SAK-TC1796-256F150E BE [INFINEON]

The TC1796 - member of the AUDO-NG family - is optimized for highly demanding applications where embedded real-time performance and DSP capabilities combined with an extremely fast interrupt response time and highest level of fault tolerance are needed.;
SAK-TC1796-256F150E BE
型号: SAK-TC1796-256F150E BE
厂家: Infineon    Infineon
描述:

The TC1796 - member of the AUDO-NG family - is optimized for highly demanding applications where embedded real-time performance and DSP capabilities combined with an extremely fast interrupt response time and highest level of fault tolerance are needed.

文件: 总134页 (文件大小:4061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V1.0, Apr. 2008  
TC1796  
32-Bit Single-Chip Microcontroller  
TriCore  
Microcontrollers  
Edition 2008-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2008 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V1.0, Apr. 2008  
TC1796  
32-Bit Single-Chip Microcontroller  
TriCore  
Microcontrollers  
TC1796  
TC1796 Data Sheet  
Revision History: V1.0, 2008-04  
Previous Version: V1.0, 2008-04 “Preliminary”  
Page  
Subjects (major changes since last revision)  
“Preliminary” status removed. No changes in content.  
Changes from V0.7, 2006-03 to V1.0, 2008-04 Preliminary  
32  
The list of not connected pins (N.C.) improved by adding several  
formerly as VSS labeled pins.  
69  
80  
85  
96  
Watchdog timer, double reset detection, description corrected.  
RTID register updated for the design step BE.  
The description of the inactive device current improved.  
ADC parameters sample and conversion time moved to a dedicated  
table.  
107  
115  
126  
131  
The description of the power supply sequence improved..  
BFCLKO clock, duty cycle description extended.  
MLI timing, maximum operating frequency limit extended, t31 added.  
The drawing of the package updated.  
Green package variant included.  
133  
Example of a temperature profile corrected.  
Trademarks  
TriCore® is a trademark of Infineon Technologies AG.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.0, 2008-04  
TC1796  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TC1796 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pad Driver and Input Classes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pull-Up/Pull-Down Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . 35  
2.1  
2.2  
2.3  
2.4  
2.5  
2.5.1  
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
System Architecture and On-Chip Bus Systems . . . . . . . . . . . . . . . . . . . . 36  
On-Chip Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Architectural Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Memory Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
External Bus Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Peripheral Control Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
DMA Controller and Memory Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Asynchronous/Synchronous Serial Interfaces (ASC0, ASC1) . . . . . . . . . . 48  
High-Speed Synchronous Serial Interfaces (SSC0, SSC1) . . . . . . . . . . . . 50  
Micro Second Bus Interfaces (MSC0, MSC1) . . . . . . . . . . . . . . . . . . . . . . 52  
MultiCAN Controller (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Micro Link Serial Bus Interface (MLI0, MLI1) . . . . . . . . . . . . . . . . . . . . . . . 57  
General Purpose Timer Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Functionality of GPTA0/GPTA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Functionality of LTCA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Analog-to-Digital Converter (ADC0, ADC1) . . . . . . . . . . . . . . . . . . . . . . . . 63  
Fast Analog-to-Digital Converter Unit (FADC) . . . . . . . . . . . . . . . . . . . . . . 65  
System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Boot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Clock Generation and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Identification Register Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.14.1  
3.14.2  
3.15  
3.16  
3.17  
3.18  
3.19  
3.20  
3.21  
3.22  
3.23  
3.24  
3.25  
4
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
4.1  
4.1.1  
Data Sheet  
5
V1.0, 2008-04  
TC1796  
Table of Contents  
4.1.2  
4.1.3  
4.1.4  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
4.3.9.1  
4.3.9.2  
4.3.10  
4.3.11  
4.3.12  
4.3.12.1  
4.3.12.2  
4.3.12.3  
Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Analog to Digital Converters (ADC0/ADC1) . . . . . . . . . . . . . . . . . . . . . 92  
Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . . . 99  
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
BFCLKO Output Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Debug Trace Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
EBU Demultiplexed Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Demultiplexed Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Demultiplexed Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
EBU Burst Mode Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
EBU Arbitration Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . 128  
Synchronous Serial Channel (SSC) Master Mode Timing . . . . . . . . 129  
5
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Package Parameters (P/PG-BGA-416-4) . . . . . . . . . . . . . . . . . . . . . . . . 130  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
5.1  
5.2  
5.3  
5.4  
Data Sheet  
6
V1.0, 2008-04  
TC1796  
Summary of Features  
1
Summary of Features  
High-performance 32-bit super-scalar TriCore V1.3 CPU with 4-stage pipeline  
– Superior real-time performance  
– Strong bit handling  
– Fully integrated DSP capabilities  
– Single precision Floating Point Unit (FPU)  
– 150 MHz operation at full temperature range  
32-bit Peripheral Control Processor with single cycle instruction (PCP2)  
– 16 Kbyte Parameter Memory (PRAM)  
– 32 Kbyte Code Memory (CMEM)  
Multiple on-chip memories  
– 2 Mbyte Program Flash Memory (PFLASH) with ECC  
– 128 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation  
– 136 Kbyte Data Memory (LDRAM, SRAM, SBRAM)  
– 8 Kbyte Dual-Ported Memory (DPRAM)  
– 48 Kbyte Code Scratchpad Memory (SPRAM)  
– 16 Kbyte Instruction Cache (ICACHE)  
– 16 Kbyte BootROM (BROM)  
16-Channel DMA Controller  
32-bit External Bus Interface Unit (EBU) with  
– 75 dedicated address/data bus, clock, and control lines  
– Synchronous burst Flash access capability  
Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels  
serviced by CPU or PCP2  
High performing on-chip bus structure  
– Two 64-bit Local Memory Buses between EBU, Flash and Data Memory  
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units  
– 32-bit Remote Peripheral Bus (RPB) for high-speed on-chip peripheral units  
– Two bus bridges (LFI Bridge, DMA Controller)  
Peripheral Control Processor with single cycle instruction (PCP2)  
– 16 Kbyte Parameter Memory (PRAM)  
– 32 Kbyte Code Memory (CMEM)  
Versatile On-chip Peripheral Units  
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,  
parity, framing and overrun error detection  
– Two High-Speed Synchronous Serial Channels (SSC) with programmable data  
length and shift direction  
– Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external  
power devices  
– Two High-Speed Micro Link interfaces (MLI) for serial inter-processor  
communication  
Data Sheet  
7
V1.0, 2008-04  
TC1796  
Summary of Features  
– One MultiCAN Module with four CAN nodes and 128 free assignable message  
objects for high efficiency data handling via FIFO buffering and gateway data  
transfer (one CAN node supports TTCAN functionality)  
– Two General Purpose Timer Array Modules (GPTA) with additional Local Timer  
Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer  
functionality to realize autonomous and complex Input/Output management  
– Two 16-channel Analog-to-Digital Converter units (ADC) with selectable 8-bit, 10-  
bit, or 12-bit resolution  
– One 4-channel Fast Analog-to-Digital Converter unit (FADC) with concatenated  
comb filters for hardware data reduction: supporting 10-bit resolution, min.  
conversion time of 280ns  
44 analog input lines for ADC and FADC  
123 digital general purpose I/O lines, 4 input lines  
Digital I/O ports with 3.3 V capability  
On-chip debug support for OCDS Level 1 and 2 (CPU, PCP3, DMA)  
Dedicated Emulation Device chip for multi-core debugging, tracing, and calibration  
via USB V1.1 interface available (TC1796ED)  
Power Management System  
Clock Generation Unit with PLL  
Core supply voltage of 1.5 V  
I/O voltage of 3.3 V  
Full automotive temperature range: -40° to +125°C  
P/PG-BGA-416-4 package  
Data Sheet  
8
V1.0, 2008-04  
TC1796  
Summary of Features  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
The derivative itself, i.e. its function set, the temperature range, and the supply  
voltage  
The package and the type of delivery.  
For the available ordering codes for the TC1796 please refer to the “Product Catalog  
Microcontrollers”, which summarizes all available microcontroller variants.  
This document describes the derivatives of the device.The Table 1 enumerates these  
derivatives and summarizes the differences.  
Table 1  
TC1796 Derivative Synopsis  
Derivative  
SAK-TC1796-256F150E  
Ambient Temperature Range  
TA = -40oC to +125oC  
Data Sheet  
9
V1.0, 2008-04  
TC1796  
General Device Information  
2
General Device Information  
2.1  
TC1796 Block Diagram  
FPU  
DMI  
PMI  
SPRAM: Scratch-Pad RAM  
ICACHE: Instruction cache  
LDRAM Local data RAM  
DPRAM: Dual-port RAM  
56 KB LDRAM  
8 KB DPRAM  
TriCore  
(TC1M)  
48 KB SPRAM  
16 KB ICACHE  
CPS  
BROM: Boot ROM  
PFLASH: Program Flash Memory  
DFLASH: Data Flash Memory  
SBRAM: Stand-by Data Memory  
Program Local Memory Bus  
Data Local Memory Bus  
P LMB  
DLMB  
PBCU  
EBU  
DBCU  
SRAM:  
PRAM:  
Data Memory  
PCP Parameter Memory  
CMEM: PCP Code Memory  
PMU  
DMU  
PLMB:  
DLMB:  
Program Local Memory Bus  
16 KB BROM  
2 MB PFLASH  
128 KB DFLASH  
Data Local Memory Bus  
64 KB SRAM  
RPB:  
Remote Peripheral Bus  
16 KB SBRAM  
SPB:  
System Peripheral Bus  
shaded: only available in TC1796ED  
Emulation Memory  
Interface  
LFI Bridge  
OCDS Debug  
Interface  
/JTAG  
16 KB PRAM  
SSC0  
SSC1  
ASC0  
ASC1  
PCP2  
Core  
STM  
SBCU  
Ports  
32 KB CMEM  
ADC0  
ADC1  
GPTA0  
GPTA1  
LTCA2  
fCPU  
fFPI  
SCU  
PLL  
FADC  
RBCU  
DMA  
SMIF  
MultiCAN  
(with 4  
CAN  
MSC  
0
MSC  
1
MLI  
0
MLI  
1
MEM  
CHK  
Nodes)  
MCB05573_mod  
Figure 1  
TC1796 Block Diagram  
Data Sheet  
10  
V1.0, 2008-04  
TC1796  
General Device Information  
2.2  
Logic Symbol  
TSTRES  
TESTMODE  
D[31:0]  
A[23:0]  
HDRST  
PORST  
NMI  
General  
Control  
5
Chip  
External Bus  
Select  
Unit Interface  
13  
Control  
BYPASS  
BFCLKI  
BFLCKO  
XTAL1  
XTAL2  
VDDOSC  
VDDOSC3  
VSSOSC  
16  
16  
14  
16  
16  
8
Oscillator  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Alternate  
Functions :  
MLI0 / SCU  
SSC0 / SSC1 /  
GPTA  
TRST  
TCK  
TDI  
TDO  
TMS  
GPTA  
JTAG /  
OCDS  
ASC0 / ASC1 /  
MSC0 / MSC1 /MLI0  
BRKIN  
BRKOUT  
TC1796  
12  
8
ASC0 / ASC1 /  
SSC1 / CAN  
TR[15:0]  
TRCLK  
ADC0 / ADC1  
8
MLI1 /  
GPTA  
9
11  
13  
2
VDDEBU  
VDDP  
9
MSC0 / MSC1 /  
GPTA  
4
VDD  
HWCFG  
Digital Circuitry  
Power Supply  
Port 10  
VDDFL3  
VDDSBRAM  
VSS  
6
8
Dedicated  
SSC0 I/O Lines  
62  
LVDS MSC Outputs  
VFAREF  
VFAGND  
VDDMF  
VSSMF  
VDDAF  
VSSAF  
ADC  
AN[43:0]  
Analog Inputs  
FADC Analog  
Power Supply  
2
2
VAREFx  
VAGNDx  
VDDM  
ADC0 /ADC1  
Analog  
Power Supply  
VSSM  
10  
N.C.  
MCA05583_mod  
Figure 2  
TC1796 Logic Symbol  
Data Sheet  
11  
V1.0, 2008-04  
TC1796  
General Device Information  
2.3  
Pin Configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
SO  
N1  
FCL  
P1A  
HD  
RST  
BY  
PASS  
A
B
A
VDDFL3  
NMI  
VDDP VSS  
N.C. P2.9 P2.13 P2.15 P0.14 P0.5 P0.2 P0.1 P0.0 P3.14 P3.5 P3.1 P5.1 P5.2 P5.7  
P2.6 P2.7 P2.10 P2.14 P0.9 P0.6 P0.4 P0.3 P3.15 P3.6 P3.3 P3.0 P5.0 P5.3 P5.6  
P2.5 P2.8 P2.11 P2.12 P0.12 P0.10 P0.8 P0.7 P3.7 P3.10 P3.9 P3.4 P3.2 P5.5 P5.4  
P9.0 P9.3 P10.0  
P9.1 P9.2 P10.1  
SO  
P1A  
FCL  
N1  
PO TEST  
MODE  
VDDFL3  
VDDP VSS  
VDD  
VDD  
B
RST  
BRK  
IN  
SO  
P0A  
FCL FCL  
N0  
C
VDDP VSS  
C
P9.6 P9.8 P10.2 N.C.  
P0A  
SO  
N0  
BRK  
OUT  
D
D
VDDP VSS  
VDD  
VDDP VSS  
P3.8 P3.12 P3.13 P3.11  
VDD  
VDDP VSS  
VDD TDO  
P2.4 P2.3 P2.2 P0.15 P0.13 P0.11  
P6.12 P6.11 P6.6 P6.9  
P9.4 P9.5 P9.7 P10.3  
VDD  
E
TCK TDI  
E
VDD  
TRST  
N.C.  
OSC3  
VSS  
VDD  
F
TMS  
F
P6.14 P6.10 P6.4 P6.8  
OSC  
OSC  
TST  
RES  
XTAL XTAL  
G
G
H
P6.15 P6.13 P6.7 P6.5  
2
1
H
VDD  
VSS  
VDDEBU VDDEBU VDDEBU VDDEBU  
P8.1 P8.0 N.C.  
P8.4 P8.3 P8.2  
P8.7 P8.5 P8.6  
J
J
A5  
A9  
A0  
A6  
A1  
A3  
A7  
A2  
A4  
A8  
K
K
VDDP  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TR12 TR13 TR15  
TR11 TR10 TR14  
L
L
VSS  
P1.15 P1.14 P1.13 P1.11  
P1.10 P1.9 P1.8 P1.5  
P1.3 P1.7 P1.6 P1.4  
A13  
M
N
VSS  
VSS  
VSS  
VDDEBU  
M
N
TR9 TR8  
A12 A11 A10  
VSS  
VSS  
VSS  
VSS  
A15 A16 A17 A14  
P
VDD  
VSS  
P
P1.2 P1.1 P1.0 P1.12  
A19 A20 A18  
A21 A23 A22  
VDD  
R
R
VDD  
VSS  
P7.1 P7.0  
TR6 TR7 TR5  
SBRAM  
TR  
T
T
VDDEBU  
P7.6 P7.5 P7.4  
TR3 TR1  
CLK  
D1  
D9  
D3  
D5  
D8  
D0  
D2  
D4  
D7  
U
U
AN23 P7.7 P7.3 P7.2  
AN22 AN21 AN19 AN16  
TR4 TR2 TR0  
D6  
VDD  
V
V
D13  
W
Y
VDDM  
VSS  
W
Y
AN20 AN17 AN13  
AN18 AN14 AN10  
D16 D12  
VSSM  
VDDEBU  
D18 D14 D10  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
AN15 AN11 AN5 AN2  
D19 D22 D17 D11  
VDD  
AN12 AN9 AN3 AN7  
D21 D20 D15  
D28 D25 D23  
SLSO  
1
VAGND1  
VDDAF VSS  
VDD  
VDDP VSS VDDEBU VSS  
VDD  
VDDEBU VSS  
N.C.  
AN8 AN4 AN32 AN38 AN42  
AN6 AN1 AN34 AN40 AN35  
AN26 AN24  
AN27 AN25  
P4.4 P4.8 P4.12  
VAREF1  
VSSAF  
SLSI0 VDDP BC1 HLDA CS3 CS2 CS1  
BREQ  
P4.0 P4.2 P4.5 P4.11 P4.15  
N.C. D31 D27 D24  
SLSO MRST  
CS  
COMB  
VAREF0  
VFAGND VDDMF  
VDDP BC0 BC3  
WAIT CS0 N.C. N.C.  
RD/  
AN0 AN33 AN36 AN41  
N.C. AN37 AN39 AN43  
AN28 AN30  
AN29 AN31  
P4.1 P4.3 P4.7 P4.13  
0
D30 D29 D26  
0
SCLK MTSR  
BF  
BF  
VAGND0  
VFAREF VSSMF  
VDDP  
HOLD  
17  
BC2  
18  
MR/W  
19  
RD  
ADV BAA  
P4.6 P4.9 P4.10 P4.14  
10 11 12 13  
N.C.  
26  
0
0
CLKI CLKO  
WR  
1
2
3
4
5
6
7
8
9
14  
15  
16  
20  
21  
22  
23  
24  
25  
MCA05584  
Figure 3  
TC1796 Pinning for P/PG-BGA-416-4 Package (Top view)  
Data Sheet  
12  
V1.0, 2008-04  
TC1796  
General Device Information  
2.4  
Pad Driver and Input Classes Overview  
The TC1796 provides different types and classes of input and output lines. For  
understanding of the abbreviations in Table 2 starting at the next page, Table 4 gives an  
overview on the pad type and class types.  
2.5  
Pin Definitions and Functions  
Data Sheet  
13  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
External Bus Interface Lines (EBU)  
Pin Definitions and Functions  
Power Functions  
D[31:0]  
I/O B1  
VDDEBU EBU Data Bus Lines  
The EBU Data Bus Lines D[31:0] serve as  
external data bus.  
Data bus line 0  
D0  
T26  
T24  
U26  
T25  
V26  
U25  
U23  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D1  
Data bus line 1  
D2  
Data bus line 2  
D3  
Data bus line 3  
D4  
Data bus line 4  
D5  
Data bus line 5  
D6  
Data bus line 6  
D7  
W26 I/O  
Data bus line 7  
D8  
V25  
U24  
Y26  
I/O  
I/O  
I/O  
Data bus line 8  
D9  
Data bus line 9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
Data bus line 10  
Data bus line 11  
Data bus line 12  
Data bus line 13  
Data bus line 14  
Data bus line 15  
Data bus line 16  
Data bus line 17  
Data bus line 18  
Data bus line 19  
Data bus line 20  
Data bus line 21  
Data bus line 22  
Data bus line 23  
Data bus line 24  
Data bus line 25  
Data bus line 26  
Data bus line 27  
Data bus line 28  
Data bus line 29  
Data bus line 30  
Data bus line 31  
AA26 I/O  
W25 I/O  
V24  
Y25  
I/O  
I/O  
AB26 I/O  
W24 I/O  
AA25 I/O  
Y24  
I/O  
AA23 I/O  
AB25 I/O  
AB24 I/O  
AA24 I/O  
AC26 I/O  
AD26 I/O  
AC25 I/O  
AE26 I/O  
AD25 I/O  
AC24 I/O  
AE25 I/O  
AE24 I/O  
AD24 I/O  
Data Sheet  
14  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
A[23:0]  
O
B1  
VDDEBU EBU Address Bus Lines A[23:0]  
The EBU Address Bus Lines serve as  
external address bus.  
Address bus line 0  
A0  
J24  
J25  
J26  
K25  
K26  
J23  
K24  
L25  
L26  
K23  
M26  
M25  
M24  
L24  
N26  
N23  
N24  
N25  
P26  
P24  
P25  
R24  
R26  
R25  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A1  
Address bus line 1  
A2  
Address bus line 2  
A3  
Address bus line 3  
A4  
Address bus line 4  
A5  
Address bus line 5  
A6  
Address bus line 6  
A7  
Address bus line 7  
A8  
Address bus line 8  
A9  
Address bus line 9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
Address bus line 10  
Address bus line 11  
Address bus line 12  
Address bus line 13  
Address bus line 14  
Address bus line 15  
Address bus line 16  
Address bus line 17  
Address bus line 18  
Address bus line 19  
Address bus line 20  
Address bus line 21  
Address bus line 22  
Address bus line 23  
B1  
B1  
VDDEBU Chip Select Output Lines  
CS0  
CS1  
CS2  
CS3  
AE21 O  
AD21 O  
AD20 O  
AD19 O  
Chip select output line 0  
Chip select output line 1  
Chip select output line 2  
Chip select output line 3  
CS  
AE19 O  
VDDEBU Combined Chip Select Output for Global  
COMB  
Select / Emulator Memory  
Region/Emulator Overlay Memory  
Data Sheet  
15  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
BFCLKO AF25 O  
B2  
VDDEBU Burst Mode Flash Clock Output (non-  
differential)  
BFCLKI AF24 I  
B1  
Burst Mode Flash Clock Input  
(feedback clock)  
RD  
RD/WR  
ADV  
AF20 O  
AF21 O  
AF22 O  
AF19 O  
B1  
B1  
B1  
B1  
Read Control Line  
Write Control Line  
Address Valid Output  
MR/W  
Motorola-style Read/Write Control  
Signal  
B1  
Byte Control Lines  
Byte control line 0  
Byte control line 1  
Byte control line 2  
Byte control line 3  
BC0  
BC1  
BC2  
BC3  
AE17 O  
AD17 O  
AF18 O  
AE18 O  
WAIT  
BAA  
HOLD  
HLDA  
BREQ  
AE20 I  
AF23 O  
AF17 I  
AD18 O  
AD22 O  
B1  
B1  
B1  
B1  
B1  
Wait Input for inserting Wait-States  
Burst Address Advance Output  
Hold Request Input  
Hold Acknowledge Output  
Bus Request Output  
Data Sheet  
16  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
Parallel Ports  
P0  
I/O A1  
VDDP  
Port 0  
Port 0 is a 16-bit bidirectional general-  
purpose I/O port.  
P0.0  
A9  
A8  
A7  
B8  
B7  
A6  
B6  
C8  
C7  
B5  
C6  
D6  
C5  
D5  
A5  
D4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Port 0 I/O line 0  
P0.1  
Port 0 I/O line 1  
P0.2  
Port 0 I/O line 2  
P0.3  
Port 0 I/O line 3  
P0.4  
Port 0 I/O line 4  
P0.5  
Port 0 I/O line 5  
P0.6  
Port 0 I/O line 6  
P0.7  
Port 0 I/O line 7  
P0.8  
Port 0 I/O line 8  
P0.9  
Port 0 I/O line 9  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
Port 0 I/O line 10  
Port 0 I/O line 11  
Port 0 I/O line 12  
Port 0 I/O line 13  
Port 0 I/O line 14  
Port 0 I/O line 15  
The states of the Port 0 pins are latched into  
the software configuration input register  
SCU_SCILR at the rising edge of HDRST.  
Therefore, Port 0 pins can be used for  
operating mode selections by software.  
Data Sheet  
17  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A1/A2 VDDP  
Pin Definitions and Functions (cont’d)  
Power Functions  
P1  
Port 1  
Port 1 is a 16-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for the MLI0 interface or as external  
trigger input lines.  
P1.0  
P1.1  
P1.2  
P1.3  
P3  
P2  
P1  
N1  
I
I
I
I
I
A1  
A1  
A1  
A1  
A1  
REQ0  
REQ1  
REQ2  
REQ3  
External trigger input 0  
External trigger input 1  
External trigger input 3  
External trigger input 2  
TREADY0B MLI0 transmit channel  
ready input B  
P1.4  
P1.5  
P1.6  
P1.7  
P1.8  
P1.9  
P1.10  
P1.11  
N4  
M4  
N3  
N2  
M3  
M2  
M1  
L4  
O
I
A2  
A1  
A2  
A2  
A1  
A2  
A1  
A1  
TCLK0  
MLI0 transmit channel clock  
output  
TREADY0A MLI0 transmit channel  
ready input A  
TVALID0A  
TDATA0  
RCLK0A  
O
O
I
MLI0 transmit channel valid  
output A  
MLI0 transmit channel data  
output  
MLI0 receive channel clock  
input A  
O
I
RREADY0A MLI0 receive channel ready  
output A  
RVALID0A  
MLI0 receive channel valid  
input A  
I
RDATA0A  
MLI0 receive channel data  
input A  
P1.12  
P1.13  
P4  
L3  
O
I
A2  
A1  
SYSCLK  
RCLK0B  
System clock output  
MLI0 receive channel clock  
input B  
P1.14  
P1.15  
L2  
L1  
I
I
A1  
A1  
RVALID0B  
RDATA0B  
MLI0 receive channel valid  
input B  
MLI0 receive channel data  
input B  
Data Sheet  
18  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A1/A2 VDDP  
Pin Definitions and Functions (cont’d)  
Power Functions  
P2  
Port 2  
Port 2 is a 14-bit bi-directional general-  
purpose I/O port which can be used  
alternatively for the six upper SSC slave  
select outputs or for GPTA I/O lines.  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
D3  
D2  
D1  
C1  
B1  
B2  
O
O
O
O
O
O
A2  
A2  
A2  
A2  
A2  
A2  
SLSO2  
SLSO3  
SLSO4  
SLSO5  
SLSO6  
SLSO7  
Slave select output line 2  
Slave select output line 3  
Slave select output line 4  
Slave select output line 5  
Slave select output line 6  
Slave select output line 7  
P2.8  
C2  
A2  
B3  
C3  
C4  
A3  
B4  
A4  
I/O A1  
I/O A1  
I/O A1  
I/O A1  
I/O A1  
I/O A1  
I/O A1  
I/O A1  
IN0 / OUT0 line of GPTA  
IN1 / OUT1 line of GPTA  
IN2 / OUT2 line of GPTA  
IN3 / OUT3 line of GPTA  
IN4 / OUT4 line of GPTA  
IN5 / OUT5 line of GPTA  
IN6 / OUT6 line of GPTA  
IN7 / OUT7 line of GPTA  
P2.9  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
Data Sheet  
19  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A1  
Pin Definitions and Functions (cont’d)  
Power Functions  
P3  
VDDP  
Port 3  
Port 3 is a 16-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for GPTA I/O lines.  
P3.0  
B12  
A12  
C13  
B11  
C12  
A11  
B10  
C9  
D10  
C11  
C10  
D13  
D11  
D12  
A10  
B9  
IN8 / OUT8 line of GPTA  
IN9 / OUT9 line of GPTA  
IN10 / OUT10 line of GPTA  
IN11 / OUT11 line of GPTA  
IN12 / OUT12 line of GPTA  
IN13 / OUT13 line of GPTA  
IN14 / OUT14 line of GPTA  
IN15 / OUT15 line of GPTA  
IN16 / OUT16 line of GPTA  
IN17 / OUT17 line of GPTA  
IN18 / OUT18 line of GPTA  
IN19 / OUT19 line of GPTA  
IN20 / OUT20 line of GPTA  
IN21 / OUT21 line of GPTA  
IN22 / OUT22 line of GPTA  
IN23 / OUT23 line of GPTA  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.9  
P3.8  
P3.10  
P3.11  
P3.12  
P3.13  
P3.14  
P3.15.  
Data Sheet  
20  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A1/A2 VDDP  
Pin Definitions and Functions (cont’d)  
Power Functions  
P4  
Port 4  
Port 4 is a 16-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for GPTA I/O lines.  
P4.0  
AD10 I/O A21)  
AE10 I/O A21)  
AD11 I/O A21)  
AE11 I/O A21)  
AC12 I/O A21)  
AD12 I/O A21)  
AF10 I/O A21)  
AE12 I/O A21)  
AC13 I/O A1  
AF11 I/O A1  
AF12 I/O A1  
AD13 I/O A1  
AC14 I/O A1  
AE13 I/O A1  
AF13 I/O A1  
AD14 I/O A1  
IN24 / OUT24 line of GPTA  
IN25 / OUT25 line of GPTA  
IN26 / OUT26 line of GPTA  
IN27 / OUT27 line of GPTA  
IN28 / OUT28 line of GPTA  
IN29 / OUT29 line of GPTA  
IN30 / OUT30 line of GPTA  
IN31 / OUT31 line of GPTA  
IN32 / OUT32 line of GPTA  
IN33 / OUT33 line of GPTA  
IN34 / OUT34 line of GPTA  
IN35 / OUT35 line of GPTA  
IN36 / OUT36 line of GPTA  
IN37 / OUT37 line of GPTA  
IN38 / OUT38 line of GPTA  
IN39 / OUT39 line of GPTA  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P4.8  
P4.9  
P4.10  
P4.11  
P4.12  
P4.13  
P4.14  
P4.15  
Data Sheet  
21  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A2  
Pin Definitions and Functions (cont’d)  
Power Functions  
P5  
VDDP  
Port 5  
Port 5 is an 8-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for ASC0/1 or MSC0/1 lines.  
P5.0  
B13  
I/O  
RXD0A  
ASC0 receiver input /  
output A  
P5.1  
P5.2  
A13  
A14  
O
I/O  
TXD0A  
RXD1A  
ASC0 transmitter output A  
ASC1 receiver input /  
output A  
P5.3  
B14  
O
TXD1A  
ASC1 transmitter output A  
P5.3 is latched with the  
rising edge of PORST if  
BYPASS = 1 and stored in  
inverted state as bit  
OSC_CON.MOSC.  
MSC0 device select  
output 0  
P5.4  
C15  
O
O
EN00  
RREADY0B MLI0 receive channel ready  
output B  
SDI0  
EN10  
P5.5  
P5.6  
C14  
B15  
I
O
MSC0 serial data input  
MSC1 device select  
output 0  
O
I
TVALID0B  
SDI1  
MLI0 transmit channel valid  
output B  
P5.7  
A15  
MSC1 serial data input  
Data Sheet  
22  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A2  
Pin Definitions and Functions (cont’d)  
Power Functions  
P6  
VDDP  
Port 6  
Port 6 is a 12-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for SSC1, ASC0/1, and CAN I/O lines.  
P6.4  
P6.5  
F3  
O
I
MTSR1  
SSC1 master transmit  
output / SSC1 slave receive  
input  
G4  
I
MRST1  
SSC1 master receive input /  
SSC1 slave transmit output  
SSC1 clock input / output  
SSC1 slave select input  
CAN node 0 receiver input  
ASC0 receiver input /  
output B  
O
I/O  
I
P6.6  
P6.7  
P6.8  
E3  
G3  
F4  
SCLK1  
SLSI1  
I
RXDCAN0  
RXD0B  
I/O  
P6.9  
E4  
F2  
E2  
O
TXDCAN0  
CAN node 0 transmitter  
output  
O
I
I/O  
TXD0B  
RXDCAN1  
RXD1B  
ASC0 transmitter output B  
CAN node 1 receiver input  
ASC1 receiver input /  
output B  
P6.10  
P6.11  
O
TXDCAN1  
CAN node 1 transmitter  
output  
O
I
O
TXD1B  
RXDCAN2  
TXDCAN2  
ASC1 transmitter output B  
CAN node 2 receiver input  
CAN node 2 transmitter  
output  
P6.12  
P6.13  
E1  
G2  
P6.14  
P6.15  
F1  
G1  
I
O
RXDCAN3  
TXDCAN3  
CAN node 3 receiver input  
CAN node 3 transmitter  
output  
Data Sheet  
23  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A1  
Pin Definitions and Functions (cont’d)  
Power Functions  
P7  
VDDP  
Port 7  
Port 7 is an 8-bit bi-directional general-  
purpose I/O port which can be alternatively  
used as external trigger input lines and for  
ADC0/1 external multiplexer control.  
P7.0  
P7.1  
R3  
R2  
I
REQ4  
REQ5  
External trigger input 4  
External trigger input 5  
I
O
AD0EMUX2 ADC0 external multiplexer  
control output 2  
P7.2  
P7.3  
U4  
U3  
O
O
AD0EMUX0 ADC0 external multiplexer  
control output 0  
AD0EMUX2 ADC0 external multiplexer  
control output 1  
P7.4  
P7.5  
P7.6  
T3  
T2  
T1  
I
REQ6  
REQ7  
External trigger input 6  
External trigger input 7  
I
O
AD1EMUX0 ADC1 external multiplexer  
control output 0  
P7.7  
U2  
O
AD1EMUX1 ADC1 external multiplexer  
control output 1  
Data Sheet  
24  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A1/A2 VDDP  
Pin Definitions and Functions (cont’d)  
Power Functions  
P8  
Port 8  
Port 8 is an 8-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for the MLI1 interface or as GPTA I/O  
lines.  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
H2  
H1  
J3  
O
A2  
TCLK1  
MLI1 transmit channel clock  
output  
I/O A2  
I
IN40/OUT40 I/O line of GPTA  
TREADY1A MLI1 transmit channel  
ready input A  
IN41/OUT41 I/O line of GPTA  
TVALID1A  
A1  
I/O A1  
A2  
O
MLI1 transmit channel valid  
output A  
I/O A2  
A2  
IN42/OUT42 I/O line of GPTA  
J2  
O
TDATA1  
MLI1 transmit channel data  
output  
IN43/OUT43 I/O line of GPTA  
RCLK1A MLI1 receive channel clock  
input A  
I/O A2  
I A1  
J1  
I/O A1  
O A2  
IN44/OUT44 I/O line of GPTA  
RREADY1A MLI1 receive channel ready  
output A  
IN45/OUT45 I/O line of GPTA  
RVALID1A  
K2  
K3  
K1  
I/O A2  
A1  
I
MLI1 receive channel  
validinput A  
I/O A1  
A1  
IN46/OUT46 I/O line of GPTA  
I
RDATA1A  
MLI1 receive channel data  
input A  
IN47/OUT47 I/O line of GPTA  
I/O A1  
Data Sheet  
25  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
I/O A2  
Pin Definitions and Functions (cont’d)  
Power Functions  
P9  
VDDP  
Port 9  
Port 9 is a 9-bit bi-directional general-  
purpose I/O port which can be alternatively  
used as GPTA or MSC0/1 I/O lines.  
P9.0  
P9.1  
A19  
B19  
I/O  
O
IN48/OUT48 I/O line of GPTA  
EN12  
MSC1 device select  
output 2  
I/O  
O
IN49/OUT49 I/O line of GPTA  
EN11  
MSC1 device select  
output 1  
P9.2  
P9.3  
P9.4  
B20  
A20  
D18  
I/O  
O
IN50/OUT50 I/O line of GPTA  
SOP1B  
MSC1 serial data output  
I/O  
O
IN51/OUT51 I/O line of GPTA  
FCLP1  
MSC1 clock output  
I/O  
O
IN52/OUT52 I/O line of GPTA  
EN03  
MSC0 device select  
output 3  
P9.5  
P9.6  
D19  
C19  
I/O  
O
IN53/OUT53 I/O line of GPTA  
EN02  
MSC0 device select  
output 2  
I/O  
O
IN54/OUT54 I/O line of GPTA  
EN01  
MSC0 device select  
output 1  
P9.7  
P9.8  
D20  
C20  
I/O  
O
O
IN55/OUT55 I/O line of GPTA  
SOP0B  
FCLP0B  
MSC0 serial data output  
MSC0 clock output  
Data Sheet  
26  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
A1  
Pin Definitions and Functions (cont’d)  
Power Functions  
P10  
I
VDDP  
Hardware Configuration Inputs / Port 10  
These inputs are boot mode (hardware  
configuration) control inputs. They are  
latched with the rising edge of HDRST.  
Port 10 input line 0 / HWCFG0  
P10.0  
P10.1  
P10.2  
P10.3  
A21  
B21  
C21  
D21  
I
I
I
I
Port 10 input line 1 / HWCFG1  
Port 10 input line 2 / HWCFG2  
Port 10 input line 3 / HWCFG3  
After reset (HDRST = 1) the state of the  
Port 10 input pins may be modified from the  
reset configuration state. There actual state  
can be read via software (P10_IN register).  
During normal operation input HWCFG1  
serves as emergency shut-off control input  
for certain I/O lines (e.g. GPTA related  
outputs).  
Dedicated Peripheral I/Os  
SLSO0  
SLSO1  
MTSR0  
AE14 O  
AC15 O  
AF15 O  
I
A2  
VDDP  
SSC0 Slave Select Output Line 0  
SSC0 Slave Select Output Line 1  
SSC0 Master Transmit Output /  
SSC0 Slave Receive Input  
MRST0  
AE15 I  
O
SSC0 Master Receive Input /  
SSC0 Slave Transmit Output  
SCLK0  
SLSI0  
AF14 I/O  
AD15 I  
SSC0 Clock Input/Output  
SSC0 Slave Select Input  
Data Sheet  
27  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
MSC Outputs  
C
VDDP  
LVDS MSC Clock and Data Outputs2)  
MSC0 differential driver clock output  
positive A  
FCLP0A C18  
O
O
O
O
O
O
O
O
FCLN0  
SOP0A  
SON0  
C17  
C16  
D17  
MSC0 differential driver clock output  
negative  
MSC0 differential driver serial data output  
positive A  
MSC0 differential driver serial data output  
negative  
FCLP1A A17  
MSC1 differential driver clock output  
positive A  
FCLN1  
SOP1A  
SON1  
B17  
B16  
A16  
MSC1 differential driver clock output  
negative  
MSC1 differential driver serial data output  
positive A  
MSC1 differential driver serial data output  
negative  
Data Sheet  
28  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
Analog Inputs  
AN[43:0]  
I
D
ADC Analog Input Port  
The ADC Analog Input Port provides 44  
analog input lines for the A/D converters  
ADC0, ADC1, and FADC.  
Analog input 0  
AN0  
AE1  
AD2  
AA4  
AB3  
AC2  
AA3  
AD1  
AB4  
AC1  
AB2  
Y3  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AN1  
Analog input 1  
AN2  
Analog input 2  
AN3  
Analog input 3  
AN4  
Analog input 4  
AN5  
Analog input 5  
AN6  
Analog input 6  
AN7  
Analog input 7  
AN8  
Analog input 8  
AN9  
Analog input 9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
Analog input 10  
Analog input 11  
Analog input 12  
Analog input 13  
Analog input 14  
Analog input 15  
Analog input 16  
Analog input 17  
Analog input 18  
Analog input 19  
Analog input 20  
Analog input 21  
Analog input 22  
Analog input 23  
Analog input 24  
Analog input 25  
Analog input 26  
Analog input 27  
Analog input 28  
Analog input 29  
Analog input 30  
Analog input 31  
AA2  
AB1  
W3  
Y2  
AA1  
V4  
W2  
Y1  
V3  
W1  
V2  
V1  
U1  
AC8  
AD8  
AC7  
AD7  
AE6  
AF6  
AE7  
AF7  
Data Sheet  
29  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
D
ADC Analog Input Port (cont’d)  
Analog input 32  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
AN40  
AN41  
AN42  
AN43  
AC3  
AE2  
AD3  
AD5  
AE3  
AF2  
AC4  
AF3  
AD4  
AE4  
AC5  
AF4  
I
I
I
I
I
I
I
I
I
I
I
I
Analog input 33  
Analog input 34  
Analog input 35  
Analog input 36  
Analog input 37  
Analog input 38  
Analog input 39  
Analog input 40  
Analog input 41  
Analog input 42  
Analog input 43  
TR[15:0]  
O
A3  
VDDP  
OCDS Level 2 Debug Trace Lines2)  
(located on center balls)  
Trace output line 0  
Trace output line 1  
Trace output line 2  
Trace output line 3  
Trace output line 4  
Trace output line 5  
Trace output line 4  
Trace output line 7  
Trace output line 8  
Trace output line 9  
Trace output line 10  
Trace output line 11  
Trace output line 12  
Trace output line 13  
Trace output line 14  
Trace output line 15  
TR0  
U12  
T12  
U11  
T11  
U10  
R12  
R10  
R11  
M11  
M10  
L11  
L10  
K10  
K11  
L12  
K12  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
TR1  
TR2  
TR3  
TR4  
TR5  
TR6  
TR7  
TR8  
TR9  
TR10  
TR11  
TR12  
TR13  
TR14  
TR15  
TRCLK  
T10  
O
A4  
Trace Clock for OCDS Level 2 Debug  
Trace Lines1)  
(located on a center ball)  
Data Sheet  
30  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
System I/O  
TRST  
TCK  
TDI  
TDO  
TMS  
F23  
I
I
I
O
I
A2  
A2  
A1  
A2  
A1  
VDDP  
JTAG Module Reset/Enable Input2)  
JTAG Module Clock Input2)  
JTAG Module Serial Data Input  
JTAG Module Serial Data Output  
E24  
E25  
D25  
F24  
JTAG Module State Machine Control  
Input  
BRKIN  
C26  
D26  
I/O A3  
I/O A3  
OCDS Break Input (Alternate Output)2)  
OCDS Break Output (Alternate Input)2)  
BRK  
OUT  
NMI  
A22  
I
Non-Maskable Interrupt Input  
(input pad with input spike-filter.)  
HDRST A23  
I/O A2  
Hardware Reset Input / Reset Indication  
Output  
(open drain pad with input spike-filter.)  
PORST B22  
BYPASS A24  
I
I
Power-on Reset Input  
(input pad with input spike-filter.)  
A1  
PLL Bypass Select Input  
This input has to be held stable between to  
power-on resets. With BYPASS = 1 the  
spike filters in the HDRST, PORST, and  
NMI inputs are switched off.  
TEST  
B23  
I
I
Test Mode Select Input  
MODE  
For normal operation of the TC1796, this  
pin should be connected to high level.  
(input pad, test function only, without input  
spike-filter.)  
TSTRES G24  
Test Reset Input  
For normal operation of the TC1796, this  
pin should be connected to low level.  
Otherwise an unpredictable reset behavior  
may occur.  
(input pad, test function only, without input  
spike-filter.)  
Data Sheet  
31  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
XTAL1  
G26  
G25  
I
O
n.a.  
VDD  
Oscillator / PLL / Clock Generator  
XTAL2  
Input / Output Pins2)  
N.C.  
A1  
Not Connected  
C22  
These pins are reserved for future  
extension and should not be connected  
externally.  
G23  
H3  
AF1  
AF26  
AC21  
AD23  
AE22  
AE23  
Power Supplies  
VDDM  
VSSM  
W4  
Y4  
ADC0/1 Analog Part Power Supply (3.3V)  
ADC0/1 Analog Part Ground for VDDM  
FADC Analog Part Power Supply (3.3V)  
VFADC Analog Part Ground for VDDAF  
FADC Analog Part Log. Pow. Sup. (1.5V)  
FADC Analog Part Log Ground for VDDAF  
ADC0 Reference Voltage  
ADC0 Reference Ground  
ADC1 Reference Voltage  
ADC1 Reference Ground  
FADC Reference Voltage  
VDDMF  
VSSMF  
VDDAF  
VSSAF  
VAREF0  
VAGND0  
VAREF1  
VAGND1  
VFAREF  
VFAGND  
VDDOSC  
AE9  
AF9  
AC9  
AD9  
AE5  
AF5  
AD6  
AC6  
AF8  
AE8  
F26  
FADC Reference Ground  
3)  
Main Oscillator Power Supply (1.5V)  
Main Oscillator Power Supply (3.3V)  
Main Oscillator Ground  
VDDOSC3 E26  
VSSOSC  
VDDFL3  
3)  
F25  
A18  
B18  
Power Supply for Flash (3.3V)  
VDDSBRAM R1  
Power Supply for Stand-by SRAM (1.5V)  
Data Sheet  
32  
V1.0, 2008-04  
TC1796  
General Device Information  
Table 2  
Symbol Pins I/O Pad  
Class Supply  
Pin Definitions and Functions (cont’d)  
Power Functions  
VDDEBU  
H23  
H24  
H25  
H26  
M23  
T23  
EBU Power Supply (2.3 - 3.3V)  
Y23  
AC18  
AC22  
VDD  
B26  
C25  
D9  
Core Power Supply (1.5V)  
D16  
D24  
E23  
H4  
P23  
R4  
V23  
AB23  
AC11  
AC20  
VDDP  
A25  
B24  
C23  
D7  
D14  
D22  
K4  
Port Power Supply (3.3V)  
(also for OCDS)  
AC16  
AD16  
AE16  
AF16  
VSS  
See  
Table  
3
Ground  
15 VSS lines are located at outer balls.  
47 VSS lines are located at center balls.  
1) In order to minimize noise coupling to the on-chip A/D converters, it is recommended to use these pins as less  
as possible in strong driver mode.  
Data Sheet  
33  
V1.0, 2008-04  
TC1796  
General Device Information  
2) In case of a power-fail condition (one or more power supply voltages drop below the specified voltage range),  
an undefined output driving level may occur at these pins.  
3) Not bonded externally in the BC and BD steps of TC1796. An option for bonding them in future steps and  
products is kept open.  
Table 3  
VSS Balls  
VSS Outer Balls  
VSS Center Balls  
A26, B25, C24, D8, D15, D23, J4, L23,  
K[17:13], L[17:13], M[17:12],  
R23, T4, W23, AC10, AC17, AC19, AC23 N[17:10], P[17:10],  
R[17:13], T[17:13], U[17:13]  
Data Sheet  
34  
V1.0, 2008-04  
TC1796  
General Device Information  
2.5.1  
Pull-Up/Pull-Down Behavior of the Pins  
Table 4  
Pins  
List of Pull-Up/Pull-Down Reset Behavior of the Pins  
PORST = 0  
PORST = 1  
TSTRES,  
Weak pull-up device active  
TDI, TMS,  
TESTMODE,  
BRKOUT, BRKIN,  
all GPIOs,  
RD, RD/WR,  
ADV, BC[3:0], MR/W,  
WAIT, BAA, HOLD,  
HLDA, BREQ,  
D[31:0], A[23,0],  
CS[3:0], CSCOMB  
NMI, PORST  
BYPASS,  
Weak pull-down device active  
Weak pull-up device active  
High-impedance  
SLSO0, SLSO1,  
MTSR0, MRST0,  
SCLK0, SLSI0,  
TDO,  
BFCLKI  
BFCLKO  
HDRST  
Weak pull-up device active  
Open-drain device drives 0  
(strong pull-down)  
Push-pull driver active  
Weak pull-up device active  
Open-drain device active  
TRST, TCK  
High-impedance  
Weak pull-down device active  
Data Sheet  
35  
V1.0, 2008-04  
TC1796  
Functional Description  
3
Functional Description  
The following section gives an overview of the sub systems and the modules of the  
TC1796 and their connectivity.  
3.1  
System Architecture and On-Chip Bus Systems  
The TC1796 has four independent on-chip buses (see also TC1796 block diagram in  
Figure 1):  
Program Local Memory Bus (PLMB)  
Data Local Memory Bus (DLMB)  
System Peripheral Bus (SPB)  
Remote Peripheral Bus (RPB)  
The two LMB Buses (Program Local Memory Bus PLMB and Data Local Memory Bus  
DLMB) connect the TriCore CPU to its local resources for data and instruction fetches.  
The PLMB/DLMB Buses are synchronous and pipelined buses with variable block size  
transfer support. The protocol supports 8-, 16-, 32-, and 64-bit single transactions and  
variable length 64-bit block transfers.  
The System Peripheral Bus (SPB) is accessible by the CPU via the LFI Bridge. The  
LFI Bridge is a bi-directional bus bridge between the DLMB and the SPB. It supports all  
transactions types of both buses, DLMB Bus and FPI Bus. It handles address translation  
and transaction type translation between the two buses. The LFI Bridge further supports  
the pipelining of both connected buses. Therefore, no additional delay is created except  
for bus protocol conversions.  
The Remote Peripheral Bus (RPB) connects the peripherals with high data rates (SSC,  
ADC, FADC) with the Dual-port memory (DPRAM) in the DMI, relieving the SPB and the  
PLMB/DLMB Buses from these data transfers. The RPB is controlled by a bus switch  
which is located in the DMA controller.  
The two LMB Buses are running at CPU clock speed (clock rate of fCPU) while SPB and  
RPB are running at system clock speed (clock rate of fSYS). Note that fSYS can be equal  
to fCPU or half the fCPU frequency.  
Data Sheet  
36  
V1.0, 2008-04  
TC1796  
Functional Description  
3.2  
On-Chip Memories  
As shown in the TC1796 block diagram on Page 10, some of the TC1796 units provide  
on-chip memories that are used as program or data memory.  
Program memory in PMU and PMI  
– 2 Mbyte on-chip Program Flash (PFLASH)  
– 16 Kbyte Boot ROM (BROM)  
– 48 Kbyte Scratch-Pad RAM (SPRAM)  
– 16 Kbyte Instruction Cache (ICACHE)  
Data memory in DMU, PMU and DMI  
– 56 Kbyte Local Data RAM (LDRAM)  
– 8 Kbyte Dual-port RAM (DPRAM)  
– 64 Kbyte Data Memory (SRAM)  
– 16 Kbyte data memory (SBRAM) for standby operation during power-down  
– 128 Kbyte on-chip Data Flash (DFLASH)  
Memory of the PCP2  
– 32 Kbyte Code Memory (CMEM)  
– 16 Kbyte Parameter Memory (PRAM)  
On-chip SRAMs with parity error detection  
Features of the Program Flash  
2 Mbyte on-chip program Flash memory  
Usable for instruction code execution or constant data storage  
256-byte wide program interface  
– 256 bytes are programmed into PFLASH page in one step/command  
256-bit read interface  
– Transfer from PFLASH to CPU/PMI by four 64-bit single-cycle burst transfers  
Dynamic correction of single-bit errors during read access  
Detection of double bit errors  
Fixed sector architecture  
– Eight 16 Kbyte, one 128 Kbyte, one 256 Kbyte, and three 512 Kbyte sectors  
– Each sector separately erasable  
– Each sector separately write-protectable  
Configurable read protection for complete PFLASH with sophisticated read access  
supervision, combined with write protection for complete PFLASH (protection against  
“Trojan horse” software)  
Configurable write protection for each sector  
– Each sector separately write-protectable  
– With capability to be re-programmed  
– With capability to be locked forever (OTP)  
Password mechanism for temporarily disable write or read protection  
On-chip programming voltage generation  
PFLASH is delivered in erased state (read all zeros)  
Data Sheet  
37  
V1.0, 2008-04  
TC1796  
Functional Description  
JEDEC standard based command sequences for PFLASH control  
– Write state machine controls programming and erase operations  
– Status and error reporting by status flags and interrupt  
Margin check for detection of problematic PFLASH bits  
Features of the Data Flash  
128 Kbyte on-chip data Flash memory, organized in two 64 Kbyte banks  
Usable for data storage with EEPROM functionality  
128 Byte program interface  
– 128 bytes are programmed into one DFLASH page by one step/command  
64-bit read interface (no burst transfers)  
Dynamic correction of single-bit errors during read access  
Detection of double bit errors  
Fixed sector architecture  
– Two 64 Kbyte banks/sectors  
– Each sector separately erasable  
Configurable read protection (combined with write protection) for complete DFLASH  
together with PFLASH read protection  
Password mechanism to temporarily disable write and read protection  
Erasing/programming of one bank possible while reading data from the other bank  
Programming of one bank possible while erasing the other bank  
On-chip generation of programming voltage  
DFLASH is delivered in erased state (read all zeros)  
JEDEC-standard based command sequences for DFLASH control  
– Write state machine controls programming and erase operations  
– Status and error reporting by status flags and interrupt  
Margin check for detection of problematic DFLASH bits  
Data Sheet  
38  
V1.0, 2008-04  
TC1796  
Functional Description  
3.3  
Architectural Address Map  
Table 5 shows the overall architectural address map as defined for the TriCore and  
implemented in TC1796.  
Table 5  
TC1796 Architectural Address Map  
Seg- Contents  
Size  
Description  
ment  
0-7  
8
Global  
8 × 256  
Reserved (MMU space), cached  
Mbyte  
Global  
Memory  
256 Mbyte EBU (246 Mbyte), PMU with PFLASH, DFLASH,  
BROM, memory reserved for Emulation, cached  
9
Global  
Memory  
256 Mbyte FPI space; cached  
10  
Global  
Memory  
256 Mbyte EBU (246 Mbyte), PMU with PFLASH, DFLASH,  
BROM, memory reserved for Emulation, non-  
cached  
11  
12  
13  
Global  
256 Mbyte FPI space; non-cached  
Memory  
Local LMB  
Memory  
DMI  
PMI  
EXTPER  
EXTEMU  
256 Mbyte DMU, bottom 4 Mbyte visible from FPI Bus in  
segment 14, cached  
64 Mbyte  
64 Mbyte  
96 Mbyte  
16 Mbyte  
Local Data Memory RAM, non-cached  
Local Code Memory RAM, non-cached  
External Peripheral Space, non-cached  
External Emulator Range, non-cached  
Boot ROM space, BROM mirror; non-cached  
BOOTROM 16 Mbyte  
14  
15  
EXTPER  
128 Mbyte External Peripheral Space non-speculative, no  
execution, non-cached  
CPU[0 ..15] 16 × 8  
image region Mbyte  
Non-speculative, no execution, non-cached  
LMBPER  
CSFRs  
INTPER  
256  
Mbyte  
CSFRs of CPUs[0 ..15];  
LMB & Internal Peripheral Space; non-speculative,  
no execution, non-cached  
Data Sheet  
39  
V1.0, 2008-04  
TC1796  
Functional Description  
3.4  
Memory Protection System  
The TC1796 memory protection system specifies the addressable range and read/write  
permissions of memory segments available to the currently executing task. The memory  
protection system controls the position and range of addressable segments in memory.  
It also controls the kinds of read and write operations allowed within addressable  
memory segments. Any illegal memory access is detected by the memory protection  
hardware, which then invokes the appropriate Trap Service Routine (TSR) to handle the  
error. Thus, the memory protection system protects critical system functions against both  
software and hardware errors. The memory protection hardware can also generate  
signals to the Debug Unit to facilitate tracing illegal memory accesses.  
There are two Memory Protection Register Sets in the TC1796, numbered 0 and 1,  
which specify memory protection ranges and permissions for code and data. The  
PSW.PRS bit field determines which of these is the set currently in use by the CPU.  
Because the TC1796 uses a Harvard-style memory architecture, each Memory  
Protection Register Set is broken down into a Data Protection Register Set and a Code  
Protection Register Set. Each Data Protection Register Set can specify up to four  
address ranges to receive particular protection modes. Each Code Protection Register  
Set can specify up to two address ranges to receive particular protection modes.  
Each of the Data Protection Register Sets and Code Protection Register Sets  
determines the range and protection modes for a separate memory area. Each contains  
register pairs which determine the address range (the Data Segment Protection  
Registers and Code Segment Protection Registers) and one register (Data Protection  
Mode Register) which determines the memory access modes which apply to the  
specified range.  
Data Sheet  
40  
V1.0, 2008-04  
TC1796  
Functional Description  
3.5  
External Bus Unit  
The External Bus Unit (EBU) of the TC1796 is the units that controls the transactions  
between external memories or peripheral units with the internal memories and peripheral  
units. The EBU is a part of the PMU and communicates with CPU and PMI via the  
Program Local Memory Bus. This configuration allows to get fast access times especially  
when using external burst FLASH memory devices.  
32  
Data  
Bus  
Data Path  
Control  
Asynchronous  
Access  
State Machine  
Control  
Lines  
64  
32  
Burst Access  
State Machine  
Program  
Local  
Memory  
PLMB  
Data  
64  
Region  
Selection  
Bus  
Arbitration  
Signals  
External Bus  
Arbitration  
PLMB  
Address  
24  
Address  
Bus  
Address Path  
Control  
External Bus Unit EBU  
MCB05713  
Figure 4  
EBU Block Diagram  
The following features are supported by the EBU:  
64-bit internal Program Local Memory Bus (PLMB) interface  
32-bit external demultiplexed bus interface  
– Asynchronous read/write accesses support Intel-style and Motorola-style interface  
signals  
– Synchronous burst FLASH memory read  
– Five programmable regions associated each to one chip select output  
– Flexibly programmable access parameters for each chip select region  
– Little-endian and Big-endian support  
– Programmable wait state control  
Scalable external bus frequency  
– Derived from PLMB frequency (fCPU) divided by 1, 2, 3, or 4  
– Max. 75 MHz  
Data Sheet  
41  
V1.0, 2008-04  
TC1796  
Functional Description  
Data buffering supported  
– Code prefetch buffer  
– Read/write buffer  
External bus arbitration control capability for the EBU bus  
Automatic self-configuration on boot from external memory  
3.6  
Peripheral Control Processor  
The Peripheral Control Processor (PCP2) in the TC1796 performs tasks that would  
normally be performed by the combination of a DMA controller and its supporting CPU  
interrupt service routines in a traditional computer system. It could easily be considered  
as the host processor’s first line of defence as an interrupt-handling engine. The PCP2  
can off-load the CPU from having to service time-critical interrupts. This provides many  
benefits, including:  
Avoiding large interrupt-driven task context-switching latencies in the host processor  
Reducing the cost of interrupts in terms of processor register and memory overhead  
Improving the responsiveness of interrupt service routines to data-capture and data-  
transfer operations  
Easing the implementation of multitasking operating systems.  
The PCP2 has an architecture that efficiently supports DMA-type transactions to and  
from arbitrary devices and memory addresses within the TC1796 and also has  
reasonable stand-alone computational capabilities.  
The PCP2 in the TC1796 contains an improved version of the TC1775’s PCP with the  
following enhancements:  
Optimized context switching  
Support for nested interrupts  
Enhanced instruction set  
Enhanced instruction execution speed  
Enhanced interrupt queueing  
The PCP2 is made up of several modular blocks as follows (see Figure 5):  
PCP2 Processor Core  
Code Memory (CMEM)  
Parameter Memory (PRAM)  
PCP2 Interrupt Control Unit (PICU)  
PCP2 Service Request Nodes (PSRN)  
System bus interface to the Flexible Peripheral Interface (FPI Bus)  
Data Sheet  
42  
V1.0, 2008-04  
TC1796  
Functional Description  
Code  
Memory  
CMEM  
Parameter  
Memory  
PRAM  
PCP2  
Processor  
Core  
PCP2 Service  
Req. Nodes  
PSRNs  
PCP2 Interrupt  
Control Unit  
PICU  
FPI-Interface  
FPI Bus  
PCP2 Interrupt  
Arbitration Bus  
CPU Interrupt  
Arbitration Bus  
MCB05666a  
Figure 5  
Table 6  
PCP2 Block Diagram  
PCP2 Instruction Set Overview  
Instruction Group  
DMA primitives  
Load/Store  
Description  
Efficient DMA channel implementation  
Transfer data between PRAM or FPI memory and the general  
purpose registers, as well as move or exchange values  
between registers  
Arithmetic  
Divide/Multiply  
Logical  
Add, subtract, compare and complement  
Divide and multiply  
And, Or, Exclusive Or, Negate  
Shift right or left, rotate right or left, prioritize  
Set, clear, insert and test bits  
Jump conditionally, jump long, exit  
No operation, Debug  
Shift  
Bit Manipulation  
Flow Control  
Miscellaneous  
Data Sheet  
43  
V1.0, 2008-04  
TC1796  
Functional Description  
3.7  
DMA Controller and Memory Checker  
The Direct Memory Access (DMA) Controller of the TC1796 transfers data from data  
source locations to data destination locations without intervention of the CPU or other  
on-chip devices. One data move operation is controlled by one DMA channel. Sixteen  
DMA channels are provided in two independent DMA Sub-Blocks with eight DMA  
channels each. The Bus Switch provides the connection of two DMA Sub-Blocks to the  
two FPI Bus interfaces and an MLI bus interface. In the TC1796, the FPI Bus interfaces  
are connected to System Peripheral Bus and the Remote Peripheral Bus. The third  
specific bus interface provides a connection to Micro Link Interface modules (two MLI  
modules in the TC1796) and other DMA-related devices (Memory Checker module in the  
TC1796). Figure 6 shows the implementation details and interconnections of the DMA  
module.  
fDMA  
DMA Controller  
DMA Sub-Block 0  
Clock  
Control  
System  
Peripheral  
Bus  
DMA  
Channels  
00-07  
Request  
Selection/  
Arbitration  
Transaction  
Control Unitl  
DMA  
Requests of  
On-chip  
Periph.  
Remote  
Peripheral  
Bus  
CH0n_OUT  
Bus  
Switch  
Units  
DMA Sub-Block 1  
DMA  
Channels  
10-17  
MLI0  
MLI1  
Request  
Selection/  
Arbitration  
Address  
Decoder  
Transaction  
Control Unit  
Memory  
Checker  
CH1n_OUT  
Arbiter/  
Switch  
Control  
Interrupt  
Request  
Nodes  
SR[15:0]  
DMA Interrupt Control  
MCB05680  
Figure 6  
DMA Controller Block Diagram  
Data Sheet  
44  
V1.0, 2008-04  
TC1796  
Functional Description  
Features  
16 independent DMA channels  
– 8 DMA channels in each DMA Sub-Block  
– Up to 8 selectable request inputs per DMA channel  
– 2-level programmable priority of DMA channels within a DMA Sub-Block  
– Software and hardware DMA request  
– Hardware requests by selected on-chip peripherals and external inputs  
Programmable priority of the DMA Sub-Blocks on the bus interfaces  
Buffer capability for move actions on the buses (at least 1 move per bus is buffered).  
Individually programmable operation modes for each DMA channel  
– Single mode: stops and disables DMA channel after a predefined number of DMA  
transfers  
– Continuous mode: DMA channel remains enabled after a predefined number of  
DMA transfers; DMA transaction can be repeated.  
– Programmable address modification  
Full 32-bit addressing capability of each DMA channel  
– 4 GByte address range  
– Support of circular buffer addressing mode  
Programmable data width of DMA transfer/transaction: 8-bit, 16-bit, or 32-bit  
Micro Link bus interface support  
Register set for each DMA channel  
– Source and destination address register  
– Channel control and status register  
– Transfer count register  
Flexible interrupt generation (the service request node logic for the MLI channels is  
also implemented in the DMA module)  
All buses connected to the DMA module must work at the same frequency.  
Read/write requests of the System Bus Side to the Remote Peripherals are bridged  
to the Remote Peripheral Bus (only the DMA is master on the RPB)  
Memory Checker  
The Memory Checker Module (MEMCHK) makes it possible to check the data  
consistency of memories. Any SPB bus master may access the memory checker.  
Preferable the DMA controller does it as described hereafter. It uses 8-bit, 16-bit, or 32-  
bit DMA moves to read from the selected address area and to write the value read in a  
memory checker input register. With each write operation to the memory checker input  
register, a polynomial checksum calculation is triggered and the result of the calculation  
is stored in the memory checker result register.  
The memory checker uses the standard Ethernet polynomial, which is given by:  
G32 = x32+ x26+ x23+ x22+ x16+ x12+ x11+ x10+ x8+ x7+ x5+ x4+ x2+ x +1  
Data Sheet  
45  
V1.0, 2008-04  
TC1796  
Functional Description  
Note: Although the polynomial above is used for generation, the generation algorithm  
differs from the one that is used by the Ethernet protocol.  
3.8  
Interrupt System  
The TC1796 interrupt system provides a flexible and time-efficient means for processing  
interrupts. An interrupt request can be serviced either by the CPU or by the Peripheral  
Control Processor (PCP). These units are called “Service Providers”. Interrupt requests  
are called “Service Requests” rather than “Interrupt Requests” in this document because  
they can be serviced by either of the Service Providers.  
Each peripheral in the TC1796 can generate service requests. Additionally, the Bus  
Control Units, the Debug Unit, the PCP, and even the CPU itself can generate service  
requests to either of the two Service Providers.  
As shown in Figure 7, each TC1796 unit that can generate service requests is  
connected to one or more Service Request Nodes (SRN). Each SRN contains a Service  
Request Control Register. Two arbitration buses connect the SRNs with two Interrupt  
Control Units, which handle interrupt arbitration among competing interrupt service  
requests, as follows:  
The Interrupt Control Unit (ICU) arbitrates service requests for the CPU and  
administers the CPU Interrupt Arbitration Bus.  
The Peripheral Interrupt Control Unit (PICU) arbitrates service requests for the PCP2  
and administers the PCP2 Interrupt Arbitration Bus.  
The PCP2 can make service requests directly to itself (via the PICU), or it can make  
service requests to the CPU. The Debug Unit can generate service requests to the PCP2  
or the CPU. The CPU can make service requests directly to itself (via the ICU), or it can  
make service requests to the PCP. The CPU Service Request Nodes are activated  
through software.  
Depending on the selected system clock frequency fSYS, the number of fSYS clock cycles  
per arbitration cycle must be selected as follows:  
fSYS < 60MHz: ICR.CONECYC = 1 and PCP_ICR.CONECYC = 1  
fSYS > 60MHz: ICR.CONECYC = 0 and PCP_ICR.CONECYC = 0  
Data Sheet  
46  
V1.0, 2008-04  
TC1796  
Functional Description  
PCP  
Interrupt  
Arbitration Bus  
CPU  
Interrupt  
Arbitration Bus  
Service  
Requestors  
Service Req.  
PCP Interrupt  
Control Unit  
Interrupt  
Service  
Providers  
Nodes  
2 SRNs  
2 SRNs  
4 SRNs  
2 SRNs  
3 SRNs  
3 SRNs  
4 SRNs  
4 SRNs  
16 SRNs  
4 SRNs  
4 SRNs  
4 SRNs  
38 SRNs  
38 SRNs  
16 SRNs  
2 SRNs  
1 SRN  
2
2
PICU  
Int.  
2
2
MSC0  
MSC1  
MLI0  
Req.  
Int. Ack.  
CCPN  
2
PIPN  
2
4
4
4
Service Req.  
Nodes  
2
PCP2  
2
MLI1  
2
5
5
5 SRNs  
5 SRNs  
2 SRNs  
5 SRNs  
3
3
SSC0  
SSC1  
ASC0  
ASC1  
MultiCAN  
ADC0  
ADC1  
FADC  
GPTA0  
GPTA1  
LTCA2  
STM  
3
5
5
5
2
3
3
3
2
4
4
4
5
5
5
Software  
& Break-  
point  
4
4
4
Interrupts  
16  
16  
4
CPU Interrupt  
Control Unit  
16  
4
CPU  
ICU  
Int.  
Req.  
4
Int. Ack.  
CCPN  
4
PIPN  
4
4
4
4
Service Req.  
Nodes  
Service  
Requestors  
4
38  
38  
38  
38  
16  
16  
2
1
1
1
1
1
1
1
1
8
8
1
1
1
1
38  
38  
16  
2
1
1
1
1
8
1
1
1 SRN  
1 SRN  
1 SRN  
1 SRN  
8 SRNs  
1 SRN  
1 SRN  
DBCU  
PBCU  
SBCU  
RBCU  
2
1
1
FPU  
DMA  
1
1
1
Flash  
1 SRN  
Cerberus  
Software  
1
2
2
Ext. Int.  
2 SRNs  
2
MCB05742  
Figure 7  
Block Diagram of the TC1796 Interrupt System  
Data Sheet  
47  
V1.0, 2008-04  
TC1796  
Functional Description  
3.9  
Asynchronous/Synchronous Serial Interfaces (ASC0, ASC1)  
Figure 8 shows a global view of the functional blocks and interfaces of the two  
Asynchronous/Synchronous Serial Interfaces ASC0 and ASC1.  
fASC  
Clock  
Control  
P5.0 /  
RXD0A  
A2  
A2  
RXD_I0  
RXD_I1  
RXD_O  
TXD_O  
P5.1 /  
TXD0A  
Address  
Decoder  
ASC0  
Module  
(Kernel)  
P6.8 /  
RXD0B  
A2  
A2  
EIR  
TBIR  
TIR  
P6.9 /  
TXD0B  
Interrupt  
Control  
RIR  
Port 5  
&
Port 6  
Control  
ASC0_RDR  
ASC0_TDR  
To  
DMA  
P5.2 /  
RXD1A  
A2  
A2  
RXD_I0  
RXD_I1  
RXD_O  
TXD_O  
P5.3 /  
TXD1A  
ASC1  
Module  
(Kernel)  
P6.10 /  
RXD1B  
A2  
A2  
EIR  
TBIR  
TIR  
P6.11 /  
TXD1B  
Interrupt  
Control  
RIR  
ASC1_RDR  
ASC1_TDR  
To  
DMA  
MCB05773  
Figure 8  
Block Diagram of the ASC Interfaces  
The Asynchronous/Synchronous Serial Interfaces provide serial communication  
between the TC1796 and other microcontrollers, microprocessors, or external  
peripherals.  
The ASC supports full-duplex asynchronous communication and half-duplex  
synchronous communication. In Synchronous Mode, data is transmitted or received  
synchronous to a shift clock which is generated by the ASC internally. In Asynchronous  
Data Sheet  
48  
V1.0, 2008-04  
TC1796  
Functional Description  
Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be  
selected. Parity, framing, and overrun error detection are provided to increase the  
reliability of data transfers. Transmission and reception of data are double-buffered. For  
multiprocessor communication, a mechanism is included to distinguish address bytes  
from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator  
provides the ASC with a separate serial clock signal which can be very accurately  
adjusted by a prescaler implemented as a fractional divider.  
Each ASC module, ASC0 and ASC1, communicates with the external world via two I/O  
lines. The RXD line is the receive data input signal (in Synchronous Mode also output).  
TXD is the transmit output signal. In the TC1796, the two I/O lines of each ASC can be  
alternatively switched to different pairs of GPIO lines.  
Clock control, address decoding, and interrupt service request control are managed  
outside the ASC module kernel.  
Features  
Full-duplex asynchronous operating modes  
– 8-bit or 9-bit data frames, LSB first  
– Parity bit generation/checking  
– One or two stop bits  
– Baud rate from 4.69 Mbit/s to 1.12 Bit/s (@ 75 MHz clock)  
– Multiprocessor mode for automatic address/data byte detection  
– Loop-back capability  
Half-duplex 8-bit synchronous operating mode  
– Baud rate from 9.38 Mbit/s to 763 Bit/s (@ 75 MHz clock)  
Double buffered transmitter/receiver  
Interrupt generation  
– On a transmit buffer empty condition  
– On a transmit last bit of a frame condition  
– On a receive buffer full condition  
– On an error condition (frame, parity, overrun error)  
Data Sheet  
49  
V1.0, 2008-04  
TC1796  
Functional Description  
3.10  
High-Speed Synchronous Serial Interfaces (SSC0, SSC1)  
Figure 9 shows a global view of the functional blocks and interfaces of the two High-  
Speed Synchronous Serial interfaces SSC0 and SSC1.  
MRSTA  
MRSTB  
MTSR  
A2  
A2  
A2  
MRST0  
MTSR0  
SCLK0  
fSSC0  
fCLC0  
Master  
Slave  
Clock  
Control  
MTSRA  
MTSRB  
MRST  
SSC0  
Module  
(Kernel)  
Address  
Decoder  
SCLKA  
SCLKB  
SCLK  
Slave  
8-Stage RXFIFO  
8-Stage TXFIFO  
EIR  
TIR  
RIR  
Master  
Interrupt  
Control  
SLSI1  
SLSI[7:2] 1)  
SLSI0  
A2  
A2  
A2  
Slave  
SLSO0  
SLSO1  
SLSO0  
SLSO1  
M/S Selected  
SSC Enabled  
SSC0_RDR  
SSC0_TDR  
To  
DMA  
Master  
Master  
SLSO[7:2]  
SLSO[7:2]  
P2.2 /  
SLSO2  
A2  
A2  
Port 2  
Control  
fSSC1  
P2.7 /  
SLSO7  
Clock  
Control  
fCLC1  
MRSTA  
MRSTB  
MTSR  
Master  
Slave  
P6.4 /  
MTSR1  
A2  
A2  
A2  
A2  
Address  
Decoder  
MTSRA  
MTSRB  
MRST  
SSC1  
Module  
(Kernel)  
P6.5 /  
MRST1  
Port 6  
Control  
EIR  
TIR  
RIR  
P6.6 /  
SCLK1  
Interrupt  
Control  
SCLKA  
SCLKB  
SCLK  
Slave  
Master  
Slave  
P6.7 /  
SLSI1  
SSC1_RDR  
SSC1_TDR  
SLSI1  
SLSI[7:2] 1)  
To  
DMA  
1) These lines are not connected  
MCA05791  
Figure 9  
Block Diagram of the SSC Interfaces  
The SSC allows full-duplex and half-duplex serial synchronous communication up to  
37.5 Mbit/s (@ 75 MHz module clock) with Receive and Transmit FIFO support. (FIFO  
only in SSC0). The serial clock signal can be generated by the SSC itself (Master Mode)  
Data Sheet  
50  
V1.0, 2008-04  
TC1796  
Functional Description  
or can be received from an external master (Slave Mode). Data width, shift direction,  
clock polarity and phase are programmable. This allows communication with SPI-  
compatible devices. Transmission and reception of data is double-buffered. A shift clock  
generator provides the SSC with a separate serial clock signal. One slave select input is  
available for Slave Mode operation. Eight programmable slave select outputs (chip  
selects) are supported in Master Mode. The I/O lines of the SSC0 module are connected  
to dedicated device pins while the SSC1 module I/O lines are wired with general purpose  
I/O port lines.  
Features  
Master and Slave Mode operation  
– Full-duplex or half-duplex operation  
– Automatic pad control possible  
Flexible data format  
– Programmable number of data bits: 2 to 16 bits  
– Programmable shift direction: LSB or MSB shift first  
– Programmable clock polarity: Idle low or high state for the shift clock  
– Programmable clock/data phase: data shift with leading or trailing edge of the shift  
clock  
Baud rate generation from 37.5 Mbit/s to 572.2 Bit/s (@ 75 MHz module clock)  
Interrupt generation  
– On a transmitter empty condition  
– On a receiver full condition  
– On an error condition (receive, phase, baud rate, transmit error)  
Flexible SSC pin configuration  
One slave select input SLSI in slave mode  
Eight programmable slave select outputs SLSO in Master Mode  
– Automatic SLSO generation with programmable timing  
– Programmable active level and enable control  
SSC0 with 8-stage receive FIFO (RXFIFO) and 8-stage transmit FIFO (TXFIFO)  
– Independent control of RXFIFO and TXFIFO  
– 2- to 16-bit FIFO data width  
– Programmable receive/transmit interrupt trigger level  
– Receive and Transmit FIFO filling level indication  
– Overrun error generation  
– Underflow error generation  
Data Sheet  
51  
V1.0, 2008-04  
TC1796  
Functional Description  
3.11  
Micro Second Bus Interfaces (MSC0, MSC1)  
The Micro Second Channel (MSC) interfaces provides a serial communication link  
typically used to connect power switches or other peripheral devices. The serial  
communication link is build up by a fast synchronous downstream channel and a slow  
asynchronous upstream channel. Figure 10 shows a global view the interface signals of  
the MSC interface.  
fMSC0  
FCLP  
C
C
C
C
FCLP0A  
FCLN0  
SOP0A  
SON0  
Clock  
Control  
fCLC0  
FCLN  
SOP  
SON  
Address  
Decoder  
A2 P9.8 / FCLP0B  
MSC0  
Module  
(Kernel)  
P9.7 / SOP0B  
P5.4 / EN00  
P9.6 / EN01  
A2  
A2  
A2  
SR[1:0]  
Interrupt  
Control  
EN0  
EN1  
EN2  
EN3  
Port 5  
&
Port 9  
Control  
SR[3:2]  
16  
To DMA  
A2 P9.5 / EN02  
ALTINL[15:0]  
(from GPTA)  
ALTINH[15:0]  
16  
P9.4 / EN03  
A2  
A2  
SDI[0]1)  
P5.5 /  
SDI0  
EMGSTOPMSC  
(from SCU)  
SR15 (from CAN)  
FCLP  
FCLN  
SOP  
C
C
FCLP1A  
fMSC1  
FCLN1  
Clock  
Control  
fCLC1  
C
SOP1A  
SON  
SON1  
C
Address  
Decoder  
P9.3 / FCLP1B  
P9.2 / SOP1B  
P5.6 / EN10  
P9.1 / EN11  
P9.0 / EN12  
A2  
A2  
A2  
A2  
A2  
MSC1  
Module  
(Kernel)  
EN0  
EN1  
EN2  
EN3  
SR[1:0]  
Interrupt  
Control  
Port 5  
&
Port 9  
Control  
SR[3:2]  
16  
To DMA  
N.C.  
ALTINL[15:0]  
(from GPTA)  
ALTINH[15:0]  
SDI[0]1)  
P5.7 /  
SDI1  
16  
A2  
1) SDI[7:1] are connected to high level.  
MCA05823  
Figure 10  
Block Diagram of the MSC Interfaces  
Data Sheet  
52  
V1.0, 2008-04  
TC1796  
Functional Description  
The downstream and upstream channels of the MSC module communicate with the  
external world via nine I/O lines. Eight output lines are required for the serial  
communication of the downstream channel (clock, data, and enable signals). One out of  
eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The  
source of the serial data to be transmitted by the downstream channel can be MSC  
register contents or data that is provided at the ALTINL/ALTINH input lines. These input  
lines are typically connected to other on-chip peripheral units (for example with a timer  
unit like the GPTA). An emergency stop input signal allows to set bits of the serial data  
stream to dedicated values in emergency case.  
Clock control, address decoding, and interrupt service request control are managed  
outside the MSC module kernel. Service request outputs are able to trigger an interrupt  
or a DMA request.  
Features  
Fast synchronous serial interface to connect power switches in particular, or other  
peripheral devices via serial buses  
High-speed synchronous serial transmission on downstream channel  
– Maximum serial output clock frequency: fFCL = fMSC/2  
(= 37.5 Mbit/s @ 75 MHz module clock)  
– Fractional clock divider for precise frequency control of serial clock fMSC  
– Command, data, and passive frame types  
– Start of serial frame: Software-controlled, timer-controlled, or free-running  
– Programmable upstream data frame length (16 or 12 bits)  
– Transmission with or without SEL bit  
– Flexible chip select generation indicates status during serial frame transmission  
– Emergency stop without CPU intervention  
Low-speed asynchronous serial reception on upstream channel  
– Baud rate: fMSC divided by 8, 16, 32, 64, 128, 256, or 512  
– Standard asynchronous serial frames  
– Parity error checker  
– 8-to-1 input multiplexer for SDI lines  
– Built-in spike filter on SDI lines  
Data Sheet  
53  
V1.0, 2008-04  
TC1796  
Functional Description  
3.12  
MultiCAN Controller (CAN)  
Figure 11 shows a global view of the MultiCAN module with its functional blocks and  
interfaces.  
fCAN  
MultiCAN Module Kernel  
CAN  
P6.15 /  
TXDCAN3  
P6.14 /  
RXDCAN3  
Clock  
Control  
A2  
A2  
fCLC  
TXDC3  
RXDC3  
Node 3  
Address  
Decoder  
P6.13 /  
TXDCAN2  
P6.12 /  
RXDCAN2  
TXDC2  
RXDC2  
A2  
A2  
Message  
Object  
Buffer  
CAN  
Node 2  
Linked  
List  
Control  
Port 6  
Control  
DMA  
TXDC1  
RXDC1  
CAN  
Node 1  
128  
Objects  
P6.11 /  
TXDCAN1  
P6.10 /  
RXDCAN1  
A2  
A2  
INT_O  
[3:0]  
Interrupt  
Control  
TXDC0  
RXDC0  
CAN  
Node 0  
INT_O  
[15:4]  
P6.9 /  
TXDCAN0  
P6.8 /  
RXDCAN0  
A2  
A2  
INT_  
O15  
LTCA2  
GPTA1  
GPTA0  
CAN Control  
Timing Control and Synchronization  
ECTT1  
ECTT2  
P1.3 /  
REQ3  
P7.5 /  
REQ7  
ECTT3  
A1  
A1  
Scheduler  
ECTT4  
ECTT5  
ScheduleTiming DataMemory  
SCU  
Ext.Req.  
Unit  
Time-Triggered Extension TTCAN  
MCA05864  
Figure 11  
Block Diagram of MultiCAN Module with Time-Triggered Extension  
The MultiCAN module contains four independently operating CAN nodes with Full-CAN  
functionality that are able to exchange Data and Remote Frames via a gateway function.  
Transmission and reception of CAN frames is handled in accordance with CAN  
specification V2.0 B (active). Each CAN node can receive and transmit standard frames  
with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All four CAN nodes share a common set of message objects. Each message object can  
be individually allocated to one of the CAN nodes. Besides serving as a storage  
container for incoming and outgoing frames, message objects can be combined to build  
gateways between the CAN nodes or to setup a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN  
node has it’s own list of message objects. A CAN node stores frames only into message  
Data Sheet  
54  
V1.0, 2008-04  
TC1796  
Functional Description  
objects that are allocated to the message object list of the CAN node, and it transmits  
only messages belonging to this message object list. A powerful, command-driven list  
controller performs all message object list operations.  
MultiCAN Features  
CAN functionality conforms to CAN specification V2.0 B active for each CAN node  
(compliant to ISO 11898)  
Four independent CAN nodes  
128 independent message objects (shared by the CAN nodes)  
Dedicated control registers for each CAN node  
Data transfer rate up to 1Mbit/s, individually programmable for each node  
Flexible and powerful message transfer control and error handling capabilities  
Full-CAN functionality: message objects can be individually  
– Assigned to one of the four CAN nodes  
– Configured as transmit or receive object  
– Configured as message buffer with FIFO algorithm  
– Configured to handle frames with 11-bit or 29-bit identifiers  
– Provided with programmable acceptance mask register for filtering  
– Monitored via a frame counter  
– Configured for Remote Monitoring Mode  
Automatic Gateway Mode support  
16 individually programmable interrupt nodes  
Analyzer mode for CAN bus monitoring  
Data Sheet  
55  
V1.0, 2008-04  
TC1796  
Functional Description  
Time-Triggered Extension (TTCAN)  
In addition to the event-driven CAN functionality, a deterministic behavior can be  
achieved for CAN node 0 by an extension module that supports time-triggered CAN  
(TTCAN) functionality. The TTCAN protocol is compliant with the confirmed  
standardization proposal for ISO 11898-4 and fully conforms to the existing CAN  
protocol.  
The time-triggered functionality is added as higher-layer extension (session layer) to the  
CAN protocol in order to be able to operate in safety critical applications. The new  
features allow a deterministic behavior of a CAN network and the synchronization of  
networks. A global time information is available. The time-triggered extension is based  
on a scheduler mechanism with a timing control unit and a dedicated timing data part.  
TTCAN Features  
Full support of basic cycle and system matrix functionality  
Support of reference messages level 1 and level 2  
Usable as time master  
Arbitration windows supported in time-triggered mode  
Global time information available  
CAN node 0 can be configured either for event-driven or for time-triggered mode  
Built-in scheduler mechanism and a timing synchronization unit  
Write protection for scheduler timing data memory  
Module-external CAN time trigger inputs (ECTTx lines) can be used as transmit  
trigger for a reference message  
Timing-related interrupt functionality  
Parity protection for scheduler memory  
Data Sheet  
56  
V1.0, 2008-04  
TC1796  
Functional Description  
3.13  
Micro Link Serial Bus Interface (MLI0, MLI1)  
The Micro Link Interface (MLI) is a fast synchronous serial interface that allows to  
exchange data between microcontrollers of the 32-bit AUDO microcontroller family  
without intervention of a CPU or other bus masters. Figure 12 shows how two  
microcontrollers are typically connected together via their MLI interfaces. The MLI  
operates in both microcontrollers as a bus master on the system bus.  
Controller 1  
CPU  
Controller 2  
CPU  
Peripheral  
A
Peripheral  
B
Peripheral  
C
Peripheral  
D
Memory  
MLI  
MLI  
Memory  
System Bus  
System Bus  
MCA05869  
Figure 12  
Features  
Typical Micro Link Interface Connection  
Synchronous serial communication between MLI transmitters and MLI receivers  
located on the same or on different microcontroller devices  
Automatic data transfer/request transactions between local/remote controller  
Fully transparent read/write access supported (= remote programming)  
Complete address range of remote controller available  
Specific frame protocol to transfer commands, addresses and data  
Error control by parity bit  
32-bit, 16-bit, and 8-bit data transfers  
Programmable baud rate:  
– MLI transmitter baud rate: max. fMLI/2 (= 37.5 Mbit/s @ 75 MHz module clock)  
– MLI receiver baud rate: max. fMLI  
Multiple remote (slave) controllers supported  
MLI transmitter and MLI receiver communicate with other off-chip MLI receivers and MLI  
transmitters via a 4-line serial I/O bus each. Several I/O lines of these I/O buses are  
available outside the MLI module kernel as four-line output or input buses.  
Figure 13 shows the functional blocks of the two MLI modules with its interfaces.  
Data Sheet  
57  
V1.0, 2008-04  
TC1796  
Functional Description  
TCLK  
P1.3 / TREADY0B  
A1  
TREADYA  
TREADYB  
TREADYD  
A2 P1.4 / TCLK0  
P1.5 / TREADY0A  
P1.6 / TVALID0A  
A1  
A2  
fMLI0  
fDMA  
TVALIDA  
TVALIDB  
TVALIDD  
TDATA  
Clock  
Control  
A2 P1.7 / TDATA0  
Address  
Decoder  
RCLKA  
P1.8 / RCLK0A  
A1  
A2  
Port 1  
Control  
RCLKB  
P1.9 / RREADY0A  
MLI0  
Module  
(Kernel)  
RCLKD  
SR[3:0]  
Interrupt  
Control  
RREADYA  
RREADYB  
RREADYD  
RVALIDA  
RVALIDB  
RVALIDD  
RDATAA  
RDATAB  
RDATAD  
A1 P1.10 / RVALID0A  
P1.11 / RDATA0A  
A1  
A1 P1.13 / RCLK0B  
SR[7:4]  
To DMA  
BRKOUT  
P1.14 / RVALID0B  
P1.15 / RDATA0B  
A1  
A1  
Cerberus  
P5.4 / RREADY0B  
A2  
A2  
Port 5  
Control  
P5.6 / TVALID0B  
MCA05906  
fMLI1  
fDMA  
TCLK  
Clock  
Control  
TREADYA  
TREADYD  
TVALIDA  
TVALIDD  
TDATA  
A2 P8.0 / TCLK1  
P8.1 / TREADY1A  
P8.2 / TVALID1A  
A1  
A2  
Address  
Decoder  
A2 P8.3 / TDATA1  
RCLKA  
MLI1  
Module  
(Kernel)  
Port 8  
Control  
SR[1:0]  
RCLKD  
Interrupt  
Control  
P8.4 / RCLK1A  
A1  
RREADYA  
RREADYD  
RVALIDA  
RVALIDD  
RDATAA  
RDATAD  
SR[3:2]  
SR[7:4]  
A2 P8.5 / RREADY1A  
A1 P8.6 / RVALID1A  
Not  
Connected  
To DMA  
P8.7 / RDATA1A  
A1  
BRKOUT  
Cerberus  
MCA05907  
Figure 13  
Block Diagram of the MLI Modules  
Data Sheet  
58  
V1.0, 2008-04  
TC1796  
Functional Description  
3.14  
General Purpose Timer Array  
The GPTA provides a set of timer, compare and capture functionalities that can be  
flexibly combined to form signal measurement and signal generation units. They are  
optimized for tasks typical of engine, gearbox, and electrical motor control applications,  
but can also be used to generate simple and complex signal waveforms needed in other  
industrial applications.  
The TC1796 contains two General Purpose Timer Arrays (GPTA0 and GPTA1) with  
identical functionality, plus an additional Local Timer Cell Array (LTCA2). Figure 14  
shows a global view of the GPTA modules.  
GPTA0  
GPTA1  
Clock Generation Unit  
Clock Generation Unit  
FPC0  
FPC1  
FPC2  
FPC3  
FPC4  
FPC5  
FPC0  
DCM0  
DCM0  
PDL0  
FPC1 PDL0  
FPC2  
DCM1  
DCM2  
DCM3  
DCM1  
DCM2  
DCM3  
DIGITAL  
PLL  
DIGITAL  
PLL  
FPC3  
PDL1  
FPC4 PDL1  
FPC5  
fGPTA Clock Distribution Unit  
Clock Distribution Unit  
Clock  
Conn.  
Signal  
Generation Unit  
Signal  
Generation Unit  
GT0  
GT1  
GT0  
GT1  
LTCA2  
GTC00  
GTC01  
GTC02  
GTC03  
LTC00  
LTC01  
LTC02  
LTC03  
GTC00  
GTC01  
GTC02  
GTC03  
LTC00  
LTC01  
LTC02  
LTC03  
LTC00  
LTC01  
LTC02  
LTC03  
Global  
Timer  
Cell Array  
Global  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
GTC30  
GTC31  
GTC30  
GTC31  
LTC62  
LTC63  
LTC62  
LTC63  
LTC62  
LTC63  
I/O Line  
Sharing Unit  
I/O Line Sharing Unit  
Interrupt Sharing Unit  
I/O Line Sharing Unit  
Interrupt Sharing Unit  
Interrupt  
Sharing Unit  
MCB05910  
Figure 14  
Block Diagram of the GPTA Modules  
Data Sheet  
59  
V1.0, 2008-04  
TC1796  
Functional Description  
3.14.1  
Functionality of GPTA0/GPTA1  
Each of the General Purpose Timer Arrays (GPTA0 and GPTA1) provides a set of  
hardware modules required for high speed digital signal processing:  
Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation.  
Phase Discrimination Logic units (PDL) decode the direction information output by a  
rotation tracking system.  
Duty Cycle Measurement Cells (DCM) provide pulse-width measurement  
capabilities.  
A Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA  
module clock ticks during an input signal’s period.  
Global Timer units (GT) driven by various clock sources are implemented to operate  
as a time base for the associated Global Timer Cells.  
Global Timer Cells (GTC) can be programmed to capture the contents of a Global  
Timer on an external or internal event. A GTC may be also used to control an external  
port pin depending on the result of an internal compare operation. GTCs can be  
logically concatenated to provide a common external port pin with a complex signal  
waveform.  
Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may be also  
logically tied together to drive a common external port pin with a complex signal  
waveform. LTCs — enabled in Timer Mode or Capture Mode — can be clocked or  
triggered by various external or internal events.  
Input lines can be shared by an LTC and a GTC to trigger their programmed operation  
simultaneously.  
The following sections summarize the specific features of the GPTA units. The clock  
signal fGPTA is the input clock of the GPTA modules (max. 75 MHz in TC1796).  
Clock Generation Unit  
Filter and Prescaler Cell (FPC)  
– Six independent units  
– Three basic operating modes:  
Prescaler, Delayed Debounce Filter, Immediate Debounce Filter  
– Selectable input sources:  
Port lines, GPTA module clock, FPC output of preceding FPC cell  
– Selectable input clocks:  
GPTA module clock, prescaled GPTA module clock, DCM clock, compensated or  
uncompensated PLL clock.  
fGPTA/2 maximum input signal frequency in Filter Modes  
Phase Discriminator Logic (PDL)  
– Two independent units  
– Two operating modes (2 and 3 sensor signals)  
Data Sheet  
60  
V1.0, 2008-04  
TC1796  
Functional Description  
fGPTA/4 maximum input signal frequency in 2-sensor Mode, fGPTA/6 maximum input  
signal frequency in 3-sensor Mode.  
Duty Cycle Measurement (DCM)  
– Four independent units  
– 0 - 100% margin and time-out handling  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Digital Phase Locked Loop (PLL)  
– One unit  
– Arbitrary multiplication factor between 1 and 65535  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Clock Distribution Unit (CDU)  
– One unit  
– Provides nine clock output signals:  
fGPTA, divided fGPTA clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock  
Signal Generation Unit  
Global Timers (GT)  
– Two independent units  
– Two operating modes (Free Running Timer and Reload Timer)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Global Timer Cell (GTC)  
– 32 units related to the Global Timers  
– Two operating modes (Capture, Compare and Capture after Compare)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Local Timer Cell (LTC)  
– 64 independent units  
– Three basic operating modes (Timer, Capture and Compare) for 63 units  
– Special compare modes for one unit  
– 16-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Interrupt Sharing Unit  
286 interrupt sources, generating up to 92 service requests  
Data Sheet  
61  
V1.0, 2008-04  
TC1796  
Functional Description  
I/O Sharing Unit  
Interconnecting inputs and outputs from internal clocks, FPC, GTC, LTC, ports, and  
MSC interface.  
3.14.2  
Functionality of LTCA2  
One Local Timer Cells Area provides a set of Local Timer Cells.  
64 Local Timer Cells (LTCs)  
– Three basic operating modes (Timer, Capture and Compare) for 63 units.  
– Special compare modes for one unit  
– 16-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Data Sheet  
62  
V1.0, 2008-04  
TC1796  
Functional Description  
3.15  
Analog-to-Digital Converter (ADC0, ADC1)  
The two ADC modules of the TC1796 are analog to digital converters with 8-bit, 10-bit,  
or 12-bit resolution including sample & hold functionality.  
VDD  
VDDM  
VAGND0 VSS VSSM VAREF0  
P7.1 /  
AD0EMUX2  
P7.2 /  
AD0EMUX0  
P7.3 /  
AD0EMUX1  
A1  
A1  
A1  
GRPS  
fADC  
fCLC  
EMUX0  
EMUX1  
Clock  
Control  
Port 7  
Control  
ASGT  
8
2
9
Address  
Decoder  
From Ports  
SW0TR, SW0GT  
ETR, EGT  
QTR, QGT  
TTR, TGT  
External  
Request  
Unit  
From MSC0/1  
From GPTA  
ADC0  
Module  
Kernel  
SR  
[3:0]  
(SCU)  
Interrupt  
Control  
AIN0  
D
D
D
AN0  
AN1  
AN2  
Group 0  
AIN15  
SR[7:4]  
To DMA  
AIN16  
Group 1  
AIN31  
Synchronization Bridge  
AIN0  
Group 0  
AIN16  
AIN15  
AN41  
AN42  
AN43  
D
D
D
Not  
Used  
AIN30  
AIN31  
Die Temp.  
Sensor  
ADC1  
Module  
Kernel  
ASGT  
SW0TR, SW0GT  
ETR, EGT  
QTR, QGT  
TTR, TGT  
Address  
Decoder  
8
2
From Ports  
External  
Request  
Unit  
From MSC0/1  
From GPTA  
(SCU)  
SR[3:0]  
9
Interrupt  
Control  
P7.6 /  
AD1EMUX0  
P7.7 /  
AD1EMUX1  
EMUX0  
EMUX1  
A1  
A1  
Port 7  
Control  
SR[7:4]  
To DMA  
VAGND1 VSS VSSM VAREF1  
VDD  
VDDM  
MCA06033  
Figure 15  
Block Diagram of the ADC Module  
Data Sheet  
63  
V1.0, 2008-04  
TC1796  
Functional Description  
The A/D converters operate by the method of the successive approximation. A  
multiplexer selects between up to 32 analog inputs that can be connected with the 16  
conversion channels in each ADC module. An automatic self-calibration adjusts the ADC  
modules to changing temperatures or process variations.  
External Clock control, address decoding, and service request (interrupt) control is  
managed outside the ADC module kernel. A synchronization bridge is used for  
synchronization of two ADC modules. External trigger conditions are controlled by an  
External Request Unit. This unit generates the control signals for auto-scan control  
(ASGT), software trigger control (SW0TR, SW0GT), the event trigger control (ETR,  
EGT), queue control (QTR, QGT), and timer trigger control (TTR, TGT).  
Features  
8-bit, 10-bit, 12-bit A/D conversion  
Minimum conversion times (without sample time, @ 75 MHz module clock):  
– 1.05 µs @ 8-bit resolution  
– 1.25 µs @ 10-bit resolution  
– 1.45 µs @ 12-bit resolution  
Extended channel status information on request source  
Successive approximation conversion method  
Total Unadjusted Error (TUE) of ±2 LSB @ 10-bit resolution  
Integrated sample & hold functionality  
Direct control of up to 16(32) analog input channels per ADC  
Dedicated control and status registers for each analog channel  
Powerful conversion request sources  
Selectable reference voltages for each channel  
Programmable sample and conversion timing schemes  
Limit checking  
Flexible ADC module service request control unit  
Synchronization of the two on-chip A/D converters  
Automatic control of external analog multiplexers  
Equidistant samples initiated by timer  
External trigger and gating inputs for conversion requests  
Power reduction and clock control feature  
On-chip die temperature sensor output voltage measurement via ADC1  
Data Sheet  
64  
V1.0, 2008-04  
TC1796  
Functional Description  
3.16  
Fast Analog-to-Digital Converter Unit (FADC)  
The FADC module of the TC1796 basically is a 4-channel A/D converter with 10-bit  
resolution that operates by the method of the successive approximation.  
The main FADC functional blocks shown in Figure 16 are:  
The Input Stage contains the differential inputs and the programmable amplifier.  
The A/D Converter is responsible for the analog-to-digital conversion.  
The Data Reduction Unit contains programmable anti aliasing and data reduction  
filters.  
The Channel Trigger Control block defines the trigger and gating conditions for the  
four FADC channels. The gating source inputs GS[7:0] and trigger source inputs  
TS[7:0] are connected with GPTA0 module outputs, with GPIO port lines, and  
external request unit outputs.  
The Channel Timers can independently trigger the conversion of each FADC  
channel.  
The A/D control block is responsible for the overall FADC functionality.  
The FADC module is supplied by the following power supply and reference voltage lines:  
VDDMF/VDDMF: FADC Analog Part Power Supply (3.3V)  
VDDAF/VDDAF  
:
FADC Analog Part Logic Power Supply (1.5V)  
VFAREF/VFAGND: FADC Reference Voltage/FADC Reference Ground  
Data Sheet  
65  
V1.0, 2008-04  
TC1796  
Functional Description  
VFAREF VDDAF VDDMF  
VFAGND VSSAF  
VSSMF  
fFADC  
fCLC  
Clock  
Control  
FAIN0P  
FAIN0N  
FAIN1P  
FAIN1N  
FAIN2P  
FAIN2N  
FAIN3P  
FAIN3N  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
D
D
D
D
D
D
D
D
Address  
Decoder  
FADC  
Module  
Kernel  
SR[3:0]  
Interrupt  
Control  
To DMA  
OUT1  
OUT9  
OUT18  
OUT26  
OUT2  
OUT10  
OUT19  
OUT27  
P1.0 / REQ0  
P1.1 / REQ1  
P7.0 / REQ4  
P7.1 / REQ5  
A1  
A1  
A1  
A1  
GPTA0  
GS[7:0]  
TS[7:0]  
PDOUT2  
PDOUT3  
External Request Unit  
(SCU)  
MCA06053  
Figure 16  
Features  
Block Diagram of the FADC Module  
Extreme fast conversion: 21 cycles of fFADC (= 280ns @ fFADC = 75 MHz)  
10-bit A/D conversion  
– Higher resolution by averaging of consecutive conversions is supported  
Successive approximation conversion method  
Four differential input channels  
Offset and gain calibration support for each channel  
Differential input amplifier with programmable gain of 1, 2, 4 and 8 for each channel  
Free-running (Channel Timers) or triggered conversion modes  
Trigger and gating control for external signals  
Built-in Channel Timers for internal triggering  
Channel timer request periods independently selectable for each channel  
Selectable, programmable anti aliasing and data reduction filter block  
Data Sheet  
66  
V1.0, 2008-04  
TC1796  
Functional Description  
3.17  
System Timer  
The TC1796’s STM is designed for global system timing applications requiring both high  
precision and long range.  
Features  
Free-running 56-bit counter  
All 56 bits can be read synchronously  
Different 32-bit portions of the 56-bit counter can be read synchronously  
Flexible interrupt generation based on compare match with partial STM content  
Driven by max. 75 MHz (= fSYS, default after reset = fSYS/2)  
Counting starts automatically after a reset operation  
STM is reset by:  
– Watchdog reset  
– Software reset (RST_REQ.RRSTM must be set)  
– Power-on reset  
STM is not reset at a hardware reset  
STM can be halted in debug/suspend mode  
The STM is an upward counter, running either at the system clock frequency fSYS or at a  
fraction of it. In case of a power-on reset, a watchdog reset, or a software reset, the STM  
is reset. After one of these reset conditions, the STM is enabled and immediately starts  
counting up. It is not possible to affect the contents of the timer during normal operation  
of the TC1796. The timer registers can only be read but not written to. The STM can be  
optionally disabled or suspended for power-saving and debugging purposes via its clock  
control register. In suspend mode of the TC1796, the STM clock is stopped but all  
registers are still readable.  
The System Timer can be read in sections from seven registers, STM_TIM0 through  
STM_TIM6, which select increasingly higher-order 32-bit ranges of the System Timer.  
These can be viewed as individual 32-bit timers, each with a different resolution and  
timing range. For getting a synchronous and consistent reading of the complete STM  
contents, a capture register (STM_CAP), is implemented. It latches the contents of the  
high part of the STM each time when one of the registers STM_TIM0 to STM_TIM5 is  
read. Thus, it holds the upper value of the timer at exactly the same time when the lower  
part is read. The second read operation would then read the contents of the STM_CAP  
to get the complete timer value.  
The content of the 56-bit System Timer can be compared against the content of two  
compare values stored in the compare registers. Interrupts can be generated on a  
compare match of the STM with the STM_CMP0 or STM_CMP1 registers.  
The maximum clock period is 256 × fSTM. At fSTM = 75 MHz, for example, the STM counts  
30.47 years before overflowing. Thus, it is capable of continuously timing the entire  
expected product life-time of a system without overflowing.  
Data Sheet  
67  
V1.0, 2008-04  
TC1796  
Functional Description  
Figure 17 shows an overview on the System Timer with the options for reading parts of  
STM contents.  
STM Module  
31  
23  
15  
7
0
Compare Register 0  
STM_CMP0  
31  
23  
15  
7
0
Compare Register1  
STM_CMP1  
STMIR1  
STMIR0  
55  
47  
39  
31  
23  
15  
7
0
Interrupt  
Control  
56-Bit System Timer  
Enable /  
Disable  
00H  
00H  
STM_CAP  
STM_TIM6  
Clock  
Control  
fSTM  
STM_TIM5  
STM_TIM4  
Address  
Decoder  
STM_TIM3  
STM_TIM2  
STM_TIM1  
STM_TIM0  
PORST  
MCB05746  
Figure 17  
General Block Diagram of the STM Module Registers  
Data Sheet  
68  
V1.0, 2008-04  
TC1796  
Functional Description  
3.18  
Watchdog Timer  
The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and  
recover from software or hardware failure. The WDT helps to abort an accidental  
malfunction of the TC1796 in a user-specified time period. When enabled, the WDT will  
cause the TC1796 system to be reset if the WDT is not serviced within a user-  
programmable time period. The CPU must service the WDT within this time interval to  
prevent the WDT from causing a TC1796 system reset. Hence, routine service of the  
WDT confirms that the system is functioning properly.  
In addition to this standard “Watchdog” function, the WDT incorporates the EndInit  
feature and monitors its modifications. A system-wide line is connected to the End-of-  
Initialization (Endinit) feature and monitors its modifications. A system-wide line is  
connected to the WDT_CON0.ENDINIT bit, serving as an additional write-protection for  
critical registers (besides Supervisor Mode protection)  
A further enhancement in the TC1796’s WDT is its reset pre-warning operation. Instead  
of immediately resetting the device on the detection of an error (the way that standard  
Watchdogs do), the WDT first issues an Non-Maskable Interrupt (NMI) to the CPU  
before finally resetting the device at a specified time period later. This gives the CPU a  
chance to save system state to memory for later examination of the cause of the  
malfunction, an important aid in debugging.  
Features  
16-bit Watchdog counter  
Selectable input frequency: fSYS/256 or fSYS/16384  
16-bit user-definable reload value for normal Watchdog operation, fixed reload value  
for Time-Out and Pre-warning Modes  
Incorporation of the ENDINIT bit and monitoring of its modifications  
Sophisticated password access mechanism with fixed and user-definable password  
fields  
Proper access always requires two write accesses. The time between the two  
accesses is monitored by the WDT and limited.  
Access Error Detection: Invalid password (during first access) or invalid guard bits  
(during second access) trigger the Watchdog reset generation.  
Overflow Error Detection: An overflow of the counter triggers the Watchdog reset  
generation.  
Watchdog function can be disabled; access protection and ENDINIT monitor function  
remain enabled.  
Double Reset Detection: If a Watchdog induced reset occurs twice, a severe system  
malfunction is assumed and the TC1796 is held in reset until a power-on reset. This  
prevents the device from being periodically reset if, for instance, connection to the  
external memory has been lost such that even system initialization could not be  
performed  
Data Sheet  
69  
V1.0, 2008-04  
TC1796  
Functional Description  
Important debugging support is provided through the reset pre-warning operation by  
first issuing an NMI to the CPU before finally resetting the device after a certain  
period of time.  
3.19  
System Control Unit  
The System Control Unit (SCU) of the TC1796 handles several system control tasks.  
These system control tasks of the SCU are:  
Clock system selection and control  
Reset and boot operation control  
Power management control  
Configuration input sampling  
External Request Unit  
System clock output control  
Chip select generation for EBU  
EBU pull devices control  
On-chip SRAM Parity Control  
Pad driver temperature compensation control  
Emergency stop input control for GPTA outputs  
Die Temperature Sensor  
GPTA1 input IN0 control  
Pad Test Mode control for dedicated pins  
ODCS level 2 trace control  
NMI control  
Miscellaneous SCU control  
3.20  
Boot Options  
The TC1796 booting schemes provide a number of different boot options for the start of  
code execution. Table 7 shows the boot options available in the TC1796.  
Data Sheet  
70  
V1.0, 2008-04  
TC1796  
Functional Description  
Table 7  
TC1796 Boot Selections  
BRKIN HWCFG Type of Boot  
Boot ROM Exit  
Jump Address  
[3:0]  
Normal Boot Options  
1
0000B  
Enter bootstrap loader mode 1:  
Serial ASC0 boot via ASC0 pins  
D400 0000H  
0001B  
Enter bootstrap loader mode 2:  
Serial CAN boot via CAN pins  
0010B  
0011B  
Start from internal PFLASH  
A000 0000H  
Alternate boot mode (ABM): start from internal As defined in  
PFLASH after CRC check is correctly executed; ABM header or  
enter a serial bootstrap loader mode1) if CRC  
check fails.  
D400 0000H  
0100B  
0101B  
Start from external memory with EBU as master, A100 0000H  
using CS0; automatic EBU configuration2);  
Alternate boot mode (ABM): start from external As defined in  
memory with CRC check and EBU as master, ABM header or  
using CS0; enter a serial bootstrap loader  
D400 0000H  
mode2) if CRC checks fails;  
automatic EBU configuration2);  
0110B  
0111B  
Start from external memory with EBU as  
participant, using CS0;  
A100 0000H  
automatic EBU configuration2);  
Alternate boot mode (ABM): start from external As defined in  
memory with CRC check and EBU as  
ABM header or  
participant, using CS0; enter a serial bootstrap D400 0000H  
loader mode2) if CRC checks fails;  
automatic EBU configuration2);  
1000B  
Start from emulation memory if emulation  
device TC1796ED is available; in case of  
TC1796: Execute stop loop;  
If TC1796ED:  
AFF0 0000H  
1111B  
Enter bootstrap loader mode 3:  
Serial ASC0 boot via CAN pins  
Reserved; execute stop loop;  
D400 0000H  
Others  
Data Sheet  
71  
V1.0, 2008-04  
TC1796  
Functional Description  
Table 7  
TC1796 Boot Selections (cont’d)  
BRKIN HWCFG Type of Boot  
Boot ROM Exit  
Jump Address  
[3:0]  
Debug Boot Options  
0
0000B  
1000B  
Tri-state chip  
Go to external emulator space with EBU as  
master, using CSEMU/CSCOMB  
DE00 0000H  
Others  
Reserved; execute stop loop;  
1) The type of the alternate bootstrap loader mode is selected by the value of the SCU_SCLIR.SWOPT[2:0] bit  
field, which contains the levels of the P0.[2:0] latched in with the rising edge of the HDRST. For more details  
on ABM, see the User’s Manual.  
2) The EBU fetches the boot configuration from address offset 4 using CS0.  
Data Sheet  
72  
V1.0, 2008-04  
TC1796  
Functional Description  
3.21  
Power Management System  
The TC1796 power management system allows software to configure the various  
processing units so that they automatically adjust to draw the minimum necessary power  
for the application. There are three power management modes:  
Run Mode  
Idle Mode  
Sleep Mode  
The operation of each system component in each of these states can be configured by  
software. The power-management modes provide flexible reduction of power  
consumption through a combination of techniques, including stopping the CPU clock,  
stopping the clocks of other system components individually, and individually clock-  
speed reduction of some peripheral components.  
Besides these explicit software-controlled power-saving modes, in the TC1796 special  
attention has been paid for automatic power-saving in those operating units which are  
currently not required or idle. In that case they are shut off automatically until their  
operation is required again.  
Table 8 describes the features of the power management modes.  
Table 8  
Mode  
Run  
Power Management Mode Summary  
Description  
The system is fully operational. All clocks and peripherals are enabled,  
as determined by software.  
Idle  
The CPU clock is disabled, waiting for a condition to return it to Run  
Mode. Idle Mode can be entered by software when the processor has no  
active tasks to perform. All peripherals remain powered and clocked.  
Processor memory is accessible to peripherals. A reset, Watchdog Timer  
event, a falling edge on the NMI pin, or any enabled interrupt event will  
return the system to Run Mode.  
Sleep  
The system clock signal is distributed only to those peripherals  
programmed to operate in Sleep Mode. The other peripheral module will  
be shut down by the suspend signal. Interrupts from operating  
peripherals, the Watchdog Timer, a falling edge on the NMI pin, or a reset  
event will return the system to Run Mode. Entering this state requires an  
orderly shut-down controlled by the Power Management State Machine.  
In typical operation, Idle Mode and Sleep Mode may be entered and exited frequently  
during the run time of an application. For example, system software will typically cause  
the CPU to enter Idle Mode each time it has to wait for an interrupt before continuing its  
tasks. In Sleep Mode and Idle Mode, wake-up is performed automatically when any  
enabled interrupt signal is detected, or if the Watchdog Timer signals the CPU with an  
NMI trap.  
Data Sheet  
73  
V1.0, 2008-04  
TC1796  
Functional Description  
3.22  
On-Chip Debug Support  
Figure 18 shows a block diagram of the TC1796 OCDS system.  
TriCore  
SBCU  
CPU  
RBCU  
Watchdog  
Timer  
PCP2  
(WDT)  
M
TR[15:0]  
TRCLK  
U
X
DMA  
Controller  
Cerberus  
(Bus Bridge)  
OCDS  
System  
System  
Control Unit  
(OSCU)  
Peripheral  
Bus  
SPB  
TDI  
Peripheral  
Unit 1  
TDO  
TMS  
TCK  
TRST  
JTAG  
Debug  
Interface  
(JDI)  
JTAG  
SPB  
Peripheral  
Unit m  
Controller  
RPB  
Peripheral  
Unit 1  
Multi Core  
Break  
BRKIN  
RPB  
Peripheral  
Unit n  
Switch  
BRKOUT  
(MCBS)  
MCB05756_mod  
Figure 18  
OCDS System Block Diagram  
The TC1796 basically supports three levels of debug operation:  
OCDS Level 1 debug support  
OCDS Level 2 debug support  
OCDS Level 3 debug support  
Data Sheet  
74  
V1.0, 2008-04  
TC1796  
Functional Description  
OCDS Level 1 Debug Support  
The OCDS Level 1 debug support is mainly assigned for real-time software debugging  
purposes which have a demand for low-cost standard debugger hardware.  
The OCDS Level 1 debug support is based on a JTAG interface which can be used by  
the external debug hardware to communicate with the system. The on-chip Cerberus  
module controls the interactions between the JTAG interface and the on-chip modules.  
The external debug hardware may become master of the internal buses and read or  
write the on-chip register/memory resources. The Cerberus also allows to define  
breakpoint and trigger conditions as well as to control user program execution (run/stop,  
break, single-step).  
OCDS Level 2 Debug Support  
The OCDS Level 2 debug support allows to implement program tracing capabilities for  
enhanced debuggers by extending the OCDS Level 1 debug functionality with an  
additional 16-bit wide trace port with trace clock. With the trace extension the following  
four trace capabilities are provided (only one of the four trace capabilities can be  
selected at a time):  
Trace capability of the CPU program flow  
Trace capability of the PCP2 program flow  
Trace capability of the DMA Controller transaction requests  
Trace capability of the DMA Controller move engine status information  
OCDS Level 3 Debug Support  
The OCDS Level 3 debug support is based on a special emulation device, the  
TC1796ED, which provides additional features required for high-end emulation  
purposes. The TC1796ED is a device which includes the TC1796 product chip and  
additional emulation extension hardware in a package with the same footprint as the  
TC1796.  
Data Sheet  
75  
V1.0, 2008-04  
TC1796  
Functional Description  
3.23  
Clock Generation and PLL  
The TC1796 clock system performs the following functions:  
Acquires and buffers incoming clock signals to create a master clock frequency  
Distributes in-phase synchronized clock signals throughout the TC1796’s entire clock  
tree  
Divides a system master clock frequency into lower frequencies required by the  
different modules for operation.  
Dynamically reduces power consumption during operation of functional units  
Statically reduces power consumption through programmable power-saving modes  
Reduces electromagnetic interference (EMI) by switching off unused modules  
The clock system must be operational before the TC1796 is able to run. Therefore, it also  
contains special logic to handle power-up and reset operations. Its services are  
fundamental to the operation of the entire system, so it contains special fail-safe logic.  
Features  
PLL operation for multiplying clock source by different factors  
Direct drive capability for direct clocking  
Comfortable state machine for secure switching between basic PLL, direct or  
prescaler operation  
Sleep and Power-Down Mode support  
The TC1796 Clock Generation Unit (CGU) as shown in Figure 19 allows a very flexible  
clock generation. It basically consists of an main oscillator circuit and a Phase- Locked  
Loop (PLL). The PLL can converts a low-frequency external clock signal from the  
oscillator circuit to a high-speed internal clock for maximum performance.  
The system clock fSYS is generated from an oscillator clock fOSC in either of four  
hardware/software selectable ways:  
Direct Drive Mode (PLL Bypass):  
In Direct Drive Mode, the PLL is bypassed and the CGU clock outputs are directly fed  
from the clock signal fOSC, i.e. fCPU = fOSC and fSYS = fOSC/2 or fOSC. This allows  
operation of the TC1796 with a reasonably small fundamental mode crystal.  
VCO Bypass Mode (Prescaler Mode):  
In VCO Bypass Mode, fCPU and fSYS are derived from fOSC by the two divider stages,  
P-Divider and K-Divider. The system clock fSYS can be equal to fCPU or fCPU/2.  
PLL Mode:  
In PLL Mode, the PLL is running. The VCO clock fVCO is derived from fOSC, divided by  
the P factor, multiplied by the PLL (N-Divider). The clock signals fCPU and fSYS are  
derived from fVCO by the K-Divider. The system clock fSYS can be equal to fCPU or  
f
CPU/2.  
PLL Base Mode:  
In PLL Base Mode, the PLL is running at its VCO base frequency and fCPU and fSYS  
Data Sheet  
76  
V1.0, 2008-04  
TC1796  
Functional Description  
are derived from fVCO only by the K-Divider. In this mode, the system clock fSYS can  
be equal to fCPU or fCPU/2.  
XTAL1  
fCPU  
fSYS  
Clock Generation Unit (CGU)  
Main  
Osc.  
Circuit  
fOSC  
Clock  
Output  
Control  
M
U
X
XTAL2  
P-  
Divider  
K-  
Divider  
1  
fP  
fN  
fVCO  
Phase  
Detect.  
VCO  
N-  
Divider  
PLL  
PLL  
Lock  
Osc.  
Run  
Detect.  
Detect.  
BYPASS  
Oscillator Control Register  
OSC_CON  
PLL Clock Control and Status Register  
PLL_CLC  
System Control Unit (SCU)  
P5.3 /  
TXD1A  
MCB05600  
Figure 19  
Clock Generation Unit  
Recommended Oscillator Circuits  
The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal  
oscillator or an external stable clock source. It basically consists of an inverting amplifier  
and a feedback element with XTAL1 as input, and XTAL2 as output.  
When using a crystal, a proper external oscillator circuitry must be connected to both  
pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz  
to 25 MHz. Additionally are necessary, two load capacitances CX1 and CX2, and  
depending on the crystal type a series resistor RX2 to limit the current. A test resistor RQ  
may be temporarily inserted to measure the oscillation allowance (negative resistance)  
of the oscillator circuitry. RQ values are typically specified by the crystal vendor. The CX1  
and CX2 values shown in Figure 20 can be used as starting points for the negative  
resistance evaluation and for non-productive systems. The exact values and related  
operating range are dependent on the crystal frequency and have to be determined and  
Data Sheet  
77  
V1.0, 2008-04  
TC1796  
Functional Description  
optimized together with the crystal vendor using the negative resistance method.  
Oscillation measurement with the final target system is strongly recommended to verify  
the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin  
negative resistance) for the oscillator-crystal system.  
When using an external clock signal, it must be connected to XTAL1. XTAL2 is left open  
(unconnected). The external clock frequency can be in the range of 0 - 40 MHz if the PLL  
is bypassed and 4 - 40 MHz if the PLL is used.  
The oscillator can also be used in combination with a ceramic resonator. The final  
circuitry must be also verified by the resonator vendor.  
Figure 20 shows the recommended external oscillator circuitries for both operating  
modes, external crystal mode and external input clock mode.  
VDDOSC VDDOSC3  
VDDOSC VDDOSC3  
fOSC  
fOSC  
External Clock  
Signal  
XTAL1  
XTAL1  
41) - 40  
MHz  
4 - 25  
MHz  
TC1796  
TC1796  
Oscillator  
Oscillator  
RQ  
RX2  
CX2  
XTAL2  
XTAL2  
CX1  
Fundamental  
Mode Crystal  
VSSOSC  
VSSOSC  
1) in case of PLL bypass 0 MHz  
1)  
1)  
CX1  
,
CX2  
RX2  
Crystal Frequency  
4 MHz  
8 MHz  
33 pF  
18 pF  
12 pF  
10 pF  
0
0
0
0
12 MHz  
16 - 25 MHz  
1) Note that these are evaluation start values!  
MCS05601  
Figure 20  
Oscillator Circuitries  
A block capacitor between VDDOSC1)/VDDOSC3 and VSSOSC is recommended, too.  
Note: For crystal operation, it is strongly recommended to measure the negative  
resistance in the final target system (layout) to determine the optimum parameters  
1) VDDOSC and VSSOSC are not bonded externally in the BC and BD steps of TC1796. An option for bonding them  
in future steps and products is kept open.  
Data Sheet  
78  
V1.0, 2008-04  
TC1796  
Functional Description  
for the oscillator operation. Please refer to the minimum and maximum values of  
the negative resistance specified by the crystal supplier.  
3.24  
Power Supply  
The TC1796 has several power supply lines for different voltage classes:  
1.5 V: Core logic and memory, oscillator, and A/D converter supply  
3.3 V: I/O ports, Flash memories, oscillator, and A/D converter supply with reference  
voltages  
2.3 V to 3.3 V: External bus interface supply  
Figure 21 shows the power supply concept of the TC1796 with the power supply pins  
and its connections to the functional units.  
VAREF0  
(3.3 V)  
VAGND0  
VDDM  
(3.3 V)  
VSSM  
VAREF1  
(3.3 V)  
VAGND1  
VDDAF  
(1.5 V)  
VSSAF  
VFAREF VDDMF  
(3.3 V) (3.3 V)  
VFAGND VSSMF  
VSS  
62  
2
2
2
2
2
2
TC1796  
ADC0  
ADC1  
FADC  
Ports  
Core  
PLL  
PMI/PMU  
DMI/DMU  
Memories  
Stand-by  
SBRAM  
FLASH  
EBU  
OSC  
Memories  
11  
9
13  
1
2
3
VDDP  
VDDEBU  
VDD  
VDDSBRAM  
VDDFL3  
VDDOSC (1.5 V)  
(3.3 V) (2.3 - 3.3 V)  
(1.5 V)  
(1.5 V)  
(3.3 V)  
V
DDOSC3 (3.3 V)  
VSSOSC  
tc1796_PwrSupply  
Figure 21  
Power Supply Concept of TC1796  
Data Sheet  
79  
V1.0, 2008-04  
TC1796  
Functional Description  
3.25  
Identification Register Values  
The Identification Registers uniquely identify a module or the whole device.  
Table 9  
Short Name  
SCU_ID  
MANID  
CHIPID  
RTID  
TC1796 Identification Registers  
Address  
Value  
Stepping  
BA-Step  
BB-Step  
BC-Step  
BD-Step  
BE-Step  
BA-, BB-Step  
BC-, BD-, BE-Step  
BA-, BB-Step  
BC-, BD-, BE-Step  
BA-, BB-Step  
BC-, BD-, BE-Step  
F000 0008H  
F000 0070H  
F000 0074H  
F000 0078H  
002C C002H  
0000 1820H  
0000 8A02H  
0000 0000H  
0000 0001H  
0000 0100H  
0000 0101H  
0000 0300H  
0000 6A0AH  
0000 C006H  
0000 6307H  
0028 C002H  
0028 C002H  
0000 4402H  
0000 4402H  
0029 C003H  
0029 C004H  
0029 C003H  
0029 C004H  
002A C003H  
002A C004H  
001A C002H  
002B C002H  
0020 C003H  
0000 6A0AH  
0000 4530H  
0000 4510H  
0027 C002H  
SBCU_ID  
STM_ID  
F000 0108H  
F000 0208H  
F000 0408H  
F000 0808H  
F000 0908H  
F000 0A08H  
F000 0B08H  
F000 1808H  
CBS_JPDID  
MSC0_ID  
MSC1_ID  
ASC0_ID  
ASC1_ID  
GPTA0_ID  
GPTA1_ID  
LTCA2_ID  
F000 2008H  
F000 2808H  
DMA_ID  
CAN_ID  
PCP_ID  
RBCU_ID  
SSC0_ID  
SSC1_ID  
FADC_ID  
F000 3C08H  
F000 4008H  
F004 3F08H  
F010 0008H  
F010 0108H  
F010 0208H  
F010 0308H  
Data Sheet  
80  
V1.0, 2008-04  
TC1796  
Functional Description  
Table 9  
TC1796 Identification Registers (cont’d)  
Short Name  
ADC0_ID  
MLI0_ID  
MLI1_ID  
MCHK_ID  
CPS_ID  
CPU_ID  
EBU_ID  
PMU_ID  
FLASH_ID  
DMU_ID  
DBCU_ID  
DMI_ID  
Address  
Value  
Stepping  
F010 0408H  
F010 C008H  
F010 C108H  
F010 C208H  
F7E0 FF08H  
F7E1 FE18H  
F800 0008H  
F800 0508H  
F800 2008H  
F801 0108H  
F87F FA08H  
F87F FC08H  
F87F FD08H  
F87F FF08H  
F87F FE08H  
0030 C002H  
0025 C005H  
0025 C005H  
001B C001H  
0015 C006H  
000A C005H  
0014 C005H  
002E C002H  
0031 C002H  
002D C002H  
000F C005H  
0008 C004H  
000B C004H  
000C C005H  
000F C005H  
PMI_ID  
LFI_ID  
PBCU_ID  
Data Sheet  
81  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4
Electrical Parameters  
4.1  
General Parameters  
4.1.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the TC1796  
and partly its requirements on the system. To aid interpreting the parameters easily  
when evaluating them for a design, they are marked with an two-letter abbreviation in  
column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics which are a distinctive feature of  
the TC1796 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements which must provided by the  
microcontroller system in which the TC1796 designed in.  
Data Sheet  
82  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.1.2  
Pad Driver and Pad Classes Summary  
This section gives an overview on the different pad driver classes and its basic  
characteristics. More details (mainly DC parameters) are defined in the Section 4.2.1.  
Table 10  
Pad Driver and Pad Classes Overview  
Class Power Type Sub Class  
Speed Load Leakage Termination  
1)  
Supply  
Grade  
A
3.3V  
LVTTL A1  
6 MHz 100 pF 500 nA  
No  
I/O,  
(e.g. GPIO)  
LVTTL  
output  
A2  
40  
50 pF 6 µA  
50 pF 6 µA  
Series  
termination  
recommended  
(e.g.  
MHz  
serial I/Os)  
A3  
(e.g.  
Trace Outputs,  
serial I/Os)  
75  
Series  
MHz  
termination  
recommended  
(for f > 25 MHz)  
A4  
150  
25 pF 6 µA  
50 pF 6 µA  
Series  
(e.g.  
MHz  
termination  
recommended  
Trace Clock)  
B
2.375 - LVTTL B1  
40  
MHz  
No  
3.6V2)  
I/O  
(e.g.  
External Bus  
Interface)  
B2  
75  
MHz  
35 pF  
Series  
(e.g.  
termination  
recommended  
(for f > 25 MHz)  
Bus Clock)  
C
D
3.3V  
LVDS  
50  
Parallel  
MHz  
termination3),  
100 ± 10%  
Analog inputs, reference voltage inputs  
1) Values are for TJmax = 150 °C.  
2) AC characteristics for EBU pins are valid for 2.5 V ± 5% and 3.3 V ± 5%.  
3) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or  
properly terminated with the differential parallel termination of 100 ± 10%.  
Data Sheet  
83  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.1.3  
Absolute Maximum Ratings  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device  
at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > related VDD or VIN < VSS) the  
voltage on the related VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Table 11  
Parameter  
Absolute Maximum Rating Parameters  
Symbol Values  
Min. Typ. Max.  
Unit Note /  
Test Con  
dition  
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
TST  
TJ  
SR -40  
SR -65  
SR -40  
125  
150  
150  
2.25  
°C  
°C  
°C  
V
Under bias  
Under bias  
Voltage at 1.5 V power supply VDD  
1)  
pins with respect to VSS  
SR  
Voltage at 3.3 V power supply VDDEBU  
3.75  
V
V
2)  
pins with respect to VSS  
VDDP SR  
Voltage on any Class A input VIN  
pin and dedicated input pins  
with respect to VSS  
SR -0.5 –  
VDDP + 0.5  
Whatever  
is lower  
or max. 3.7  
Voltage on any Class B input VIN  
SR -0.5 –  
-0.5 –  
V
DDEBU + 0.5 V  
Whatever  
is lower  
Whatever  
is lower  
pin with respect to VSS  
or max. 3.7  
Voltage on any Class D  
VAIN  
V
DDM + 0.5  
V
analog input pin with respect VAREFx  
or  
to VAGND  
SR  
max. 3.7  
Voltage on any Class D  
VAINF  
-0.5 –  
V
DDMF + 0.5 V  
Whatever  
is lower  
analog input pin with respect VFAREF  
or  
to VSSAF  
SR  
max. 3.7  
1503)  
753)  
CPU & LMB Bus Frequency fCPU SR –  
FPI Bus Frequency fSYS SR –  
MHz –  
MHz –  
1) Applicable for VDD, VDDSBRAM, VDDOSC, VDDPLL, and VDDAF  
.
2) Applicable for VDDP, VDDEBU, VDDFL3, DDM, and VDDMF  
V
.
3) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
Data Sheet  
84  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1796. All parameters specified in the following table refer to these  
operating conditions, unless otherwise noticed.  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1796. All parameters specified in the following table refer to these  
operating conditions, unless otherwise noted.  
Table 12  
Parameter  
Operating Condition Parameters  
Symbol Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
Digital supply voltage1) VDD  
SR 1.42  
1.583)  
3.474)  
3.474)  
V
V
V
VDDOSC2) SR  
VDDP  
SR 3.13  
DDOSC3 SR  
VDDEBU SR 2.375 –  
For Class A pins  
(3.3V ± 5%)  
For Class B (EBU)  
pins  
V
VDDFL3 SR 3.13  
3.474)  
1.583)  
V
V
5)  
VDDSBRAM  
1.42  
SR  
SR 1.0  
6)  
Voltage on VDDSBRAM  
power supply pin to  
ensure data retention  
VDR  
V
Digital ground voltage  
Ambient temperature  
under bias  
VSS  
TA  
SR 0  
SR –  
V
-40 +125 °C  
Analog supply voltages –  
See separate  
specification  
Page 92, Page 99  
CPU clock  
Short circuit current  
fCPU  
ISC  
SR –7)  
SR -5  
1508) MHz –  
+5  
20  
9)  
mA  
Absolute sum of short  
circuit currents of a pin  
group (see Table 13)  
Σ|ISC| SR –  
mA See note10)  
Inactive device pin  
current  
IID  
SR -1  
1
mA Voltage on all  
power supply pins  
V
DDx = 0  
Data Sheet  
85  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 12  
Parameter  
Operating Condition Parameters  
Symbol Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
Σ|ISC| SR –  
Absolute sum of short  
circuit currents of the  
device  
100  
mA See note10)  
External load  
capacitance  
CL  
SR –  
pF  
Depending on pin  
class. See DC  
characteristics  
1) Digital supply voltages applied to the TC1796 must be static regulated voltages which allow a typical voltage  
swing of ±5%.  
2) VDDOSC and VSSOSC are not bonded externally in the BC and BD steps of TC1796. An option for bonding them  
in future steps and products is kept open.  
3) Voltage overshoot up to 1.7 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 µs and the cumulated summary of the pulses does not exceed 1 h.  
4) Voltage overshoot to 4 V is permissible at Power-Up and PORST low, provided the pulse duration is less than  
100 µs and the cumulated summary of the pulses does not exceed 1 h  
5) The VDDSB must be properly connected and supplied with power. If not, the TC1796 will not operate. In case  
of a stand-by operation, the core voltage must not float, but must be pulled low, in order to avoid internal cross-  
currents.  
6) This applies only during power down state. During normal SRAM operation regular VDD has to be applied.  
7) The TC1796 uses a static design, so the minimum operation frequency is 0 MHz. Due to test time restriction  
no lower frequency boundary is tested, however.  
8) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
9) Applicable for digital outputs.  
10) See additional document “TC1796 Pin Reliability in Overload“ for overload current definitions.  
Table 13  
Group  
Pin Groups for Overload/Short-Circuit Current Sum Parameter  
Pins  
1
2
3
4
5
6
7
8
P4.[7:0]  
P4.[14:8]  
P4.15, SLSO[1:0], SCLK0, MTSR0, MRST0, SLSI0  
WAIT, HOLD, BC[3:0], HLDA, MR/W, BAA, CSCOMB  
CS[3:0], RD, RD/WR, BREQ, ADV, BFCLKO  
BFCLKI, D[31:24]  
D[23:16]  
D[15:8]  
Data Sheet  
86  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 13  
Group  
9
Pin Groups for Overload/Short-Circuit Current Sum Parameter  
Pins  
D[7:0]  
10  
11  
12  
A[23:16]  
A[15:8]  
A[7:0]  
13  
TSTRES, TDI, TMS, TCK, TRST, TDO, BRKOUT, BRKIN, TESTMODE  
14  
P10.[3:0], BYPASS, NMI, PORST, HDRST  
15  
P9.[8:0]  
16  
FCLP[1:0]A, FCLN[1:0], SOP[1:0]A, SON[1:0]  
17  
P5.[7:0]  
18  
P3.[7:0]  
19  
P3.[15:8]  
20  
P0.[7:0]  
21  
P0.[15:8]  
22  
P2.[15:7]  
23  
24  
25  
P2.[6:2], P6.9, P6.8, P6.6, P6.11  
P6.[15:12], P6.10, P6.7, P6.[5:4]  
P8.[7:0]  
26  
27  
28  
P1.[15:13], P1.[11:8], P1.5  
P1.12, P1.[7:6], P1.[4:0]  
TR[15:8]  
29  
30  
TR[7:1], TRCLK  
TR0, P7.[7:0]  
Data Sheet  
87  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.2  
DC Parameters  
4.2.1  
Input/Output Pins  
Table 14  
Input/Output DC-Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
General Parameters  
Pull-up current1)  
|IPUH  
|
10  
20  
5
100  
200  
85  
µA VIN < VIHAmin  
;
CC  
class A1/A2/Input pads.  
µA VIN <VIHAmin  
;
class A3/A4 pads.  
µA VIN < VIHBmin  
;
class B1/B2 pads.  
Pull-down  
current1)  
|IPDL  
|
10  
150  
µA VIN >VILAmax  
;
CC  
CC  
class A1/A2/Input pads.  
VIN > VILBmax  
;
class B1/B2 pads  
20  
200  
10  
µA VIN > VILAmax  
;
class A3/A4 pads.  
Pin capacitance1) CIO  
pF f = 1 MHzTA = 25 °C  
(Digital I/O)  
Input only Pads (VDDP = 3.13 to 3.47 V = 3.3 V ± 5%)  
Input low voltage VILA  
-0.3  
0.34 ×  
V
V
Class A1/A2 pins  
SR  
VDDP  
Input high voltage VIHA  
0.64 × –  
SR VDDP  
VDDP  
+
Whatever is lower  
Class A1/A2 pins  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
Input hysteresis  
CC 0.53  
V
5)2)  
HYSA  
0.1 ×  
CC VDDP  
Input leakage  
current  
IOZI  
±3000 nA  
±6000  
V
DDP/2-1 < VIN < VDDP/2+1  
CC  
Otherwise3)  
Data Sheet  
88  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 14  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Class A Pads (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Output low  
VOLA  
0.4  
V
IOL = 2 mA for strong  
driver mode,  
voltage4)  
CC  
IOL = 1.8 mA for medium  
driver mode, A2 pads  
IOL = 1.4 mA for medium  
driver mode, A1 pads  
IOL = 370 µA for weak  
driver mode  
Output high  
voltage3)  
VOHA  
2.4  
V
V
I
OH = -2 mA for strong  
driver mode,  
OH = -1.8 mA for medium  
driver mode, A1/A2 pads  
OH = -370 µA for weak  
driver mode  
OH = -1.4 mA for strong  
driver mode,  
OH = -1 mA for medium  
driver mode, A1/A2 pads  
CC  
I
I
V
DDP - –  
I
0.4  
I
I
OH = -280 µA for weak  
driver mode  
Input low voltage VILA  
-0.3  
0.34 ×  
VDDP  
VDDP  
0.3 or  
3.6  
V
V
Class A1/2 pins  
SR  
Input high voltage VIHA  
0.64 × –  
SR VDDP  
+
Whatever is lower  
Class A1/2 pins  
Ratio VIL/VIH  
Input hysteresis  
CC 0.53  
V
5)2)  
HYSA  
0.1 ×  
CC VDDP  
Input leakage  
current Class  
A2/3/4 pins  
Input leakage  
current  
Class A1 pins  
IOZA24  
±3000 nA  
±6000  
V
DDP/2-1 < VIN < VDDP/2+1  
Otherwise3)  
IOZA1  
±500  
nA 0 V < VIN < VDDP  
CC  
Data Sheet  
89  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 14  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Class B Pads (VDDEBU = 2.375 to 3.47 V)  
Output low voltage VOLB CC –  
0.4  
V
V
IOL = 2 mA  
IOL = 2 mA  
Output high  
VOHB  
VDDEBU  
voltage  
CC - 0.4  
Input low voltage VILB  
Input high voltage VIHB  
-0.3 0.34 ×  
V
V
SR  
VDDEBU  
0.64 × –  
SR VDDEBU  
VDDEBU  
+0.3 or  
3.6  
Whatever is lower  
Ratio VIL/VIH  
Input hysteresis  
CC 0.53  
V
5)  
HYSB  
0.1 ×  
CC VDDEBU  
Input leakage  
current  
Class B pins  
IOZB  
±3000 nA  
±6000  
V
V
DDEBU/2-0.6 < VIN <  
CC  
DDEBU/2+0.66)  
Otherwise3)  
Class C Pads (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Output low voltage VOL CC 815  
mV Parallel termination  
100 ± 1%  
Output high  
voltage  
VOH CC  
1545  
600  
mV Parallel termination  
100 ± 1%  
Output differential VOD CC 150  
mV Parallel termination  
voltage  
100 ± 1%  
Output offset  
voltage  
VOS CC 1075  
1325  
140  
mV Parallel termination  
100 ± 1%  
Output impedance R0 CC 40  
Class D Pads  
See ADC Characteristics  
1) Not subject to production test, verified by design / characterization.  
2) The pads that have spike-filter function in the input path: PORST, HDRST, NMI, do not have hysteresis.  
3) Only one of these parameters is tested, the other is verified by design characterization  
4) Max. resistance between pin and next power supply pin 25 for strong driver mode  
(verified by design characterization).  
Data Sheet  
90  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
5) Function verified by design, value verified by design characterization.  
Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce.  
It cannot be guaranteed that it suppresses switching due to external system noise.  
6) VDDEBU = 2.5 V ± 5%. For VDDEBU = 3.3 ± 5% see class A2 pads.  
Data Sheet  
91  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.2.2  
Analog to Digital Converters (ADC0/ADC1)  
Table 15  
ADC Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ.  
3.3  
Unit Note /  
Test Condition  
Min.  
VDDM SR 3.13  
SR 1.42  
Max.  
3.471)  
1.582)  
Analog supply  
voltage  
V
V
VDD  
1.5  
Power supply for  
ADC digital part,  
internal supply  
Analog ground  
voltage  
VSSM SR -0.1  
0.1  
V
V
Analog reference VAREFx SR VAGNDx VDDM  
VDDM+  
voltage17)  
+1V  
0.05  
1)3)4)  
Analog reference VAGNDx SR VSSMx - 0  
V
AREF - V  
ground17)  
0.05V  
1V  
Analog input  
voltage range  
VAIN  
SR VAGNDx  
VAREFx  
V
Analog reference VAREFx  
-
VDDM/2 –  
VDDM + V  
0.05  
voltage range5)17) VAGNDx SR  
VDDM  
IDDM  
tPUC  
SR –  
CC –  
2.5  
4
mA For each module6)  
rms  
supply current  
Power-up  
calibration time  
3840  
fADC  
CLK  
Internal ADC  
clocks  
fBC  
fANA  
CC 2  
CC 0.5  
40  
10  
±1  
±2  
±4  
MHz fBC = fANA × 4  
MHz fANA = fBC / 4  
LSB 8-bit conversion.  
Total unadjusted TUE7) CC –  
error5)  
LSB 10-bit conversion  
LSB 12-bit conversion  
8)9)  
±8  
LSB 12-bit conversion  
10)9)  
DNL error11) 5)  
INL error11)5)  
TUEDNL  
TUEINL  
±1.5  
±1.5  
±3.0  
±3.0  
LSB 12-bit conversion  
12)9)  
CC  
CC  
LSB 12-bit conversion  
12)9)  
Data Sheet  
92  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 15  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ.  
±0.5  
Unit Note /  
Test Condition  
Min.  
Max.  
±3.5  
Gain error11)5)  
Offset error11)5)  
TUEGAIN  
LSB 12-bit conversion  
12)9)  
CC  
TUEOFF  
±1.0  
±4.0  
300  
LSB 12-bit conversion  
12)9)  
CC  
Input leakage  
IOZ1  
CC -1000  
-200  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
µA  
(0% VDDM) < VIN <  
(2% VDDM  
(2% VDDM) < VIN <  
(95% VDDM  
(95% VDDM) <VIN <  
(98% VDDM  
(98% VDDM) <VIN <  
(100% VDDM  
(0% VDDM) < VIN <  
(2% VDDM  
(2% VDDM) < VIN <  
(95% VDDM  
(95% VDDM) <VIN <  
(98% VDDM  
current at analog  
inputs AN0, AN1,  
AN4 to AN7,  
)
400  
)
AN24 to AN31.  
-200  
1000  
3000  
200  
see Figure 24  
)
13) 14)  
-200  
)
Input leakage  
current at the  
other analog  
inputs, that is  
AN2, AN3,  
IOZ1  
CC -1000  
-200  
)
300  
)
-200  
1000  
3000  
±1  
AN8 to AN23,  
AN32 to AN43  
)
-200  
(98% VDDM) <VIN <  
see Figure 24  
14)  
(100% VDDM  
)
Input leakage  
current at VAREF  
IOZ2  
CC –  
0 V < VAREF  
<
VDDM, no  
conversion  
running  
Input current at  
IAREF CC –  
35  
75  
25  
µA  
0 V < VAREF  
<
17)  
15)  
VAREF0/1  
rms VDDM  
9)  
Total capacitance CAREFTOT  
pF  
of the voltage  
reference  
CC  
inputs16)17)  
9)18)  
Switched  
CAREFSW  
15  
93  
20  
pF  
capacitance at the  
positive reference  
voltage input17)  
CC  
Data Sheet  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 15  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ.  
1
Unit Note /  
Test Condition  
Min.  
Max.  
1.5  
Resistance of the RAREF  
reference voltage  
input path16)  
kΩ  
500 Ohm  
CC  
increased for  
AN[1:0] used as  
reference input9)  
6)9)  
Total capacitance CAINTOT  
of the analog  
25  
7
pF  
pF  
CC  
CC  
inputs16)  
9)19)  
9)  
Switched  
CAINSW  
capacitance at the  
analog voltage  
inputs  
ON resistance of RAIN  
the transmission  
gates in the  
analog voltage  
path  
CC –  
1
1.5  
kΩ  
ON resistance for RAIN7T CC 200  
300  
1000  
Test feature  
available only for  
AIN79)  
the ADC test (pull-  
down for AIN7)  
Current through  
resistance for the  
ADC test (pull-  
down for AIN7)  
IAIN7T CC –  
15 rms 30 peak mA Test feature  
available only for  
AIN79)  
1) Voltage overshoot to 4 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h.  
2) Voltage overshoot to 1.7 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h.  
3) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoot).  
4) If  
the  
reference  
voltage  
VAREF  
increases  
or  
the  
VDDM  
decreases,  
so  
that  
V
AREF = (VDDM + 0.05V to VDDM + 0.07V), then the accuracy of the ADC decreases by 4LSB12.  
5) If a reduced reference voltage in a range of VDDM/2 to VDDM is used, then the ADC converter errors increase.  
If the reference voltage is reduced with the factor k (k<1), then TUE, DNL, INL Gain and Offset errors increase  
with the factor 1/k.  
If a reduced reference voltage in a range of 1 V to VDDM/2 is used, then there are additional decrease in the  
ADC speed and accuracy.  
6) Current peaks of up to 6 mA with a duration of max. 2 ns may occur  
7) TUE is tested at VAREF = 3.3 V, VAGND = 0 V and VDDM = 3.3 V  
Data Sheet  
94  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
8) ADC module capability.  
9) Not subject to production test, verified by design / characterization.  
10) Value under typical application conditions due to integration (switching noise, etc.).  
11) The sum of DNL/INL/Gain/Offset errors does not exceed the related TUE total unadjusted error.  
12) For 10-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with factor 0.25.  
For 8-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with 0.0625.  
13) The leakage current definition is a continuous function, as shown in Figure 24. The numerical values defined  
determine the characteristic points of the given continuous linear approximation - they do not define step  
function.  
14) Only one of these parameters is tested, the other is verified by design characterization.  
15) IAREF_MAX is valid for the minimum specified conversion time. The current flowing during an ADC conversion  
with a duration of up to tC = 25µs can be calculated with the formula IAREF_MAX = QCONV/tC. Every conversion  
needs a total charge of QCONV = 150pC from VAREF  
.
All ADC conversions with a duration longer than tC = 25µs consume an IAREF_MAX = 6µA.  
16) For the definition of the parameters see also Figure 23.  
17) Applies to AIN0 and AIN1, when used as auxiliary reference inputs.  
18) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage  
at once. Instead of this smaller capacitances are successively switched to the reference voltage.  
19) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before the sampling moment.  
Because of the parasitic elements the voltage measured at AINx is lower then VAREF/2, typically 0.85V.  
Data Sheet  
95  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 16  
Sample and Conversion Time (Operating Conditions apply)  
Parameter Symbol  
Values  
Typ.  
Unit Note  
Min.  
Max.  
Sample  
time  
tS  
CC  
4 × (CHCONn.STC + 2) × tBC  
µs  
µs  
µs  
µs  
µs  
8 × tBC  
Conversion tC CC  
tS + 40 × tBC + 2 × tDIV  
tS + 48 × tBC + 2 × tDIV  
tS + 56 × tBC + 2 × tDIV  
8-bit conversion  
10-bit conversion  
12-bit conversion  
time  
A/D Converter Module  
Sample  
Programmable  
Time tS  
fANA  
fDIV  
fBC  
Fractional  
Programmable  
Counter  
fCLC  
Clock Divider  
1:4  
Divider  
(1:1) to (1:256)  
CON.CTC  
CHCONn.STC  
fTIMER  
Arbiter  
Control Unit  
(Timer)  
Control/Status Logic  
Interrupt Logic  
(1:20)  
External Trigger Logic  
External Multiplexer Logic  
Request Generation Logic  
MCA04657_mod  
Figure 22  
ADC0/ADC1 Clock Circuit  
Data Sheet  
96  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Analog Input Circuitry  
RAIN, On  
REXT  
ANx  
VAIN  
CEXT  
CAINSW  
=
CAINTOT - CAINSW  
VAGNDx  
RAIN7T  
Reference Voltage Input Circuitry  
RAREF, On  
VAREFx  
VAREF  
CAREFTOT - CAREFSW  
CAREFSW  
VAGNDx  
Analog_InpRefDiag  
Figure 23  
ADC0/ADC1 Input Circuits  
Data Sheet  
97  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
IOZ1  
3uA  
AN0, AN1,  
AN4 - AN7,  
AN24 - AN31  
1uA  
400nA  
300nA  
VIN[VDDM %]  
-200nA  
95% 98%100%  
2%  
-1uA  
IOZ1  
3uA  
Others  
1uA  
300nA  
200nA  
VIN[VDDM%]  
95% 98%100%  
-200nA  
2%  
-1uA  
ADC Leakage 7.vsd  
Figure 24  
ADC0/ADC1Analog Inputs Leakage  
Data Sheet  
98  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.2.3  
Fast Analog to Digital Converter (FADC)  
Table 17  
FADC Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit  
Note /  
Test Condition  
Min.  
10)  
DNL error  
INL error  
Gradient error1)10)  
EDNL CC –  
EINL CC –  
±1  
±4  
±3  
LSB  
LSB  
%
10)  
EGRAD  
EGRAD  
EGRAD  
With calibration,  
gain 1, 22)  
Without calibration  
gain 1, 2, 4  
Without calibration  
gain 8  
With calibration2)  
Without calibration  
CC  
CC  
CC  
CC  
±5  
±6  
%
%
Offset error10)  
EOFF  
±204)  
±604)  
±60  
mV  
mV  
mV  
3)  
Reference error of  
internal VFAREF/2  
Analog supply  
voltages  
EREF  
CC  
VDDMF SR 3.13  
VDDAF SR 1.42  
3.475)  
1.586)  
0.1  
V
V
V
Analog ground  
voltage  
Analog reference  
voltage  
Analog reference  
ground  
VSSAF  
-0.1  
SR  
SR  
VFAREF  
VFAGND  
3.13  
3.475)7)  
V
V
V
Nominal 3.3 V  
V
SSAF - –  
VSSAF  
SR 0.05V  
+0.05V  
Analog input voltage VAINF  
VFAGND  
VDDMF  
range  
SR  
Analog supply  
currents  
IDDMF SR –  
IDDAF SR –  
9
17  
150  
mA  
mA  
µA  
rms  
8)  
Input current at each IFAREF  
Independent of  
conversion  
0 V < VIN < VDDMF  
VFAREF  
CC  
CC  
CC  
Input leakage current IFOZ2  
±500  
±8  
nA  
9)  
at VFAREF  
Input leakage current IFOZ3  
µA  
0 V < VIN < VDDMF  
at VFAGND  
Data Sheet  
99  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 17  
FADC Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit  
Note /  
Test Condition  
Min.  
CC –  
Conversion time  
Converter Clock  
Input resistance of  
the analog voltage  
path (Rn, Rp)  
tC  
21  
CLK of 10-bit conversion  
fADC  
MHz  
kΩ  
fADC CC –  
75  
200  
10)  
RFAIN  
100  
CC  
Channel Amplifier  
Cutoff Frequency  
Settling Time of a  
Channel Amplifier  
after changing ENN  
or ENP  
fCOFF  
tSET  
2
5
MHz  
CC  
CC –  
µsec  
1) Calibration of the gain is possible for the gain of 1 and 2, and not possible for the gain of 4 and 8.  
2) Calibration should be performed at each power-up. In case of continuous operation, calibration should be  
performed minimum once per week.  
3) The offset error voltage drifts over the whole temperature range maximum ±3 LSB.  
4) Applies when the gain of the channel equals one. For the other gain settings, the offset error increases; it must  
be multiplied with the applied gain.  
5) Voltage overshoot to 4 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h.  
6) Voltage overshoot to 1.7 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
sum of the pulses does not exceed 1 h.  
7) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoots).  
8) Current peaks of up to 40 mA with a duration of max. 2 ns may occur  
9) This value applies in power-down mode.  
10) Not subject to production test, verified by design / characterization.  
The calibration procedure should run after each power-up, when all power supply  
voltages and the reference voltage have stabilized. The offset calibration must run first,  
followed by the gain calibration.  
Data Sheet  
100  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
FADC Analog Input Stage  
RN  
FAINxN  
-
+
VFAREF/2  
VFAGND  
+
RP  
FAINxP  
-
FADC Reference Voltage  
Input Circuitry  
VFAREF  
IFAREF  
VFAREF  
VFAGND  
FADC_InpRefDiag  
Figure 25  
FADC Input Circuits  
Data Sheet  
101  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.2.4  
Oscillator Pins  
Table 18  
Oscillator Pins Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Min.  
fOSC CC 4  
Values  
Typ. Max.  
Unit Note /  
Test Condition  
Frequency Range  
25  
0.3 ×  
VDDOSC3  
MHz –  
Input low voltage at VILX SR -0.2  
V
XTAL11)  
Input high voltage at VIHX SR 0.7 ×  
VDDOSC3  
V
XTAL11)  
VDDOSC3  
+ 0.2  
Input current at  
XTAL1  
IIX1 CC –  
±25  
µA  
0 V < VIN < VDDOSC3  
1) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.3 × VDDOSC3 is  
necessary.  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal  
supplier.  
Data Sheet  
102  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.2.5  
Temperature Sensor  
Table 19  
Temperature Sensor Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Cond  
Min. Typ.  
Max.  
ition  
Temperature  
TSR  
SR -40  
150  
°C  
µs  
°C  
Sensor Range  
Start-up time after  
resets inactive  
Sensor Inaccuracy TTSA  
tTSST SR –  
10  
CC –  
SR –  
±10  
10  
A/D Converter clock fANA  
MHz conversion  
with ADC1  
for DTS signal  
Table 20  
Parameter  
Temperature Sensor Characteristics (Operating Conditions apply)  
Symbol Typical Value Unit Note  
Temperature of TTS CC TTS× = (ADC_Code - 487) 0.396 - 40 °C  
10-bit ADC  
the die at the  
result  
sensor location  
TTS× = (ADC_Code - 1948) 0.099 - 40 °C  
12-Bit ADC  
result  
Data Sheet  
103  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.2.6  
Power Supply Current  
???  
Table 21  
Power Supply Currents (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit Note /  
Test Condition  
PORST low current at IDD_PORST  
300  
mA The PLL running at  
the base frequency  
VDD  
CC  
PORST low current at IDDP_PORST  
25  
mA The PLL running at  
the base frequency  
V
DDP, and PORST high  
CC  
current without any port  
activity  
Active mode core  
IDD  
10  
700  
mA  
f
CPU=150MHzfCPU/f  
supply current1)2)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
SR  
SYS = 2:1  
Active mode analog  
supply current  
IDDAx;  
IDDMx  
mA See ADC0/1  
FADC  
Stand-by RAM supply ISBSB  
9
mA  
mA  
mA  
VDDSB = 1V,  
current in stand-by  
Tj = 150oC  
3)  
Oscillator and PLL core IDDOSC  
5
power supply  
Oscillator and PLL pads IDDOSC3  
3.6  
50  
80  
power supply  
LVDS port supply  
ILVDS  
IDDFL3  
PD  
mA LVDS pads active  
4)  
(via VDDP  
)
Flash power supply  
current  
Maximum Allowed  
Power Dissipation5)  
mA  
PD ×  
RTJA  
<
worst case  
TA = 125oC  
25oC  
1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each custom  
application will most probably be lower than this value, but must be evaluated separately.  
2) The IDD decreases for typically 120 mA if the fCPU is decreased for 50 MHz, at constant TJ = 150C, for the  
Infineon Max Power Loop.  
The dependency in this range is, at constant junction temperature, linear.  
3) VDDOSC and VSSOSC are not bonded externally in the BC and BD steps of TC1796. An option for bonding them  
in future steps and products is kept open.  
4) In case the LVDS pads are disabled, the power consumption pro pair is negligible (less than 1µA).  
5) For the calculation of junction to ambient thermal resistance RTJA, see Page 130.  
Data Sheet  
104  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3  
AC Parameters  
All AC parameters are defined with the temperature compensation disabled. That  
means, keeping the pads constantly at maximum strength.  
4.3.1  
Testing Waveforms  
VDDP  
VDDEBU  
90%  
90%  
10%  
10%  
VSS  
tR  
tF  
rise_fall  
Figure 26  
Rise/Fall Time Parameters  
VDDP  
VDDEBU  
VDDE / 2  
VDDE / 2  
Test Points  
VSS  
mct04881_a.vsd  
Figure 27  
Testing Waveform, Output Delay  
VLoad+ 0.1 V  
VLoad- 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VOL - 0.1 V  
MCT04880_new  
Figure 28  
Testing Waveform, Output High Impedance  
Data Sheet  
105  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.2  
Output Rise/Fall Times  
Table 22  
Output Rise/Fall Times (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Class A1 Pads  
Rise/fall  
t
RA1, tFA1  
50  
ns  
ns  
Regular (medium) driver, 50 pF  
Regular (medium) driver, 150 pF  
Regular (medium) driver, 20 nF  
Weak driver, 20 pF  
times 1)  
140  
18000  
150  
550  
Weak driver, 150 pF  
65000  
Weak driver, 20 000 pF  
Class A2 Pads  
Rise/fall  
t
RA2, tFA2  
3.3  
Strong driver, sharp edge, 50 pF  
Strong driver, sharp edge, 100pF  
Strong driver, medium edge, 50 pF  
Strong driver, soft edge, 50 pF  
Medium driver, 50 pF  
times 1)  
6
5.5  
16  
50  
140  
18000  
150  
550  
65000  
Medium driver, 150 pF  
Medium driver, 20 000 pF  
Weak driver, 20 pF  
Weak driver, 150 pF  
Weak driver, 20 000 pF  
Class A3 Pads  
Rise/fall  
t
RA3, tFA3  
RA3, tFA3  
tRB, tFB  
2.5  
2.0  
ns  
ns  
ns  
50 pF  
25 pF  
times 1)  
Class A4 Pads  
Rise/fall  
t
times 1)  
Class B Pads  
Rise/fall  
3.0  
4.0  
7.0  
35 pF  
50 pF  
100 pF  
times 1)2)  
Class C Pads  
Rise/fall  
times  
tRC, tFC  
2
ns  
1) Not all parameters are subject to production test, but verified by design/characterization and test correlation.  
Data Sheet  
106  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
2) Parameter test correlation for VDDEBU = 2.5 V ± 5%  
4.3.3  
Power Sequencing  
There is a restriction for the power sequencing of the 3.3 V domain including VDDEBU as  
shown in Figure 29: it must always be higher than 1.5 V domain - 0.5 V. The grey area  
shows the valid range for V3.3V and VDDEBU relative to an exemplary 1.5 V ramp.  
V
DDP, VDDOSC3, VDDFL3, VDDM, VDDMF belong to the 3.3 V power supply domain, that is  
referenced in Figure 29 as V3.3. The VDDM and VDDMF sub domains are connected with  
anti parallel ESD protection diodes in TC1796 design steps BC and BD. The VDDM  
,
V
DDMF, VDDP, VDDOSC3 sub domains are connected with anti parallel ESD protection  
diodes in TC1796 design step BE.  
VDD, VDDOSC and VDDAF belong to the 1.5 V power supply domain, referenced as V1.5.  
V
DDEBU belongs to its own 2.5V to 3.3V domain.  
3.3V  
V3.3, VDDEBU  
V1.5  
1.5V  
V3.3, VDDEBU > V1.5 - 0.5V  
Time  
VDDP  
(3.3V)  
PORST  
Time  
PowerSeq 2  
Figure 29  
VDDP / VDDEBU / VDD Power Up Sequence  
All ground pins VSS must be externally connected to one single star point in the system.  
The difference voltage between the ground pins must not exceed 200 mV.  
The PORST signal must be activated at latest before any power supply voltage falls  
below the levels shown on the figure below. In this case, only the memory row of a Flash  
memory that was a target of a write at the moment of the power loss will contain  
unreliable content. Additionally, the PORST signal should be activated as soon as  
possible. The sooner the PORST signal is activated, the less time the system operates  
outside of the normal operating power supply range.  
Data Sheet  
107  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Power Supply Voltage  
VDDP, VDDEBU,  
VDDP  
3.3V  
VDDFL3  
3.13V  
-5%  
VDDPmin  
VPORST3.3  
2.9V  
-12%  
t
PORST  
t
VDD  
1.5V  
VDD  
1.42V  
-5%  
VDDmin  
1.32V  
-12%  
VPORST1.5min  
t
t
PORST  
PowerDown3.3_1.5_reset_only.vsd  
Figure 30  
Power Down / Power Loss Sequence  
Data Sheet  
108  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.4  
Power, Pad and Reset Timing  
Table 23  
Power, Pad and Reset Timing Parameters  
Parameter  
Symbol  
Values  
Unit Note /  
Test Con  
Min.  
Typ. Max.  
dition  
Min. VDDP voltage to ensure  
V
DDPPA CC 0.6  
V
defined pad states1)  
Oscillator start-up time2)  
Minimum PORST active time tPOA  
after power supplies are stable  
at operating levels  
tOSCS CC –  
10  
ms  
ms  
SR 10  
HDRST pulse width  
tHD  
CC 1024  
clock  
fSYS  
cycles3)6)  
PORST rise time  
Setup time to PORST rising  
edge4)  
tPOR  
tPOS  
SR –  
SR 0  
50  
ms  
ns  
Hold time from PORST rising tPOH  
SR 100  
SR 0  
ns  
ns  
ns  
edge4)  
Setup time to HDRST rising  
tHDS  
edge5)  
Hold time from HDRST rising tHDH  
SR 100 +  
edge5)  
(2 × 1/  
6)  
fSYS  
)
Ports inactive after PORST  
reset active7)8)  
Ports inactive after HDRST  
reset active  
tPIP  
tPI  
CC –  
150  
ns  
CC –  
150 + ns  
5 × 1/  
fSYS  
Minimum VDDP PORST  
VPORST3.3  
2.9  
V
V
activation threshold9)  
SR  
Minimum VDD PORST  
VPORST1.5  
1.32  
activation threshold9)  
SR  
CC –  
Power on Reset Boot Time9) tBP  
2
350  
ms  
µs  
Hardware/Software Reset  
tB  
CC 150  
Boot Time at fCPU=150MHz10)  
Data Sheet  
109  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
1) This parameter is valid under assumption that PORST signal is constantly at low level during the power-  
up/power-down of the VDDP  
.
2) tOSCS is defined from the moment when VDDOSC3 = 3.13V until the oscillations reach an amplitude at XTAL1 of  
0,3*VDDOSC3. This parameter is verified by device characterization. The external oscillator circuitry must be  
optimized by the customer and checked for negative resistance as recommended and specified by crystal  
suppliers.  
3) Any HDRST activation is internally prolonged to 1024 FPI bus clock (fSYS) cycles.  
4) Applicable for input pins TESTMODE, TRST, BRKIN, and TXD1A with noise suppression filter of PORST  
switched-on (BYPASS = 0).  
5) The setup/hold values are applicable for Port 0 and Port 10 input pins with noise suppression filter of HDRST  
switched-on (BYPASS = 0), independently whether HDRST is used as input or output.  
6) fSYS = fCPU/2  
7) Not subject to production test, verified by design / characterization.  
8) This parameter includes the delay of the analog spike filter in the PORST pad.  
9) The duration of the boot-time is defined between the rising edge of the PORST and the moment when the first  
user instruction has entered the CPU and its processing starts.  
10) The duration of the boot time is defined between the following events:  
1. Hardware reset: the falling edge of a short HDRST pulse and the moment when the first user instruction  
has entered the CPU and its processing starts, if the HDRST pulse is shorter than 1024 × TSYS  
.
If the HDRST pulse is longer than 1024 × TSYS, only the time beyond the 1024 × TSYS should be added to the  
boot time (HDRST falling edge to first user instruction).  
2. Software reset: the moment of starting the software reset and the moment when the first user instruction  
has entered the CPU and its processing starts  
Data Sheet  
110  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
VDDPPA  
VDDPPA  
VDDP  
VDDPR  
VDD  
toscs  
OSC  
tPOA  
tPOA  
PORST  
HDRST  
thd  
thd  
1)  
2)  
1)  
2)  
2)  
Pads  
tpi  
Pad-  
state  
Pad-  
state  
undefined  
1) as programmed  
undefined  
2) Tri-state, pull device active  
reset_beh1  
Figure 31  
Power, Pad and Reset Timing  
Data Sheet  
111  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.5  
Phase Locked Loop (PLL)  
Note: All PLL characteristics defined on this and the next page are verified by design  
characterization.  
Table 24  
PLL Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
Min.  
dition  
Accumulated jitter  
DP  
See  
Figure 3  
2
VCO frequency range  
fVCO  
400  
600  
500  
140  
150  
200  
500  
700  
600  
320  
400  
480  
200  
MHz –  
MHz –  
MHz –  
MHz –  
MHz –  
MHz –  
PLL base frequency1)  
fPLLBASE  
PLL lock-in time  
tL  
µs  
1) The CPU base frequency which is selected after reset is calculated by dividing the limit values by 16 (this is  
the K factor after reset).  
Phase Locked Loop Operation  
When PLL operation is enabled and configured, the PLL clock fVCO (and with it the CPU  
clock fCPU) is constantly adjusted to the selected frequency. The relation between fVCO  
and fSYS is defined by: fVCO = K × fCPU. The PLL causes a jitter of fCPU and affects the  
clock outputs BFCLKO, TRCLK, and SYSCLK (P1.12) which are derived from the PLL  
clock fVCO  
.
There will be defined two formulas that define the (absolute) approximate maximum  
value of jitter DP in ns dependent on the K-factor, the CPU clock frequency fCPU in MHz,  
and the number P of consecutive fCPU clock periods.  
7000 × P  
P × K < 385  
Dp[ns] = ------------------------------------------ + 0, 535  
fcpu2[MHz] × K  
(1)  
(2)  
2700000  
P × K 385  
Dp[ns] = --------------------------------------------- + 0 , 5 3 5  
fcpu2[MHz] × K2  
Data Sheet  
112  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Note: The frequency of system clock fSYS can be selected to be either fCPU or fCPU/2.  
With rising number P of clock cycles the maximum jitter increases linearly up to a value  
of P that is defined by the K-factor of the PLL. Beyond this value of P the maximum  
accumulated jitter remains at a constant value. Further, a lower CPU clock frequency  
f
CPU results in a higher absolute maximum jitter value.  
Figure 32 gives the jitter curves for several K/fCPU combinations.  
±20.0  
fCPU = 50 MHz (K = 8)  
fCPU = 100 MHz (K = 4)  
DP  
ns  
±16.0  
±12.0  
±8.0  
±4.0  
±0.0  
fCPU = 120 MHz (K = 4)  
fCPU = 150 MHz (K = 4)  
fCPU = 100 MHz (K = 7)  
fCPU = 50 MHz (K = 14)  
0
20  
40  
60  
80  
100  
120  
oo  
P
DP  
= Max. jitter  
P
= Number of consecutive fCPU periods  
K
= K-divider of PLL  
TC1976_PLL_JITT  
Figure 32  
Approximated Maximum Accumulated PLL Jitter for Typical CPU  
Clock Frequencies fCPU (overview)  
Data Sheet  
113  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
±4.0  
ns  
±3.5  
fCPU = 50 MHz (K = 8)  
fCPU = 50 MHz (K = 14)  
DP  
±3.0  
±2.5  
±2.0  
±1.5  
±1.0  
±0.5  
±0.0  
fCPU = 100 MHz (K = 4)  
fCPU = 100 MHz (K = 7)  
fCPU = 150 MHz (K = 4)  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
P
DP  
= Max. jitter  
P
= Number of consecutive fCPU periods  
K
= K-divider of PLL  
TC1976_PLL_DETAIL  
Figure 33  
Approximated Maximum Accumulated PLL Jitter for Typical CPU  
Clock Frequencies fCPU (detail)  
Note: The specified PLL jitter values are valid if the capacitive load at the External Bus  
Unit (EBU) is limited to CL=20pF.  
Note: The maximum peak-to-peak noise on the Core Supply Voltage (measured  
between VDD at pin E23 and VSS at pin D23, or adjacent supply pairs) is limited to  
a peak-to-peak voltage of VPP = 30mV. This condition can be achieved by  
appropriate blocking of the Core Supply Voltage as near as possible to the supply  
pins and using PCB supply and ground planes.=20pF.  
Data Sheet  
114  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.6  
BFCLKO Output Clock Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%;  
TA = -40 °C to +125 °C; CL = 35 pF  
Table 25  
BFCLK0 Output Clock Timing Parameters1)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
Min.  
dition  
BFCLKO clock period  
BFCLKO high time  
BFCLKO low time  
BFCLKO rise time  
BFCLKO fall time  
t
BFCLKO CC 13.332)  
50  
3
3
55  
ns  
ns  
ns  
ns  
ns  
%
t5  
t6  
t7  
t8  
CC 3  
CC 3  
CC –  
CC –  
BFCLKO duty cycle t5/(t5 + t6)3) DC24 CC 45  
divider of  
2, 4, ...4)  
BFCLKO duty cycle t5/(t5 + t6)3) DC3 CC 30  
33.33 36  
%
divider of  
3 4)  
BFCLKO high time reduction5) dt5  
1) Not subject to production test, verified by design/characterization.  
CC –  
1.1  
ns  
CL = 20pF  
2) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
3) The PLL jitter is not included in this parameter. If the BFCLKO frequency is equal to fCPU, the K-divider setting  
determines the duty cycle.  
4) The division ratio between LMB and BFCLKO frequency is set by EBU_BFCON.EXTCLOCK.  
5) Due to asymmetry of the delays and slopes of the rising and falling edge of the pad. The influence of the PLL  
jitter is included in this parameter. This parameter should be applied taking the typical value of the duty cycle  
in the account, not the minimum or maximum value.  
tBFCLKO  
0.9 VDD  
0.5 VDDP05  
BFCLKO  
0.1 VDD  
t8  
t7  
t5  
t6  
MCT04883_mod  
Figure 34  
BFCLKO Output Clock Timing  
Data Sheet  
115  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
BFCLK Timing and PLL Jitter  
The BFCLK timing is important for calculating the timing of an external flash memory. In  
principle BFCLK timing can be derived from the PLL jitter formulas. In case of only EBU  
synchronous read access to the flash device the worst case jitter is partially lower.  
For one BFCLK with a cycle time of 13,33 ns the maximum jitter is  
t
JPP = |+/-620 ps|  
For two BFCLKs with an accumulated cycle time of 26,66 ns the maximum jitter is  
JPACC = |+/- 660 ps|  
t
Data Sheet  
116  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.7  
Debug Trace Timing  
VSS = 0 V; VDDP = 3.13 to 3.47 V (Class A); TA = -40 °C to +125 °C;  
CL (TRCLK) = 25 pF; CL (TR[15:0]) = 50 pF;  
Table 26  
Debug Trace Timing Parameter1)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note /  
Test Con  
Max.  
dition  
TR[15:0] new state from  
TRCLK rising edge  
t9  
CC -1  
4
ns  
1) Not subject to production test, verified by design/characterization.  
TRCLK  
t9  
Old State  
New State  
TR[15:0]  
Trace_Tmg  
Figure 35  
Debug Trace Timing  
Data Sheet  
117  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.8  
JTAG Interface Timing  
Operating Conditions apply, CL = 50 pF  
Table 27  
Parameter  
TCK Clock Timing Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
TCK clock period1)  
TCK high time  
TCK low time  
TCK clock rise time  
TCK clock fall time  
tTCK  
t1  
t2  
t3  
t4  
.
SR 25  
4
4
ns  
ns  
ns  
ns  
ns  
SR 10  
SR 10  
SR –  
SR –  
1) fTCK should be lower or equal to fSYS  
tTCK  
0.9 VDD  
0.1 VDD  
0.5 VDDP  
TCK  
t4  
t3  
t1  
t2  
JTAG_TCK  
Figure 36  
TCK Clock Timing  
Data Sheet  
118  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Table 28  
Parameter  
JTAG Timing Parameters1)  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
dition  
Min.  
TMS setup to TCK rising edge t1  
SR 6.0  
13  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TMS hold to TCK rising edge  
TDI setup to TCK rising edge  
TDI hold to TCK rising edge  
t2  
t1  
t2  
t3  
t3  
t4  
SR 6.0  
SR 6.0  
SR 6.0  
CC –  
CC 3.0  
CC –  
TDO valid output from TCK  
CL = 50 pF  
CL = 20 pF  
CL = 50 pF  
falling edge2)  
TDO high impedance to valid  
output from TCK falling edge2)  
TDO valid output to high  
impedance from TCK falling  
edge2)  
t5  
CC –  
13.5  
ns  
CL = 50 pF  
1) fTCK should be lower or equal to fSYS  
.
2) The falling edge on TCK is used to capture the TDO timing.  
TCK  
t1  
t1  
t2  
t2  
TMS  
TDI  
t4  
t3  
t5  
TDO  
Jtag  
Figure 37  
JTAG Timing  
Note: The JTAG module is fully compliant with IEEE1149.1-2000 with JTAG clock at  
20 MHz. The JTAG clock at 40MHz is possible with the modified timing diagram  
shown in Figure 37.  
Data Sheet  
119  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.9  
EBU Demultiplexed Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;  
TA = -40 °C to +125 °C; CL = 35 pF;  
Table 29  
Parameter  
EBU Demultiplexed Timing Parameters1)  
Symbol Values  
Typ. Max.  
Unit Note /  
Test Con  
Min.  
CC 0  
dition  
Output delay from BFCLKO  
rising edge2)  
t10  
t12  
5
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD active/inactive after  
CC 0  
BFCLKO rising edge2)  
Data setup to BFCLKO rising t13  
SR 8.5  
SR 0  
SR 3  
SR 2  
SR 0  
edge2)  
Data hold from BFCLKO rising t14  
edge2)  
WAIT setup (low or high) to  
t15  
t16  
BFCLKO rising edge2)  
WAIT hold (low or high) from  
BFCLKO rising edge2)  
Data hold after RD/WR rising t17  
edge  
1) Not subject to production test, verified by design/characterization.  
2) Valid for BFCON.EXTCLOCK = 00B.  
Data Sheet  
120  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.9.1 Demultiplexed Read Timing  
Address  
Phase  
Command Del. Command  
Phase (opt.) Phase  
Recovery New Addr.  
Phase (opt.)  
Phase  
BFCLKO  
t10  
t10  
t10  
Next  
A[23:0]  
ADV  
Valid Address  
Inval. Address  
Addr.  
t10  
t10  
t10  
t10  
t10  
t10  
CS[3:0]  
CSCOMB  
t12  
t12  
RD  
RD/WR  
MR/W  
D[31:0]  
BC[3:0]  
WAIT  
t14  
t13  
Valid Data  
t10  
t10  
t10  
t16  
t15  
DemuxRD_1.vsd  
Figure 38  
EBU Demultiplexed Read Timing  
Data Sheet  
121  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.9.2 Demultiplexed Write Timing  
Address  
Phase  
Command Del. Command  
Data Hold  
Phase  
Recovery New Addr.  
Phase (opt.)  
Phase  
Phase (opt.)  
Phase  
BFCLKO  
t10  
t10  
t10  
Next  
A[23:0]  
ADV  
Valid Address  
Inval. Address  
Addr.  
t10  
t10  
t10  
t10  
t10  
t10  
CS[3:0]  
CSCOMB  
RD  
t10  
t10  
RD/WR  
MR/W  
D[31:0]  
BC[3:0]  
WAIT  
t17  
t10  
t10  
t10  
t10  
Data Out  
t10  
t10  
t10  
t10  
t16  
t15  
DemuxWR_1.vsd  
Figure 39  
EBU Demultiplexed Write Timing  
Data Sheet  
122  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.10  
EBU Burst Mode Read Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;  
TA = -40 °C to +125 °C; CL = 35 pF;  
Table 30  
EBU Burst Mode Read Timing Parameters1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
Output delay from BFCLKO  
rising edge  
RD active/inactive after  
BFCLKO rising edge  
CSx output delay from  
BFCLKO rising edge  
t10  
t12  
t21  
CC 0  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CC 0  
5
4
4
CC 0  
CC 0  
SR 3  
SR 0  
SR 3  
SR 2  
ADV/BAA active/inactive after t22  
BFCLKO rising edge2)  
Data setup to BFCLKI rising  
edge  
t23  
Data hold from BFCLKI rising t24  
edge  
WAIT setup (low or high) to  
BFCLKI rising edge  
t25  
WAIT hold (low or high) from t26  
BFCLKI rising edge  
1) Not subject to production test, verified by design/characterization.  
2) This parameter is valid for BFCON.EBSE0 = 1 (or BFCON.EBSE1 = 1). Note that t22 is increased by:  
1/2 of the LMB bus clock period TCPU = 1/fCPU when BFCON.EBSE0 = 0 (or BFCON.EBSE1 = 0).  
Data Sheet  
123  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
Address  
Phase(s)  
Command  
Phase(s)  
Burst  
Burst  
Recovery  
Phase(s)  
Next Addr.  
Phase(s)  
Phase(s)  
Phase(s)  
BFCLKI  
1)  
BFCLKO  
t10  
t10  
Next  
A[23:0]  
ADV  
Burst Start Address  
Addr.  
t22  
t22  
t22  
t10  
t10  
t10  
CS[3:0]  
CSCOMB  
t12  
t12  
t22  
t24  
RD  
t22  
BAA  
t24  
t23  
t23  
D[31:0]  
(32-Bit)  
Data (Addr+0)  
Data (Addr+4)  
D[15:0]  
(16-Bit)  
Data (Addr+0)  
Data (Addr+2)  
t26  
t25  
WAIT  
1)  
Output delays are always referenced to BCLKO. The reference clock for input  
characteristics depends on bit EBU_BFCON.FDBKEN.  
EBU_BFCON.FDBKEN = 0:BFCLKO is the input reference clock.  
EBU_BFCON.FDBKEN = 1:BFCLKI is the input reference clock (EBU clock  
feedback enabled).  
BurstRD_4.vsd  
Figure 40  
EBU Burst Mode Read Timing  
Data Sheet  
124  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.11  
EBU Arbitration Signal Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;  
TA = -40°C to +125 °C; CL = 35 pF;  
Table 31  
EBU Arbitration Signal Timing Parameters1)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
Min.  
dition  
Output delay from CLKOUT  
rising edge  
Data setup to CLKOUT  
falling edge  
Data hold from CLKOUT  
falling edge  
t27  
t28  
t29  
CC –  
3
ns  
ns  
ns  
SR 8  
SR 2  
1) Not subject to production test, verified by design/characterization.  
BFCLKO  
t27  
t27  
HLDA Output  
t27  
t27  
BREQ Output  
BFCLKO  
t28  
t29  
t28  
t29  
HOLD Input  
HLDA Input  
EBUArb_1  
Figure 41  
EBU Arbitration Signal Timing  
Data Sheet  
125  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.12  
Peripheral Timings  
Note: Peripheral timing parameters are not subject to production test. They are verified  
by design/characterization.  
4.3.12.1 Micro Link Interface (MLI) Timing  
Table 32  
MLI Timing Parameters (Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note /  
Test Con  
dition  
TCLK clock period1)2)  
RCLK clock period  
MLI outputs delay from  
TCLK rising edge  
t30  
t31  
t35  
CC 23)  
SR 1  
CC 0  
8
1 / fSYS  
1 / fSYS  
ns  
MLI inputs setup to RCLK  
falling edge  
MLI inputs hold to RCLK  
falling edge  
t36  
t37  
SR 4  
SR 4  
CC 0  
8
ns  
ns  
ns  
RREADY output delay from t38  
RCLK falling edge  
1) TCLK signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) TCLK high and low times can be minimum 1 × TMLI.  
3) When fSYS = 75 MHz, t30 = 26,67ns  
Data Sheet  
126  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
t30  
0.9 VDDP  
0.1 VDDP  
TCLKx  
t35  
t35  
TDATAx  
TVALIDx  
TREADYx  
RCLKx  
t31  
t37  
t36  
RDATAx  
RVALIDx  
t38  
t38  
RREADYx  
MLI_Tmg_2.vsd  
Figure 42  
MLI Interface Timing  
Note: The generation of RREADYx is in the input clock domain of the receiver. The  
reception of TREADYx is asynchronous to TCLKx.  
Data Sheet  
127  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.12.2 Micro Second Channel (MSC) Interface Timing  
Table 33  
MSC Interface Timing (Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
FCLP clock period1)2)  
SOP/ENx outputs delay  
from FCLP rising edge  
t40 CC 2 × TMSC  
t45 CC -10  
10  
ns  
ns  
3)  
SDI bit time  
SDI rise time  
SDI fall time  
t46 CC 8 × TMSC  
t48 SR  
100  
100  
ns  
ns  
ns  
t49 SR  
1) FCLP signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) FCLP signal high and low can be minimum 1 × TMSC  
.
3) TMSCmin = TSYS = 1/fSYS. When fSYS = 75 MHz, t40 = 26,67ns  
t40  
0.9 VDDP  
0.1 VDDP  
FCLP  
t45  
t45  
SOP  
EN  
t48  
t49  
0.9 VDDP  
0.1 VDDP  
SDI  
t46  
t46  
MSC_Tmg_1.vsd  
Figure 43  
MSC Interface Timing  
Note: The data at SOP should be sampled with the falling edge of FCLP in the target  
device.  
Data Sheet  
128  
V1.0, 2008-04  
TC1796  
Electrical Parameters  
4.3.12.3 Synchronous Serial Channel (SSC) Master Mode Timing  
Table 34  
SSC Master Mode Timing (Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
SCLK clock period1)2)  
MTSR/SLSOx delay from  
SCLK rising edge  
t50 CC 2 × TSSC  
t51 CC 0  
8
ns  
ns  
3)  
MRST setup to SCLK  
falling edge  
MRST hold from SCLK  
falling edge  
t52 SR 10  
t53 SR 5  
ns  
ns  
1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) SCLK signal high and low times can be minimum 1 × TSSC  
.
3) TSSCmin = TSYS = 1/fSYS. When fSYS = 75 MHz, t50 = 26,67ns  
t50  
SCLK1)2)  
t51  
t51  
MTSR1)  
t52  
t53  
Data  
MRST1)  
valid  
t51  
SLSOx2)  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
2) The transition at SLSOx is based on the following setup: SSOTC.TRAIL = 0  
and the first SCLK high pulse is in the first one of a transmission.  
SSC_Tmg_1.vsd  
Figure 44  
SSC Master Mode Timing  
Data Sheet  
129  
V1.0, 2008-04  
TC1796  
Package and Reliability  
5
Package and Reliability  
5.1  
Package Parameters (P/PG-BGA-416-4)  
Table 35  
Thermal Characteristics of the Package  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condi  
Min.  
Max.  
tion  
Thermal resistance junction RTJCT CC –  
8
K/W –  
K/W –  
case top1)  
Thermal resistance junction RTJCB CC –  
15  
case bottom1)  
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined  
with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate  
the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the  
case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are under  
user responsibility.  
The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA  
is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA  
can be obtained from the upper four partial thermal resistances.  
Data Sheet  
130  
V1.0, 2008-04  
TC1796  
Package and Reliability  
5.2  
Package Outline  
25 x 1 = 25  
A26  
A1  
AF1  
1
+0.07  
-0.13  
416x  
ø0.63  
M
ø0.25  
A B C  
C
0.15  
A
C
M
ø0.1  
Index Marking  
±0.2  
±0.5  
±0.2  
20  
24  
27  
Index Marking  
(sharp edge)  
B
GPA09537  
Figure 45  
P/PG-BGA-416-4, Plastic Low Profile Pitch Ball Grid Array  
You can find our packages, sorts of packing and others in our Infineon Internet Web Site.  
Data Sheet  
131  
V1.0, 2008-04  
TC1796  
Package and Reliability  
5.3  
Flash Memory Parameters  
The data retention time of the TC1796’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Table 36  
Parameter  
Flash Parameters  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
Program / Data Flash tRET CC 20  
years Max. 1000  
Retention Time,  
erase/program  
Physical Sector1)2)  
cycles  
Program / Data Flash tRETL CC 20  
years Max. 100  
Retention Time  
erase/program  
Logical Sector1)2)  
cycles  
Data Flash  
Endurance  
(128 KB)  
NE CC 15 000  
Max.dataretention  
time 5 years  
Data Flash  
NE8 CC 120 000 –  
Max.dataretention  
time 5 years  
Endurance,  
EEPROM Emulation  
(8 × 16 KB)  
Programming Time  
tPR CC –  
tERP CC –  
5
5
ms  
s
per Page3)  
Program Flash  
Erase Time  
per 256-KB Sector  
f
CPU = 150 MHz  
CPU = 150 MHz  
Data Flash  
tERD CC –  
2.5  
s
f
Erase Time  
per 64-KB Sector  
Wake-up time  
tWU CC 4300 ×  
1/fCPU  
+ 40µs  
1) Storage and inactive time included.  
2) At average weighted junction temperature Tj = 100oC, or  
the retention time at average weighted temperature of Tj = 110oC is minimum 10 years, or  
the retention time at average weighted temperature of Tj = 150oC is minimum 0.7 years.  
3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The  
reprogramming takes additional 5 ms.  
Data Sheet  
132  
V1.0, 2008-04  
TC1796  
Package and Reliability  
5.4  
Quality Declarations  
Table 37  
Parameter  
Quality Parameters  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Operation  
Lifetime1)2)  
tOP  
24000 hours at average weighted junction  
temperature Tj = 127oC  
66000 hours at average weighted junction  
temperature Tj = 100oC  
20  
years at average weighted junction  
temperature Tj = 85oC  
ESD susceptibility VHBM  
according to  
Human Body  
Model (HBM)  
2000  
V
Conforming to  
EIA/JESD22-A114-B  
ESD susceptibility VHBM1  
500  
500  
V
V
of the LVDS pins  
ESD susceptibility VCDM  
Conforming to  
JESD22-C101-C  
according to  
Charged Device  
Model (CDM)  
Moisture  
MSL  
3
Conforming to Jedec  
J-STD-020C for 240°C  
Sensitivity Level  
1) This lifetime refers only to the time when the device is powered on.  
2) One example of a detailed temperature profile is:  
2000 hours at Tj = 150oC  
16000 hours at Tj = 125oC  
6000 hours at Tj = 110oC  
This example is equivalent to the operation lifetime and average temperatures given in the table.  
Data Sheet  
133  
V1.0, 2008-04  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY