter Output  
ASC1 Transmit Output  
PU  
O1  
O2  
O3  
OUT97  
GPTA0 Output 97  
Port 4  
86  
P4.0  
I/O0 A1/  
Port 4 General Purpose I/O Line 0  
GPTA0 Input 28  
GPTA0 Input 52  
GPTA0 Output 28  
GPTA0 Output 52  
-
PU  
IN28  
I
IN52  
I
OUT28  
OUT52  
Reserved  
O1  
O2  
O3  
Data Sheet  
66  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
87  
88  
90  
P4.1  
I/O0 A1/  
Port 4 General Purpose I/O Line 1  
PU  
IN29  
I
GPTA0 Input 29  
IN53  
I
GPTA0 Input 53  
OUT29  
OUT53  
Reserved  
P4.2  
O1  
GPTA0 Output 29  
GPTA0 Output 53  
-
O2  
O3  
I/O0 A2/  
Port 4 General Purpose I/O Line 2  
GPTA0 Input 30  
PU  
IN30  
I
IN54  
I
GPTA0 Input 54  
OUT30  
OUT54  
EXTCLK1  
P4.3  
O1  
GPTA0 Output 30  
GPTA0 Output 54  
External Clock 1 Output  
Port 4 General Purpose I/O Line 3  
GPTA0 Input 31  
O2  
O3  
I/O0 A2/  
PU  
IN31  
I
IN55  
I
GPTA0 Input 55  
OUT31  
OUT55  
EXTCLK0  
O1  
O2  
O3  
GPTA0 Output 31  
GPTA0 Output 55  
External Clock 0 Output  
Port 5  
1
P5.0  
I/O0 A1/  
Port 5 General Purpose I/O Line 0  
GPTA0 Input 40  
LTCA2 Input 26  
GPTA0 Output 40  
LTCA2 Output 8  
-
PU  
IN40  
I
IN26  
I
OUT40  
OUT8  
Reserved  
O1  
O2  
O3  
Data Sheet  
67  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
2
P5.1  
I/O0 A1/  
Port 5 General Purpose I/O Line 1  
PU  
IN41  
I
GPTA0 Input 41  
LTCA2 Input 27  
GPTA0 Output 41  
LTCA2 Output 9  
-
IN27  
I
OUT41  
OUT9  
Reserved  
P5.2  
O1  
O2  
O3  
3
I/O0 A1/  
Port 5 General Purpose I/O Line 2  
GPTA0 Input 42  
LTCA2 Input 28  
GPTA0 Output 42  
LTCA2 Output 10  
-
PU  
IN42  
I
IN28  
I
OUT42  
OUT10  
Reserved  
P5.3  
O1  
O2  
O3  
4
5
I/O0 A1/  
Port 5 General Purpose I/O Line 3  
GPTA0 Input 43  
GPTA0 Output 43  
LTCA2 Output 11  
-
PU  
IN43  
I
OUT43  
OUT11  
Reserved  
P5.4  
O1  
O2  
O3  
I/O0 A1/  
Port 5 General Purpose I/O Line 4  
GPTA0 Input 44  
LTCA2 Input 29  
GPTA0 Output 44  
LTCA2 Output 12  
-
PU  
IN44  
I
IN29  
I
OUT44  
OUT12  
Reserved  
P5.5  
O1  
O2  
O3  
6
I/O0 A1/  
Port 5 General Purpose I/O Line 5  
GPTA0 Input 45  
LTCA2 Input 30  
GPTA0 Output 45  
LTCA2 Output 13  
-
PU  
IN45  
I
IN30  
I
OUT45  
OUT13  
Reserved  
O1  
O2  
O3  
Data Sheet  
68  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
7
P5.6  
I/O0 A1/  
Port 5 General Purpose I/O Line 6  
PU  
IN46  
I
GPTA0 Input 46  
IN31  
I
LTCA2 Input 31  
OUT46  
OUT14  
Reserved  
P5.7  
O1  
GPTA0 Output 46  
O2  
LTCA2 Output 14  
O3  
-
8
I/O0 A1/  
Port 5 General Purpose I/O Line 7  
PU  
IN47  
I
GPTA0 Input 47  
OUT47  
OUT15  
Reserved  
P5.8  
O1  
GPTA0 Output 47  
O2  
LTCA2 Output 15  
O3  
-
13  
14  
I/O0 A2/  
Port 5 General Purpose I/O Line 8  
PU  
RDATA0B  
Reserved  
Reserved  
OUT89  
P5.9  
I
MLI0 Receiver Data Input B  
O1  
-
O2  
-
O3  
LTCA2 Output 89  
I/O0 A2/  
Port 5 General Purpose I/O Line 9  
PU  
RVALID0B  
Reserved  
Reserved  
OUT90  
P5.10  
I
MLI0 Receiver Data Valid Input B  
O1  
-
O2  
-
O3  
LTCA2 Output 90  
15  
16  
I/O0 A2/  
Port 5 General Purpose I/O Line 10  
PU  
RREADY0B  
Reserved  
OUT91  
P5.11  
O1  
MLI0 Receiver Ready Input B  
O2  
-
O3  
LTCA2 Output 91  
I/O0 A2/  
Port 5 General Purpose I/O Line 11  
PU  
RCLK0B  
Reserved  
Reserved  
OUT92  
I
MLI0 Receiver Clock Input B  
O1  
O2  
O3  
-
-
LTCA2 Output 92  
Data Sheet  
69  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
17  
18  
19  
P5.12  
I/O0 A2/  
Port 5 General Purpose I/O Line 12  
PU  
TDATA0  
SLSO07  
OUT93  
O1  
MLI0 Transmitter Data Output  
SSC0 Slave Select Output 7  
LTCA2 Output 93  
O2  
O3  
P5.13  
I/O0 A2/  
Port 5 General Purpose I/O Line 13  
MLI0 Transmitter Valid Input B  
SSC1 Slave Select Output 6  
-
PU  
TVALID0B  
SLSO16  
Reserved  
P5.14  
O1  
O2  
O3  
I/O0 A2/  
Port 5 General Purpose I/O Line 14  
MLI0 Transmitter Ready Input B  
-
PU  
TREADY0B  
Reserved  
Reserved  
OUT94  
I
O1  
O2  
-
O3  
LTCA2 Output 94  
9
P5.15  
I/O0 A2/  
Port 5 General Purpose I/O Line 15  
MLI0 Transmitter Clock Output  
-
PU  
TCLK0  
O1  
Reserved  
OUT95  
O2  
O3  
LTCA2 Output 95  
Port 6  
156 P6.0  
IN14  
I/O0 A1/  
Port 6 General Purpose I/O Line 0  
LTCA2 Input 14  
F/  
I
PU  
O1  
FCLN0  
MSC0 Clock Output Negative  
GPTA0 Output 80  
OUT80  
OUT4  
O2  
O3  
LTCA2 Output 4  
157 P6.1  
I/O0 A1/  
Port 6 General Purpose I/O Line 1  
LTCA2 Input 15  
F/  
IN15  
I
PU  
O1  
FCLP0A  
OUT81  
OUT5  
MSC0 Clock Output Positive A  
GPTA0 Output 81  
O2  
O3  
LTCA2 Output 5  
Data Sheet  
70  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
158 P6.2  
IN24  
I/O0 A1/  
Port 6 General Purpose I/O Line 2  
F/  
I
LTCA2 Input 24  
PU  
O1  
SON0  
MSC0 Serial Data Output Negative  
GPTA0 Output 82  
OUT82  
O2  
OUT6  
O3  
LTCA2 Output 6  
159 P6.3  
IN25  
I/O0 A1/  
Port 6 General Purpose I/O Line 3  
LTCA2 Input 25  
F/  
I
PU  
O1  
SOP0A  
MSC0 Serial Data Output Positive A  
GPTA0 Output 83  
OUT83  
O2  
O3  
OUT7  
LTCA2 Output 7  
Analog Input Port  
67  
66  
65  
64  
63  
62  
61  
36  
60  
59  
58  
57  
56  
55  
50  
49  
48  
47  
46  
AN0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Analog Input 0  
Analog Input 1  
Analog Input 2  
Analog Input 3  
Analog Input 4  
Analog Input 5  
Analog Input 6  
Analog Input 7  
Analog Input 8  
Analog Input 9  
Analog Input 10  
Analog Input 11  
Analog Input 12  
Analog Input 13  
Analog Input 14  
Analog Input 15  
Analog Input 16  
Analog Input 17  
Analog Input 18  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
Data Sheet  
71  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
45  
44  
43  
42  
41  
40  
39  
38  
37  
35  
34  
33  
32  
31  
30  
29  
28  
54  
53  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
VDDM  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-
-
-
-
-
-
-
-
-
-
-
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
-
Analog Input 19  
Analog Input 20  
Analog Input 21  
Analog Input 22  
Analog Input 23  
Analog Input 24  
Analog Input 25  
Analog Input 26  
Analog Input 27  
Analog Input 28  
Analog Input 29  
Analog Input 30  
Analog Input 31  
Analog Input 32  
Analog Input 33  
Analog Input 34  
Analog Input 35  
ADC Analog Part Power Supply (3.3V - 5V)  
ADC Analog Part Ground  
ADC0 Reference Voltage  
ADC1 Reference Voltage  
ADC Reference Ground  
FADC Analog Part Power Supply (3.3V)2)  
FADC Analog Part Logic Power Supply (1.5V)  
FADC Analog Part Ground  
FADC Analog Part Ground  
FADC Reference Voltage  
FADC Reference Ground  
VSSM  
-
52, VAREF0  
-
VAREF1  
-
51  
24  
23  
VAGND0  
VDDMF  
VDDAF  
-
-
-
25, VSSMF  
-
VSSAF  
-
26  
27  
VFAREF  
VFAGND  
-
-
Data Sheet  
72  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
- - Digital Core Power Supply (1.5V)  
Pin Symbol  
10, VDD  
213),  
68,  
84,  
89,  
99,  
123,  
153,  
170  
11, VDDP  
20,  
-
-
Port Power Supply (3.3V)  
69,  
83,  
91,  
100,  
124,  
139,  
154,  
171  
12, VSS  
22,  
-
-
Digital Ground  
70,  
82,  
85,  
92,  
101,  
125,  
140,  
155,  
172  
105 VDDOSC  
106 VDDOSC3  
104 VSSOSC  
141 VDDFL3  
102 XTAL1  
103 XTAL2  
-
-
-
-
-
Main Oscillator and PLL Power Supply (1.5V)  
Main Oscillator Power Supply (3.3V)  
Main Oscillator and PLL Ground  
Power Supply for Flash (3.3V)  
Main Oscillator Input  
-
-
-
I
O
Main Oscillator Output  
Data Sheet  
73  
V1.3, 2009-09  
TC1767  
Pinning  
Table 4  
Pin Definitions and Functions (PG-LQFP-176-5 Package1)) (cont’d)  
Ctrl. Type Function  
Pin Symbol  
111 TDI  
BRKIN  
I
A2/  
PU  
JTAG Serial Data Input  
OCDS Break Input Line  
OCDS Break Output Line  
JTAG State Machine Control Input  
Device Access Port Line 1  
JTAG Serial Data Output  
Device Access Port Line 2  
OCDS Break Input Line  
OCDS Break Output Line  
JTAG Reset Input  
I
BRKOUT  
112 TMS  
DAP1  
O
I
A2/  
PD  
I/O  
I/O  
I/O  
I
113 TDO  
DAP2  
A2/  
PU  
BRKIN  
BRKOUT  
114 TRST  
O
I
A1/  
PD  
115 TCK  
DAP0  
I
A1/  
PD  
JTAG Clock Input  
I
Device Access Port Line 0  
Test Mode Select Input  
118 TESTMODE  
120 ESR1  
I
PU  
I/O  
A2/  
PD  
External System Request Reset Input 1  
121 PORST  
122 ESR0  
I
PD  
Power On Reset Input  
(input pad with input spike-filter)  
I/O  
A2  
External System Request Reset Input 0  
Default configuration during and after reset is  
open-drain driver, corresponding to A2 strong  
driver, sharp edge. The driver drives low during  
power-on reset.  
1) TC1767 ED: PG-LQFP-176-6  
2) This pin is also connected to the analog power supply for comparator of the ADC module.  
3) For the TC1767 emulation device (ED), this pin is bonded to VDDSB (ED Stand By RAM supply). In the TC1767  
non ED device, this pin is bonded to a VDD pad.  
Legend for Table 4  
Column “Ctrl.”:  
I = Input (for GPIO port lines with IOCR bit field selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X00B  
O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1)  
Data Sheet  
74  
V1.3, 2009-09  
TC1767  
Pinning  
O2 = Output with IOCR bit field selection PCx = 1X10B(ALT2)  
O3 = Output with IOCR bit field selection PCx = 1X11(ALT3)  
Column “Type”:  
A1 = Pad class A1 (LVTTL)  
A2 = Pad class A2 (LVTTL)  
F = Pad class F (LVDS/CMOS)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PD = with pull-down device connected during reset (PORST = 0)  
TR = tri-state during reset (PORST = 0)  
3.1.2  
Reset Behavior of the Pins  
Table 5 describes the pull-up/pull-down behavior of the System I/O pins during power-  
on reset.  
Table 5  
List of Pull-up/Pull-down PORST Reset Behavior of the Pins  
Pins  
PORST = 0  
Pull-up  
PORST = 1  
All GPIOs, TDI, TESTMODE  
PORST, TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is Pull-up2)  
used to drive low.1)  
ESR1  
TDO  
Pull-down3)  
Pull-up  
High-impedance  
1) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter  
for details.  
2) See the SCU_IOCR register description.  
3) see the SCU_IOCR register description.  
Data Sheet  
75  
V1.3, 2009-09  
TC1767  
Identification Registers  
4
Identification Registers  
The Identification Registers uniquely identify a module or the whole device.  
Table 6  
TC1767 Identification Registers  
Short Name  
ADC0_ID  
ADC1_ID  
ASC0_ID  
ASC1_ID  
CAN_ID  
Value  
Address  
Stepping  
0058 C000H  
0058 C000H  
0000 4402H  
0000 4402H  
002B C061H  
0000 6350H  
1015 9083H  
0015 C007H  
000A C006H  
001A C004H  
0008 C005H  
0027 C003H  
0053 C001H  
0054 C003H  
0029 C005H  
000F C005H  
000C C006H  
002A C005H  
001B C001H  
0025 C007H  
0028 C003H  
0020 C006H  
000B C005H  
0050 C001H  
0000 6A0CH  
0000 9001H  
0052 C001H  
F010 1008H  
F010 1408H  
F000 0A08H  
F000 0B08H  
F000 4008H  
F000 0408H  
F000 0464H  
F7E0 FF08H  
F7E1 FE18H  
F000 3C08H  
F87F FC08H  
F010 0408H  
F800 2008H  
F7E1 A020H  
F000 1808H  
F87F FE08H  
F87F FF08H  
F000 2808H  
F010 C208H  
F010 C008H  
F000 0808H  
F004 3F08H  
F87F FD08H  
F800 0508H  
F000 0108H  
F000 0640H  
F000 0508H  
CBS_JDPID  
CBS_JTAGID  
CPS_ID  
CPU_ID  
DMA_ID  
DMI_ID  
FADC_ID  
FLASH0_ID  
FPU_ID  
GPTA0_ID  
LBCU_ID  
LFI_ID  
LTCA2_ID  
MCHK_ID  
MLI0_ID  
MSC0_ID  
PCP_ID  
PMI_ID  
PMU0_ID  
SBCU_ID  
SCU_CHIPID  
SCU_ID  
Data Sheet  
76  
V1.3, 2009-09  
TC1767  
Identification Registers  
Table 6  
TC1767 Identification Registers (cont’d)  
Short Name  
SCU_MANID  
SCU_RTID  
SSC0_ID  
SSC1_ID  
STM_ID  
Value  
Address  
Stepping  
0000 1820H  
0000 0007H  
0000 4511H  
0000 4511H  
0000 C006H  
F000 0644H  
F000 0648H  
F010 0108H  
F010 0208H  
F000 0208H  
AD-step  
Data Sheet  
77  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5
Electrical Parameters  
5.1  
General Parameters  
5.1.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the TC1767  
and partly its requirements on the system. To aid interpreting the parameters easily  
when evaluating them for a design, they are marked with an two-letter abbreviation in  
column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics which are a distinctive feature of  
the TC1767 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements which must provided by the  
microcontroller system in which the TC1767 designed in.  
Data Sheet  
78  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.1.2  
Pad Driver and Pad Classes Summary  
This section gives an overview on the different pad driver classes and its basic  
characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1.  
Table 7  
Pad Driver and Pad Classes Overview  
Class Power Type  
Supply  
Sub Class Speed Load Leakage1) Termination  
Grade  
A
3.3 V  
LVTTL A1  
6 MHz 100 pF 500 nA  
No  
I/O,  
(e.g. GPIO)  
LVTTL  
outputs  
A2  
(e.g. serial  
I/Os)  
40  
MHz  
50 pF 6 µA  
Series  
termination  
recommended  
F
3.3 V  
5 V  
LVDS/  
CMOS  
50  
MHz  
Parallel  
termination2),  
100 ± 10%  
DE  
ADC  
see Table 12  
1) Values are for TJmax = 150 °C.  
2) In applications where the LVDSpins are not used (disabled), these pins must be either left unconnected, or  
properly terminated with the differential parallel termination of 100 ± 10%.  
Data Sheet  
79  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.1.3  
Absolute Maximum Ratings  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device  
at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > related VDD or VIN < VSS) the  
voltage on the related VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Table 8  
Absolute Maximum Rating Parameters  
Symbol Values  
Min. Typ. Max.  
Parameter  
Unit Note /  
Test Con  
dition  
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
TST  
TJ  
SR -40  
125  
150  
150  
2.25  
°C  
°C  
°C  
V
Under bias  
SR -65  
SR -40  
Under bias  
Voltage at 1.5 V power supply VDD  
pins with respect to VSS  
1)  
SR  
Voltage at 3.3 V power supply VDDP SR –  
pins with respect to VSS  
3.75  
5.5  
V
V
V
2)  
Voltage at 5 V power supply VDDM SR –  
pins with respect to VSS  
Voltage on any Class A input VIN  
pin and dedicated input pins  
with respect to VSS  
SR -0.5 –  
V
DDP + 0.5  
Whatever  
is lower  
or max. 3.7  
Voltage on any Class D  
analog input pin with respect VAREFx  
to VAGND  
VAIN  
-0.5 –  
V
V
DDM + 0.5  
DDM + 0.5  
V
V
SR  
Voltage on any Class D  
VAINF  
-0.5 –  
analog input pin with respect VFAREF  
to VSSAF, if the FADC is  
SR  
switched through to the pin.  
1) Applicable for VDD, VDDOSC, VDDPLL, and VDDAF  
.
2) Applicable for VDDP, VDDFL3, and VDDMF  
.
Data Sheet  
80  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1767. All parameters specified in the following table refer to these  
operating conditions, unless otherwise noted.  
Table 9  
Operating Condition Parameters  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
Digital supply voltage1) VDD  
SR 1.42  
1.582)  
V
V
VDDOSC SR  
VDDP  
SR 3.13  
3.473)  
For Class A pins  
V
DDOSC3 SR  
(3.3 V ± 5%)  
VDDFL3 SR 3.13  
Analog supply voltages VDDMF SR 3.13  
VDDAF SR 1.42  
3.473)  
3.473)  
1.582)  
5.25  
V
V
V
V
FADC  
FADC  
VDDM  
SR 4.75  
For Class DE  
pins, ADC  
Digital ground voltage  
VSS  
TA  
SR 0  
SR –  
V
Ambient temperature  
under bias  
-40 +125 °C  
Analog supply voltages –  
See separate  
specification  
Page 88,  
Page 93  
4)  
Overload current at  
class D pins  
IOV  
-1  
3
mA  
Sum of overload current Σ|IOV|  
10  
mA per single ADC  
at class D pins  
Overload coupling  
KOVAP  
KOVAN  
5×10-5  
5×10-4  
0 < IOV < 3 mA  
-1 mA < IOV < 0  
factor for analog inputs5)  
CPU & LMB Bus  
Frequency  
fCPU SR  
fPCP SR  
fSYS SR  
133  
80  
MHz Derivative  
dependent  
MHz 6)Derivative  
dependent  
PCP Frequency  
133  
80  
6)  
FPI Bus Frequency  
Short circuit current  
80  
+5  
MHz  
7)  
ISC  
SR -5  
mA  
Data Sheet  
81  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 9  
Operating Condition Parameters  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
Absolute sum of short  
circuit currents of a pin  
group (see Table 10)  
Σ|ISC_PG  
|
20  
mA See note  
SR  
Inactive device pin  
current  
IID  
SR -1  
1
mA All power supply  
voltages VDDx = 0  
mA See note4)  
Absolute sum of short  
circuit currents of the  
device  
Σ|ISC_D  
|
100  
SR  
External load  
capacitance  
CL  
SR –  
pF  
Dependingonpin  
class. See DC  
characteristics  
1) Digital supply voltages applied to the TC1767 must be static regulated voltages which allow a typical voltage  
swing of ±5%.  
2) Voltage overshoot up to 1.7 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 µs and the cumulated summary of the pulses does not exceed 1 h.  
3) Voltage overshoot up to 4 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 µs and the cumulated summary of the pulses does not exceed 1 h.  
4) See additional document “TC1767 Pin Reliability in Overload“ for definition of overload current on digital pins.  
5) The overload coupling factor (kA) defines the worst case relation of an overload condition (IOV) at one pin to  
the resulting leakage current (IleakTOT) into an adjacent pin: IleakTOT = ±kA × |IOV| + IOZ1.  
Thus under overload conditions an additional error leakage voltage (VAEL) will be induced onto an adjacent  
analog input pin due to the resistance of the analog input source (RAIN). That means VAEL = RAIN ×  
|IleakTOT|.  
The definition of adjacent pins is related to their order on the silicon.  
The Injected leakage current always flows in the opposite direction from the causing overload current.  
Therefore, the total leakage current must be calculated as an algebraic sum of the both component leakage  
currents (the own leakage current IOZ1 and the optional injected leakage current).  
6) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
7) Applicable for digital outputs.  
Table 10  
Pin Groups for Overload/Short-Circuit Current Sum Parameter  
Pins  
Group  
1
2
3
4
P5.[14:8]  
P1.[14:12]; P2.[7:0]  
P4.[3:0]  
P1.[3:2]; P1.[11:8]  
Data Sheet  
82  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 10  
Group  
5
Pin Groups for Overload/Short-Circuit Current Sum Parameter  
Pins  
P1.[7:4]; TDI/BRKIN/BRKOUT; TRST, TCK/DAP0; P1.[1:0]; P1.15;  
TESTMODE; ESR0; PORST; ESR1  
6
7
8
9
P3.[10:0]; P3.[15:14]  
P3.[13:11]; P0.[3:0]; P0.[11:8]  
P6.[3:0]; P2.[13:8]; P0.[5:4]; P0.[13:12]  
P0.[7:6]; P0.[15:14]; P5.[7:0]; P5.15  
Data Sheet  
83  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.2  
DC Parameters  
5.2.1  
Input/Output Pins  
Table 11  
Input/Output DC-Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
General Parameters  
Pull-up current1)  
|IPUH  
|
10  
10  
100  
150  
10  
µA VIN < VIHAmin  
;
CC  
CC  
CC  
class A1/A2/F/Input pads.  
Pull-down  
current1)  
Pin capacitance1) CIO  
|IPDL  
|
µA VIN >VILAmax  
;
class A1/A2/F/Input pads.  
pF f = 1 MHz  
(Digital I/O)  
TA = 25 °C  
Input only Pads (VDDP = 3.13 to 3.47 V = 3.3 V ± 5%)  
Input low voltage VILI  
-0.3  
0.36 ×  
VDDP  
V
V
SR  
Input high voltage VIHI  
0.62 × –  
VDDP+  
Whatever is lower  
SR VDDP  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
CC 0.58  
Input high voltage VIHJ  
TRST, TCK  
0.64 × –  
SR VDDP  
VDDP  
+
V
Whatever is lower  
0.3 or  
max.  
3.6  
4)  
Input hysteresis  
HYSI  
0.1 ×  
CC VDDP  
V
Input leakage  
current2)  
IOZI  
±3000 nA ((VDDP/2)-1) < VIN <  
CC  
±6000  
((VDDP/2)+1)  
Otherwise  
Spike filter always tSF1  
blocked pulse  
duration  
10  
ns  
CC  
Data Sheet  
84  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 11  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Spike filter pass- tSF2  
through pulse  
100  
ns  
CC  
duration  
Class A Pads (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Outputlowvoltage VOLA  
0.4  
V
V
V
IOL = 2 mA for medium  
and strong driver mode,  
IOL = 500 µA for weak  
driver mode  
2)3)  
CC  
Output high  
voltage2) 3)  
VOHA  
2.4  
I
OH = -2 mA for medium  
and strong driver mode,  
OH = -500 µA for weak  
driver mode  
OH = -1.4 mA for medium  
and strong driver mode,  
OH = -400 µA for weak  
CC  
I
V
0.4  
DDP - –  
I
I
driver mode  
Input low voltage VILA  
Class A1/2 pins  
-0.3  
0.36 ×  
VDDP  
V
V
SR  
Input high voltage VIHA1  
0.62 × –  
VDDP+  
Whatever is lower  
Class A1 pins  
SR VDDP  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
SR 0.58  
Input high voltage VIHA2  
Class A2 pins  
0.60 × –  
SR VDDP  
VDDP  
+
V
Whatever is lower  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
CC 0.60  
4)  
Input hysteresis  
HYSA  
0.1 ×  
V
CC VDDP  
Input leakage  
current Class A2  
pins  
IOZA2  
±3000 nA ((VDDP/2)-1) < VIN <  
((VDDP/2)+1)  
±6000  
Otherwise2)  
Data Sheet  
85  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 11  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Input leakage  
current  
IOZA1  
±500  
nA 0 V <VIN < VDDP  
CC  
Class A1 pins  
Class F Pads, LVDS Mode (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Output low voltage VOL CC 875  
mV Parallel termination  
100 ± 1%  
Output high  
voltage  
VOH CC  
1525  
400  
mV Parallel termination  
100 ± 1%  
Output differential VOD CC 150  
voltage  
mV Parallel termination  
100 ± 1%  
Output offset  
voltage  
VOS CC 1075  
1325  
140  
mV Parallel termination  
100 ± 1%  
Output impedance R0 CC 40  
Class F Pads, CMOS Mode (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Input low voltage VILF  
-0.3  
0.36 ×  
V
Class F pins  
SR  
VDDP  
Input high voltage VIHF  
0.6 ×  
VDDP+  
V
Whatever is lower  
Class F pins  
SR VDDP  
0.3 or  
max 3.6  
Input hysteresis  
Class F pins  
HYSF  
0.05 × –  
V
CC VDDP  
Input leakage  
current Class F  
pins  
IOZF  
±3000 nA ((VDDP/2)-1) < VIN <  
((VDDP/2)+1)  
±6000  
CC  
Otherwise2)  
Output low voltage VOLF  
0.4  
V
IOL = 2 mA  
5)  
CC  
CC  
Output high  
voltage2) 5)  
VOHF  
2.4  
V
V
I
I
OH = -2 mA  
V
DDP - –  
OH = -1.4 mA  
0.4  
Class D Pads  
See ADC Characteristics  
1) Not subject to production test, verified by design / characterization.  
2) Only one of these parameters is tested, the other is verified by design characterization  
Data Sheet  
86  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
3) Maximum resistance of the driver RDSON, defined for P_MOS / N_MOS transistor separately:  
25 / 20 for strong driver mode, IOH / L < 2 mA,  
200 / 150 for medium driver mode, IOH / L < 400 uA,  
600 / 400 for weak driver mode, IOH / L < 100 uA,  
verified by design / characterization.  
4) Function verified by design, value verified by design characterization.  
Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce.  
It cannot be guaranteed that it suppresses switching due to external system noise.  
5) The following constraint applies to an LVDS pair used in CMOS mode: only one pin of a pair should be used  
as output, the other should be used as input, or both pins should be used as inputs. Using both pins as outputs  
is not recommended because of the higher crosstalk between them.  
Data Sheet  
87  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.2.2  
Analog to Digital Converters (ADC0/ADC1)  
All ADC parameters are optimized for and valid in the range of VDDM = 5V ± 5%.  
Table 12  
ADC Characteristics (Operating Conditions apply)  
Symbol Values Unit Note /  
Test Condition  
Parameter  
Min.  
Typ. Max.  
Analog supply  
voltage  
VDDM SR 4.75  
5
5.25  
V
V
V
3.13  
3.3  
1.5  
3.471)  
1.582)  
VDD  
SR 1.42  
Power supply for  
ADC digital part,  
internal supply  
Analog ground  
voltage  
VSSM SR -0.1  
0.1  
V
V
Analogreference VAREFx SR VAGNDx+1 VDDM VDDM  
voltage14)  
0.05  
+
V
1)3)4)  
Analogreference VAGNDx SR VSSMx  
-
0
V
1V  
AREF - V  
ground14)  
0.05V  
Analog input  
voltage range  
VAIN  
SR VAGNDx  
VAREFx  
V
Analogreference VAREFx  
-
V
DDM/2  
VDDM + V  
0.05  
voltage range5)14) VAGNDx SR  
Converter Clock fADC SR  
1
80  
10  
MHz –  
MHz –  
Internal ADC  
clocks  
fADCI  
CC 0.5  
Sample time  
tS  
CC 2  
257  
TADCI –  
Total unadjusted TUE6) CC –  
±4  
LSB 12-bit conversion,  
without noise7)8)  
error5)  
±2  
±1  
LSB 10-bit conversion8)  
LSB 8-bit conversion8)  
DNL error9) 5)  
INL error9)5)  
Gain error9)5)  
EADNL  
EAINL  
±1.5 ±3.0  
±1.5 ±3.0  
±0.5 ±3.5  
LSB 12-bit conversion  
without noise8)10)  
CC  
CC  
CC  
LSB 12-bit conversion  
without noise8)10)  
EAGAIN  
LSB 12-bit conversion  
without noise8)10)  
Data Sheet  
88  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 12  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
±1.0 ±4.0  
Unit Note /  
Test Condition  
Min.  
Offset error9)5)  
EAOFF  
LSB 12-bit conversion  
without noise8)10)  
CC  
Input leakage  
current at analog  
IOZ1 CC  
-300  
-100  
-100  
100  
200  
300  
±1.5  
nA  
nA  
nA  
µA  
(0% VDDM) < VIN <  
(3% VDDM  
(3% VDDM) < VIN <  
(97% VDDM  
(97% VDDM) < VIN <  
)
inputs of ADC0/1  
11) 12) 13)  
)
(100% VDDM  
)
Input leakage  
current at  
IOZ2  
CC –  
0 V < VAREF  
<
V
DDM, noconversion  
VAREF0/1  
,
running  
per module  
Input current at IAREF CC –  
35  
20  
75  
40  
µA  
0 V < VAREF  
<
14)  
15)  
VAREF0/1  
,
rms VDDM  
per module  
8)  
Total  
CAREFTOT  
pF  
capacitance of  
the voltage  
reference  
inputs16)14)  
CC  
8)17)  
Switched  
CAREFSW  
15  
30  
pF  
capacitance at  
the positive  
reference  
CC  
voltage input14)  
Resistance of  
the reference  
voltage input  
path16)  
RAREF  
500  
25  
1000  
30  
500 Ohm increased  
for AN[1:0] used as  
reference input8)  
CC  
CC  
1)8)  
Total  
CAINTOT  
pF  
capacitance of  
the analog  
inputs16)  
Data Sheet  
89  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 12  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
8)18)  
Switched  
CAINSW  
7
20  
pF  
capacitance at  
the analog  
CC  
voltage inputs  
8)  
ON resistance of RAIN  
the transmission  
gates in the  
CC –  
700  
1500  
analog voltage  
path  
ON resistance  
for the ADC test  
(pull-down for  
AIN7)  
RAIN7T CC 180  
550  
90019)  
Test feature  
available only for  
AIN7 8) 20)  
Current through IAIN7T CC –  
resistanceforthe  
ADC test (pull-  
15  
rms  
30  
peak  
mA  
Test feature  
available only for  
AIN78)  
down for AIN7)  
1) Voltage overshoot up to 4 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 µs and the cumulated summary of the pulses does not exceed 1 h.  
2) Voltage overshoot up to 1.7 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 µs and the cumulated summary of the pulses does not exceed 1 h.  
3) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoot).  
4) If  
the  
reference  
voltage  
VAREF  
increases  
or  
the  
VDDM  
decreases,  
so  
that  
VAREF = (VDDM + 0.05 V to VDDM + 0.07 V), then the accuracy of the ADC decreases by 4 LSB12.  
5) If a reduced reference voltage in a range of VDDM/2 to VDDM is used, then the ADC converter errors increase.  
If the reference voltage is reduced with the factor k (k<1), then TUE, DNL, INL Gain and Offset errors increase  
with the factor 1/k.  
If a reduced reference voltage in a range of 1 V to VDDM/2 is used, then there are additional decrease in the  
ADC speed and accuracy.  
6) TUE is tested at VAREF = 5.0 V, VAGND = 0 V and VDDM = 5.0 V  
7) ADC module capability.  
8) Not subject to production test, verified by design / characterization.  
9) The sum of DNL/INL/Gain/Offset errors does not exceed the related TUE total unadjusted error.  
10) For 10-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with factor 0.25.  
For 8-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with 0.0625.  
11) The leakage current definition is a continuous function, as shown in Figure 19. The numerical values defined  
determine the characteristic points of the given continuous linear approximation - they do not define step  
function.  
Data Sheet  
90  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
12) Only one of these parameters is tested, the other is verified by design characterization.  
13) The leakage current decreases typically 30% for junction temperature decrease of 10oC.  
14) Applies to AINx, when used as auxiliary reference inputs.  
15) IAREF_MAX is valid for the minimum specified conversion time. The current flowing during an ADC conversion  
with a duration of up to tC = 25µs can be calculated with the formula IAREF_MAX = QCONV/tC. Every conversion  
needs a total charge of QCONV = 150pC from VAREF  
.
All ADC conversions with a duration longer than tC = 25µs consume an IAREF_MAX = 6µA.  
16) For the definition of the parameters see also Figure 18.  
17) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage  
at once. Instead of this smaller capacitances are successively switched to the reference voltage.  
18) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before the sampling moment.  
Because of the parasitic elements the voltage measured at AINx can deviate from VAREF/2, and is typically  
1.35V.  
19) RAIN7T = 1400 Ohm maximum and 830 Ohm typical in the VDDM = 3.3V± 5% range.  
20) The DC current at the pin is limited to 3 mA for the operational lifetime.  
clock  
generation  
ADC kernel  
f
ADC  
interrupts,  
etc.  
divider for  
divider for  
fADCI  
f
ADCD  
digital clock  
analog clock  
f
ADCI  
f
ADCD  
registers  
analog part  
arbiter  
ADC_clocking  
Figure 17  
ADC0/ADC1 Clock Circuit  
Data Sheet  
91  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 13  
Conversion Time (Operating Conditions apply)  
Symbol Value  
Parameter  
Unit Note  
Conversion  
time with  
tC CC 2 × TADC + (4 + STC + n) × TADCI µs  
n = 8, 10, 12 for  
n - bit conversion  
post-calibration  
T
T
ADC = 1 / fADC  
ADCI = 1 / fADCI  
Conversion  
2 × TADC + (2 + STC + n) × TADCI  
time without  
post-calibration  
Analog Input Circuitry  
RAIN, On  
REXT  
ANx  
VAIN  
CEXT  
CAINSW  
=
C
AINTOT - CAINSW  
VAGNDx  
RAIN7T  
Reference Voltage Input Circuitry  
RAREF, On  
VAREFx  
VAREF  
C
AREFTOT - CAREFSW  
CAREFSW  
VAGNDx  
Analog_InpRefDiag  
Figure 18  
ADC0/ADC1 Input Circuits  
Io z 1  
3 0 0 n A  
2 0 0 n A  
1 0 0 n A  
V IN [V D D M % ]  
-1 0 0 n A  
-3 0 0 n A  
3 %  
9 7 % 1 0 0 %  
A D C L e a k a g e 1 0 .v s d  
Figure 19  
ADC0/ADC1Analog Inputs Leakage  
Data Sheet  
92  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.2.3  
Fast Analog to Digital Converter (FADC)  
All parameters apply to FADC used in differential mode, which is the default and the  
intended mode of operation, and which takes advantage of many error cancelation  
effects inherent to differential measurements in general.  
Table 14  
FADC Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
9)  
DNL error  
EFDNL CC –  
EFINL CC –  
±1  
±4  
±5  
LSB  
LSB  
%
9)  
INL error  
Gradient error9)  
EFGRAD  
Without calibration  
gain 1, 2, 4  
CC  
±6  
%
Without calibration  
gain 8  
Offset error9)1)  
EFOFF  
EFREF  
±203)  
±903)  
±60  
mV  
mV  
mV  
With calibration1)  
Without calibration  
2)  
CC  
Reference error of  
internal VFAREF/2  
CC  
Analog supply  
voltages  
VDDMF SR 3.13  
VDDAF SR 1.42  
3.474)  
1.585)  
0.1  
V
V
V
Analog ground  
voltage  
VSSAF  
-0.1  
SR  
SR  
Analog reference  
voltage  
VFAREF  
VFAGND  
3.13  
3.474)6)  
V
Nominal 3.3 V  
Analog reference  
ground  
V
SSAF - –  
V
SSAF + V  
SR 0.05 V  
0.05 V  
Analog input voltage VAINF  
VFAGND  
VDDMF  
V
range  
SR  
Analog supply  
currents  
IDDMF SR –  
IDDAF SR –  
10  
mA  
mA  
7)  
10  
Input current at  
VFAREF  
IFAREF  
120  
µA  
rms  
Independent of  
conversion  
CC  
CC  
CC  
Input leakage current IFOZ2  
±500  
±8  
nA  
0 V < VIN < VDDMF  
8)  
at VFAREF  
Input leakage current IFOZ3  
µA  
0 V < VIN < VDDMF  
8)  
at VFAGND  
Data Sheet  
93  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 14  
FADC Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
C_FADC CC –  
Typ. Max.  
Conversion time  
t
21  
CLK For 10-bit conv.  
of  
fFADC  
Converter clock  
fFADC SR 10  
80  
MHz  
9)  
Input resistance of  
the analog voltage  
path (Rn, Rp)  
RFAIN  
100  
200  
kΩ  
CC  
Channel amplifier  
cutoff frequency9)  
fCOFF  
tSET  
2
5
MHz  
CC  
Settling time of a  
channel amplifier  
(after changing  
channel amplifier  
input)9)  
CC –  
µs  
1) Calibration should be performed at each power-up. In case of continuous operation, calibration should be  
performed minimum once per week, or on regular basis in order to compensate for temperature changes.  
2) The offset error voltage drifts over the whole temperature range maximum ±6 LSB.  
3) Applies when the gain of the channel equals one. For the other gain settings, the offset error increases; it must  
be multiplied with the applied gain.  
4) Voltage overshoots up to 4 V are permissible, provided the pulse duration is less than 100 µs and the  
cumulated summary of the pulses does not exceed 1 h.  
5) Voltage overshoots up to 1.7 V are permissible, provided the pulse duration is less than 100 µs and the  
cumulated sum of the pulses does not exceed 1 h.  
6) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoots).  
7) Current peaks of up to 40 mA with a duration of max. 2 ns may occur  
8) This value applies in power-down mode.  
9) Not subject to production test, verified by design / characterization.  
The calibration procedure should run after each power-up, when all power supply  
voltages and the reference voltage have stabilized.  
Data Sheet  
94  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
FADC Analog Input Stage  
RN  
FAINxN  
-
+
VFAREF/2  
VFAGND  
+
RP  
FAINxP  
-
FADC Reference Voltage  
Input Circuitry  
VFAREF  
IFAREF  
VFAREF  
VFAGND  
FADC_InpRefDiag  
Figure 20  
FADC Input Circuits  
Data Sheet  
95  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.2.4  
Oscillator Pins  
Table 15  
Oscillator Pins Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
fOSC CC 8  
Typ. Max.  
Frequency range  
25  
MHz External Crystal  
Mode selected  
Input low voltage at VILX SR -0.2  
0.3 ×  
VDDOSC3  
V
XTAL11)  
Input high voltage at VIHX SR 0.7 ×  
VDDOSC3  
+ 0.2  
V
XTAL11)  
VDDOSC3  
Input current at  
XTAL1  
IIX1 CC –  
±25  
µA  
0 V < VIN < VDDOSC3  
1) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.3 × VDDOSC3 is  
sufficient.  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Refer to the limits specified by the crystal supplier.  
5.2.5  
Temperature Sensor  
Table 16  
Temperature Sensor Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Temperature sensor range TSR SR -40  
150 °C  
Junction  
temperature  
Temperature sensor  
measurement time  
tTSMT SR –  
100 µs  
Start-up time after reset  
Sensor accuracy  
tTSST SR –  
TTSA CC –  
10  
µs  
±6  
°C  
Calibrated  
Data Sheet  
96  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
The following formula calculates the temperature measured by the DTS in [oC] from the  
RESULT bitfield of the DTSSTAT register.  
(1)  
DTSSTATRESULT 619  
Tj = -----------------------------------------------------------------  
2, 28  
Data Sheet  
97  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.2.6  
Power Supply Current  
The default test conditions (differences explicitly specified) are:  
DD = 1.58 V, VDDP = 3.47 V, Tj=150oC. All other operating conditions apply.  
V
Table 17  
Power Supply Currents, Maximum Power Consumption  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Core active mode  
supply current 1) 2)  
IDD  
CC –  
330  
230  
10  
mA  
mA  
mA  
mA  
f
CPU=133 MHz  
fCPU/fSYS = 2:1  
Realistic core active  
VDD = 1.53 V,  
mode supply current 3)4)  
TJ = 150oC  
FADC 3.3 V analog  
supply current  
IDDMF  
IDDAF  
CC –  
CC –  
4)  
FADC 1.5 V analog  
supply current  
10  
Flash memory 3.3 V  
supply current  
IDDFL3R CC –  
60  
mA continuously  
reading the Flash  
memory 5)  
IDDFL3E CC –  
61  
mA Flash memory  
erase-verify6)  
4)  
Oscillator 1.5 V supply IDDOSC CC  
Oscillator 3.3 V supply IDDOSC3 CC  
3
mA  
mA  
4)  
10  
15  
16  
34  
LVDS 3.3 V supply  
ILVDS  
IDDP  
mA in total for two pairs  
4) 7)  
Pad currents,sum of  
CC –  
mA  
mA  
V
DDP 3.3 V supplies  
IDDP_FP CC –  
I
DDP including Data  
Flash programming  
current 4) 8)  
ADC 5 V power supply IDDM  
CC –  
SR –  
2
3
mA ADC0 / 1  
Maximum Average  
Power Dissipation1)  
PD  
820 990  
mW worst case  
TA = 125oC,  
PD × RΘJA < 25oC  
1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each custom  
application will most probably be lower than this value, but must be evaluated separately..  
2) The IDD maximum value is 275 mA at fCPU = 80 MHz, constant TJ = 150oC, for the Infineon Max Power Loop.  
The dependency in this range is, at constant junction temperature, linear.  
fCPU/fSYS = 1:1 mode.  
Data Sheet  
98  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
3) The IDD maximum value is 180 mA at fCPU = 80 MHz, constant TJ = 150oC, for the Realistic Pattern.  
The dependency in this range is, at constant junction temperature, linear.  
CPU/fSYS = 1:1 mode.  
f
4) Not tested in production separately, verified by design / characterization.  
5) This value assumes worst case of reading flash line with all cells erased. In case of 50% cells written with “1”  
and 50% cells written with “0”, the maximum current drops down to 53 mA.  
6) Relevant for the power supply dimensioning, not for thermal considerations.  
In case of erase of Data Flash, internal flash array loading effects may generate transient current spikes of up  
to 15 mA for maximum 5 ms.  
7) No GPIO activity, LVDS off  
8) This value is relevant for the power supply dimensioning not for thermal considerations.  
The currents caused by the GPIO activity depend on the particular application and should be added  
separately.  
Data Sheet  
99  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3  
AC Parameters  
All AC parameters are defined with the temperature compensation disabled. That  
means, keeping the pads constantly at maximum strength.  
5.3.1  
Testing Waveforms  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tR  
tF  
rise_fall_vddp.vsd  
Figure 21  
Rise/Fall Time Parameters  
VDDP  
VDDP / 2  
Test Points  
VDDP / 2  
VSS  
mct04881_vddp.vsd  
Figure 22  
Testing Waveform, Output Delay  
VLoad+ 0.1 V  
VLoad- 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VOL - 0.1 V  
MCT04880_new  
Figure 23  
Testing Waveform, Output High Impedance  
Data Sheet  
100  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.2  
Output Rise/Fall Times  
Table 18  
Output Rise/Fall Times (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Class A1 Pads  
Rise/fall times1)  
t
RA1, tFA1  
50  
140  
18000  
150  
550  
ns  
ns  
Regular (medium) driver, 50 pF  
Regular (medium) driver, 150 pF  
Regular (medium) driver, 20 nF  
Weak driver, 20 pF  
Weak driver, 150 pF  
Weak driver, 20 000 pF  
65000  
Class A2 Pads  
Rise/fall times  
tRA2, tFA2  
3.7  
7.5  
7
18  
Strong driver, sharp edge, 50 pF  
Strong driver, sharp edge, 100pF  
Strong driver, med. edge, 50 pF  
Strong driver, soft edge, 50 pF  
Medium driver, 50 pF  
1)  
50  
140  
18000  
150  
550  
65000  
Medium driver, 150 pF  
Medium driver, 20 000 pF  
Weak driver, 20 pF  
Weak driver, 150 pF  
Weak driver, 20 000 pF  
Class F Pads  
Rise/fall times  
Rise/fall times  
t
RF1, tFF1  
RF2, tFF2  
2
ns  
ns  
LVDS Mode  
t
60  
CMOS Mode, 50 pF  
1) Not all parameters are subject to production test, but verified by design/characterization and test correlation.  
Data Sheet  
101  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.3  
Power Sequencing  
V
+-5%  
5V  
VAREF  
+-5%  
3.3V  
1.5V  
-12%  
+-5%  
0.5V  
-12%  
0.5V  
0.5V  
t
VDDP  
PORST  
power  
down  
power  
fail  
t
Power-Up 8.vsd  
Figure 24  
5 V / 3.3 V / 1.5 V Power-Up/Down Sequence  
The following list of rules applies to the power-up/down sequence:  
• All ground pins VSS must be externally connected to one single star point in the  
system. Regarding the DC current component, all ground pins are internally directly  
connected.  
1. At any moment,  
each power supply must be higher than any lower_power_supply - 0.5 V, or:  
VDD5 > VDD3.3 - 0.5 V; VDD5 > VDD1.5 - 0.5 V;VDD3.3 > VDD1.5 - 0.5 V, see Figure 24.  
2. During power-up and power-down, the voltage difference between the power supply  
pins of the same voltage (3.3 V, 1.5 V, and 5 V) with different names (for example  
VDDP, VDDFL3 ...), that are internaly connected via diodes must be lower than 100 mV.  
On the other hand, all power supply pins with the same name (for example all VDDP  
), are internaly directly connected. It is recommended that the power pins of the same  
voltage are driven by a single power supply.  
Data Sheet  
102  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
3. The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.5, and VAREF power-  
supplies and the oscillator have reached stable operation, within the normal  
operating conditions.  
4. At normal power down the PORST signal should be activated within the normal  
operating range, and then the power supplies may be switched off. Care must be  
taken that all Flash write or delete sequences have been completed.  
5. At power fail the PORST signal must be activated at latest when any 3.3 V or 1.5 V  
power supply voltage falls 12% below the nominal level. The same limit of 3.3 V-12%  
applies to the 5 V power supply too. If, under these conditions, the PORST is  
activated during a Flash write, only the memory row that was the target of the write  
at the moment of the power loss will contain unreliable content. In order to ensure  
clean power-down behavior, the PORST signal should be activated as close as  
possible to the normal operating voltage range.  
6. In case of a power-loss at any power-supply, all power supplies must be powered-  
down, conforming at the same time to the rules number 2 and 4.  
7. Although not necessary, it is additionally recommended that all power supplies are  
powered-up/down together in a controlled way, as tight to each other as possible.  
8. Aditionally, regarding the ADC reference voltage VAREF  
:
VAREF must power-up at the same time or later than VDDM, and  
VAREF must power-down eather earlier or at latest to satisfy the condition  
V
AREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF filter  
capacitance through the ESD diodes through the VDDM power supply. In case of  
discharging the reference capacitance through the ESD diodes, the current must  
be lower than 5 mA.  
Data Sheet  
103  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.4  
Power, Pad and Reset Timing  
Table 19  
Power, Pad and Reset Timing Parameters  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Conditi  
on  
Min.  
Min. VDDP voltage to  
ensure defined pad  
states1)  
V
DDPPA CC 0.6  
V
Oscillator start-up time2)  
tOSCS CC –  
tPOA SR 10  
10  
ms  
ms  
Minimum PORST active  
time after power supplies  
are stable at operating  
levels  
ESR0 pulse width  
tHD  
CC program –  
mable3)5)  
fSYS  
PORST rise time  
tPOR  
tPOS  
SR –  
SR 0  
50  
ms  
ns  
Setup time to PORST  
rising edge4)  
Hold time from PORST  
rising edge  
tPOH  
SR 100  
SR 0  
ns  
ns  
ns  
ns  
ns  
TESTMODE  
TRST  
Setup time to ESR0 rising tHDS  
edge  
Hold time from ESR0  
rising edge  
tHDH  
tPIP  
SR 16 ×  
1/fSYS  
HWCFG  
5)  
Ports inactive after  
CC –  
150  
PORST reset active6)7)  
Ports inactive after ESR0 tPI  
reset active (and for all  
logic)  
CC –  
8 ×  
1/fSYS  
Power on Reset Boot  
Time8)  
tBP  
CC –  
2.5  
ms  
Application Reset Boot  
Time 9)10)  
tB  
CC 150  
700  
960  
µs  
µs  
f
f
CPU=133MHz  
CPU=80MHz  
1) This parameter is valid under assumption that PORST signal is constantly at low level during the power-  
up/power-down of the VDDP  
.
Data Sheet  
104  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
2) tOSCS is defined from the moment when VDDOSC3 = 3.13 V until the oscillations reach an amplitude at XTAL1 of  
0,3 × VDDOSC3. This parameter is verified by device characterization. The external oscillator circuitry must be  
optimized by the customer and checked for negative resistance as recommended and specified by crystal  
suppliers.  
3) Any ESR0 activation is internally prolonged to SCU_RSTCNTCON.RELSA FPI bus clock (fFPI) cycles.  
4) Applicable for input pins TESTMODE and TRST.  
5) fFPI = fCPU / 2  
6) Not subject to production test, verified by design / characterization.  
7) This parameter includes the delay of the analog spike filter in the PORST pad.  
8) The duration of the boot-time is defined between the rising edge of the PORST and the moment when the first  
user instruction has entered the CPU and its processing starts.  
9) The duration of the boot time is defined between the rising edge of the internal application reset and the clock  
cycle when the first user instruction has entered the CPU pipeline and its processing starts.  
10) The given time includes the time of the internal reset extension for a configured value of  
SCU_RSTCNTCON.RELSA = 0x05BE.  
VDDP -12%  
VDDPPA  
VDDPPA  
VDDP  
VDD  
VDD -12%  
t
POA  
t
POA  
PORST  
t
t
POH  
POH  
TRST  
TESTMODE  
t
t
hd  
hd  
ESR0  
t
t
HDH  
t
t
HDH  
HDH  
PI  
HWCFG  
t
t
PIP  
PIP  
t
PI  
Pads  
t
t
t
PI  
PI  
PI  
t
PIP  
Pad-state undefined  
Tri-state or pull device active  
As programmed  
reset_beh2  
Figure 25  
Power, Pad and Reset Timing  
Data Sheet  
105  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.5  
Phase Locked Loop (PLL)  
Note: All PLL characteristics defined on this and the next page are not subject to  
production test, but verified by design characterization.  
Table 20  
PLL Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Con  
Min.  
Typ. Max.  
dition  
Accumulated jitter  
|Dm|  
7
ns  
VCO frequency range  
fVCO  
400  
8
800  
16  
MHz –  
MHz –  
MHz –  
VCO input frequency range fREF  
PLL base frequency1)  
fPLLBASE  
tL  
50  
200  
320  
200  
PLL lock-in time  
µs  
1) The CPU base frequency with which the application software starts after PORST is calculated by dividing the  
limit values by 16 (this is the K2 factor after reset).  
Phase Locked Loop Operation  
When PLL operation is enabled and configured, the PLL clock fVCO (and with it the LMB-  
Bus clock fLMB) is constantly adjusted to the selected frequency. The PLL is constantly  
adjusting its output frequency to correspond to the input frequency (from crystal or clock  
source), resulting in an accumulated jitter that is limited. This means that the relative  
deviation for periods of more than one clock cycle is lower than for a single clock cycle.  
This is especially important for bus cycles using waitstates and for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is negligible.  
Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in  
[ns] dependent on the K2 - factor, the LMB clock frequency fLMB in [MHz], and the  
number m of consecutive fLMB clock periods.  
for  
(K2 100)  
and  
(m ≤ (fLMB[MHz]) ⁄ 2)  
(1 – 0, 01 × K2) × (m – 1)  
0, 5 × fLMB[MHz] – 1  
(2)  
(3)  
740  
Dm[ns] = -------------------------------------------- + 5 × ---------------------------------------------------------------- + 0 , 0 1 × K2  
K2 × fLMB[MHz]  
740  
else  
Dm[ns] = -------------------------------------------- + 5  
K2 × fLMB[MHz]  
Data Sheet  
106  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
With rising number m of clock cycles the maximum jitter increases linearly up to a value  
of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum  
accumulated jitter remains at a constant value. Further, a lower LMB-Bus clock  
frequency fLMB results in a higher absolute maximum jitter value.  
Figure 26 gives the jitter curves for several K2 / fLMB combinations.  
±10.0  
Dm  
ns  
fLMB = 40 MHz (K2 = 10)  
fLMB = 40 MHz (K2 = 20)  
±8.0  
±7.0  
±6.0  
±4.0  
fLMB = 80 MHz (K2 = 6)  
fLMB = 80 MHz (K2 = 10)  
±2.0  
±1.0  
±0.0  
fLMB = 133 MHz (K2 = 6)  
20 40 60  
= Max. jitter  
0
80  
100  
120  
oo  
m
Dm  
m
= Number of consecutive fLMB periods  
K2  
= K2-divider of PLL  
TC1767_PLL_JITT_C  
Figure 26  
Approximated Maximum Accumulated PLL Jitter for Typical LMB-  
Bus Clock Frequencies fLMB  
Note: The specified PLL jitter values are valid if the capacitive load per output pin does  
not exceed CL = 20 pF with the maximum driver and sharp edge. In case of  
applications with many pins with high loads, driver strengths and toggle rates the  
specified jitter values could be exceeded.  
Note: The maximum peak-to-peak noise on the pad supply voltage, measured between  
V
V
DDOSC3 at pin 106 and VSSOSC at pin 104, is limited to a peak-to-peak voltage of  
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise  
frequencies above 300 KHz.  
The maximum peak-to peak noise on the pad supply votage, measured between  
VDDOSC at pin 105 and VSSOSC at pin 104, is limited to a peak-to-peak voltage of  
V
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise  
frequencies above 300 KHz.  
Data Sheet  
107  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
These conditions can be achieved by appropriate blocking of the supply voltage  
as near as possible to the supply pins and using PCB supply and ground planes.  
Data Sheet  
108  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.6  
JTAG Interface Timing  
The following parameters are applicable for communication through the JTAG debug  
interface. The JTAG module is fully compliant with IEEE1149.1-2000.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 21  
JTAG Interface Timing Parameters  
(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
25  
12  
10  
Typ.  
Max.  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup  
6
to TCK rising edge  
TDI/TMS hold  
t7 SR  
6
ns  
after TCK rising edge  
TDO valid after TCK falling t8 CC  
2
13  
3
ns  
ns  
ns  
CL = 50 pF  
CL = 20 pF  
edge1) (propagation delay)  
t8 CC  
TDO hold after TCK falling t18 CC  
edge1)  
TDO high imped. to valid t9 CC  
14  
ns  
ns  
CL = 50 pF  
CL = 50 pF  
from TCK falling edge1)2)  
TDO valid to high imped. t10 CC  
13.5  
from TCK falling edge1)  
1) The falling edge on TCK is used to generate the TDO timing.  
2) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
109  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
t1  
0.9 VDDP  
0.5 VDDP  
0.1 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 27  
Test Clock Timing (TCK)  
TCK  
t6  
t7  
TMS  
t6  
t7  
TDI  
t9  
t8  
t10  
TDO  
t18  
MC_JTAG  
Figure 28  
JTAG Timing  
Data Sheet  
110  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.7  
DAP Interface Timing  
The following parameters are applicable for communication through the DAP debug  
interface.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 22  
DAP Interface Timing Parameters  
(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
DAP0 clock period  
DAP0 high time  
t11 SR  
t12 SR  
t13 SR  
t14 SR  
t15 SR  
t16 SR  
12.5  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
4
4
6
DAP0 low time  
DAP0 clock rise time  
DAP0 clock fall time  
DAP1 setup  
to DAP0 rising edge  
DAP1 hold  
after DAP0 rising edge  
t17 SR  
t19 SR  
t19 SR  
6
ns  
ns  
ns  
DAP1 valid  
8
80 MHz,  
CL = 20 pF  
per DAP0 clock period1)  
10  
40 MHz,  
CL = 50 pF  
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
t11  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t15  
t14  
t12  
t13  
MC_DAP0  
Figure 29  
Test Clock Timing (DAP0)  
Data Sheet  
111  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
DAP0  
t16  
t17  
DAP1  
MC_DAP1_RX  
Figure 30  
DAP1  
DAP Timing Host to Device  
t11  
t19  
MC_DAP1_TX  
Figure 31  
DAP Timing Device to Host  
Data Sheet  
112  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.8  
Peripheral Timings  
Note: Peripheral timing parameters are not subject to production test. They are verified  
by design / characterization.  
5.3.8.1 Micro Link Interface (MLI) Timing  
MLI Transmitter Timing  
t13  
t14  
t10  
t12  
TCLKx  
t11  
t15  
t15  
TDATAx  
TVALIDx  
t16  
t17  
TREADYx  
MLI Receiver Timing  
t23  
t24  
t20  
t22  
RCLKx  
t21  
t25  
t26  
RDATAx  
RVALIDx  
t27  
t27  
RREADYx  
MLI_Tmg_2.vsd  
Figure 32  
MLI Interface Timing  
Note: The generation of RREADYx is in the input clock domain of the receiver. The  
reception of TREADYx is asynchronous to TCLKx.  
Data Sheet  
113  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
Table 23  
MLI Transmitter/Receiver Timing  
(Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Unit Note /  
Test Co  
Min.  
Typ.  
Max.  
ndition  
MLI Transmitter Timing  
TCLK clock period  
TCLK high time  
1)  
t10  
t11  
t12  
t13  
t14  
t15  
CC 2 × TMLI  
ns  
2)3)  
2)3)  
0.45 × t10 0.5 × t10 0.55 × t10 ns  
CC  
TCLK low time  
CC 0.45 × t10 0.5 × t10 0.55 × t10 ns  
4)  
TCLK rise time  
CC –  
CC –  
CC -3  
ns  
ns  
ns  
4)  
TCLK fall time  
TDATA/TVALID output  
delay time  
4.4  
TREADY setup time to  
TCLK rising edge  
t16  
t17  
SR 18  
SR 0  
ns  
ns  
TREADY hold time from  
TCLK rising edge  
MLI Receiver Timing  
RCLK clock period  
RCLK high time  
RCLK low time  
1)  
t20  
t21  
t22  
t23  
t24  
t25  
SR 1 × TMLI  
SR –  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
5)6)  
5)6)  
7)  
0.5 × t20  
SR –  
0.5 × t20  
RCLK rise time  
SR –  
7)  
RCLK fall time  
SR –  
RDATA/RVALID setup  
time to RCLK falling edge  
SR 4.2  
RDATA/RVALID hold time t26  
from RCLK rising edge  
SR 2.2  
ns  
ns  
RREADY output delay time t27  
CC 0  
16  
1) TMLImin. = TSYS = 1/fSYS. When fSYS = 80 MHz, t10 = 25 ns and t20 = 12.5 ns.  
2) The following formula is valid: t11 + t12 = t10  
3) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be  
regarded additionally to t11/t12.  
4) For high-speed MLI interface, strong driver sharp edge selection (class A2 pad) is recommended for TCLK.  
5) The following formula is valid: t21 + t22 = t20  
6) The min. and max. value of is parameter can be adjusted by considering the other receiver timing parameters.  
Data Sheet  
114  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
7) The RCLK max. input rise/fall times are best case parameters for fSYS = 80 MHz. For reduction of EMI, slower  
input signal rise/fall times can be used for longer RCLK clock periods.  
5.3.8.2 Micro Second Channel (MSC) Interface Timing  
Table 24  
MSC Interface Timing (Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
FCLP clock period1)2)  
t40 CC 2 × TMSC  
t45 CC -10  
ns  
ns  
3)  
SOP/ENx outputs delay  
from FCLP rising edge  
10  
SDI bit time  
SDI rise time  
SDI fall time  
t46 CC 8 × TMSC  
t48 SR  
ns  
ns  
ns  
100  
100  
t49 SR  
1) FCLP signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) FCLP signal high and low can be minimum 1 × TMSC  
.
3) TMSCmin = TSYS = 1/fSYS. When fSYS = 80 MHz, t40 = 25 ns  
t40  
0.9 VDDP  
0.1 VDDP  
FCLP  
t45  
t45  
SOP  
EN  
t48  
t49  
0.9 VDDP  
0.1 VDDP  
SDI  
t46  
t46  
MSC_Tmg_1.vsd  
Figure 33  
MSC Interface Timing  
Note: Sample the data at SOP with the falling edge of FCLP in the target device.  
Data Sheet  
115  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.3.8.3 SSC Master / Slave Mode Timing  
Table 25  
SSC Master/Slave Mode Timing  
(Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
dition  
Min.  
Master Mode Timing  
1)2)3)  
SCLK clock period  
t50  
t51  
CC 2 × TSSC  
8
ns  
MTSR/SLSOx delay from  
SCLK rising edge  
CC 0  
ns  
ns  
ns  
3)  
MRST setup to SCLK  
falling edge  
t52  
t53  
SR 13  
SR 0  
3)  
MRST hold from SCLK  
falling edge  
Slave Mode Timing  
SCLK clock period  
SCLK duty cycle  
1)3)  
t54  
SR 4 × TSSC  
ns  
%
t55/t54 SR 45  
55  
3)4)  
MTSR setup to SCLK  
latching edge  
t56  
t57  
t58  
t59  
t60  
SR TSSC + 5  
ns  
3)4)  
3)  
MTSR hold from SCLK  
latching edge  
SR TSSC + 5  
SR TSSC + 5  
SR 7  
ns  
ns  
ns  
ns  
ns  
SLSI setup to first SCLK  
latching edge  
SLSI hold from last SCLK  
latching edge  
MRST delay from SCLK  
shift edge  
CC 0  
15  
10  
SLSI to valid data on MRST t61  
CC –  
1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) SCLK signal high and low times can be minimum 1 × TSSC  
3) TSSCmin = TSYS = 1/fSYS. When fSYS = 80 MHz, t50 = 25 ns.  
.
4) Fractional divider switched off, SSC internal baud rate generation used.  
Data Sheet  
116  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
t50  
SCLK1)2)  
MTSR1)  
t51  
t51  
t52  
t53  
Data  
valid  
MRST1)  
SLSOx2)  
t51  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
2) The transition at SLSOx is based on the following setup: SSOTC.TRAIL = 0  
and the first SCLK high pulse is in the first one of a transmission.  
SSC_TmgMM  
Figure 34  
SSC Master Mode Timing  
t54  
First latching  
SCLK edge  
Last latching  
SCLK edge  
First shift  
SCLK edge  
SCLK1)  
t55  
t55  
t56  
t56  
t57  
t57  
Data  
valid  
Data  
valid  
MTSR1)  
MRST1)  
SLSI  
t60  
t60  
t61  
t59  
t58  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_TmgSM  
Figure 35  
SSC Slave Mode Timing  
Data Sheet  
117  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.4  
Package and Reliability  
Package Parameters  
5.4.1  
Table 26  
Device  
Thermal Parameters (Operating Conditions apply)  
1)  
1)  
1)  
Package  
RΘJCT  
RΘJCB  
RΘJLeads Unit  
23 K/W  
Note  
TC1767 PG-LQFP-176-5  
6.5  
5.5  
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined  
with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate  
the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the  
case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are  
under user responsibility.  
The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA  
is the total thermal resistance between the junction and the ambient. This total junction ambient resistance  
RTJA can be obtained from the upper four partial thermal resistances.  
Thermal resistances as measured by the ‘cold plate method’ (MIL SPEC-883 Method 1012.1).  
Data Sheet  
118  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.4.2  
Package Outline  
Figure 36  
PG-LQFP-176-5, Plastic Green Low Profile Quad Flat Package  
You can find all of our packages, sorts of packing and others in our Infineon Internet  
Page “Products”: http://www.infineon.com/products.  
Data Sheet  
119  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.4.3  
Flash Memory Parameters  
The data retention time of the TC1767’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Table 27  
Flash Parameters  
Symbol  
Parameter  
Values  
Unit  
Note /  
Test Condition  
Min.  
tRET CC 20  
Typ. Max.  
Program Flash  
years Max. 1000  
erase/program  
Retention Time,  
Physical Sector1)2)  
cycles  
Program Flash  
Retention Time  
Logical Sector1)2)  
tRETL CC 20  
years Max. 100  
erase/program  
cycles  
Data Flash  
Endurance  
per 32 KB Sector  
NE CC 30 000 –  
cycles Max. data  
retention time  
5 years  
Data Flash Endurance, NE8 CC 120000 –  
EEPROM Emulation  
cycles Max. data  
retention time  
(4 × 16 KB)  
5 years  
Programming Time  
per Page3)  
tPR CC –  
tERP CC –  
5
ms  
s
Program Flash Erase  
Time per 256-KB Sector  
5
f
CPU = 133 MHz  
CPU = 133 MHz  
Data Flash Erase Time tERD CC –  
for 2 x 32-KB Sector  
2.5  
s
f
Wake-up time  
tWU CC –  
4000/fCPU µs  
+180  
1) Storage and inactive time included.  
2) At average weighted junction temperature Tj = 100oC, or  
the retention time at average weighted temperature of Tj = 110oC is minimum 10 years, or  
the retention time at average weighted temperature of Tj = 150oC is minimum 0.7 years.  
3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The  
reprogramming takes additional 5 ms.  
Data Sheet  
120  
V1.3, 2009-09  
TC1767  
Electrical Parameters  
5.4.4  
Quality Declarations  
Table 28  
Quality Parameters  
Symbol  
Parameter  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Operation  
Lifetime1)  
tOP  
24000 hours –2) 3)  
ESD susceptibility VHBM  
according to  
2000  
V
Conforming to  
JESD22-A114-B  
Human Body  
Model (HBM)  
ESD susceptibility VHBM1  
of the LVDS pins  
500  
500  
V
V
ESD susceptibility VCDM  
according to  
Conforming to  
JESD22-C101-C  
Charged Device  
Model (CDM)  
Moisture  
Sensitivity Level  
MSL  
3
Conforming to Jedec  
J-STD-020C for 240°C  
1) This lifetime refers only to the time when the device is powered on.  
2) For worst-case temperature profile equivalent to:  
2000 hours at Tj = 150oC  
16000 hours at Tj = 125oC  
6000 hours at Tj = 110oC  
3) This 30000 hours worst-case temperature profile is also covered:  
300 hours at Tj = 150oC  
1000 hours at Tj = 140oC  
1700 hours at Tj = 130oC  
24000 hours at Tj = 120oC  
3000 hours at Tj = 110oC  
Data Sheet  
121  
V1.3, 2009-09  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAK-TC1767-256F133HLAB

Microcontroller,
INFINEON

SAK-TC1767-256F133HLAD

Microcontroller, 32-Bit, FLASH, 133MHz, CMOS, PQFP176, GREEN, PLASTIC, LQFP-176
INFINEON

SAK-TC1767-256F133HR

RISC Microcontroller, CMOS
INFINEON

SAK-TC1767-256F133HR AD

THE TC1767 IS THE VALUE OPTIMIZED MEMBER of the AUDO FUTURE product family designed for automotive applications.
INFINEON

SAK-TC1767-256F80HL

32-Bit Single-Chip Microcontroller
INFINEON

SAK-TC1767-256F80HLAB

Microcontroller,
INFINEON
INFINEON

SAK-TC1767-256F80HR AD

The TC1767 is the value otimized Member of the AUDO FUTURE product family designed for automotive applications.
INFINEON

SAK-TC1782F-320F160HL

32-Bit Single-Chip Microcontroller
INFINEON

SAK-TC1782F-320F160HR

32-Bit Single-Chip Microcontroller
INFINEON

SAK-TC1782F-320F180HL

32-Bit Single-Chip Microcontroller
INFINEON

SAK-TC1782F-320F180HR

32-Bit Single-Chip Microcontroller
INFINEON