SAK-TC275TP-64F200N DC [INFINEON]

SAK-TC275TP-64F200N DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。;
SAK-TC275TP-64F200N DC
型号: SAK-TC275TP-64F200N DC
厂家: Infineon    Infineon
描述:

SAK-TC275TP-64F200N DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。

文件: 总279页 (文件大小:3805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
32-Bit  
Microcontroller  
TC270 / TC275 / TC277  
32-Bit Single-Chip Micocontroller  
DC-Step  
32-Bit Single-Chip Micocontroller  
Data Sheet  
V 1.0, 2017-01  
Microcontrollers  
Edition 2017-01  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2017 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com)  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TC270 / TC275 / TC277 DC-Step  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
V 1.0, 2017-01  
The history is documented in the last chapter  
Data Sheet  
3
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,  
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of  
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF  
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™  
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes  
Zetex Limited.  
Last Trademarks Update 2011-11-11  
Data Sheet  
4
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2
2.1  
Package and Pinning Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TC275x Pin Definition and Functions: LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TC275x LQFP176 Package Variant Pin Configuration' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
TC277x Pin Definition and Functions: BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
TC277xBGA292 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
TC270x Bare Die Pad Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Pad Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
2.1.1  
2.1.2  
2.1.3  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.3  
2.3.1  
2.3.2  
2.3.3  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
5 V / 3.3 V switchable Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
3.3 V only Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
High performance LVDS Pads (LVDSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Medium performance LVDS Pads (LVDSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
VADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
DSADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Back-up Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
EVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
JTAG Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
DAP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
MSC Timing 5 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
MSC Timing 3.3 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.14.1  
3.15  
3.15.1  
3.15.2  
3.15.3  
3.15.4  
3.16  
3.17  
3.18  
3.19  
3.20  
3.21  
3.22  
3.23  
3.24  
3.25  
3.26  
3.27  
3.28  
Data Sheet  
TOC-1  
V 1.0, 2017-01  
TC270 / TC275 / TC277 DC-Step  
3.29  
Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . 256  
ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
E-Ray Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
HSCT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
Inter-IC (I2C) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
Flash Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
TC270 Carrier Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
3.29.1  
3.29.2  
3.29.3  
3.29.4  
3.30  
3.31  
3.32  
3.33  
3.34  
3.34.1  
3.34.2  
3.35  
4
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
4.1  
Changes from TC27xDB_v10 to 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
Data Sheet  
2
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Summary of Features  
1
Summary of Features  
The TC27x product family has the following features:  
High Performance Microcontroller with three CPU cores  
Two 32-bit super-scalar TriCore CPUs (TC1.6P), each having the following features:  
Superior real-time performance  
Strong bit handling  
Fully integrated DSP capabilities  
Multiply-accumulate unit able to sustain 2 MAC operations per cycle  
Fully pipelined Floating point unit (FPU)  
up to 200 MHz operation at full temperature range  
up to 120 Kbyte Data Scratch-Pad RAM (DSPR)  
up to 32 Kbyte Instruction Scratch-Pad RAM (PSPR)  
16 Kbyte Instruction Cache (ICACHE)  
8 Kbyte Data Cache (DCACHE)  
Power Efficient scalar TriCore CPU (TC1.6E), having the following features:  
Binary code compatibility with TC1.6P  
up to 200 MHz operation at full temperature range  
up to 112 Kbyte Data Scratch-Pad RAM (DSPR)  
up to 24 Kbyte Instruction Scratch-Pad RAM (PSPR)  
8 Kbyte Instruction Cache (ICACHE)  
0.125Kbyte Data Read Buffer (DRB)  
Lockstepped shadow cores for one TC1.6P and for TC1.6E  
Multiple on-chip memories  
All embedded NVM and SRAM are ECC protected  
up to 4 Mbyte Program Flash Memory (PFLASH)  
up to 384 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation  
32 Kbyte Memory (LMU)  
BootROM (BROM)  
64-Channel DMA Controller with safe data transfer  
Sophisticated interrupt system (ECC protected)  
High performance on-chip bus structure  
64-bit Cross Bar Interconnect (SRI) giving fast parallel access between bus masters, CPUs and memories  
32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units  
One bus bridge (SFI Bridge)  
Optional Hardware Security Module (HSM) on some variants  
Safety Management Unit (SMU) handling safety monitor alarms  
Memory Test Unit with ECC, Memory Initialization and MBIST functions (MTU)  
Hardware I/O Monitor (IOM) for checking of digital I/O  
Versatile On-chip Peripheral Units  
Four Asynchronous/Synchronous Serial Channels (ASCLIN) with hardware LIN support (V1.3, V2.0, V2.1  
and J2602) up to 50 MBaud  
Data Sheet  
3
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Summary of Features  
Four Queued SPI Interface Channels (QSPI) with master and slave capability up to 50 Mbit/s  
High Speed Serial Link (HSSL) for serial inter-processor communication up to 320 Mbit/s  
Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices  
One MultiCAN+ Module with 4 CAN nodes and 256 free assignable message objects for high efficiency  
data handling via FIFO buffering and gateway data transfer  
10 Single Edge Nibble Transmission (SENT) channels for connection to sensors  
One FlexRayTM module with 2 channels (E-Ray) supporting V2.1  
One Generic Timer Module (GTM) providing a powerful set of digital signal filtering and timer functionality  
to realize autonomous and complex Input/Output management  
One Capture / Compare 6 module (Two kernels CCU60 and CCU61)  
One General Purpose 12 Timer Unit (GPT120)  
Three channel Peripheral Sensor Interface conforming to V1.3 (PSI5)  
Peripheral Sensor Interface with Serial PHY (PSI5-S)  
Optional Inter-Integrated Circuit Bus Interface (I2C) conforming to V2.1  
Optional IEEE802.3 Ethernet MAC with RMII and MII interfaces (ETH)  
Versatile Successive Approximation ADC (VADC)  
Cluster of 8 independent ADC kernels  
– Input voltage range from 0 V to 5.5V (ADC supply)  
Delta-Sigma ADC (DSADC)  
Six channels  
Digital programmable I/O ports  
On-chip debug support for OCDS Level 1 (CPUs, DMA, On Chip Buses)  
multi-core debugging, real time tracing, and calibration  
four/five wire JTAG (IEEE 1149.1) or DAP (Device Access Port) interface  
Power Management System and on-chip regulators  
Clock Generation Unit with System PLL and Flexray PLL  
Embedded Voltage Regulator  
Data Sheet  
4
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Summary of Features  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering  
code identifies:  
The derivative itself, i.e. its function set, the temperature range, and the supply voltage  
The package and the type of delivery.  
For the available ordering codes for the TC270 / TC275 / TC277 please refer to the  
"AURIX™ TC2x Data Sheet Addendum", which summarizes all available variants.  
Table 1-1 Overview of TC27x Functions  
Feature  
TC1.6P / TC1.6E  
CPU Core  
Type  
2 / 1 /  
1 / 1  
P Cores / Checker Cores /  
E Cores / Checker Cores  
200 MHz  
yes  
Max. Freq.  
FPU  
4 Mbyte  
Program Flash  
Data Flash  
Cache  
Size  
384 Kbyte  
Size  
16 Kbyte / 8 Kbyte  
8 Kbyte / -  
Instruction (P / E)  
Data (P / E)  
120 Kbyte / 32 Kbyte 2)  
SRAM  
Size TC1.6P  
(DSPR/PSPR)  
112 Kbyte / 24 Kbyte 1) 2)  
Size TC1.6E (DSPR/PSPR)  
Size LMU  
Channels  
Channels  
Converter  
Channels  
TIM  
32 Kbyte  
64  
DMA  
ADC  
48 + 12  
8
6
DSADC  
GTM  
4
3
TOM  
5 / 4  
1 / 1  
1
ATOM / MCS  
CMU / ICM  
PSM  
1
TBU  
2
SPE  
1 / 1  
1 / 1  
2
CMP / MON  
BRC / DPLL  
GPT12  
Timer  
2
CCU6  
3
STM  
Modules  
1
FlexRay  
Modules  
2
Channels  
Data Sheet  
5
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Summary of Features  
Table 1-1 Overview of TC27x Functions (cont’d)  
Feature  
4
CAN  
Nodes  
256  
Message Objects  
4
QSPI  
Channels  
4
ASCLIN  
I2C  
Interfaces  
1
Interfaces  
10  
SENT  
PSI5  
Channels  
3
Modules  
1
PSI5-S  
HSSL  
Modules  
1
Channels  
2
MSC  
Channels  
1
Ethernet  
ASIL  
Channels  
up to ASIL-D  
Level  
1
FCE  
Modules  
1
Safety support  
SMU  
1
IOM  
1
Security  
HSM  
Yes  
Embedded Voltage Regulator  
Embedded Voltage Regulator  
Embedded Voltage Regulator  
Low Power Feature  
Packages  
DCDC from 5 V / 3.3 V to 1.3 V  
Yes  
LDO from 5 V / 3.3 V to 1.3 V  
Yes  
Yes  
LDO from 5 V to 3.3 V  
Standby RAM  
Type  
LF-BGA-292-6 / PG-LQFP-176-22  
5 V CMOS / 3.3 V CMOS / LVDS  
40 … +125°C  
I/O  
Type  
Tambient  
Range  
1) Address range starts at lowest address defined in the User’s Manual. For reference see the Memory Maps chapter of the  
User’s Manual.  
2) To ensure the processor cores are provided with a constant stream of instructions the Instruction Fetch Units will  
speculatively fetch instructions from the up to 64 bytes ahead of the current PC.  
If the current PC is within 64 bytes of the top of an instruction memory the Instruction Fetch Unit may attempt to  
speculatively fetch instruction from beyond the physical range. This may then lead to error conditions and alarms being  
triggered by the bus and memory systems.  
It is therefore recommended that the upper 64 bytes of any memory be unused for instruction storage.  
Data Sheet  
6
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning Definitions  
2
Package and Pinning Definitions  
This chapter gives a pinning of the different packages of the TC270 / TC275 / TC277.  
Data Sheet  
7
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
2.1  
TC275x Pin Definition and Functions: LQFP176  
Figure 2-1 is showing the TC275x Logic Symbol for the package variant: QFP176.  
P02.0  
1
132  
131  
130  
129  
P20. 14  
P20. 13  
P20. 12  
P20. 11  
P02.1  
P02.2  
P02.3  
P02.4  
2
3
4
5
128  
127  
126  
125  
P20. 10  
P20. 9  
P20. 8  
P20. 7  
P02.5  
P02.6  
P02.7  
P02.8  
6
7
8
9
124  
123  
122  
121  
P20. 6  
VDD  
ESR0  
PORST  
V
DD/VDDSB  
P00.0  
P00.1  
P00.2  
10  
11  
12  
13  
120  
119  
118  
117  
ESR1  
P20. 3  
P20. 2 / TESTMODE  
P20. 1  
P20. 0  
P00.3  
P00.4  
P00.5  
P00.6  
14  
15  
16  
17  
116  
115  
114  
113  
P00.7  
P00.8  
P00.9  
18  
19  
20  
21  
TCK  
TRST  
P21. 7 / TDO  
TMS  
P00.10  
112  
111  
110  
109  
P00.11  
P00.12  
VDD  
VEXT  
VAREF2  
22  
23  
24  
25  
26  
P21. 6 / TDI  
P21. 5  
P21. 4  
TC27x  
P21. 3  
108  
107  
106  
105  
104  
P21. 2  
P21. 1  
P21. 0  
VAGND  
2
27  
28  
29  
30  
AN47  
AN46  
AN45  
VDDP  
3
103  
102  
101  
100  
XTAL2  
XTAL1  
VSS  
AN44  
AN39  
AN38  
AN37  
31  
32  
33  
34  
VDD  
99  
98  
97  
96  
VEXT  
AN36  
AN35  
AN33  
AN32  
35  
36  
37  
38  
P22. 3  
P22. 2  
P22. 1  
95  
94  
93  
92  
P22. 0  
P23. 5  
P23. 4  
P23. 3  
P23. 2  
AN29  
AN28  
AN27  
AN26  
39  
40  
41  
42  
91  
90  
89  
AN25  
AN24  
43  
44  
P23. 1  
P23. 0  
Figure 2-1 TC275x Logic Symbol for the package variant LQFP176.  
Data Sheet  
8
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
2.1.1  
TC275x LQFP176 Package Variant Pin Configuration'  
Table 2-1 Port 00 Functions  
Pin  
11  
Symbol  
P00.0  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN9  
CTRAPA  
T12HRE  
INJ00  
CCU61 input  
CCU60 input  
MSC0 input  
CIFD9  
P00.0  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT9  
ASCLK3  
ATX3  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
TXDCAN1  
CAN node 1 output  
Reserved  
COUT63  
ETHMDIOA  
CCU60 output  
ETH input/output  
HWOU  
T
12  
P00.1  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN10  
ARX3E  
RXDCAN1D  
PSIRX0A  
SENT0B  
CC60INB  
CC60INA  
DSCIN5A  
DS5NA  
VADCG7.5  
CIFD10  
P00.1  
ASCLIN3 input  
CAN node 1 input  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 5 input A  
DSADC negative analog input of channel 5, pin A  
VADC analog input channel 5 of group 7  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT10  
ATX3  
ASCLIN3 output  
Reserved  
DSCOUT5  
DSADC channel 5 output  
Reserved  
SPC0  
SENT output  
CC60  
CCU61 output  
Data Sheet  
9
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
13  
Symbol  
P00.2  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN11  
SENT1B  
DSDIN5A  
DS5PA  
VADCG7.4  
CIFD11  
P00.2  
SENT input  
DSADC channel 5 input A  
DSADC positive analog input of channel 5, pin A  
VADC analog input channel 4 of group 7  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT11  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
TXDCAN3  
PSI5 output  
CAN node 3 output  
Reserved  
COUT60  
P00.3  
CCU61 output  
14  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN12  
RXDCAN3A  
PSIRX1A  
PSISRXA  
SENT2B  
CC61INB  
CC61INA  
DSCIN3A  
VADCG7.3  
DSITR5F  
CIFD12  
P00.3  
CAN node 3 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 3 input A  
VADC analog input channel 3 of group 7  
DSADC channel 5 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT12  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT3  
DSADC channel 3 output  
Reserved  
SPC2  
SENT output  
CC61  
CCU61 output  
Data Sheet  
10  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
15  
Symbol  
P00.4  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN13  
REQ7  
SCU input  
SENT3B  
DSDIN3A  
DSSGNA  
VADCG7.2  
CIFD13  
P00.4  
SENT input  
DSADC channel 3 input A  
DSADC input  
VADC analog input channel 2 of group 7 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT13  
PSISTX  
PSI5-S output  
Reserved  
PSITX1  
VADCG4BFL0  
SPC3  
PSI5 output  
VADC output  
SENT output  
COUT61  
P00.5  
CCU61 output  
16  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN14  
PSIRX2A  
SENT4B  
CC62INB  
CC62INA  
DSCIN2A  
VADCG7.1  
CIFD14  
P00.5  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 2 input A  
VADC analog input channel 1 of group 7 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT14  
DSCGPWMN  
DSADC output  
Reserved  
DSCOUT2  
VADCG4BFL1  
SPC4  
DSADC channel 2 output  
VADC output  
SENT output  
CC62  
CCU61 output  
Data Sheet  
11  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
17  
Symbol  
P00.6  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN15  
SENT5B  
DSDIN2A  
VADCG7.0  
DSITR4F  
CIFD15  
SENT input  
DSADC channel 2 input A  
VADC analog input channel 0 of group 7  
DSADC channel 4 input F  
CIF input  
P00.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT15  
DSCGPWMP  
VADCG4BFL2  
PSITX2  
DSADC output  
VADC output  
PSI5 output  
VADCEMUX10  
SPC5  
VADC output  
SENT output  
COUT62  
P00.7  
CCU61 output  
18  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN16  
SENT6B  
CC60INC  
CCPOS0A  
T12HRB  
T2INA  
SENT input  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
DSCIN4A  
DS4NA  
DSADC channel 4 input A  
DSADC negative analog input of channel 4, pin A  
VADC analog input channel 5 of group 6  
CIF input  
VADCG6.5  
CIFCLK  
P00.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT16  
Reserved  
VADCG4BFL3  
DSCOUT4  
VADCEMUX11  
SPC6  
VADC output  
DSADC channel 4 output  
VADC output  
SENT output  
CC60  
CCU61 output  
Data Sheet  
12  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
19  
Symbol  
P00.8  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN17  
SENT7B  
CC61INC  
CCPOS1A  
T13HRB  
T2EUDA  
DSDIN4A  
DS4PA  
VADCG6.4  
CIFVSNC  
P00.8  
SENT input  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
DSADC channel 4 input A  
DSADC channel 4 input A  
VADC analog input channel 4 of group 6  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT17  
SLSO36  
QSPI3 output  
Reserved  
Reserved  
VADCEMUX12  
SPC7  
VADC output  
SENT output  
CC61  
CCU61 output  
Data Sheet  
13  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
20  
Symbol  
P00.9  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN18  
SENT8B  
CC62INC  
CCPOS2A  
T13HRC  
T12HRC  
T4EUDA  
DSCIN1A  
VADCG6.3  
DSITR3F  
CIFHSNC  
P00.9  
SENT input  
CCU61 input  
CCU61 input  
CCU60 input  
CCU60 input  
GPT120 input  
DSADC channel 1 input A  
VADC analog input channel 3 of group 6  
DSADC channel 3 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT18  
SLSO37  
ARTS3  
DSCOUT1  
QSPI3 output  
ASCLIN3 output  
DSADC channel 1 output  
Reserved  
SPC8  
SENT output  
CC62  
CCU61 output  
21  
P00.10  
TIN19  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT9B  
DSDIN1A  
VADCG6.2  
P00.10  
TOUT19  
SENT input  
DSADC channel 1 input A  
VADC analog input channel 2 of group 6 (MD)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
SPC9  
SENT output  
COUT63  
CCU61 output  
Data Sheet  
14  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
22  
Symbol  
P00.11  
TIN20  
CTRAPA  
T12HRE  
DSCIN0A  
VADCG6.1  
P00.11  
TOUT20  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CCU60 input  
CCU61 input  
DSADC channel 0 input A  
VADC analog input channel 1 of group 6 (MD)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
Reserved  
Reserved  
23  
P00.12  
TIN21  
ACTS3A  
DSDIN0A  
VADCG6.0  
P00.12  
TOUT21  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN3 input  
DSADC channel 0 input A  
VADC analog input channel 0 of group 6  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
Data Sheet  
15  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-2 Port 02 Functions  
Pin  
1
Symbol  
P02.0  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN0  
ARX2G  
REQ6  
ASCLIN2 input  
SCU input  
CC60INA  
CC60INB  
CIFD0  
P02.0  
CCU60 input  
CCU61 input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT0  
ATX2  
ASCLIN2 output  
QSPI3 output  
DSADC output  
CAN node 0 output  
ERAY output  
SLSO31  
DSCGPWMN  
TXDCAN0  
TXDA  
CC60  
CCU60 output  
2
P02.1  
LP / PU1 General-purpose input  
/ VEXT  
TIN1  
GTM input  
REQ14  
ARX2B  
RXDCAN0A  
RXDA2  
CIFD1  
P02.1  
SCU input  
ASCLIN2 input  
CAN node 0 input  
ERAY input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT1  
Reserved  
SLSO32  
DSCGPWMP  
QSPI3 output  
DSADC output  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
16  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
3
Symbol  
P02.2  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN2  
CC61INA  
CC61INB  
CIFD2  
CCU60 input  
CCU61 input  
CIF input  
P02.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT2  
ATX1  
ASCLIN1 output  
QSPI3 output  
PSI5 output  
SLSO33  
PSITX0  
TXDCAN2  
TXDB  
CAN node 2 output  
ERAY output  
CC61  
CCU60 output  
General-purpose input  
GTM input  
4
P02.3  
LP /  
PU1 /  
VEXT  
TIN3  
ARX1G  
RXDCAN2B  
RXDB2  
PSIRX0B  
DSCIN5B  
SDI11  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
PSI5 input  
DSADC channel 5 input B  
MSC1 input  
CIFD3  
CIF input  
P02.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT3  
ASLSO2  
SLSO34  
DSCOUT5  
ASCLIN2 output  
QSPI3 output  
DSADC channel 5 output  
Reserved  
Reserved  
COUT61  
CCU60 output  
Data Sheet  
17  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
5
Symbol  
P02.4  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN4  
SLSI3A  
ECTT1  
QSPI3 input  
TTCAN input  
RXDCAN0D  
CC62INA  
CC62INB  
DSDIN5B  
SDA0A  
CIFD4  
CAN node 0 input  
CCU60 input  
CCU61 input  
DSADC channel 5 input B  
I2C0 input  
CIF input  
P02.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT4  
ASCLK2  
SLSO30  
PSISCLK  
SDA0  
ASCLIN2 output  
QSPI3 output  
PSI5-S output  
I2C0 output  
TXENA  
CC62  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
6
P02.5  
MP+ /  
PU1 /  
VEXT  
TIN5  
MRST3A  
ECTT2  
QSPI3 input  
TTCAN input  
PSIRX1B  
PSISRXB  
SENT3C  
DSCIN4B  
SCL0A  
PSI5 input  
PSI5-S input  
SENT input  
DSADC channel 4 input B  
I2C0 input  
CIFD5  
CIF input  
P02.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT5  
TXDCAN0  
MRST3  
DSCOUT4  
SCL0  
CAN node 0 output  
QSPI3 output  
DSADC channel 4 output  
I2C0 output  
TXENB  
COUT62  
ERAY output  
CCU60 output  
Data Sheet  
18  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
7
Symbol  
P02.6  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN6  
MTSR3A  
SENT2C  
CC60INC  
CCPOS0A  
T12HRB  
T3INA  
QSPI3 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD6  
DSDIN4B  
DSITR5E  
P02.6  
DSADC channel 4 input B  
DSADC channel 5 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT6  
PSISTX  
MTSR3  
PSITX1  
VADCEMUX00  
PSI5-S output  
QSPI3 output  
PSI5 output  
VADC output  
Reserved  
CC60  
CCU60 output  
Data Sheet  
19  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
8
Symbol  
P02.7  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN7  
SCLK3A  
PSIRX2B  
SENT1C  
CC61INC  
CCPOS1A  
T13HRB  
T3EUDA  
CIFD7  
QSPI3 input  
PSI5 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
DSCIN3B  
DSITR4E  
P02.7  
DSADC channel 3 input B  
DSADC channel 4 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT7  
Reserved  
SCLK3  
QSPI3 output  
DSCOUT3  
VADCEMUX01  
SPC1  
DSADC channel 3 output  
VADC output  
SENT output  
CC61  
CCU60 output  
Data Sheet  
20  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
9
Symbol  
P02.8  
Ctrl  
Type  
Function  
I
LP / PU1 General-purpose input  
/
TIN8  
GTM input  
VEXT  
SENT0C  
CC62INC  
CCPOS2A  
T12HRC  
T13HRC  
T4INA  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD8  
DSDIN3B  
DSITR3E  
P02.8  
DSADC channel 3 input B  
DSADC channel 3 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT8  
SLSO35  
QSPI3 output  
Reserved  
PSITX2  
VADCEMUX02  
ETHMDC  
CC62  
PSI5 output  
VADC output  
ETH output  
CCU60 output  
Table 2-3 Port 10 Functions  
Pin  
168  
Symbol  
Ctrl  
Type  
Function  
P10.0  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN102  
T6EUDB  
GPT120 input  
General-purpose output  
GTM output  
P10.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT102  
Reserved  
SLSO110  
QSPI1 output  
Reserved  
VADCG6BFL0  
VADC output  
Reserved  
Reserved  
Data Sheet  
21  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-3 Port 10 Functions (cont’d)  
Pin  
169  
Symbol  
P10.1  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN103  
MRST1A  
T5EUDB  
P10.1  
QSPI1 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT103  
MTSR1  
MRST1  
EN01  
QSPI1 output  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG6BFL1  
END03  
170  
P10.2  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN104  
SCLK1A  
T6INB  
QSPI1 input  
GPT120 input  
SCU input  
REQ2  
RXDCAN2E  
SDI01  
CAN node 2 input  
MSC0 input  
P10.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT104  
Reserved  
SCLK1  
EN00  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG6BFL2  
END02  
Data Sheet  
22  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-3 Port 10 Functions (cont’d)  
Pin  
171  
Symbol  
P10.3  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN105  
MTSR1A  
REQ3  
QSPI1 input  
SCU input  
T5INB  
GPT120 input  
General-purpose output  
GTM output  
P10.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT105  
VADCG6BFL3  
MTSR1  
EN00  
VADC output  
QSPI1 output  
MSC0 output  
MSC0 output  
CAN node 2 output  
Reserved  
END02  
TXDCAN2  
172  
P10.4  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN106  
MTSR1C  
CCPOS0C  
T3INB  
QSPI1 input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
P10.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT106  
Reserved  
SLSO18  
MTSR1  
EN00  
QSPI1 output  
QSPI1 output  
MSC0 output  
MSC0 output  
Reserved  
END02  
173  
P10.5  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN107  
HWCFG4  
INJ01  
SCU input  
MSC0 input  
P10.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT107  
ATX2  
ASCLIN2 output  
QSPI3 output  
QSPI1 output  
GPT120 output  
ASCLIN2 output  
Reserved  
SLSO38  
SLSO19  
T6OUT  
ASLSO2  
-
Data Sheet  
23  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-3 Port 10 Functions (cont’d)  
Pin  
174  
Symbol  
P10.6  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN108  
ARX2D  
MTSR3B  
HWCFG5  
P10.6  
ASCLIN2 input  
QSPI3 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT108  
ASCLK2  
MTSR3  
T3OUT  
-
ASCLIN2 output  
QSPI3 output  
GPT120 output  
Reserved  
MRST1  
VADCG7BFL0  
P10.7  
QSPI1 output  
VADC output  
General-purpose input  
GTM input  
175  
LP /  
PU1 /  
VEXT  
TIN109  
ACTS2A  
MRST3B  
REQ4  
ASCLIN2 input  
QSPI3 input  
SCU input  
CCPOS1C  
T3EUDB  
P10.7  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT109  
Reserved  
MRST3  
VADCG7BFL1  
QSPI3 output  
VADC output  
Reserved  
Reserved  
Reserved  
Data Sheet  
24  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-3 Port 10 Functions (cont’d)  
Pin  
176  
Symbol  
P10.8  
TIN110  
SCLK3B  
REQ5  
CCPOS2C  
T4INB  
P10.8  
TOUT110  
ARTS2  
SCLK3  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI3 input  
SCU input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
Reserved  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Table 2-4 Port 11 Functions  
Pin  
160  
Symbol  
P11.2  
Ctrl  
Type  
Function  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN95  
P11.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT95  
END03  
SLSO05  
SLSO15  
EN01  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ETH output  
ETHTXD1  
COUT63  
CCU60 output  
Data Sheet  
25  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-4 Port 11 Functions (cont’d)  
Pin  
161  
Symbol  
P11.3  
Ctrl  
Type  
Function  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN96  
MRST1B  
SDI03  
P11.3  
QSPI1 input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT96  
Reserved  
MRST1  
TXDA  
QSPI1 output  
ERAY output  
Reserved  
ETHTXD0  
COUT62  
P11.6  
ETH output  
CCU60 output  
General-purpose input  
GTM input  
162  
MPR /  
PU1 /  
VFLEX  
TIN97  
SCLK1B  
P11.6  
QSPI1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT97  
TXENB  
SCLK1  
TXENA  
FCLP0  
ETHTXEN  
COUT61  
P11.9  
ERAY output  
QSPI1 output  
ERAY output  
MSC0 output  
ETH output  
CCU60 output  
General-purpose input  
GTM input  
163  
MP+ /  
PU1 /  
VFLEX  
TIN98  
MTSR1B  
RXDA1  
ETHRXD1  
P11.9  
QSPI1 input  
ERAY input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT98  
Reserved  
MTSR1  
QSPI1 output  
Reserved  
SOP0  
MSC0 output  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
26  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-4 Port 11 Functions (cont’d)  
Pin  
165  
Symbol  
P11.10  
TIN99  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
REQ12  
ARX1E  
SLSI1A  
RXDCAN3D  
RXDB1  
ETHRXD0  
SDI00  
SCU input  
ASCLIN1 input  
QSPI1 input  
CAN node 3 input  
ERAY input  
ETH input  
MSC0 input  
P11.10  
TOUT99  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO03  
SLSO13  
QSPI0 output  
QSPI1 output  
Reserved  
Reserved  
CC62  
CCU60 output  
General-purpose input  
GTM input  
166  
P11.11  
TIN100  
ETHCRSDVA  
ETHRXDVA  
ETHCRSB  
P11.11  
TOUT100  
END02  
SLSO04  
SLSO14  
EN00  
MP+ /  
PU1 /  
VFLEX  
ETH input  
ETH input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ERAY output  
CCU60 output  
TXENB  
CC61  
Data Sheet  
27  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-4 Port 11 Functions (cont’d)  
Pin  
167  
Symbol  
Ctrl  
Type  
Function  
P11.12  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN101  
ETHREFCLK  
ETHTXCLKB  
ETH input  
ETH input  
(Not for productive purposes)  
ETHRXCLKA  
ETH input  
(Not for productive purposes)  
P11.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT101  
ATX1  
ASCLIN1 output  
GTM output  
GTMCLK2  
TXDB  
ERAY output  
TXDCAN3  
EXTCLK1  
CC60  
CAN node 3 output  
SCU output  
CCU60 output  
Table 2-5 Port 13 Functions  
Pin  
156  
Symbol  
P13.0  
TIN91  
P13.0  
TOUT91  
END03  
SCLK2N  
EN01  
FCLN0  
FCLND0  
Ctrl  
Type  
Function  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
MSC0 output  
QSPI2 output (LVDS)  
MSC0 output  
MSC0 output (LVDS)  
MSC0 output (LVDS)  
Reserved  
157  
P13.1  
TIN92  
SCL0B  
P13.1  
TOUT92  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2P  
QSPI2 output (LVDS)  
Reserved  
FCLP0  
SCL0  
MSC0 output (LVDS)  
I2C0 output  
Reserved  
Data Sheet  
28  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-5 Port 13 Functions (cont’d)  
Pin  
158  
Symbol  
P13.2  
TIN93  
CAPINA  
SDA0B  
P13.2  
TOUT93  
Ctrl  
Type  
Function  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
GPT120 input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MTSR2N  
FCLP0  
SON0  
SDA0  
SOND0  
P13.3  
TIN94  
P13.3  
TOUT94  
QSPI2 output (LVDS)  
MSC0 output  
MSC0 output (LVDS)  
I2C0 output  
MSC0 output (LVDS)  
General-purpose input  
GTM input  
159  
LVDSM_P /  
PU1 /  
VEXT  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR2P  
QSPI2 output (LVDS)  
Reserved  
SOP0  
MSC0 output (LVDS)  
Reserved  
Reserved  
Table 2-6 Port 14 Functions  
Pin  
142  
Symbol  
P14.0  
Ctrl  
Type  
Function  
General-purpose input  
I
MP+ /  
PU1 /  
VEXT  
TIN80  
GTM input  
P14.0  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT80  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
TXDA  
O3  
O4  
O5  
ERAY output  
ERAY output  
TXDB  
TXDCAN1  
CAN node 1 output  
Used for single pin DAP (SPD) function.  
ASCLK0  
COUT62  
O6  
O7  
ASCLIN0 output  
CCU60 output  
Data Sheet  
29  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-6 Port 14 Functions (cont’d)  
Pin  
143  
Symbol  
P14.1  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN81  
REQ15  
ARX0A  
SCU input  
ASCLIN0 input  
Recommended as Boot loader pin.  
RXDCAN1B  
CAN node 1 input  
Used for single pin DAP (SPD) function.  
RXDA3  
RXDB3  
EVRWUPA  
P14.1  
TOUT81  
ATX0  
ERAY input  
ERAY input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN0 output  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
P14.2  
TIN82  
CCU60 output  
General-purpose input  
GTM input  
144  
LP /  
PU1 /  
VEXT  
HWCFG2  
EVR13  
SCU input  
Latched at cold power on reset to decide EVR13  
activation.  
P14.2  
TOUT82  
ATX2  
SLSO21  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI2 output  
Reserved  
Reserved  
ASCLK2  
ASCLIN2 output  
Reserved  
Data Sheet  
30  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-6 Port 14 Functions (cont’d)  
Pin  
145  
Symbol  
P14.3  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN83  
ARX2A  
REQ10  
HWCFG3_BMI  
SDI02  
ASCLIN2 input  
SCU input  
SCU input  
MSC0 input  
P14.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT83  
ATX2  
ASCLIN2 output  
QSPI2 output  
ASCLIN1 output  
ASCLIN3 output  
Reserved  
SLSO23  
ASLSO1  
ASLSO3  
Reserved  
146  
P14.4  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN84  
HWCFG6  
SCU input  
Latched at cold power on reset to decide default pad  
reset state (PU or HighZ).  
P14.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT84  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
31  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-6 Port 14 Functions (cont’d)  
Pin  
147  
Symbol  
P14.5  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN85  
HWCFG1  
EVR33  
SCU input  
Latched at cold power on reset to decide EVR33  
activation.  
P14.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT85  
Reserved  
Reserved  
Reserved  
TXDB  
ERAY output  
Reserved  
148  
P14.6  
TIN86  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG0  
DCLDO  
SCU input  
If EVR13 active, latched at cold power on reset to  
decide between LDO and SMPS mode.  
P14.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT86  
Reserved  
SLSO22  
QSPI2 output  
Reserved  
Reserved  
TXENB  
ERAY output  
Reserved  
149  
P14.7  
TIN87  
RXDB0  
P14.7  
TOUT87  
ARTS0  
SLSO24  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ERAY input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN0 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
32  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-6 Port 14 Functions (cont’d)  
Pin  
150  
Symbol  
P14.8  
TIN88  
ARX1D  
RXDCAN2D  
RXDA0  
P14.8  
TOUT88  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
151  
P14.9  
TIN89  
ACTS0A  
P14.9  
TOUT89  
END03  
EN01  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
MSC0 output  
MSC0 output  
Reserved  
TXENB  
TXENA  
ERAY output  
ERAY output  
Reserved  
152  
P14.10  
TIN90  
P14.10  
TOUT90  
END02  
EN00  
ATX1  
TXDCAN2  
TXDA  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
MSC0 output  
MSC0 output  
ASCLIN1 output  
CAN node 2 output  
ERAY output  
Reserved  
Data Sheet  
33  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-7 Port 15 Functions  
Pin  
133  
Symbol  
P15.0  
TIN71  
P15.0  
TOUT71  
ATX1  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
Reserved  
SLSO013  
TXDCAN2  
ASCLK1  
CAN node 2 output  
ASCLIN1 output  
Reserved  
134  
P15.1  
TIN72  
REQ16  
ARX1A  
RXDCAN2A  
SLSI2B  
EVRWUPB  
P15.1  
TOUT72  
ATX1  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCU input  
ASCLIN1 input  
CAN node 2 input  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
SLSO25  
Reserved  
Reserved  
Reserved  
135  
P15.2  
TIN73  
SLSI2A  
MRST2E  
P15.2  
TOUT73  
ATX0  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI2 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO20  
TXDCAN1  
ASCLK0  
CAN node 1 output  
ASCLIN0 output  
Reserved  
Data Sheet  
34  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-7 Port 15 Functions (cont’d)  
Pin  
136  
Symbol  
P15.3  
TIN74  
ARX0B  
SCLK2A  
RXDCAN1A  
P15.3  
TOUT74  
ATX0  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN0 input  
QSPI2 input  
CAN node 1 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ASCLIN0 output  
QSPI2 output  
MSC0 output  
MSC0 output  
Reserved  
SCLK2  
END03  
EN01  
Reserved  
137  
P15.4  
TIN75  
MRST2A  
REQ0  
SCL0C  
P15.4  
TOUT75  
ATX1  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
MRST2  
Reserved  
SCL0  
I2C0 output  
CC62  
CCU60 output  
Data Sheet  
35  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-7 Port 15 Functions (cont’d)  
Pin  
138  
Symbol  
P15.5  
TIN76  
ARX1B  
MTSR2A  
REQ13  
SDA0C  
P15.5  
TOUT76  
ATX1  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN1 input  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
MSC0 output  
MSC0 output  
I2C0 output  
MTSR2  
END02  
EN00  
SDA0  
CC61  
CCU60 output  
General-purpose input  
GTM input  
139  
P15.6  
TIN77  
MTSR2B  
P15.6  
TOUT77  
ATX3  
MP /  
PU1 /  
VEXT  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
MTSR2  
SCLK2  
ASCLK3  
CC60  
QSPI2 output  
ASCLIN3 output  
CCU60 output  
General-purpose input  
GTM input  
140  
P15.7  
TIN78  
ARX3A  
MRST2B  
P15.7  
TOUT78  
ATX3  
MP /  
PU1 /  
VEXT  
ASCLIN3 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
MRST2  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
36  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-7 Port 15 Functions (cont’d)  
Pin  
141  
Symbol  
P15.8  
TIN79  
SCLK2B  
REQ1  
P15.8  
TOUT79  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2  
QSPI2 output  
Reserved  
Reserved  
ASCLK3  
COUT61  
ASCLIN3 output  
CCU60 output  
Table 2-8 Port 20 Functions  
Pin  
116  
Symbol  
P20.0  
TIN59  
RXDCAN3C  
T6EUDA  
REQ9  
SYSCLK  
TGI0  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CAN node 3 input  
GPT120 input  
SCU input  
HSCT input  
OCDS input  
P20.0  
TOUT59  
ATX3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
ASCLK3  
SYSCLK  
HSCT output  
Reserved  
Reserved  
TGO0  
HWOU  
T
OCDS; ENx  
Data Sheet  
37  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
117  
Symbol  
Ctrl  
Type  
Function  
P20.1  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN60  
TGI1  
OCDS input  
General-purpose output  
GTM output  
Reserved  
P20.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT60  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TGO1  
HWOU  
T
OCDS; ENx  
118  
P20.2  
I
LP /  
General-purpose input  
PU /  
VEXT  
This pin is latched at power on reset release to enter  
test mode.  
TESTMODE  
OCDS input  
P20.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
General-purpose input  
GTM input  
119  
P20.3  
TIN61  
T6INA  
ARX3C  
P20.3  
TOUT61  
ATX3  
SLSO09  
SLSO29  
TXDCAN3  
LP /  
PU1 /  
VEXT  
GPT120 input  
ASCLIN3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
Reserved  
Reserved  
Data Sheet  
38  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
124  
Symbol  
P20.6  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN62  
P20.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT62  
ARTS1  
SLSO08  
SLSO28  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
Reserved  
WDT2LCK  
SCU output  
Reserved  
125  
P20.7  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN63  
ACTS1A  
RXDCAN0B  
P20.7  
ASCLIN1 input  
CAN node 0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT63  
Reserved  
Reserved  
Reserved  
Reserved  
WDT1LCK  
COUT63  
P20.8  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
126  
MP /  
PU1 /  
VEXT  
TIN64  
P20.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT64  
ASLSO1  
SLSO00  
SLSO10  
TXDCAN0  
WDT0LCK  
CC60  
ASCLIN1 output  
QSPI0 output  
QSPI1 output  
CAN node 0 output  
SCU output  
CCU61 output  
Data Sheet  
39  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
127  
Symbol  
P20.9  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN65  
ARX1C  
RXDCAN3E  
REQ11  
SLSI0B  
P20.9  
ASCLIN1 input  
CAN node 3 input  
SCU input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT65  
Reserved  
SLSO01  
SLSO11  
QSPI0 output  
QSPI1 output  
Reserved  
WDTSLCK  
CC61  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
128  
P20.10  
TIN66  
P20.10  
TOUT66  
ATX1  
MP /  
PU1 /  
VEXT  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
ASCLIN1 output  
CCU61 output  
General-purpose input  
GTM input  
SLSO06  
SLSO27  
TXDCAN3  
ASCLK1  
CC62  
129  
P20.11  
TIN67  
SCLK0A  
P20.11  
TOUT67  
MP /  
PU1 /  
VEXT  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU61 output  
Data Sheet  
40  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
130  
Symbol  
P20.12  
TIN68  
MRST0A  
P20.12  
TOUT68  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MRST0  
MTSR0  
QSPI0 output  
QSPI0 output  
Reserved  
Reserved  
COUT61  
P20.13  
TIN69  
SLSI0A  
P20.13  
TOUT69  
CCU61 output  
General-purpose input  
GTM input  
131  
MP /  
PU1 /  
VEXT  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO02  
SLSO12  
SCLK0  
QSPI0 output  
QSPI1 output  
QSPI0 output  
Reserved  
COUT62  
P20.14  
TIN70  
MTSR0A  
P20.14  
TOUT70  
CCU61 output  
General-purpose input  
GTM input  
132  
MP /  
PU1 /  
VEXT  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
41  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-9 Port 21 Functions  
Pin  
105  
Symbol  
Ctrl  
Type  
Function  
P21.0  
I
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
TIN51  
P21.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT51  
Reserved  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
HSM1  
HWOU  
T
HSM output 1  
106  
P21.1  
I
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
TIN52  
ETHMDIOB  
ETH input  
(Not for production purposes)  
P21.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
General-purpose output  
GTM output  
Reserved  
TOUT52  
Reserved  
Reserved  
Reserved  
ETHMDIO  
ETH output  
(Not for production purposes)  
O7  
Reserved  
HSM2  
HWOU  
T
HSM output 2  
Data Sheet  
42  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-9 Port 21 Functions (cont’d)  
Pin  
107  
Symbol  
P21.2  
TIN53  
MRST2CN  
MRST3FN  
ARX3GN  
EMGSTOPB  
RXDN  
P21.2  
TOUT53  
ASLSO3  
Ctrl  
Type  
Function  
I
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
ASCLIN3 input (LVDS)  
SCU input  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ASCLIN3 output  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Reserved  
108  
P21.3  
TIN54  
MRST2CP  
MRST3FP  
ARX3GP  
RXDP  
P21.3  
TOUT54  
LVDSH_P/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
ASCLIN3 input (LVDS)  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ETHMDIOD  
HWOU  
T
ETH input/output  
Data Sheet  
43  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-9 Port 21 Functions (cont’d)  
Pin  
109  
Symbol  
P21.4  
TIN55  
P21.4  
TOUT55  
Ctrl  
Type  
Function  
I
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
HSCT  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDN  
P21.5  
TIN56  
P21.5  
TOUT56  
ASCLK3  
HSCT output (LVDS)  
General-purpose input  
GTM input  
110  
LVDSH_P/  
PU1 /  
VDDP3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
HSCT  
I
General-purpose output  
GTM output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDP  
P21.6  
TIN57  
ARX3F  
TGI2  
TDI  
HSCT output (LVDS)  
General-purpose input  
GTM input  
1111)  
A2 /  
PU /  
VDDP3  
ASCLIN3 input  
OCDS input  
OCDS (JTAG) input  
GPT120 input  
General-purpose output  
GTM output  
T5EUDA  
P21.6  
TOUT57  
ASLSO3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
Reserved  
Reserved  
SYSCLK  
HSCT output  
Reserved  
T3OUT  
TGO2  
GPT120 output  
OCDS; ENx  
HWOU  
T
Data Sheet  
44  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-9 Port 21 Functions (cont’d)  
Pin  
113  
Symbol  
P21.7  
TIN58  
DAP2  
TGI3  
Ctrl  
Type  
Function  
I
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
OCDS input  
OCDS input  
TDO  
OCDS (JTAG) input  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ. In DAP mode this pin  
is used as P21.7 and controlled by the related  
port control logic  
ETHRXERB  
T5INA  
P21.7  
TOUT58  
ATX3  
ASCLK3  
ETH input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
T6OUT  
TGO3  
TDO  
GPT120 output  
OCDS; ENx  
HWOU  
T
OCDS (JTAG); ENx  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ. In DAP mode this pin  
is used as P21.7 and controlled by the related  
port control logic  
1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V)  
Data Sheet  
45  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-10 Port 22 Functions  
Pin  
95  
Symbol  
P22.0  
Ctrl  
Type  
Function  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN47  
MTSR3E  
P22.0  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT47  
ATX3N  
MTSR3  
SCLK3N  
FCLN1  
FCLND1  
ASCLIN3 output (LVDS)  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
96  
P22.1  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN48  
MRST3E  
P22.1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT48  
ATX3P  
MRST3  
SCLK3P  
FCLP1  
ASCLIN3 output (LVDS)  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
97  
P22.2  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN49  
SLSI3D  
P22.2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT49  
Reserved  
SLSO312  
MTSR3N  
SON1  
SOND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Data Sheet  
46  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-10 Port 22 Functions (cont’d)  
Pin  
98  
Symbol  
P22.3  
TIN50  
SCLK3E  
P22.3  
TOUT50  
Ctrl  
Type  
Function  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK3  
MTSR3P  
SOP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
Table 2-11 Port 23 Functions  
Pin  
89  
Symbol  
P23.0  
TIN41  
P23.0  
TOUT41  
Ctrl  
Type  
Function  
General-purpose input  
I
LP /  
PU1 /  
VEXT  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
90  
P23.1  
TIN42  
SDI10  
P23.1  
TOUT42  
ARTS1  
SLSO313  
GTMCLK0  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MSC1 input  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
GTM output  
Reserved  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
EXTCLK0  
SCU output  
Reserved  
Data Sheet  
47  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-11 Port 23 Functions (cont’d)  
Pin  
91  
Symbol  
Ctrl  
Type  
Function  
P23.2  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN43  
P23.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT43  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
92  
P23.3  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN44  
INJ10  
MSC1 input  
General-purpose output  
GTM output  
Reserved  
P23.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT44  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
93  
P23.4  
TIN45  
P23.4  
TOUT45  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO35  
END12  
EN10  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
Data Sheet  
48  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-11 Port 23 Functions (cont’d)  
Pin  
94  
Symbol  
P23.5  
TIN46  
P23.5  
TOUT46  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO34  
END13  
EN11  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
Table 2-12 Port 32 Functions  
Pin  
84  
Symbol  
P32.0  
Ctrl  
Type  
LP /  
Function  
I
General-purpose input  
EVR13 SMPS  
-> PD,  
GPIO - > PU  
/
TIN36  
GTM input  
PMU input  
FDEST  
VGATE1N  
SMPS mode: analog output. External Pass Device  
gate control for EVR13  
VEXT  
P32.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT36  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
86  
P32.2  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN38  
ARX3D  
ASCLIN3 input  
CAN node 3 input  
General-purpose output  
GTM output  
ASCLIN3 output  
Reserved  
RXDCAN3B  
P32.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT38  
ATX3  
Reserved  
Reserved  
DCDCSYNC  
SCU output  
Reserved  
Data Sheet  
49  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-12 Port 32 Functions (cont’d)  
Pin  
87  
Symbol  
P32.3  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN39  
P32.3  
TOUT39  
ATX3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
Reserved  
ASCLK3  
TXDCAN3  
ASCLIN3 output  
CAN node 3 output  
Reserved  
Reserved  
88  
P32.4  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN40  
ACTS1B  
SDI12  
P32.4  
TOUT40  
ASCLIN1 input  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
END12  
GTMCLK1  
EN10  
MSC1 output  
GTM output  
MSC1 output  
SCU output  
EXTCLK1  
COUT63  
CCU60 output  
Table 2-13 Port 33 Functions  
Pin  
70  
Symbol  
Ctrl  
Type  
Function  
P33.0  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN22  
DSITR0E  
DSADC channel 0 input E  
General-purpose output  
GTM output  
P33.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT22  
Reserved  
Reserved  
Reserved  
Reserved  
VADCG2BFL0  
VADC output  
Reserved  
Data Sheet  
50  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
71  
Symbol  
P33.1  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN23  
PSIRX0C  
SENT9C  
DSCIN2B  
DSITR1E  
P33.1  
PSI5 input  
SENT input  
DSADC channel 2 input B  
DSADC channel 1 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT23  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT2  
VADCEMUX02  
VADCG2BFL1  
DSADC channel 2 output  
VADC output  
VADC output  
Reserved  
72  
P33.2  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN24  
SENT8C  
DSDIN2B  
DSITR2E  
P33.2  
SENT input  
DSADC channel 2 input B  
DSADC channel 2 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT24  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
VADCEMUX01  
VADCG2BFL2  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
51  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
73  
Symbol  
P33.3  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN25  
PSIRX1C  
SENT7C  
DSCIN1B  
P33.3  
PSI5 input  
SENT input  
DSADC channel 1 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT25  
Reserved  
Reserved  
DSCOUT1  
VADCEMUX00  
VADCG2BFL3  
DSADC channel 1 output  
VADC output  
VADC output  
Reserved  
74  
P33.4  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN26  
SENT6C  
CTRAPC  
DSDIN1B  
DSITR0F  
P33.4  
SENT input  
CCU61 input  
DSADC channel 1 input B  
DSADC channel 0 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT26  
ARTS2  
ASCLIN2 output  
Reserved  
PSITX1  
VADCEMUX12  
VADCG0BFL0  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
52  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
75  
Symbol  
P33.5  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN27  
ACTS2B  
PSIRX2C  
PSISRXC  
SENT5C  
CCPOS2C  
T4EUDB  
DSCIN0B  
DSITR1F  
P33.5  
ASCLIN2 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 1 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT27  
SLSO07  
SLSO17  
DSCOUT0  
VADCEMUX11  
VADCG0BFL1  
QSPI0 output  
QSPI1 output  
DSADC channel 0 output  
VADC output  
VADC output  
Reserved  
76  
P33.6  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN28  
SENT4C  
CCPOS1C  
T2EUDB  
DSDIN0B  
DSITR2F  
P33.6  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 2 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT28  
ASLSO2  
-
ASCLIN2 output  
Reserved  
PSITX2  
PSI5 output  
VADCEMUX10  
VADCG1BFL0  
PSISTX  
VADC output  
VADC output  
PSI5-S output  
Data Sheet  
53  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
77  
Symbol  
P33.7  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN29  
RXDCAN0E  
REQ8  
CAN node 0 input  
SCU input  
CCPOS0C  
T2INB  
CCU61 input  
GPT120 input  
General-purpose output  
GTM output  
P33.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT29  
ASCLK2  
SLSO37  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
VADCG1BFL1  
VADC output  
Reserved  
78  
P33.8  
MP /  
HighZ/  
VEXT  
General-purpose input  
GTM input  
TIN30  
ARX2E  
EMGSTOPA  
P33.8  
ASCLIN2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT30  
ATX2  
ASCLIN2 output  
QSPI3 output  
Reserved  
SLSO32  
TXDCAN0  
CAN node 0 output  
Reserved  
COUT62  
SMUFSP  
CCU61 output  
SMU  
HWOU  
T
79  
P33.9  
TIN31  
P33.9  
TOUT31  
ATX2  
SLSO31  
ASCLK2  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
ASCLIN2 output  
Reserved  
Reserved  
CC62  
CCU61 output  
Data Sheet  
54  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
80  
Symbol  
P33.10  
TIN32  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3C  
P33.10  
TOUT32  
SLSO16  
SLSO311  
ASLSO1  
PSISCLK  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
QSPI1 output  
QSPI3 output  
ASCLIN1 output  
PSI5-S output  
Reserved  
COUT61  
P33.11  
TIN33  
CCU61 output  
General-purpose input  
GTM input  
81  
MP /  
PU1 /  
VEXT  
SCLK3D  
P33.11  
TOUT33  
ASCLK1  
SCLK3  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
Reserved  
Reserved  
DSCGPWMN  
CC61  
DSADC output  
CCU61 output  
General-purpose input  
GTM input  
82  
P33.12  
TIN34  
MP /  
PU1 /  
VEXT  
MTSR3D  
P33.12  
TOUT34  
ATX1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
ASCLIN1 output  
Reserved  
MTSR3  
ASCLK1  
DSCGPWMP  
COUT60  
DSADC output  
CCU61 output  
Data Sheet  
55  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
83  
Symbol  
P33.13  
TIN35  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1F  
MRST3D  
DSSGNB  
INJ11  
ASCLIN1 input  
QSPI3 input  
DSADC input  
MSC1 input  
P33.13  
TOUT35  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
QSPI2 output  
Reserved  
MRST3  
SLSO26  
DCDCSYNC  
CC60  
SCU output  
CCU61 output  
Table 2-14 Port 40 Functions  
Pin  
44  
Symbol  
P40.0  
Ctrl  
Type  
Function  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 0 of group 3  
VADCG3.0  
DS2PB  
DSADC: positive analog input channe of DSADC 2, pin  
B
CCPOS0D  
SENT0A  
P40.1  
CCU60 input  
SENT input  
43  
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 1 of group 3 (MD)  
DSADC: negative analog of input channel 2, pin B  
CCU60 input  
VADCG3.1  
DS2NB  
CCPOS1B  
SENT1A  
P40.2  
SENT input  
42  
41  
I
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 2 of group 3 (MD)  
CCU60 input  
VADCG3.2  
CCPOS1D  
SENT2A  
P40.3  
SENT input  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 3 of group 3  
CCU60 input  
VADCG3.3  
CCPOS2B  
SENT3A  
SENT input  
Data Sheet  
56  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-14 Port 40 Functions (cont’d)  
Pin  
38  
Symbol  
P40.4  
Ctrl  
Type  
Function  
I
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG4.0  
CCPOS2D  
SENT4A  
P40.5  
VADC analog input channel 0 of group 4  
CCU60 input  
SENT input  
37  
35  
I
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADCG4.1  
CCPOS0D  
SENT5A  
P40.6  
VADC analog input channel 1 of group 4 (MD)  
CCU61 input  
SENT input  
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG4.4  
DS3PA  
VADC analog input channel 4 of group 4  
DSADC: positive analog input of channel 3, pin A  
CCU61 input  
CCPOS1B  
SENT6A  
P40.7  
SENT input  
34  
33  
32  
I
I
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADCG4.5  
DS3NA  
VADC analog input channel 5 of group 4  
DSADC: negative analog input of channel 3, pin A  
CCU61 input  
CCPOS1D  
SENT7A  
P40.8  
SENT input  
S /  
HighZ /  
VDDM  
General-purpose input  
VADCG4.6  
DS3PB  
VADC analog input channel 6 of group 4  
DSADC: positive analog input of channel 3, pin B  
CCU61 input  
CCPOS2B  
SENT8A  
P40.9  
SENT input  
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG4.7  
DS3NB  
VADC analog input channel 7 of group 4  
DSADC: negative analog input of channel 3, pin B  
CCU61 input  
CCPOS2D  
SENT9A  
SENT input  
Table 2-15 Analog Inputs  
Pin  
67  
Symbol  
AN0  
Ctrl  
Type  
Function  
I
D /  
Analog input 0  
HighZ /  
VDDM  
VADCG0.0  
DS1PA  
AN1  
VADC analog input channel 0 of group 0  
DSADC: positive analog of input channel 1, pin A  
Analog input 1  
66  
I
D /  
HighZ /  
VDDM  
VADCG0.1  
DS1NA  
VADC analog input channel 1 of group 0 (MD)  
DSADC: negative analog input of channel 1, pin A  
Data Sheet  
57  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-15 Analog Inputs (cont’d)  
Pin  
65  
Symbol  
AN2  
Ctrl  
Type  
Function  
I
D /  
Analog input 2  
HighZ /  
VDDM  
VADCG0.2  
DS0PA  
AN3  
VADC analog input channel 2 of group 0 (MD)  
DSADC: positive analog input of channel 0, pin A  
Analog input 3  
64  
I
D /  
HighZ /  
VDDM  
VADCG0.3  
DS0NA  
AN4  
VADC analog input channel 3 of group 0  
DSADC: negative analog input of channel 0, pin A  
Analog input 4  
63  
62  
61  
60  
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG0.4  
VADC analog input channel 4 of group 0  
AN5  
D /  
HighZ /  
VDDM  
Analog input 5  
VADCG0.5  
VADC analog input channel 5 of group 0  
AN6  
D /  
HighZ /  
VDDM  
Analog input 6  
VADCG0.6  
VADC analog input channel 6 of group 0  
AN7  
D /  
Analog input 7  
HighZ /  
VDDM  
VADCG0.7  
VADC analog input channel 7 of group 0 (with pull  
down diagnostics)  
59  
58  
57  
AN8  
I
I
I
D /  
HighZ /  
VDDM  
Analog input 8  
VADCG1.0  
VADC analog input channel 0 of group 1  
AN10  
D /  
HighZ /  
VDDM  
Analog input 10  
VADCG1.2  
VADC analog input channel 2 of group 1 (MD)  
AN11  
D /  
Analog input 11  
HighZ /  
VDDM  
VADCG1.3  
VADC analog input channel 3 of group 1 (with pull  
down diagnostics)  
56  
55  
50  
49  
48  
AN12  
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 12  
VADCG1.4  
VADC analog input channel 4 of group 1  
AN13  
D /  
HighZ /  
VDDM  
Analog input 13  
VADCG1.5  
VADC analog input channel 5 of group 1  
AN16  
D /  
HighZ /  
VDDM  
Analog input 16  
VADCG2.0  
VADC analog input channel 0 of group 2  
AN17  
D /  
HighZ /  
VDDM  
Analog input 17  
VADCG2.1  
VADC analog input channel 1 of group 2 (MD)  
AN18  
D /  
Analog input 18  
HighZ /  
VDDM  
VADCG2.2  
VADC analog input channel 2 of group 2 (MD)  
Data Sheet  
58  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-15 Analog Inputs (cont’d)  
Pin  
47  
Symbol  
AN19  
Ctrl  
Type  
Function  
I
D /  
Analog input 19  
HighZ /  
VDDM  
VADCG2.3  
VADC analog input channel 3 of group 2 (with pull  
down diagnostics)  
46  
45  
AN20  
I
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 20  
VADCG2.4  
DS2PA  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 2, pin A  
Analog input 21  
AN21  
D /  
HighZ /  
VDDM  
VADCG2.5  
DS2NA  
VADC analog input channel 5 of group 2  
DSADC: negative analog input of channel  
of DSADC 2, pin A  
44  
43  
AN24  
I
S /  
HighZ /  
VDDM  
Analog input 24  
VADCG3.0  
DS2PB  
VADC analog input channel 0 of group 3  
DSADC: positive analog input of channel 2, pin B  
SENT input channel 0, pin A  
SENT0A  
AN25  
I
S /  
Analog input 24  
HighZ /  
VDDM  
VADCG3.1  
DS2NB  
VADC analog input channel 1 of group 3 (MD)  
DSADC: negative analog input of channel 2, pin B  
SENT input channel 1, pin A  
SENT1A  
AN26  
42  
41  
I
I
S /  
HighZ /  
VDDM  
Analog input 26  
VADCG3.2  
SENT2A  
AN27  
VADC analog input channel 2 of group 3 (MD)  
SENT input channel 2, pin A  
S /  
Analog input 27  
HighZ /  
VDDM  
VADCG3.3  
VADC analog input channel 3 of group 3 (with pull  
down diagnostics)  
SENT3A  
AN28  
SENT input channel 3, pin A  
Analog input 28  
40  
39  
38  
I
I
I
D /  
HighZ /  
VDDM  
VADCG3.4  
VADC analog input channel 4 of group 3  
AN29  
D /  
HighZ /  
VDDM  
Analog input 29  
VADCG3.5  
VADC analog input channel 5 of group 3  
AN32  
S /  
Analog input 32  
HighZ /  
VDDM  
VADCG4.0  
SENT4A  
AN33  
VADC analog input channel 0 of group 4  
SENT input channel 4, pin A  
Analog input 33  
37  
36  
I
I
S /  
HighZ /  
VDDM  
VADCG4.1  
SENT5A  
AN35  
VADC analog input channel 1 of group 4 (MD)  
SENT input channel 5, pin A  
Analog input 35  
D /  
HighZ /  
VDDM  
VADCG4.3  
VADC analog input channel 3 of group 4 (with pull  
down diagnostics)  
Data Sheet  
59  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-15 Analog Inputs (cont’d)  
Pin  
35  
Symbol  
AN36  
Ctrl  
Type  
Function  
I
S /  
Analog input 34  
HighZ /  
VDDM  
VADCG4.4  
DS3PA  
VADC analog input channel 4 of group 4  
DSADC: positive analog input of channel  
of DSADC 3, pin A  
SENT6A  
AN37  
SENT input channel 6, pin A  
Analog input 37  
34  
33  
32  
I
I
I
S /  
HighZ /  
VDDM  
VADCG4.5  
DS3NA  
VADC analog input channel 5 of group 4  
DSADC: negative analog input of channel  
of DSADC 3, pin A  
SENT7A  
AN38  
SENT input channel 7, pin A  
Analog input 38  
S /  
HighZ /  
VDDM  
VADCG4.6  
DS3PB  
VADC analog input channel 6 of group 4  
DSADC: positive analog input of channel  
of DSADC 3, pin B  
SENT8A  
AN39  
SENT input channel 8, pin A  
Analog input 39  
S /  
HighZ /  
VDDM  
VADCG4.7  
DS3NB  
VADC analog input channel 7 of group 4  
DSADC: negative analog input of channel  
of DSADC 3, pin B  
SENT9A  
AN44  
SENT input channel 9, pin A  
Analog input 44  
31  
30  
29  
28  
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG5.4  
DS3PC  
VADC analog input channel 4 of group 5  
DSADC: positive analog input of channel  
of DSADC 3, pin C  
AN45  
D /  
HighZ /  
VDDM  
Analog input 45  
VADCG5.5  
DS3NC  
VADC analog input channel 5 of group 5  
DSADC: negative analog input of channel  
of DSADC 3, pin C  
AN46  
D /  
HighZ /  
VDDM  
Analog input 46  
VADCG5.6  
DS3PD  
VADC analog input channel 6 of group 5  
DSADC: positive analog input of channel  
of DSADC 3, pin D  
AN47  
D /  
Analog input 47  
HighZ /  
VDDM  
VADCG5.7  
DS3ND  
VADC analog input channel 7 of group 5  
DSADC: negative analog input of channel  
of DSADC 3, pin D  
Data Sheet  
60  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-16 System I/O  
Pin  
121  
Symbol  
Ctrl  
Type  
Function  
PORST  
I
I /  
Power On Reset Input  
PD /  
VEXT  
Additional strong PD in case of power fail.  
122  
ESR0  
I/O  
MP /  
OD /  
VEXT  
External System Request Reset 0  
Default configuration during and after reset is open-  
drain driver. The driver drives low during power-on  
reset. This is valid additionally after deactivation of  
PORST until the internal reset phase has finished. See  
also SCU chapter for details.  
Default after power-on can be different. See also SCU  
chapter ´Reset Control Unit´ and SCU_IOCR register  
description.  
EVRWUP  
ESR1  
I
EVR Wakeup Pin  
120  
85  
I/O  
MP / PU1 / External System Request Reset 1  
VEXT  
Default NMI function.  
See also SCU chapter ´Reset Control Unit´ and  
SCU_IOCR register description.  
EVRWUP  
VGATE1P  
I
EVR Wakeup Pin  
O
VGATE1P External Pass Device gate control for EVR13  
/
- /  
VEXT  
112  
114  
115  
102  
103  
TMS  
I
A2 /  
PD /  
VDDP3  
JTAG Module State Machine Control Input  
Device Access Port Line 1  
DAP1  
I/O  
TRST  
I
A2 /  
PD /  
VDDP3  
JTAG Module Reset/Enable Input  
TCK  
I
I
A2 /  
PD /  
VDDP3  
JTAG Module Clock Input  
Device Access Port Line 0  
DAP0  
XTAL1  
XTAL2  
I
XTAL1 /  
- /  
VDDP3  
Main Oscillator/PLL/Clock Generator Input  
O
XTAL2 /  
- /  
Main Oscillator/PLL/Clock Generator Output  
VDDP3  
Table 2-17 Supply  
Pin  
52  
Symbol  
Ctrl  
Type  
Vx  
Function  
VAREF1  
I
Positive Analog Reference Voltage 1  
51  
VAGND1  
I
Vx  
Negative Analog Reference Voltage 1  
Data Sheet  
61  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
Table 2-17 Supply (cont’d)  
Pin  
26  
Symbol  
Ctrl  
Type  
Vx  
Function  
VAREF2  
I
Positive Analog Reference Voltage 2  
27  
VAGND2  
VDDM  
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Negative Analog Reference Voltage 2  
ADC Analog Power Supply (3.3V / 5V)  
Digital Ground  
54  
101  
10  
VSS  
VDD / VDDSB  
Emulation Device: Emulation SRAM Standby Power  
Supply (1.3V) (Emulation Device only).  
Production Device: VDD (1.3V).  
123, 68,  
24  
VDD  
VDD  
I
I
Vx  
Vx  
Digital Core Power Supply (1.3V)  
100  
Digital Core Power Supply (1.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (1.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
153, 99,  
69, 25  
VEXT  
I
I
I
Vx  
Vx  
Vx  
External Power Supply (5V / 3.3V)  
154  
104  
VDDP3  
VDDP3  
Digital Power Supply for Flash (3.3V).  
Can be also used as external 3.3V Power Supply for  
VFLEX.  
Digital Power Supply for Oscillator, LVDSH and A2  
pads (3.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (3.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
155  
164  
53  
VDDFL3  
VFLEX  
VSSM  
I
I
I
Vx  
Vx  
Vx  
Flash Power Supply (3.3V)  
Digital Power Supply for Flex Port Pads  
(5V / 3.3V)  
Analog Ground for VDDM  
Legend:  
Column “Ctrl.”:  
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X000B  
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)  
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)  
Data Sheet  
62  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)  
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)  
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)  
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)  
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP+ (5V/3.3V, LVTTL)  
MPR = Pad class MPR (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)  
S = Pad class S (ADC overlayed with General Purpose Input)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)  
PD = with pull-down device connected during reset (PORST = 0)  
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)  
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode  
OD = open drain during reset (PORST = 0)  
HighZ = tri-state during reset (PORST = 0)  
PORST = PORST input pad  
XTAL1 = XTAL1 input pad  
XTAL2 = XTAL2 input pad  
VGATE1P = VGATE1P  
VGATE3P = VGATE3P  
Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground)  
NC = These pins are reserved for future extensions and shall not be connected externally  
NC1 = These pins are not connected on package level and will not be used for future extensions  
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
2.1.2  
Emergency Stop Function  
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input  
signal (EMGSTOPA or EMGSTOPB) into a defined state:  
Input state and  
PU or High-Z depending on HWCFG[6] level latched during PORST active  
Control of the Emergency Stop function:  
1)The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak  
internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General  
Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.  
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active  
during and after reset.  
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.  
Data Sheet  
63  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC275x Pin Definition and Functions:  
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop  
Control”)  
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see  
chapter “SCU”, “Emergency Stop Control”)  
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x  
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O  
Lines”, “Emergency Stop Register”).  
The Emergency Stop function is available for all GPIO Ports with the following exceptions:  
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)  
Not available for P40.x (analoge input ANx overlayed with GPI)  
Not available for P32.0 EVR13 SMPS mode.  
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)  
The Emergency Stop function can be overruled on the following GPIO Ports:  
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register  
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)  
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).  
No Overruling in the DXCM (Debug over can message) mode  
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI  
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode  
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI  
2.1.3  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 2-18 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2)Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case  
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
Data Sheet  
64  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
2.2  
TC277x Pin Definition and Functions: BGA292  
Figure 2-2 is showing the TC277x Logic Symbol for the package variant: BGA292.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Y
W
V
U
T
VSS  
P32.3  
P32.2  
P32.0 P33.13 P33.11  
P33.9  
P33.7  
P33.5  
P33.3  
P33.1  
AN5  
AN10 VAGND1 VAREF1 VDDM VSSM  
AN20  
AN21  
NC  
Y
W
V
U
T
VGATE1  
VEXT  
P23.0  
P23.2  
P23.4  
P22.2  
P22.0  
VDDP3  
VSS  
VEXT  
P23.1  
P23.3  
P22.3  
P22.1  
VDD  
P32.4  
P33.12 P33.10  
P
P33.8  
P33.6  
P33.4  
P33.2  
P33.0  
AN2  
AN8  
AN11  
AN13  
AN16  
AN18  
AN19  
AN24  
AN26  
AN28  
AN25  
AN27  
AN29  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
VSS  
P32.7  
P32.6  
P33.15  
P34.5  
P34.3  
P34.1  
AN1  
AN3  
AN7  
AN9  
AN14  
AN17  
NC  
U
T
U
P23.5  
P23.6  
P22.5  
P22.7  
P22.9  
VSS  
P32.5  
P33.14  
P34.4  
VDD  
P34.2 VEVRSB AN0  
AN4  
AN6  
AN12  
AN15  
AN22  
AN23  
AN34  
AN38  
AN40  
AN42  
AN30  
AN31  
AN32  
AN36  
AN41  
AN43  
VAGND2 VAREF2  
T
R
P
N
M
L
P23.7  
P22.4  
P22.6  
P22.8  
Top-View  
AN35  
AN37  
AN45  
AN47  
AN33  
AN39  
AN44  
AN46  
R
P
N
M
L
R
P
N
M
L
R
P
N
M
L
VSS  
(AGBT (AGBT  
TX0P)  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
TX0N)  
VSS  
VDD  
VSS  
VDD  
VSS  
XTAL1 XTAL2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
(AGBT  
ERR)  
VSS  
(AGBT  
CLKN)  
VSS  
TRST  
P21.2  
P21.3  
P20.2  
P20.1  
P20.7  
P22.11 P22.10  
VSS  
VSS  
VSS  
VSS  
P00.12 P00.11  
VSS  
(AGBT  
CLKP)  
NC  
(VDDPSB)  
K
J
P21.4  
P21.5  
P20.0  
P20.3  
P20.8  
P21.0  
P21.1  
P21.6  
TMS  
TCK  
P00.10 P00.8  
P00.9  
P00.5  
P00.3  
P00.1  
P02.7  
P02.5  
P02.3  
P02.1  
VSS  
P00.7  
P00.4  
P00.2  
P00.0  
P02.8  
P02.6  
P02.4  
P02.2  
P02.0  
K
J
K
J
K
J
VSS  
VDD  
VSS  
P01.7  
P01.5  
P01.3  
P00.6  
P01.6  
P01.4  
VDD  
(VDDSB)  
H
G
F
H
G
F
P21.7  
VSS  
VSS  
VSS  
VSS  
H
G
F
H
G
F
VDD  
(VDDSB)  
PORST ESR1  
VDD  
P20.6  
P20.9  
ESR0  
P02.10 P02.11  
E
D
C
B
A
P20.11 P20.10  
P20.13 P20.12  
E
D
VSS VDDFL3 P15.5  
P14.2  
P12.0  
P12.1  
P11.0  
P11.1  
P11.7  
P11.8  
P11.13  
VSS  
P02.9  
E
D
E
D
C
B
A
VSS VDDFL3 P15.7  
P15.8  
14  
P14.7  
13  
P14.9 P14.10 P11.4  
P11.6  
9
P11.5 P11.14 P11.15 VFLEX  
VSS  
4
17  
16  
15  
12  
11  
10  
8
7
6
5
P20.14  
P15.0  
P15.2  
VSS  
VDDP3 P15.3  
P14.0  
P14.4  
P14.3  
P14.6  
P13.0  
P13.2  
P11.3 P11.10 P11.12 P10.1  
P10.4  
P10.5  
P10.8  
VEXT  
VSS  
VDDP3 P15.1  
19 18  
P15.4  
P15.6  
P14.1  
P14.5  
P14.8  
P13.1  
P13.3  
P11.2  
P11.9 P11.11 P10.0  
P10.3  
P10.2  
P10.6  
P10.7  
VEXT  
NC  
20  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 2-2 TC277x Logic Symbol for the package variant BGA292.  
Data Sheet  
65  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
2.2.1  
TC277xBGA292 Package Variant Pin Configuration  
Table 2-19 Port 00 Functions  
Pin  
G1  
Symbol  
P00.0  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN9  
CTRAPA  
T12HRE  
INJ00  
CCU61 input  
CCU60 input  
MSC0 input  
CIFD9  
P00.0  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT9  
ASCLK3  
ATX3  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
TXDCAN1  
CAN node 1 output  
Reserved  
COUT63  
ETHMDIOA  
CCU60 output  
ETH input/output  
HWOU  
T
G2  
P00.1  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN10  
ARX3E  
RXDCAN1D  
PSIRX0A  
SENT0B  
CC60INB  
CC60INA  
DSCIN5A  
DS5NA  
VADCG7.5  
CIFD10  
P00.1  
ASCLIN3 input  
CAN node 1 input  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 5 input A  
DSADC negative analog input of channel 5, pin A  
VADC analog input channel 5 of group 7  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT10  
ATX3  
ASCLIN3 output  
Reserved  
DSCOUT5  
DSADC channel 5 output  
Reserved  
SPC0  
SENT output  
CC60  
CCU61 output  
Data Sheet  
66  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
H1  
Symbol  
P00.2  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN11  
SENT1B  
DSDIN5A  
DS5PA  
VADCG7.4  
CIFD11  
P00.2  
SENT input  
DSADC channel 5 input A  
DSADC positive analog input of channel 5, pin A  
VADC analog input channel 4 of group 7  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT11  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
TXDCAN3  
PSI5 output  
CAN node 3 output  
Reserved  
COUT60  
P00.3  
CCU61 output  
H2  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN12  
RXDCAN3A  
PSIRX1A  
PSISRXA  
SENT2B  
CC61INB  
CC61INA  
DSCIN3A  
VADCG7.3  
DSITR5F  
CIFD12  
P00.3  
CAN node 3 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 3 input A  
VADC analog input channel 3 of group 7  
DSADC channel 5 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT12  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT3  
DSADC channel 3 output  
Reserved  
SPC2  
SENT output  
CC61  
CCU61 output  
Data Sheet  
67  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
J1  
Symbol  
P00.4  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN13  
REQ7  
SCU input  
SENT3B  
DSDIN3A  
DSSGNA  
VADCG7.2  
CIFD13  
P00.4  
SENT input  
DSADC channel 3 input A  
DSADC input  
VADC analog input channel 2 of group 7 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT13  
PSISTX  
PSI5-S output  
Reserved  
PSITX1  
VADCG4BFL0  
SPC3  
PSI5 output  
VADC output  
SENT output  
COUT61  
P00.5  
CCU61 output  
J2  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN14  
PSIRX2A  
SENT4B  
CC62INB  
CC62INA  
DSCIN2A  
VADCG7.1  
CIFD14  
P00.5  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 2 input A  
VADC analog input channel 1 of group 7 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT14  
DSCGPWMN  
DSADC output  
Reserved  
DSCOUT2  
VADCG4BFL1  
SPC4  
DSADC channel 2 output  
VADC output  
SENT output  
CC62  
CCU61 output  
Data Sheet  
68  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
J4  
Symbol  
P00.6  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN15  
SENT5B  
DSDIN2A  
VADCG7.0  
DSITR4F  
CIFD15  
SENT input  
DSADC channel 2 input A  
VADC analog input channel 0 of group 7  
DSADC channel 4 input F  
CIF input  
P00.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT15  
DSCGPWMP  
VADCG4BFL2  
PSITX2  
DSADC output  
VADC output  
PSI5 output  
VADCEMUX10  
SPC5  
VADC output  
SENT output  
COUT62  
P00.7  
CCU61 output  
K1  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN16  
SENT6B  
CC60INC  
CCPOS0A  
T12HRB  
T2INA  
SENT input  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
DSCIN4A  
DS4NA  
DSADC channel 4 input A  
DSADC negative analog input of channel 4, pin A  
VADC analog input channel 5 of group 6  
CIF input  
VADCG6.5  
CIFCLK  
P00.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT16  
Reserved  
VADCG4BFL3  
DSCOUT4  
VADCEMUX11  
SPC6  
VADC output  
DSADC channel 4 output  
VADC output  
SENT output  
CC60  
CCU61 output  
Data Sheet  
69  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
K4  
Symbol  
P00.8  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN17  
SENT7B  
CC61INC  
CCPOS1A  
T13HRB  
T2EUDA  
DSDIN4A  
DS4PA  
VADCG6.4  
CIFVSNC  
P00.8  
SENT input  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
DSADC channel 4 input A  
DSADC channel 4 input A  
VADC analog input channel 4 of group 6  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT17  
SLSO36  
QSPI3 output  
Reserved  
Reserved  
VADCEMUX12  
SPC7  
VADC output  
SENT output  
CC61  
CCU61 output  
Data Sheet  
70  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
K2  
Symbol  
P00.9  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN18  
SENT8B  
CC62INC  
CCPOS2A  
T13HRC  
T12HRC  
T4EUDA  
DSCIN1A  
VADCG6.3  
DSITR3F  
CIFHSNC  
P00.9  
SENT input  
CCU61 input  
CCU61 input  
CCU60 input  
CCU60 input  
GPT120 input  
DSADC channel 1 input A  
VADC analog input channel 3 of group 6  
DSADC channel 3 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT18  
SLSO37  
ARTS3  
DSCOUT1  
QSPI3 output  
ASCLIN3 output  
DSADC channel 1 output  
Reserved  
SPC8  
SENT output  
CC62  
CCU61 output  
K5  
P00.10  
TIN19  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT9B  
DSDIN1A  
VADCG6.2  
P00.10  
TOUT19  
SENT input  
DSADC channel 1 input A  
VADC analog input channel 2 of group 6 (MD)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
SPC9  
SENT output  
COUT63  
CCU61 output  
Data Sheet  
71  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
L1  
Symbol  
P00.11  
TIN20  
CTRAPA  
T12HRE  
DSCIN0A  
VADCG6.1  
P00.11  
TOUT20  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CCU60 input  
CCU61 input  
DSADC channel 0 input A  
VADC analog input channel 1 of group 6 (MD)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
Reserved  
Reserved  
L2  
P00.12  
TIN21  
ACTS3A  
DSDIN0A  
VADCG6.0  
P00.12  
TOUT21  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN3 input  
DSADC channel 0 input A  
VADC analog input channel 0 of group 6  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
Data Sheet  
72  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-20 Port 01 Functions  
Pin  
G5  
Symbol  
Ctrl  
Type  
Function  
P01.3  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN111  
SLSI3B  
QSPI3 input  
General-purpose output  
GTM output  
P01.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT111  
Reserved  
Reserved  
SLSO39  
QSPI3 output  
CAN node 1 output  
Reserved  
TXDCAN1  
Reserved  
G4  
P01.4  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN112  
RXDCAN1C  
CAN node 1 input  
General-purpose output  
GTM output  
P01.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT112  
Reserved  
Reserved  
SLSO310  
QSPI3 output  
Reserved  
Reserved  
Reserved  
H5  
P01.5  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN113  
MRST3C  
QSPI3 input  
General-purpose output  
GTM output  
P01.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT113  
Reserved  
Reserved  
MRST3  
QSPI3 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
73  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-20 Port 01 Functions (cont’d)  
Pin  
H4  
Symbol  
Ctrl  
Type  
Function  
P01.6  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN114  
MTSR3C  
QSPI3 input  
General-purpose output  
GTM output  
Reserved  
P01.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT114  
Reserved  
MTSR3  
QSPI3 output  
Reserved  
Reserved  
Reserved  
J5  
P01.7  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN115  
SCLK3C  
QSPI3 input  
General-purpose output  
GTM output  
Reserved  
P01.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT115  
Reserved  
SCLK3  
QSPI3 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
74  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions  
Pin  
B1  
Symbol  
P02.0  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN0  
ARX2G  
REQ6  
ASCLIN2 input  
SCU input  
CC60INA  
CC60INB  
CIFD0  
P02.0  
CCU60 input  
CCU61 input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT0  
ATX2  
ASCLIN2 output  
QSPI3 output  
DSADC output  
CAN node 0 output  
ERAY output  
SLSO31  
DSCGPWMN  
TXDCAN0  
TXDA  
CC60  
CCU60 output  
C2  
P02.1  
LP / PU1 General-purpose input  
/ VEXT  
TIN1  
GTM input  
REQ14  
ARX2B  
RXDCAN0A  
RXDA2  
CIFD1  
P02.1  
SCU input  
ASCLIN2 input  
CAN node 0 input  
ERAY input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT1  
Reserved  
SLSO32  
DSCGPWMP  
QSPI3 output  
DSADC output  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
75  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions (cont’d)  
Pin  
C1  
Symbol  
P02.2  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN2  
CC61INA  
CC61INB  
CIFD2  
CCU60 input  
CCU61 input  
CIF input  
P02.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT2  
ATX1  
ASCLIN1 output  
QSPI3 output  
PSI5 output  
SLSO33  
PSITX0  
TXDCAN2  
TXDB  
CAN node 2 output  
ERAY output  
CC61  
CCU60 output  
General-purpose input  
GTM input  
D2  
P02.3  
LP /  
PU1 /  
VEXT  
TIN3  
ARX1G  
RXDCAN2B  
RXDB2  
PSIRX0B  
DSCIN5B  
SDI11  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
PSI5 input  
DSADC channel 5 input B  
MSC1 input  
CIFD3  
CIF input  
P02.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT3  
ASLSO2  
SLSO34  
DSCOUT5  
ASCLIN2 output  
QSPI3 output  
DSADC channel 5 output  
Reserved  
Reserved  
COUT61  
CCU60 output  
Data Sheet  
76  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions (cont’d)  
Pin  
D1  
Symbol  
P02.4  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN4  
SLSI3A  
ECTT1  
QSPI3 input  
TTCAN input  
RXDCAN0D  
CC62INA  
CC62INB  
DSDIN5B  
SDA0A  
CIFD4  
CAN node 0 input  
CCU60 input  
CCU61 input  
DSADC channel 5 input B  
I2C0 input  
CIF input  
P02.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT4  
ASCLK2  
SLSO30  
PSISCLK  
SDA0  
ASCLIN2 output  
QSPI3 output  
PSI5-S output  
I2C0 output  
TXENA  
CC62  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
E2  
P02.5  
MP+ /  
PU1 /  
VEXT  
TIN5  
MRST3A  
ECTT2  
QSPI3 input  
TTCAN input  
PSIRX1B  
PSISRXB  
SENT3C  
DSCIN4B  
SCL0A  
PSI5 input  
PSI5-S input  
SENT input  
DSADC channel 4 input B  
I2C0 input  
CIFD5  
CIF input  
P02.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT5  
TXDCAN0  
MRST3  
DSCOUT4  
SCL0  
CAN node 0 output  
QSPI3 output  
DSADC channel 4 output  
I2C0 output  
TXENB  
COUT62  
ERAY output  
CCU60 output  
Data Sheet  
77  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions (cont’d)  
Pin  
E1  
Symbol  
P02.6  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN6  
MTSR3A  
SENT2C  
CC60INC  
CCPOS0A  
T12HRB  
T3INA  
QSPI3 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD6  
DSDIN4B  
DSITR5E  
P02.6  
DSADC channel 4 input B  
DSADC channel 5 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT6  
PSISTX  
MTSR3  
PSITX1  
VADCEMUX00  
PSI5-S output  
QSPI3 output  
PSI5 output  
VADC output  
Reserved  
CC60  
CCU60 output  
Data Sheet  
78  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions (cont’d)  
Pin  
F2  
Symbol  
P02.7  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN7  
SCLK3A  
PSIRX2B  
SENT1C  
CC61INC  
CCPOS1A  
T13HRB  
T3EUDA  
CIFD7  
QSPI3 input  
PSI5 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
DSCIN3B  
DSITR4E  
P02.7  
DSADC channel 3 input B  
DSADC channel 4 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT7  
Reserved  
SCLK3  
QSPI3 output  
DSCOUT3  
VADCEMUX01  
SPC1  
DSADC channel 3 output  
VADC output  
SENT output  
CC61  
CCU60 output  
Data Sheet  
79  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions (cont’d)  
Pin  
F1  
Symbol  
P02.8  
Ctrl  
Type  
Function  
I
LP / PU1 General-purpose input  
/
TIN8  
GTM input  
VEXT  
SENT0C  
CC62INC  
CCPOS2A  
T12HRC  
T13HRC  
T4INA  
CIFD8  
DSDIN3B  
DSITR3E  
P02.8  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
CCU61 input  
GPT120 input  
CIF input  
DSADC channel 3 input B  
DSADC channel 3 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT8  
SLSO35  
QSPI3 output  
Reserved  
PSITX2  
VADCEMUX02  
ETHMDC  
CC62  
PSI5 output  
VADC output  
ETH output  
CCU60 output  
E4  
P02.9  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN116  
P02.9  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT116  
ATX2  
ASCLIN2 output  
Reserved  
Reserved  
TXDCAN1  
CAN node 1 output  
Reserved  
Reserved  
Data Sheet  
80  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-21 Port 02 Functions (cont’d)  
Pin  
F5  
Symbol  
Ctrl  
Type  
Function  
P02.10  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN117  
ARX2C  
ASCLIN2 input  
CAN node 1 input  
General-purpose output  
GTM output  
Reserved  
RXDCAN1E  
P02.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT117  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
F4  
P02.11  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN118  
P02.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT118  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 2-22 Port 10 Functions  
Pin  
A7  
Symbol  
Ctrl  
Type  
Function  
P10.0  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN102  
T6EUDB  
GPT120 input  
General-purpose output  
GTM output  
P10.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT102  
Reserved  
SLSO110  
QSPI1 output  
Reserved  
VADCG6BFL0  
VADC output  
Reserved  
Reserved  
Data Sheet  
81  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-22 Port 10 Functions (cont’d)  
Pin  
B7  
Symbol  
P10.1  
Ctrl  
Type  
Function  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN103  
MRST1A  
T5EUDB  
P10.1  
QSPI1 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT103  
MTSR1  
MRST1  
EN01  
QSPI1 output  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG6BFL1  
END03  
A5  
P10.2  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN104  
SCLK1A  
T6INB  
QSPI1 input  
GPT120 input  
SCU input  
REQ2  
RXDCAN2E  
SDI01  
CAN node 2 input  
MSC0 input  
P10.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT104  
Reserved  
SCLK1  
EN00  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG6BFL2  
END02  
Data Sheet  
82  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-22 Port 10 Functions (cont’d)  
Pin  
A6  
Symbol  
P10.3  
Ctrl  
Type  
Function  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN105  
MTSR1A  
REQ3  
QSPI1 input  
SCU input  
T5INB  
GPT120 input  
General-purpose output  
GTM output  
P10.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT105  
VADCG6BFL3  
MTSR1  
EN00  
VADC output  
QSPI1 output  
MSC0 output  
MSC0 output  
CAN node 2 output  
Reserved  
END02  
TXDCAN2  
B6  
P10.4  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN106  
MTSR1C  
CCPOS0C  
T3INB  
QSPI1 input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
P10.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT106  
Reserved  
SLSO18  
MTSR1  
EN00  
QSPI1 output  
QSPI1 output  
MSC0 output  
MSC0 output  
Reserved  
END02  
B5  
P10.5  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN107  
HWCFG4  
INJ01  
SCU input  
MSC0 input  
P10.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT107  
ATX2  
ASCLIN2 output  
QSPI3 output  
QSPI1 output  
GPT120 output  
ASCLIN2 output  
Reserved  
SLSO38  
SLSO19  
T6OUT  
ASLSO2  
-
Data Sheet  
83  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-22 Port 10 Functions (cont’d)  
Pin  
A4  
Symbol  
P10.6  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN108  
ARX2D  
MTSR3B  
HWCFG5  
P10.6  
ASCLIN2 input  
QSPI3 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT108  
ASCLK2  
MTSR3  
T3OUT  
-
ASCLIN2 output  
QSPI3 output  
GPT120 output  
Reserved  
MRST1  
VADCG7BFL0  
P10.7  
QSPI1 output  
VADC output  
General-purpose input  
GTM input  
A3  
LP /  
PU1 /  
VEXT  
TIN109  
ACTS2A  
MRST3B  
REQ4  
ASCLIN2 input  
QSPI3 input  
SCU input  
CCPOS1C  
T3EUDB  
P10.7  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT109  
Reserved  
MRST3  
VADCG7BFL1  
QSPI3 output  
VADC output  
Reserved  
Reserved  
Reserved  
Data Sheet  
84  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-22 Port 10 Functions (cont’d)  
Pin  
B4  
Symbol  
P10.8  
TIN110  
SCLK3B  
REQ5  
CCPOS2C  
T4INB  
P10.8  
TOUT110  
ARTS2  
SCLK3  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI3 input  
SCU input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
Reserved  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Table 2-23 Port 11 Functions  
Pin  
Symbol  
P11.0  
TIN119  
ARX3B  
P11.0  
TOUT119  
ATX3  
Ctrl  
Type  
Function  
E10  
I
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
ASCLIN3 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
ETHTXD3  
ETH output  
Reserved  
E9  
P11.1  
TIN120  
P11.1  
TOUT120  
ASCLK3  
ATX3  
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
Reserved  
ETHTXD2  
ETH output  
Reserved  
Data Sheet  
85  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-23 Port 11 Functions (cont’d)  
Pin  
Symbol  
P11.2  
Ctrl  
Type  
Function  
A10  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN95  
P11.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT95  
END03  
SLSO05  
SLSO15  
EN01  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ETH output  
ETHTXD1  
COUT63  
P11.3  
CCU60 output  
General-purpose input  
GTM input  
B10  
MPR /  
PU1 /  
VFLEX  
TIN96  
MRST1B  
SDI03  
P11.3  
QSPI1 input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT96  
Reserved  
MRST1  
TXDA  
QSPI1 output  
ERAY output  
Reserved  
ETHTXD0  
COUT62  
P11.4  
ETH output  
CCU60 output  
General-purpose input  
GTM input  
D10  
MP+ /  
PU1 /  
VFLEX  
TIN121  
ETHRXCLKB  
P11.4  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT121  
ASCLK3  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
ETHTXER  
ETH output  
Reserved  
Data Sheet  
86  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-23 Port 11 Functions (cont’d)  
Pin  
D8  
Symbol  
P11.5  
TIN122  
ETHTXCLKA  
P11.5  
TOUT122  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D9  
P11.6  
TIN97  
SCLK1B  
P11.6  
TOUT97  
TXENB  
SCLK1  
TXENA  
FCLP0  
ETHTXEN  
COUT61  
P11.7  
TIN123  
ETHRXD3  
P11.7  
TOUT123  
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
QSPI1 input  
General-purpose output  
GTM output  
ERAY output  
QSPI1 output  
ERAY output  
MSC0 output  
ETH output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
CCU60 output  
General-purpose input  
GTM input  
E8  
LP /  
PU1 /  
VFLEX  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
87  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-23 Port 11 Functions (cont’d)  
Pin  
E7  
Symbol  
P11.8  
TIN124  
ETHRXD2  
P11.8  
TOUT124  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A9  
P11.9  
TIN98  
MTSR1B  
RXDA1  
ETHRXD1  
P11.9  
TOUT98  
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
QSPI1 input  
ERAY input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR1  
QSPI1 output  
Reserved  
SOP0  
MSC0 output  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
88  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-23 Port 11 Functions (cont’d)  
Pin  
B9  
Symbol  
P11.10  
TIN99  
Ctrl  
Type  
Function  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
REQ12  
ARX1E  
SLSI1A  
RXDCAN3D  
RXDB1  
ETHRXD0  
SDI00  
SCU input  
ASCLIN1 input  
QSPI1 input  
CAN node 3 input  
ERAY input  
ETH input  
MSC0 input  
P11.10  
TOUT99  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO03  
SLSO13  
QSPI0 output  
QSPI1 output  
Reserved  
Reserved  
CC62  
CCU60 output  
General-purpose input  
GTM input  
A8  
P11.11  
TIN100  
ETHCRSDVA  
ETHRXDVA  
ETHCRSB  
P11.11  
TOUT100  
END02  
SLSO04  
SLSO14  
EN00  
MP+ /  
PU1 /  
VFLEX  
ETH input  
ETH input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ERAY output  
CCU60 output  
TXENB  
CC61  
Data Sheet  
89  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-23 Port 11 Functions (cont’d)  
Pin  
B8  
Symbol  
Ctrl  
Type  
Function  
P11.12  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
O0  
TIN101  
ETHREFCLK  
ETHTXCLKB  
ETH input  
ETH input  
(Not for productive purposes)  
P11.12  
General-purpose output  
GTM output  
ASCLIN1 output  
GTM output  
ERAY output  
CAN node 3 output  
SCU output  
TOUT101  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ATX1  
GTMCLK2  
TXDB  
TXDCAN3  
EXTCLK1  
CC60  
CCU60 output  
General-purpose input  
GTM input  
E6  
P11.13  
LP /  
PU1 /  
VFLEX  
TIN125  
ETHRXERA  
ETH input  
P11.13  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT125  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D7  
P11.14  
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN126  
ETHCRSDVB  
ETH input  
ETHRXDVB  
ETH input  
ETHCRSA  
ETH input  
P11.14  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT126  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
90  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-23 Port 11 Functions (cont’d)  
Pin  
D6  
Symbol  
Ctrl  
Type  
Function  
P11.15  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN127  
ETHCOL  
ETH input  
P11.15  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT127  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 2-24 Port 12 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
E12  
P12.0  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN128  
ETHRXCLKC  
ETH input  
RXDCAN0C  
CAN node 0 input  
General-purpose output  
GTM output  
P12.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT128  
Reserved  
Reserved  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
E11  
P12.1  
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
TIN129  
P12.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT129  
ASLSO3  
ASCLIN3 output  
Reserved  
Reserved  
TXDCAN0  
CAN node 0 output  
Reserved  
Reserved  
ETHMDIOC  
HWOU  
T
ETH input/output  
Data Sheet  
91  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-25 Port 13 Functions  
Pin  
Symbol  
P13.0  
TIN91  
P13.0  
TOUT91  
END03  
SCLK2N  
EN01  
Ctrl  
Type  
Function  
B12  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
MSC0 output  
QSPI2 output (LVDS)  
MSC0 output  
FCLN0  
FCLND0  
MSC0 output (LVDS)  
MSC0 output (LVDS)  
Reserved  
A12  
P13.1  
TIN92  
SCL0B  
P13.1  
TOUT92  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SCLK2P  
QSPI2 output (LVDS)  
Reserved  
FCLP0  
SCL0  
MSC0 output (LVDS)  
I2C0 output  
Reserved  
B11  
P13.2  
TIN93  
CAPINA  
SDA0B  
P13.2  
TOUT93  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
GPT120 input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR2N  
FCLP0  
SON0  
SDA0  
SOND0  
QSPI2 output (LVDS)  
MSC0 output  
MSC0 output (LVDS)  
I2C0 output  
MSC0 output (LVDS)  
Data Sheet  
92  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-25 Port 13 Functions (cont’d)  
Pin  
Symbol  
P13.3  
TIN94  
P13.3  
TOUT94  
Ctrl  
Type  
Function  
A11  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR2P  
QSPI2 output (LVDS)  
Reserved  
SOP0  
MSC0 output (LVDS)  
Reserved  
Reserved  
Table 2-26 Port 14 Functions  
Pin  
Symbol  
P14.0  
Ctrl  
Type  
Function  
B16  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN80  
P14.0  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT80  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
TXDA  
O3  
O4  
O5  
ERAY output  
ERAY output  
TXDB  
TXDCAN1  
CAN node 1 output  
Used for single pin DAP (SPD) function.  
ASCLK0  
COUT62  
O6  
O7  
ASCLIN0 output  
CCU60 output  
Data Sheet  
93  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-26 Port 14 Functions (cont’d)  
Pin  
Symbol  
P14.1  
Ctrl  
Type  
Function  
A15  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN81  
REQ15  
ARX0A  
SCU input  
ASCLIN0 input  
Recommended as Boot loader pin.  
RXDCAN1B  
CAN node 1 input  
Used for single pin DAP (SPD) function.  
RXDA3  
RXDB3  
EVRWUPA  
P14.1  
TOUT81  
ATX0  
ERAY input  
ERAY input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN0 output  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
P14.2  
TIN82  
CCU60 output  
General-purpose input  
GTM input  
E13  
LP /  
PU1 /  
VEXT  
HWCFG2  
EVR13  
SCU input  
Latched at cold power on reset to decide EVR13  
activation.  
P14.2  
TOUT82  
ATX2  
SLSO21  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI2 output  
Reserved  
Reserved  
ASCLK2  
ASCLIN2 output  
Reserved  
Data Sheet  
94  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-26 Port 14 Functions (cont’d)  
Pin  
Symbol  
P14.3  
Ctrl  
Type  
Function  
B14  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN83  
ARX2A  
REQ10  
HWCFG3_BMI  
SDI02  
ASCLIN2 input  
SCU input  
SCU input  
MSC0 input  
P14.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT83  
ATX2  
ASCLIN2 output  
QSPI2 output  
ASCLIN1 output  
ASCLIN3 output  
Reserved  
SLSO23  
ASLSO1  
ASLSO3  
Reserved  
B15  
P14.4  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN84  
HWCFG6  
SCU input  
Latched at cold power on reset to decide default pad  
reset state (PU or HighZ).  
P14.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT84  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
95  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-26 Port 14 Functions (cont’d)  
Pin  
Symbol  
P14.5  
Ctrl  
Type  
Function  
A14  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN85  
HWCFG1  
EVR33  
SCU input  
Latched at cold power on reset to decide EVR33  
activation.  
P14.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT85  
Reserved  
Reserved  
Reserved  
TXDB  
ERAY output  
Reserved  
B13  
P14.6  
TIN86  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG0  
DCLDO  
SCU input  
If EVR13 active, latched at cold power on reset to  
decide between LDO and SMPS mode.  
P14.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT86  
Reserved  
SLSO22  
QSPI2 output  
Reserved  
Reserved  
TXENB  
ERAY output  
Reserved  
D13  
P14.7  
TIN87  
RXDB0  
P14.7  
TOUT87  
ARTS0  
SLSO24  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ERAY input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN0 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
96  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-26 Port 14 Functions (cont’d)  
Pin  
Symbol  
P14.8  
TIN88  
ARX1D  
RXDCAN2D  
RXDA0  
P14.8  
TOUT88  
Ctrl  
Type  
Function  
A13  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D12  
P14.9  
TIN89  
ACTS0A  
P14.9  
TOUT89  
END03  
EN01  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
MSC0 output  
MSC0 output  
Reserved  
TXENB  
TXENA  
ERAY output  
ERAY output  
Reserved  
D11  
P14.10  
TIN90  
P14.10  
TOUT90  
END02  
EN00  
ATX1  
TXDCAN2  
TXDA  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
MSC0 output  
MSC0 output  
ASCLIN1 output  
CAN node 2 output  
ERAY output  
Reserved  
Data Sheet  
97  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-27 Port 15 Functions  
Pin  
Symbol  
P15.0  
TIN71  
P15.0  
TOUT71  
ATX1  
Ctrl  
Type  
Function  
B20  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
Reserved  
SLSO013  
TXDCAN2  
ASCLK1  
CAN node 2 output  
ASCLIN1 output  
Reserved  
A18  
P15.1  
TIN72  
REQ16  
ARX1A  
RXDCAN2A  
SLSI2B  
EVRWUPB  
P15.1  
TOUT72  
ATX1  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCU input  
ASCLIN1 input  
CAN node 2 input  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
SLSO25  
Reserved  
Reserved  
Reserved  
C19  
P15.2  
TIN73  
SLSI2A  
MRST2E  
P15.2  
TOUT73  
ATX0  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI2 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO20  
TXDCAN1  
ASCLK0  
CAN node 1 output  
ASCLIN0 output  
Reserved  
Data Sheet  
98  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-27 Port 15 Functions (cont’d)  
Pin  
Symbol  
P15.3  
TIN74  
ARX0B  
SCLK2A  
RXDCAN1A  
P15.3  
TOUT74  
ATX0  
Ctrl  
Type  
Function  
B17  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN0 input  
QSPI2 input  
CAN node 1 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ASCLIN0 output  
QSPI2 output  
MSC0 output  
MSC0 output  
Reserved  
SCLK2  
END03  
EN01  
Reserved  
A17  
P15.4  
TIN75  
MRST2A  
REQ0  
SCL0C  
P15.4  
TOUT75  
ATX1  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
MRST2  
Reserved  
SCL0  
I2C0 output  
CC62  
CCU60 output  
Data Sheet  
99  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-27 Port 15 Functions (cont’d)  
Pin  
Symbol  
P15.5  
TIN76  
ARX1B  
MTSR2A  
REQ13  
SDA0C  
P15.5  
TOUT76  
ATX1  
Ctrl  
Type  
Function  
E14  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN1 input  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
MSC0 output  
MSC0 output  
I2C0 output  
MTSR2  
END02  
EN00  
SDA0  
CC61  
CCU60 output  
General-purpose input  
GTM input  
A16  
P15.6  
TIN77  
MTSR2B  
P15.6  
TOUT77  
ATX3  
MP /  
PU1 /  
VEXT  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
MTSR2  
SCLK2  
ASCLK3  
CC60  
QSPI2 output  
ASCLIN3 output  
CCU60 output  
General-purpose input  
GTM input  
D15  
P15.7  
TIN78  
ARX3A  
MRST2B  
P15.7  
TOUT78  
ATX3  
MP /  
PU1 /  
VEXT  
ASCLIN3 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
MRST2  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
100  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-27 Port 15 Functions (cont’d)  
Pin  
Symbol  
P15.8  
TIN79  
SCLK2B  
REQ1  
P15.8  
TOUT79  
Ctrl  
Type  
Function  
D14  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2  
QSPI2 output  
Reserved  
Reserved  
ASCLK3  
COUT61  
ASCLIN3 output  
CCU60 output  
Table 2-28 Port 20 Functions  
Pin  
Symbol  
P20.0  
TIN59  
RXDCAN3C  
T6EUDA  
REQ9  
SYSCLK  
TGI0  
Ctrl  
Type  
Function  
H20  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CAN node 3 input  
GPT120 input  
SCU input  
HSCT input  
OCDS input  
P20.0  
TOUT59  
ATX3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
ASCLK3  
SYSCLK  
HSCT output  
Reserved  
Reserved  
TGO0  
HWOU  
T
OCDS; ENx  
Data Sheet  
101  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-28 Port 20 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
G19  
P20.1  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN60  
TGI1  
OCDS input  
General-purpose output  
GTM output  
Reserved  
P20.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT60  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TGO1  
HWOU  
T
OCDS; ENx  
H19  
P20.2  
I
LP /  
General-purpose input  
PU /  
VEXT  
This pin is latched at power on reset release to enter  
test mode.  
TESTMODE  
OCDS input  
P20.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
General-purpose input  
GTM input  
G20  
P20.3  
TIN61  
T6INA  
ARX3C  
P20.3  
TOUT61  
ATX3  
SLSO09  
SLSO29  
TXDCAN3  
LP /  
PU1 /  
VEXT  
GPT120 input  
ASCLIN3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
Reserved  
Reserved  
Data Sheet  
102  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-28 Port 20 Functions (cont’d)  
Pin  
Symbol  
P20.6  
Ctrl  
Type  
Function  
F17  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN62  
P20.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT62  
ARTS1  
SLSO08  
SLSO28  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
Reserved  
WDT2LCK  
SCU output  
Reserved  
F19  
P20.7  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN63  
ACTS1A  
RXDCAN0B  
P20.7  
ASCLIN1 input  
CAN node 0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT63  
Reserved  
Reserved  
Reserved  
Reserved  
WDT1LCK  
COUT63  
P20.8  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
F20  
MP /  
PU1 /  
VEXT  
TIN64  
P20.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT64  
ASLSO1  
SLSO00  
SLSO10  
TXDCAN0  
WDT0LCK  
CC60  
ASCLIN1 output  
QSPI0 output  
QSPI1 output  
CAN node 0 output  
SCU output  
CCU61 output  
Data Sheet  
103  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-28 Port 20 Functions (cont’d)  
Pin  
Symbol  
P20.9  
Ctrl  
Type  
Function  
E17  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN65  
ARX1C  
RXDCAN3E  
REQ11  
SLSI0B  
P20.9  
ASCLIN1 input  
CAN node 3 input  
SCU input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT65  
Reserved  
SLSO01  
SLSO11  
QSPI0 output  
QSPI1 output  
Reserved  
WDTSLCK  
CC61  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
E19  
P20.10  
TIN66  
P20.10  
TOUT66  
ATX1  
MP /  
PU1 /  
VEXT  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
ASCLIN1 output  
CCU61 output  
General-purpose input  
GTM input  
SLSO06  
SLSO27  
TXDCAN3  
ASCLK1  
CC62  
E20  
P20.11  
TIN67  
SCLK0A  
P20.11  
TOUT67  
MP /  
PU1 /  
VEXT  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU61 output  
Data Sheet  
104  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-28 Port 20 Functions (cont’d)  
Pin  
Symbol  
P20.12  
TIN68  
MRST0A  
P20.12  
TOUT68  
Ctrl  
Type  
Function  
D19  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MRST0  
MTSR0  
QSPI0 output  
QSPI0 output  
Reserved  
Reserved  
COUT61  
P20.13  
TIN69  
SLSI0A  
P20.13  
TOUT69  
CCU61 output  
General-purpose input  
GTM input  
D20  
MP /  
PU1 /  
VEXT  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO02  
SLSO12  
SCLK0  
QSPI0 output  
QSPI1 output  
QSPI0 output  
Reserved  
COUT62  
P20.14  
TIN70  
MTSR0A  
P20.14  
TOUT70  
CCU61 output  
General-purpose input  
GTM input  
C20  
MP /  
PU1 /  
VEXT  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
105  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-29 Port 21 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
K17  
P21.0  
I
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
TIN51  
P21.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT51  
Reserved  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
HSM1  
HWOU  
T
HSM output 1  
J17  
P21.1  
I
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
TIN52  
ETHMDIOB  
ETH input  
(Not for production purposes)  
P21.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
General-purpose output  
GTM output  
Reserved  
TOUT52  
Reserved  
Reserved  
Reserved  
ETHMDIO  
ETH output  
(Not for production purposes)  
O7  
Reserved  
HSM2  
HWOU  
T
HSM output 2  
Data Sheet  
106  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-29 Port 21 Functions (cont’d)  
Pin  
Symbol  
P21.2  
TIN53  
MRST2CN  
MRST3FN  
ARX3GN  
EMGSTOPB  
RXDN  
P21.2  
TOUT53  
ASLSO3  
Ctrl  
Type  
Function  
K19  
I
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
ASCLIN3 input (LVDS)  
SCU input  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ASCLIN3 output  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Reserved  
J19  
P21.3  
TIN54  
MRST2CP  
MRST3FP  
ARX3GP  
RXDP  
P21.3  
TOUT54  
LVDSH_P/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
ASCLIN3 input (LVDS)  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ETHMDIOD  
HWOU  
T
ETH input/output  
Data Sheet  
107  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-29 Port 21 Functions (cont’d)  
Pin  
Symbol  
P21.4  
TIN55  
P21.4  
TOUT55  
Ctrl  
Type  
Function  
K20  
I
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
HSCT  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDN  
P21.5  
TIN56  
P21.5  
TOUT56  
ASCLK3  
HSCT output (LVDS)  
General-purpose input  
GTM input  
J20  
LVDSH_P/  
PU1 /  
VDDP3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
HSCT  
I
General-purpose output  
GTM output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDP  
P21.6  
TIN57  
ARX3F  
TGI2  
TDI  
HSCT output (LVDS)  
General-purpose input  
GTM input  
H17  
A2 /  
PU /  
VDDP3  
ASCLIN3 input  
OCDS input  
OCDS (JTAG) input  
GPT120 input  
General-purpose output  
GTM output  
T5EUDA  
P21.6  
TOUT57  
ASLSO3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
Reserved  
Reserved  
SYSCLK  
HSCT output  
Reserved  
T3OUT  
TGO2  
GPT120 output  
OCDS; ENx  
HWOU  
T
Data Sheet  
108  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-29 Port 21 Functions (cont’d)  
Pin  
Symbol  
P21.7  
TIN58  
DAP2  
TGI3  
Ctrl  
Type  
Function  
H16  
I
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
OCDS input  
OCDS input  
TDO  
OCDS (JTAG) input  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ. In DAP mode this pin  
is used as P21.7 and controlled by the related  
port control logic  
ETHRXERB  
T5INA  
P21.7  
TOUT58  
ATX3  
ASCLK3  
ETH input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
T6OUT  
TGO3  
TDO  
GPT120 output  
OCDS; ENx  
HWOU  
T
OCDS (JTAG); ENx  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ. In DAP mode this pin  
is used as P21.7 and controlled by the related  
port control logic  
Data Sheet  
109  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-30 Port 22 Functions  
Pin  
Symbol  
P22.0  
Ctrl  
Type  
Function  
P20  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN47  
MTSR3E  
P22.0  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT47  
ATX3N  
MTSR3  
SCLK3N  
FCLN1  
FCLND1  
ASCLIN3 output (LVDS)  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
P19  
P22.1  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN48  
MRST3E  
P22.1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT48  
ATX3P  
MRST3  
SCLK3P  
FCLP1  
ASCLIN3 output (LVDS)  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
R20  
P22.2  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN49  
SLSI3D  
P22.2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT49  
Reserved  
SLSO312  
MTSR3N  
SON1  
SOND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Data Sheet  
110  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-30 Port 22 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
R19  
P22.3  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN50  
SCLK3E  
QSPI3 input  
P22.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT50  
Reserved  
SCLK3  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
MTSR3P  
SOP1  
Reserved  
P16  
P22.4  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN130  
P22.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT130  
Reserved  
Reserved  
SLSO012  
QSPI0 output  
Reserved  
Reserved  
Reserved  
P17  
P22.5  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN131  
MTSR0C  
QSPI0 input  
P22.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT131  
Reserved  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
111  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-30 Port 22 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
N16  
P22.6  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN132  
MRST0C  
QSPI0 input  
General-purpose output  
GTM output  
Reserved  
P22.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT132  
Reserved  
MRST0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
N17  
P22.7  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN133  
SCLK0C  
QSPI0 input  
General-purpose output  
GTM output  
Reserved  
P22.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT133  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
M16  
P22.8  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN134  
SCLK0B  
QSPI0 input  
General-purpose output  
GTM output  
Reserved  
P22.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT134  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
112  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-30 Port 22 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
M17  
P22.9  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN135  
MRST0B  
QSPI0 input  
General-purpose output  
GTM output  
Reserved  
P22.9  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT135  
Reserved  
MRST0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
L16  
P22.10  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN136  
MTSR0B  
QSPI0 input  
General-purpose output  
GTM output  
Reserved  
P22.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT136  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
L17  
P22.11  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN137  
P22.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT137  
Reserved  
SLSO010  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
113  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-31 Port 23 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
V20  
P23.0  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN41  
P23.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT41  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
U19  
P23.1  
TIN42  
SDI10  
P23.1  
TOUT42  
ARTS1  
SLSO313  
GTMCLK0  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
GTM output  
Reserved  
EXTCLK0  
SCU output  
Reserved  
U20  
P23.2  
TIN43  
P23.2  
TOUT43  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
114  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-31 Port 23 Functions (cont’d)  
Pin  
Symbol  
P23.3  
TIN44  
INJ10  
P23.3  
TOUT44  
Ctrl  
Type  
Function  
T19  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
T20  
P23.4  
TIN45  
P23.4  
TOUT45  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO35  
END12  
EN10  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
T17  
P23.5  
TIN46  
P23.5  
TOUT46  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO34  
END13  
EN11  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
Data Sheet  
115  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-31 Port 23 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
R17  
P23.6  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN138  
P23.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT138  
Reserved  
SLSO011  
QSPI0 output  
Reserved  
Reserved  
Reserved  
R16  
P23.7  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN139  
P23.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT139  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 2-32 Port 32 Functions  
Pin  
Symbol  
P32.0  
Ctrl  
Type  
LP /  
Function  
Y17  
I
General-purpose input  
EVR13 SMPS  
-> PD,  
GPIO - > PU  
/
TIN36  
GTM input  
PMU input  
FDEST  
VGATE1N  
SMPS mode: analog output. External Pass Device  
gate control for EVR13  
VEXT  
P32.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT36  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
116  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-32 Port 32 Functions (cont’d)  
Pin  
Symbol  
P32.2  
TIN38  
ARX3D  
RXDCAN3B  
P32.2  
TOUT38  
ATX3  
Ctrl  
Type  
Function  
Y18  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN3 input  
CAN node 3 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
DCDCSYNC  
SCU output  
Reserved  
Y19  
P32.3  
TIN39  
P32.3  
TOUT39  
ATX3  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
Reserved  
ASCLK3  
TXDCAN3  
ASCLIN3 output  
CAN node 3 output  
Reserved  
Reserved  
W18  
P32.4  
TIN40  
ACTS1B  
SDI12  
P32.4  
TOUT40  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN1 input  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
END12  
GTMCLK1  
EN10  
MSC1 output  
GTM output  
MSC1 output  
SCU output  
EXTCLK1  
COUT63  
CCU60 output  
Data Sheet  
117  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-32 Port 32 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
T15  
P32.5  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN140  
P32.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT140  
ATX2  
ASCLIN2 output  
Reserved  
Reserved  
Reserved  
TXDCAN2  
CAN node 2 output  
Reserved  
U15  
P32.6  
LP /  
PU1 /  
VEXT  
General-purpose input  
OCDS input  
TGI4  
TIN141  
GTM input  
RXDCAN2C  
CAN node 2 input  
ASCLIN2 input  
General-purpose output  
GTM output  
ARX2F  
P32.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT141  
Reserved  
Reserved  
SLSO212  
QSPI2 output  
Reserved  
Reserved  
Reserved  
TGO4  
HWOU  
T
OCDS; ENx  
U16  
P32.7  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN142  
TGI5  
OCDS input  
General-purpose output  
GTM output  
Reserved  
P32.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT142  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TGO5  
HWOU  
T
OCDS; ENx  
Data Sheet  
118  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions  
Pin  
Symbol  
P33.0  
Ctrl  
Type  
Function  
W10  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN22  
DSITR0E  
P33.0  
DSADC channel 0 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT22  
Reserved  
Reserved  
Reserved  
Reserved  
VADCG2BFL0  
VADC output  
Reserved  
Y10  
P33.1  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN23  
PSIRX0C  
SENT9C  
DSCIN2B  
DSITR1E  
P33.1  
PSI5 input  
SENT input  
DSADC channel 2 input B  
DSADC channel 1 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT23  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT2  
VADCEMUX02  
VADCG2BFL1  
DSADC channel 2 output  
VADC output  
VADC output  
Reserved  
W11  
P33.2  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN24  
SENT8C  
DSDIN2B  
DSITR2E  
P33.2  
SENT input  
DSADC channel 2 input B  
DSADC channel 2 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT24  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
VADCEMUX01  
VADCG2BFL2  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
119  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions (cont’d)  
Pin  
Symbol  
P33.3  
Ctrl  
Type  
Function  
Y11  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN25  
PSIRX1C  
SENT7C  
DSCIN1B  
P33.3  
PSI5 input  
SENT input  
DSADC channel 1 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT25  
Reserved  
Reserved  
DSCOUT1  
VADCEMUX00  
VADCG2BFL3  
DSADC channel 1 output  
VADC output  
VADC output  
Reserved  
W12  
P33.4  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN26  
SENT6C  
CTRAPC  
DSDIN1B  
DSITR0F  
P33.4  
SENT input  
CCU61 input  
DSADC channel 1 input B  
DSADC channel 0 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT26  
ARTS2  
ASCLIN2 output  
Reserved  
PSITX1  
VADCEMUX12  
VADCG0BFL0  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
120  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions (cont’d)  
Pin  
Symbol  
P33.5  
Ctrl  
Type  
Function  
Y12  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN27  
ACTS2B  
PSIRX2C  
PSISRXC  
SENT5C  
CCPOS2C  
T4EUDB  
DSCIN0B  
DSITR1F  
P33.5  
ASCLIN2 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 1 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT27  
SLSO07  
SLSO17  
DSCOUT0  
VADCEMUX11  
VADCG0BFL1  
QSPI0 output  
QSPI1 output  
DSADC channel 0 output  
VADC output  
VADC output  
Reserved  
W13  
P33.6  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN28  
SENT4C  
CCPOS1C  
T2EUDB  
DSDIN0B  
DSITR2F  
P33.6  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 2 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT28  
ASLSO2  
-
ASCLIN2 output  
Reserved  
PSITX2  
PSI5 output  
VADCEMUX10  
VADCG1BFL0  
PSISTX  
VADC output  
VADC output  
PSI5-S output  
Data Sheet  
121  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions (cont’d)  
Pin  
Symbol  
P33.7  
Ctrl  
Type  
Function  
Y13  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN29  
RXDCAN0E  
REQ8  
CAN node 0 input  
SCU input  
CCPOS0C  
T2INB  
CCU61 input  
GPT120 input  
General-purpose output  
GTM output  
P33.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT29  
ASCLK2  
SLSO37  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
VADCG1BFL1  
VADC output  
Reserved  
W14  
P33.8  
MP /  
HighZ/  
VEXT  
General-purpose input  
GTM input  
TIN30  
ARX2E  
EMGSTOPA  
P33.8  
ASCLIN2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT30  
ATX2  
ASCLIN2 output  
QSPI3 output  
Reserved  
SLSO32  
TXDCAN0  
CAN node 0 output  
Reserved  
COUT62  
SMUFSP  
CCU61 output  
SMU  
HWOU  
T
Y14  
P33.9  
TIN31  
P33.9  
TOUT31  
ATX2  
SLSO31  
ASCLK2  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
ASCLIN2 output  
Reserved  
Reserved  
CC62  
CCU61 output  
Data Sheet  
122  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions (cont’d)  
Pin  
Symbol  
P33.10  
TIN32  
Ctrl  
Type  
Function  
W15  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3C  
P33.10  
TOUT32  
SLSO16  
SLSO311  
ASLSO1  
PSISCLK  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
QSPI1 output  
QSPI3 output  
ASCLIN1 output  
PSI5-S output  
Reserved  
COUT61  
P33.11  
TIN33  
CCU61 output  
General-purpose input  
GTM input  
Y15  
MP /  
PU1 /  
VEXT  
SCLK3D  
P33.11  
TOUT33  
ASCLK1  
SCLK3  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
Reserved  
Reserved  
DSCGPWMN  
CC61  
DSADC output  
CCU61 output  
General-purpose input  
GTM input  
W16  
P33.12  
TIN34  
MP /  
PU1 /  
VEXT  
MTSR3D  
P33.12  
TOUT34  
ATX1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
ASCLIN1 output  
Reserved  
MTSR3  
ASCLK1  
DSCGPWMP  
COUT60  
DSADC output  
CCU61 output  
Data Sheet  
123  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions (cont’d)  
Pin  
Symbol  
P33.13  
TIN35  
ARX1F  
MRST3D  
DSSGNB  
INJ11  
P33.13  
TOUT35  
ATX1  
Ctrl  
Type  
Function  
Y16  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ASCLIN1 input  
QSPI3 input  
DSADC input  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
QSPI2 output  
Reserved  
MRST3  
SLSO26  
DCDCSYNC  
CC60  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
T14  
P33.14  
TIN143  
TGI6  
LP /  
PU1 /  
VEXT  
OCDS input  
SCLK2D  
P33.14  
TOUT143  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2  
QSPI2 output  
Reserved  
Reserved  
Reserved  
CC62  
CCU60 output  
OCDS; ENx  
TGO6  
HWOU  
T
Data Sheet  
124  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-33 Port 33 Functions (cont’d)  
Pin  
Symbol  
P33.15  
TIN144  
TGI7  
Ctrl  
Type  
Function  
U14  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
OCDS input  
General-purpose output  
GTM output  
Reserved  
P33.15  
TOUT144  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
SLSO211  
QSPI2 output  
Reserved  
Reserved  
Reserved  
COUT62  
TGO7  
CCU60 output  
OCDS; ENx  
HWOU  
T
Table 2-34 Port 34 Functions  
Pin  
Symbol  
P34.1  
TIN146  
P34.1  
TOUT146  
ATX0  
Ctrl  
Type  
Function  
U11  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN0 output  
Reserved  
TXDCAN0  
CAN node 0 output  
Reserved  
Reserved  
COUT63  
P34.2  
TIN147  
ARX0D  
RXDCAN0G  
P34.2  
TOUT147  
CCU60 output  
General-purpose input  
GTM input  
T12  
LP /  
PU1 /  
VEXT  
ASCLIN0 input  
CAN node 0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CC60  
CCU60 output  
Data Sheet  
125  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-34 Port 34 Functions (cont’d)  
Pin  
Symbol  
P34.3  
TIN148  
P34.3  
TOUT148  
Ctrl  
Type  
Function  
U12  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
Reserved  
SLSO210  
QSPI2 output  
Reserved  
Reserved  
COUT60  
P34.4  
TIN149  
MRST2D  
P34.4  
TOUT149  
CCU60 output  
General-purpose input  
GTM input  
T13  
LP /  
PU1 /  
VEXT  
QSPI2 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
Reserved  
MRST2  
QSPI2 output  
Reserved  
Reserved  
CC61  
P34.5  
TIN150  
MTSR2D  
P34.5  
TOUT150  
CCU60 output  
General-purpose input  
GTM input  
U13  
LP /  
PU1 /  
VEXT  
QSPI2 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
MTSR2  
QSPI2 output  
Reserved  
Reserved  
COUT61  
CCU60 output  
Data Sheet  
126  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-35 Port 40 Functions  
Pin  
W2  
Symbol  
P40.0  
Ctrl  
Type  
Function  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 0 of group 3  
VADCG3.0  
DS2PB  
DSADC: positive analog input channe of DSADC 2, pin  
B
CCPOS0D  
SENT0A  
P40.1  
CCU60 input  
SENT input  
W1  
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 1 of group 3 (MD)  
DSADC: negative analog of input channel 2, pin B  
CCU60 input  
VADCG3.1  
DS2NB  
CCPOS1B  
SENT1A  
P40.2  
SENT input  
V2  
V1  
I
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 2 of group 3 (MD)  
CCU60 input  
VADCG3.2  
CCPOS1D  
SENT2A  
P40.3  
SENT input  
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG3.3  
VADC analog input channel 3 of group 3 (with pull  
down diagnostics)  
CCPOS2B  
SENT3A  
P40.4  
CCU60 input  
SENT input  
P4  
R1  
N4  
I
I
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 0 of group 4  
CCU60 input  
VADCG4.0  
CCPOS2D  
SENT4A  
P40.5  
SENT input  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 1 of group 4 (MD)  
CCU61 input  
VADCG4.1  
CCPOS0D  
SENT5A  
P40.6  
SENT input  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 4 of group 4  
DSADC: positive analog input of channel 3, pin A  
CCU61 input  
VADCG4.4  
DS3PA  
CCPOS1B  
SENT6A  
P40.7  
SENT input  
P2  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 5 of group 4  
DSADC: negative analog input of channel 3, pin A  
CCU61 input  
VADCG4.5  
DS3NA  
CCPOS1D  
SENT7A  
SENT input  
Data Sheet  
127  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-35 Port 40 Functions (cont’d)  
Pin  
N5  
Symbol  
P40.8  
Ctrl  
Type  
Function  
I
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG4.6  
DS3PB  
VADC analog input channel 6 of group 4  
DSADC: positive analog input of channel 3, pin B  
CCU61 input  
CCPOS2B  
SENT8A  
P40.9  
SENT input  
P1  
I
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG4.7  
DS3NB  
VADC analog input channel 7 of group 4  
DSADC: negative analog input of channel 3, pin B  
CCU61 input  
CCPOS2D  
SENT9A  
SENT input  
Table 2-36 Analog Inputs  
Pin  
Symbol  
AN0  
Ctrl  
Type  
Function  
T10  
I
D /  
Analog input 0  
HighZ /  
VDDM  
VADCG0.0  
DS1PA  
AN1  
VADC analog input channel 0 of group 0  
DSADC: positive analog of input channel 1, pin A  
Analog input 1  
U10  
W9  
U9  
I
I
I
D /  
HighZ /  
VDDM  
VADCG0.1  
DS1NA  
AN2  
VADC analog input channel 1 of group 0 (MD)  
DSADC: negative analog input of channel 1, pin A  
Analog input 2  
D /  
HighZ /  
VDDM  
VADCG0.2  
DS0PA  
AN3  
VADC analog input channel 2 of group 0 (MD)  
DSADC: positive analog input of channel 0, pin A  
Analog input 3  
D /  
HighZ /  
VDDM  
VADCG0.3  
DS0NA  
AN4  
VADC analog input channel 3 of group 0  
DSADC: negative analog input of channel 0, pin A  
Analog input 4  
T9  
Y9  
T8  
U8  
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG0.4  
VADC analog input channel 4 of group 0  
AN5  
D /  
HighZ /  
VDDM  
Analog input 5  
VADCG0.5  
VADC analog input channel 5 of group 0  
AN6  
D /  
HighZ /  
VDDM  
Analog input 6  
VADCG0.6  
VADC analog input channel 6 of group 0  
AN7  
D /  
Analog input 7  
HighZ /  
VDDM  
VADCG0.7  
VADC analog input channel 7 of group 0 (with pull  
down diagnostics)  
W8  
AN8  
I
D /  
Analog input 8  
HighZ /  
VDDM  
VADCG1.0  
VADC analog input channel 0 of group 1  
Data Sheet  
128  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-36 Analog Inputs (cont’d)  
Pin  
U7  
Symbol  
AN9  
Ctrl  
Type  
Function  
I
D /  
Analog input 9  
HighZ /  
VDDM  
VADCG1.1  
VADC analog input channel 1 of group 1 (MD)  
Y8  
AN10  
I
I
D /  
HighZ /  
VDDM  
Analog input 10  
VADCG1.2  
VADC analog input channel 2 of group 1 (MD)  
W7  
AN11  
D /  
Analog input 11  
HighZ /  
VDDM  
VADCG1.3  
VADC analog input channel 3 of group 1 (with pull  
down diagnostics)  
T7  
AN12  
I
I
I
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 12  
VADCG1.4  
VADC analog input channel 4 of group 1  
W6  
U6  
T6  
AN13  
D /  
HighZ /  
VDDM  
Analog input 13  
VADCG1.5  
VADC analog input channel 5 of group 1  
AN14  
D /  
HighZ /  
VDDM  
Analog input 14  
VADCG1.6  
VADC analog input channel 6 of group 1  
AN15  
D /  
HighZ /  
VDDM  
Analog input 15  
VADCG1.7  
VADC analog input channel 7 of group 1  
W5  
U5  
W4  
W3  
AN16  
D /  
HighZ /  
VDDM  
Analog input 16  
VADCG2.0  
VADC analog input channel 0 of group 2  
AN17  
D /  
HighZ /  
VDDM  
Analog input 17  
VADCG2.1  
VADC analog input channel 1 of group 2 (MD)  
AN18  
D /  
HighZ /  
VDDM  
Analog input 18  
VADCG2.2  
VADC analog input channel 2 of group 2 (MD)  
AN19  
D /  
Analog input 19  
HighZ /  
VDDM  
VADCG2.3  
VADC analog input channel 3 of group 2 (with pull  
down diagnostics)  
Y3  
Y2  
AN20  
I
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 20  
VADCG2.4  
DS2PA  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 2, pin A  
Analog input 21  
AN21  
D /  
HighZ /  
VDDM  
VADCG2.5  
DS2NA  
VADC analog input channel 5 of group 2  
DSADC: negative analog input of channel  
of DSADC 2, pin A  
T5  
AN22  
I
D /  
Analog input 22  
HighZ /  
VDDM  
VADCG2.6  
VADC analog input channel 6 of group 2  
Data Sheet  
129  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-36 Analog Inputs (cont’d)  
Pin  
R5  
Symbol  
AN23  
Ctrl  
Type  
Function  
I
D /  
Analog input 23  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
W2  
W1  
AN24  
I
I
S /  
HighZ /  
VDDM  
Analog input 24  
VADCG3.0  
DS2PB  
VADC analog input channel 0 of group 3  
DSADC: positive analog input of channel 2, pin B  
SENT input channel 0, pin A  
SENT0A  
AN25  
S /  
Analog input 24  
HighZ /  
VDDM  
VADCG3.1  
DS2NB  
VADC analog input channel 1 of group 3 (MD)  
DSADC: negative analog input of channel 2, pin B  
SENT input channel 1, pin A  
SENT1A  
AN26  
V2  
V1  
I
I
S /  
HighZ /  
VDDM  
Analog input 26  
VADCG3.2  
SENT2A  
AN27  
VADC analog input channel 2 of group 3 (MD)  
SENT input channel 2, pin A  
S /  
Analog input 27  
HighZ /  
VDDM  
VADCG3.3  
VADC analog input channel 3 of group 3 (with pull  
down diagnostics)  
SENT3A  
AN28  
SENT input channel 3, pin A  
Analog input 28  
U2  
U1  
T4  
R4  
P4  
I
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG3.4  
VADC analog input channel 4 of group 3  
AN29  
D /  
HighZ /  
VDDM  
Analog input 29  
VADCG3.5  
VADC analog input channel 5 of group 3  
AN30  
D /  
HighZ /  
VDDM  
Analog input 30  
VADCG3.6  
VADC analog input channel 6 of group 3  
AN31  
D /  
HighZ /  
VDDM  
Analog input 31  
VADCG3.7  
VADC analog input channel 7 of group 3  
AN32  
S /  
Analog input 32  
HighZ /  
VDDM  
VADCG4.0  
SENT4A  
AN33  
VADC analog input channel 0 of group 4  
SENT input channel 4, pin A  
Analog input 33  
R1  
P5  
I
I
S /  
HighZ /  
VDDM  
VADCG4.1  
SENT5A  
AN34  
VADC analog input channel 1 of group 4 (MD)  
SENT input channel 5, pin A  
Analog input 34  
D /  
HighZ /  
VDDM  
VADCG4.2  
VADC analog input channel 2 of group 4 (MD)  
Data Sheet  
130  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-36 Analog Inputs (cont’d)  
Pin  
R2  
Symbol  
AN35  
Ctrl  
Type  
Function  
I
D /  
Analog input 35  
HighZ /  
VDDM  
VADCG4.3  
VADC analog input channel 3 of group 4 (with pull  
down diagnostics)  
N4  
P2  
N5  
P1  
AN36  
I
I
I
I
S /  
HighZ /  
VDDM  
Analog input 34  
VADCG4.4  
DS3PA  
VADC analog input channel 4 of group 4  
DSADC: positive analog input of channel  
of DSADC 3, pin A  
SENT6A  
AN37  
SENT input channel 6, pin A  
Analog input 37  
S /  
HighZ /  
VDDM  
VADCG4.5  
DS3NA  
VADC analog input channel 5 of group 4  
DSADC: negative analog input of channel  
of DSADC 3, pin A  
SENT7A  
AN38  
SENT input channel 7, pin A  
Analog input 38  
S /  
HighZ /  
VDDM  
VADCG4.6  
DS3PB  
VADC analog input channel 6 of group 4  
DSADC: positive analog input of channel  
of DSADC 3, pin B  
SENT8A  
AN39  
SENT input channel 8, pin A  
Analog input 39  
S /  
HighZ /  
VDDM  
VADCG4.7  
DS3NB  
VADC analog input channel 7 of group 4  
DSADC: negative analog input of channel  
of DSADC 3, pin B  
SENT9A  
AN40  
SENT input channel 9, pin A  
Analog input 40  
M5  
M4  
L5  
L4  
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG5.0  
VADC analog input channel 0 of group 5  
AN41  
D /  
HighZ /  
VDDM  
Analog input 41  
VADCG5.1  
VADC analog input channel 1 of group 5 (MD)  
AN42  
D /  
HighZ /  
VDDM  
Analog input 42  
VADCG5.2  
VADC analog input channel 2 of group 5 (MD)  
AN43  
D /  
Analog input 43  
HighZ /  
VDDM  
VADCG5.3  
VADC analog input channel 3 of group 5 (with pull  
down diagnostics)  
N1  
AN44  
I
D /  
Analog input 44  
HighZ /  
VDDM  
VADCG5.4  
DS3PC  
VADC analog input channel 4 of group 5  
DSADC: positive analog input of channel  
of DSADC 3, pin C  
Data Sheet  
131  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-36 Analog Inputs (cont’d)  
Pin  
N2  
Symbol  
AN45  
Ctrl  
Type  
Function  
I
D /  
Analog input 45  
HighZ /  
VDDM  
VADCG5.5  
DS3NC  
VADC analog input channel 5 of group 5  
DSADC: negative analog input of channel  
of DSADC 3, pin C  
M1  
M2  
AN46  
I
I
D /  
HighZ /  
VDDM  
Analog input 46  
VADCG5.6  
DS3PD  
VADC analog input channel 6 of group 5  
DSADC: positive analog input of channel  
of DSADC 3, pin D  
AN47  
D /  
Analog input 47  
HighZ /  
VDDM  
VADCG5.7  
DS3ND  
VADC analog input channel 7 of group 5  
DSADC: negative analog input of channel  
of DSADC 3, pin D  
Table 2-37 System I/O  
Pin  
Symbol  
Ctrl  
Type  
Function  
G17  
PORST  
I
I /  
Power On Reset Input  
PD /  
VEXT  
Additional strong PD in case of power fail.  
F16  
ESR0  
I/O  
MP /  
OD /  
VEXT  
External System Request Reset 0  
Default configuration during and after reset is open-  
drain driver. The driver drives low during power-on  
reset. This is valid additionally after deactivation of  
PORST until the internal reset phase has finished. See  
also SCU chapter for details.  
Default after power-on can be different. See also SCU  
chapter ´Reset Control Unit´ and SCU_IOCR register  
description.  
EVRWUP  
ESR1  
I
EVR Wakeup Pin  
G16  
W17  
I/O  
MP / PU1 / External System Request Reset 1  
VEXT  
Default NMI function.  
See also SCU chapter ´Reset Control Unit´ and  
SCU_IOCR register description.  
EVRWUP  
VGATE1P  
I
EVR Wakeup Pin  
O
VGATE1P External Pass Device gate control for EVR13  
/
- /  
VEXT  
K16  
L19  
TMS  
I
A2 /  
PD /  
VDDP3  
JTAG Module State Machine Control Input  
Device Access Port Line 1  
DAP1  
I/O  
TRST  
I
A2 /  
JTAG Module Reset/Enable Input  
PD /  
VDDP3  
Data Sheet  
132  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-37 System I/O (cont’d)  
Pin  
J16  
Symbol  
TCK  
Ctrl  
Type  
Function  
I
I
A2 /  
PD /  
VDDP3  
JTAG Module Clock Input  
Device Access Port Line 0  
DAP0  
M20  
M19  
XTAL1  
XTAL2  
I
XTAL1 /  
- /  
VDDP3  
Main Oscillator/PLL/Clock Generator Input  
O
XTAL2 /  
- /  
Main Oscillator/PLL/Clock Generator Output  
VDDP3  
Table 2-38 Supply  
Pin  
Y6  
Symbol  
Ctrl  
Type  
Vx  
Function  
VAREF1  
I
Positive Analog Reference Voltage 1  
Y7  
VAGND1  
VAREF2  
I
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Vx  
Negative Analog Reference Voltage 1  
Positive Analog Reference Voltage 2  
Negative Analog Reference Voltage 2  
ADC Analog Power Supply (3.3V / 5V)  
T1  
T2  
VAGND2  
VDDM  
Y5  
G8, H7  
VDD / VDDSB  
Emulation Device: Emulation SRAM Standby Power  
Supply (1.3V) (Emulation Device only).  
Production Device: VDD (1.3V).  
P8, P13,  
N7, N14,  
H14, G13  
VDD  
VDD  
I
I
Vx  
Vx  
Digital Core Power Supply (1.3V)  
N19  
Digital Core Power Supply (1.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (1.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
A2, B3,  
V19, W20  
VEXT  
I
I
Vx  
Vx  
External Power Supply (5V / 3.3V)  
B18, A19 VDDP3  
Digital Power Supply for Flash (3.3V).  
Can be also used as external 3.3V Power Supply for  
VFLEX.  
N20  
VDDP3  
I
Vx  
Digital Power Supply for Oscillator, LVDSH and A2  
pads (3.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (3.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
Data Sheet  
133  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-38 Supply (cont’d)  
Pin Symbol  
E15, D16 VDDFL3  
Ctrl  
Type  
Vx  
Function  
I
Flash Power Supply (3.3V)  
D5  
VFLEX  
VSSM  
I
I
I
Vx  
Vx  
Vx  
Digital Power Supply for Flex Port Pads  
(5V / 3.3V)  
Y4  
Analog Ground for VDDM  
T11  
VEVRSB  
Standby Power Supply (3.3V/5V) for the Standby  
SRAM (CPU0.DSPR).  
If Standby mode is not used: To be handled like VEXT  
(3.3V/5V).  
B2, D4,  
VSS  
I
Vx  
Digital Ground  
E5, L20,  
T16, U17,  
W19, Y20  
E16, D17, VSS  
B19, A20  
I
I
Vx  
Vx  
Digital Ground (outer balls)  
Digital Ground (center balls)  
P9, P12,  
N9, N10,  
N11, N12  
VSS  
VSS  
VSS  
VSS  
VSS  
M7, M8,  
M10, M11,  
M13, M14  
I
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Vx  
Digital Ground (center balls)  
Digital Ground (center balls)  
Digital Ground (center balls)  
Digital Ground (center balls)  
Digital Ground (center balls)  
L8, L9,  
L10, L11,  
L12, L13  
K8, K9,  
K10, K11,  
K12, K13  
J7, J8,  
J10, J11,  
J13, J14  
H9, H10, VSS  
H11, H12,  
G9, G10,  
G11, G12  
P10  
P11  
L7  
VSS  
VSS  
VSS  
I
I
I
Vx  
Vx  
Vx  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT TX0N  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT TX0P  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT CLKN  
Data Sheet  
134  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
Table 2-38 Supply (cont’d)  
Pin  
K7  
Symbol  
Ctrl  
Type  
Vx  
Function  
VSS  
I
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT CLKP  
L14  
K14  
VSS  
I
I
Vx  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT ERR  
NC / VDDPSB  
NCVDDP Emulation Device: Power Supply (3.3V) for DAP/JTAG  
SB  
pad group. Can be connected to VDDP or can be left  
unsupplied (see document ´AurixED´ / Aurix Emulation  
Devices specification).  
Production Device:  
This pin is not connected on package level. It can be  
connected on PCB level to VDDP or Ground or can be  
left unsupplied.  
A1, Y1, U4 NC  
I
NC  
Not Connected.  
These pins are not connected on package level and  
will not be used for future extensions.  
Legend:  
Column “Ctrl.”:  
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X000B  
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)  
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)  
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)  
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)  
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)  
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)  
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP+ (5V/3.3V, LVTTL)  
MPR = Pad class MPR (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)  
S = Pad class S (ADC overlayed with General Purpose Input)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)  
1)The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak  
internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General  
Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.  
Data Sheet  
135  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
PD = with pull-down device connected during reset (PORST = 0)  
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)  
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode  
OD = open drain during reset (PORST = 0)  
HighZ = tri-state during reset (PORST = 0)  
PORST = PORST input pad  
XTAL1 = XTAL1 input pad  
XTAL2 = XTAL2 input pad  
VGATE1P = VGATE1P  
VGATE3P = VGATE3P  
Vx = Supply  
NC = These pins are reserved for future extensions and shall not be connected externally  
NC1 = These pins are not connected on package level and will not be used for future extensions  
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
2.2.2  
Emergency Stop Function  
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input  
signal (EMGSTOPA or EMGSTOPB) into a defined state:  
Input state and  
PU or High-Z depending on HWCFG[6] level latched during PORST active  
Control of the Emergency Stop function:  
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop  
Control”)  
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see  
chapter “SCU”, “Emergency Stop Control”)  
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x  
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O  
Lines”, “Emergency Stop Register”).  
The Emergency Stop function is available for all GPIO Ports with the following exceptions:  
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)  
Not available for P40.x (analoge input ANx overlayed with GPI)  
Not available for P32.0 EVR13 SMPS mode.  
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)  
The Emergency Stop function can be overruled on the following GPIO Ports:  
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register  
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)  
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).  
No Overruling in the DXCM (Debug over can message) mode  
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI  
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode  
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active  
during and after reset.  
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.  
Data Sheet  
136  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC277x Pin Definition and Functions:  
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI  
2.2.3  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 2-39 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2)Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case  
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
Data Sheet  
137  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
2.3  
TC270x Bare Die Pad Definition  
The TC270x Bare Die Logic Symbol is shown in Figure 2-3.  
Table 2-40 describes the pads of the TC270x Bare Die. It describes also the mapping of VADC / DS-ADC  
channels to the analog inputs (ANx) and the mapping of Port functions to the pads.  
Note:The detailed description of the port functions (Px.y) can be found in the User’s Manual chapter “General  
Purpose I/O Ports and Peripheral I/O LInes (Ports)“.  
Pad 172  
Pad 85  
Pad 84  
Pad 173  
Y
0.0  
X
Pad 1  
Pad 255  
Pad 332  
Pad 256  
Figure 2-3 TC270x Logic Symbol for the Bare Die.  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
Pad Name  
P10.8  
Pad Type  
X
Y
Comment  
GPIO  
1
2
LP / PU1 / VEXT 3265500  
-3460000  
-3380000  
P02.0  
MP+ / PU1 /  
VEXT  
3374000  
GPIO  
3
4
5
6
7
P02.9  
P02.1  
VSS  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
-3300000  
-3200000  
-3125000  
-3050000  
-2950000  
GPIO  
GPIO  
Vx  
3374000  
Must be bonded to VSS  
P02.10  
P02.2  
LP / PU1 / VEXT 3265500  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
3374000  
8
P02.11  
VEXT  
P02.3  
LP / PU1 / VEXT 3265500  
Vx 3374000  
-2850000  
-2775000  
-2670000  
GPIO  
9
Must be bonded to VEXT  
GPIO  
10  
LP / PU1 / VEXT 3265500  
Data Sheet  
138  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
11  
P02.4  
MP+ / PU1 /  
VEXT  
3265500  
-2540000  
GPIO  
12  
13  
VSS  
Vx  
3374000  
3265500  
-2465000  
-2390000  
Must be bonded to VSS  
GPIO  
P02.5  
MP+ / PU1 /  
VEXT  
14  
15  
16  
17  
18  
19  
20  
21  
22  
P02.6  
VEXT  
P02.7  
P02.8  
VSS  
MP / PU1 / VEXT 3374000  
Vx 3374000  
-2300000  
-2195000  
-2110000  
-2040000  
-1940000  
-1883500  
-1818500  
-1688500  
-1644500  
GPIO  
Must be bonded to VEXT  
GPIO  
MP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3374000  
GPIO  
Vx  
3374000  
Must be bonded to VSS  
GPIO  
P01.3  
VDD  
LP / PU1 / VEXT 3265500  
Vx  
Vx  
Vx  
3374000  
3374000  
3374000  
Must be bonded to VDD  
Must be bonded to VSS  
VSS  
VSS  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
22.  
23  
VDD  
Vx  
3374000  
-1514500  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
21.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
P01.4  
VSS  
LP / PU1 / VEXT 3265500  
Vx 3374000  
-1449500  
-1394500  
-1339500  
-1239500  
-1139500  
-1068500  
-968500  
-868500  
-241000  
-141000  
-41000  
GPIO  
Must be bonded to VSS  
P01.5  
P01.6  
P01.7  
VEXT  
VSS  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
GPIO  
GPIO  
GPIO  
Vx  
Vx  
3374000  
3374000  
Must be bonded to VEXT  
Must be bonded to VSS  
P00.0  
P00.1  
P00.2  
P00.3  
VSS  
MP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
3374000  
19000  
Must be bonded to VSS  
P00.4  
P00.5  
P00.6  
VEXT  
P00.7  
P00.8  
P00.9  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3265500  
79000  
GPIO  
179000  
279000  
339000  
399000  
459000  
549000  
GPIO  
GPIO  
Vx  
3374000  
Must be bonded to VEXT  
LP / PU1 / VEXT 3265500  
LP / PU1 / VEXT 3374000  
LP / PU1 / VEXT 3265500  
GPIO  
GPIO  
GPIO  
Data Sheet  
139  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
43  
Pad Name  
P00.10  
P00.11  
VSS  
Pad Type  
X
Y
Comment  
LP / PU1 / VEXT 3374000  
LP / PU1 / VEXT 3265500  
609000  
689000  
749000  
809000  
864000  
964000  
1064000  
1164000  
1239000  
1299000  
1419000  
GPIO  
44  
GPIO  
45  
Vx  
3374000  
Must be bonded to VSS  
GPIO  
46  
P00.12  
VDD  
LP / PU1 / VEXT 3265500  
47  
Vx  
Vx  
Vx  
Vx  
Vx  
Vx  
Vx  
3374000  
3374000  
3374000  
3374000  
3265500  
3374000  
3374000  
Must be bonded to VDD  
Must be bonded to VSS  
Must be bonded to VSS  
Must be bonded to VDD  
Must be bonded to VEXT  
Must be bonded to VSS  
48  
VSS  
49  
VSS  
50  
VDD  
51  
VEXT  
VSS  
52  
53  
VAREF3  
Positive Analog Reference  
Voltage 3  
54  
55  
56  
VAREF2  
VAGND3  
VAGND2  
VDDM  
Vx  
Vx  
Vx  
Vx  
3265500  
3374000  
3265500  
1479000  
1539000  
1599000  
Positive Analog Reference  
Voltage 2  
NegativeAnalog Reference  
Voltage 3  
NegativeAnalog Reference  
Voltage 2  
57  
58  
3374000  
3265500  
1659000  
1719000  
Must be bonded to VEXT  
Analog input  
AN47(VADC5.7/ D  
DS3ND)  
59  
60  
61  
62  
AN46(VADC5.6/ D  
DS3PD)  
3374000  
3265500  
3374000  
3265500  
1779000  
1839000  
1899000  
1959000  
Analog input  
Analog input  
Analog input  
AN45(VADC5.5/ D  
DS3NC)  
AN44(VADC5.4/ D  
DS3PC)  
AN43 (VADC5.3) D  
Analog input (with pull  
down diagnostics)  
63  
64  
65  
66  
AN42 (VADC5.2) D  
AN41 (VADC5.1) D  
AN40 (VADC5.0) D  
3374000  
3265500  
3374000  
3265500  
2019000  
2079000  
2139000  
2199000  
Analog input  
Analog input  
Analog input  
AN39(VADC4.7/ S  
DS3NB), P40.9 (  
SENT9A)  
Analog input, GPI (SENT)  
67  
68  
AN38(VADC4.6/ S  
DS3PB), P40.8 (  
SENT8A)  
3374000  
3265500  
2259000  
2319000  
Analog input, GPI (SENT)  
Analog input, GPI (SENT)  
AN37(VADC4.5/ S  
DS3NA), P40.7 (  
SENT7A)  
Data Sheet  
140  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
69  
Pad Name  
Pad Type  
X
Y
Comment  
VDDM  
Vx  
3374000  
3265500  
2379000  
2439000  
Must be bonded to VEXT  
Analog input, GPI (SENT)  
70  
AN36(VADC4.4/ S  
DS3PA), P40.6 (  
SENT6A)  
71  
72  
VSSM  
Vx  
3374000  
3265500  
2499000  
2559000  
Must be bonded to VSS  
AN35 (VADC4.3) D  
Analog input (with pull  
down diagnostics)  
73  
74  
AN34 (VADC4.2) D  
3374000  
3265500  
2619000  
2679000  
Analog input  
AN33  
S
Analog input, GPI (SENT)  
(VADC4.1),  
P40.5 ( SENT5A)  
75  
AN32  
S
3374000  
2765000  
Analog input, GPI (SENT)  
(VADC4.0),  
P40.4 ( SENT4A)  
76  
77  
78  
79  
80  
AN31 (VADC3.7) D  
AN30 (VADC3.6) D  
AN29 (VADC3.5) D  
AN28 (VADC3.4) D  
3265500  
3374000  
3265500  
3374000  
3265500  
2825000  
2885000  
2945000  
3045000  
3105000  
Analog input  
Analog input  
Analog input  
GPIO  
AN27  
S
Analog input (with pull  
down diagnostics), GPI  
(SENT)  
(VADC3.3),  
P40.3 ( SENT3A)  
81  
82  
83  
AN26  
(VADC3.2),  
P40.2 ( SENT2A)  
S
3265500  
3265500  
3265500  
3205000  
3305000  
3405000  
Analog input, GPI (SENT)  
Analog input, GPI (SENT)  
Analog input, GPI (SENT)  
AN25(VADC3.1/ S  
DS2NB), P40.1 (  
SENT1A)  
AN24(VADC3.0/ S  
DS2PB), P40.0 (  
SENT0A)  
84  
85  
86  
87  
88  
VDDM  
VSSM  
Vx  
Vx  
3374000  
3134000  
3074000  
3014000  
2954000  
3465000  
3705000  
3596500  
3705000  
3596500  
Must be bonded to VEXT  
Must be bonded to VSS  
Analog input  
AN23 (VADC2.7) D  
AN22 (VADC2.6) D  
Analog input  
AN21(VADC2.5/ D  
DS2NA)  
Analog input  
89  
90  
AN20(VADC2.4/ D  
DS2PA)  
2854000  
2754000  
3596500  
3596500  
Analog input  
AN19 (VADC2.3) D  
Analog input (with pull  
down diagnostics)  
91  
92  
AN18 (VADC2.2) D  
AN17 (VADC2.1) D  
2654000  
2554000  
3596500  
3596500  
Analog input  
Analog input  
Data Sheet  
141  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
93  
Pad Name  
Pad Type  
X
Y
Comment  
AN16 (VADC2.0) D  
AN15 (VADC1.7) D  
2494000  
2434000  
2374000  
3705000  
3596500  
3705000  
Analog input  
Analog input  
94  
95  
VAGND1  
VAGND0  
VAREF1  
VAREF0  
Vx  
NegativeAnalog Reference  
Voltage 1  
96  
97  
98  
Vx  
Vx  
Vx  
2314000  
2254000  
2194000  
3596500  
3705000  
3596500  
NegativeAnalog Reference  
Voltage 0  
Positive Analog Reference  
Voltage 1  
Positive Analog Reference  
Voltage 0  
99  
VSSM  
Vx  
Vx  
Vx  
2134000  
2074000  
2014000  
1954000  
1894000  
1829000  
1724000  
1664000  
1604000  
3705000  
3596500  
3705000  
3596500  
3705000  
3596500  
3596500  
3705000  
3596500  
Must be bonded to VSS  
Must be bonded to VSS  
Must be bonded to VSS  
Analog input  
100  
101  
102  
103  
104  
105  
106  
107  
VSSM  
VSSMREF  
AN14 (VADC1.6) D  
VDDM  
VDDM  
Vx  
Vx  
Must be bonded to VEXT  
Must be bonded to VEXT  
Analog input  
AN13 (VADC1.5) D  
AN12 (VADC1.4) D  
AN11 (VADC1.3) D  
Analog input  
Analog input (with pull  
down diagnostics)  
108  
109  
110  
111  
AN10 (VADC1.2) D  
1544000  
1484000  
1424000  
1364000  
3705000  
3569500  
3705000  
3596500  
Analog input  
Analog input  
Analog input  
AN9 (VADC1.1)  
AN8 (VADC1.0)  
AN7 (VADC0.7)  
D
D
D
Analog input (with pull  
down diagnostics)  
112  
113  
114  
115  
AN6 (VADC0.6)  
AN5 (VADC0.5)  
AN4 (VADC0.4)  
D
D
D
D
1304000  
1244000  
1184000  
1124000  
3705000  
3596500  
3705000  
3596500  
Analog input  
Analog input  
Analog input  
Analog input  
AN3 (VADC0.3 /  
DS0NA)  
116  
117  
VSSM  
Vx  
D
1064000  
1004000  
3705000  
3596500  
Must be bonded to VSS  
Analog input  
AN2 (VADC0.2 /  
DS0PA)  
118  
119  
VDDM  
Vx  
D
944000  
884000  
3705000  
3596500  
Must be bonded to VEXT  
Analog input  
AN1 (VADC0.1 /  
DS1NA)  
120  
AN0 (VADC0.0 /  
DS1PA)  
D
807000  
3705000  
Analog input  
121  
122  
VEXT  
VSS  
Vx  
Vx  
427000  
377000  
3596500  
3705000  
Must be bonded to VEXT  
Must be bonded to VSS  
Data Sheet  
142  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
123  
Pad Name  
P34.1  
VSS  
Pad Type  
LP / PU1 / VEXT 322000  
Vx 267000  
X
Y
Comment  
3596500  
3705000  
3596500  
3705000  
3596500  
3705000  
3596500  
3705000  
3705000  
3705000  
GPIO  
124  
Must be bonded to VSS  
GPIO  
125  
P34.2  
P34.3  
VEXT  
P34.4  
P34.5  
VSS  
LP / PU1 / VEXT 212000  
LP / PU1 / VEXT 142000  
126  
GPIO  
127  
Vx  
87000  
Must be bonded to VEXT  
GPIO  
128  
LP / PU1 / VEXT 22000  
LP / PU1 / VEXT -38000  
129  
GPIO  
130  
Vx  
Vx  
Vx  
-93000  
Must be bonded to VSS  
Must be bonded to VDD  
131  
VDD  
-193000  
-323000  
132  
VSS  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
131.  
133  
VSS  
Vx  
-363000  
3705000  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
130.  
134  
135  
136  
VDD  
Vx  
Vx  
Vx  
-493000  
-560000  
-625000  
3705000  
3596500  
3705000  
Must be bonded to VDD  
Must be bonded to VEXT  
VEVRSB  
EVR_OFF  
Must be bonded to  
VSS+F178  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
VEXT  
P33.0  
P33.1  
P33.2  
P33.3  
P33.4  
VSS  
Vx  
-725000  
3705000  
3596500  
3705000  
3596500  
3705000  
3596500  
3705000  
3596500  
3705000  
3596500  
3705000  
Must be bonded to VEXT  
LP / PU1 / VEXT -790000  
LP / PU1 / VEXT -855000  
LP / PU1 / VEXT -915000  
LP / PU1 / VEXT -985000  
LP / PU1 / VEXT -1045000  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
-1100000  
Must be bonded to VSS  
P33.5  
P33.6  
P33.7  
P33.8  
LP / PU1 / VEXT -1155000  
LP / PU1 / VEXT -1250000  
LP / PU1 / VEXT -1310000  
GPIO  
GPIO  
GPIO  
GPIO  
MP / HighZ /  
VEXT  
-1420000  
148  
149  
150  
151  
152  
153  
154  
P33.9  
LP / PU1 / VEXT -1490000  
Vx -1545000  
3596500  
3705000  
3596500  
3705000  
3596500  
3705000  
3596500  
GPIO  
VEXT  
Must be bonded to VEXT  
P33.10  
P33.14  
P33.11  
P33.15  
P33.12  
MP / PU1 / VEXT -1610000  
LP / PU1 / VEXT -1680000  
MP / PU1 / VEXT -1750000  
LP / PU1 / VEXT -1820000  
MP / PU1 / VEXT -1890000  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Data Sheet  
143  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
155  
Pad Name  
VSS  
Pad Type  
X
Y
Comment  
Vx  
-1955000  
3705000  
3596500  
3705000  
3705000  
3596500  
Must be bonded to VSS  
GPIO  
156  
P33.13  
VSS  
MP / PU1 / VEXT -2040000  
157  
Vx  
Vx  
-2105000  
-2205000  
-2260000  
Must be bonded to VSS  
Must be bonded to VDD  
GPIO  
158  
VDD  
159  
P32.0  
LP / EVR13  
SMPS -> PD,  
GPIO -> PU1 /  
VEXT  
160  
161  
VGATE1N  
(SMPS)  
VGATE1N  
-2315000  
-2365000  
3705000  
3596500  
Must be bonded to VSS if  
EVR13 SMPS is not used.  
Must be bonded to NMOS  
gate if EVR13 SMPS used.  
VGATE1P  
(SMPS)  
VGATE1P  
Must be bonded to VEXT if  
EVR13 SMPS is not used.  
Must be bonded to PMOS  
gate if EVR13 SMPS used.  
162  
163  
VGATE3P (LDO) VGATE3P  
VGATE1P (LDO) VGATE1P  
-2415000  
-2465000  
3705000  
3596500  
Must be bonded to VSS  
Must be bonded to VSS if  
no external P channel  
MOSFET used for EVR13  
LDO generation. Must be  
bonded to external P  
channnel MOSFET if  
external LDO pass device  
used.  
164  
165  
166  
167  
168  
169  
170  
VEXT  
P32.2  
P32.3  
P32.6  
P32.5  
VSS  
Vx  
-2515000  
3705000  
3596500  
3596500  
3705000  
3596500  
3705000  
3596500  
Must be bonded to VEXT  
LP / PU1 / VEXT -2570000  
LP / PU1 / VEXT -2714000  
LP / PU1 / VEXT -2774000  
LP / PU1 / VEXT -2849000  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
-2904000  
-2989000  
Must be bonded to VSS  
GPIO  
P32.4  
MP+ / PU1 /  
VEXT  
171  
172  
173  
174  
P32.7  
P23.0  
VSS  
LP / PU1 / VEXT -3069000  
LP / PU1 / VEXT -3129000  
3705000  
3596500  
3391000  
3316000  
GPIO  
GPIO  
Vx  
-3374000  
-3265500  
Must be bonded to VSS  
GPIO  
P23.1  
MP+ / PU1 /  
VEXT  
175  
176  
177  
P23.2  
P23.3  
P23.4  
LP / PU1 / VEXT -3374000  
LP / PU1 / VEXT -3265500  
3236000  
3125000  
3045000  
GPIO  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
-3374000  
Data Sheet  
144  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
178  
Pad Name  
P23.6  
Pad Type  
X
Y
Comment  
LP / PU1 / VEXT -3265500  
2965000  
2910000  
2835000  
GPIO  
179  
VEXT  
Vx  
-3374000  
-3265500  
Must be bonded to VEXT  
GPIO  
180  
P23.5  
MP+ / PU1 /  
VEXT  
181  
182  
P23.7  
P22.0  
LP / PU1 / VEXT -3374000  
2755000  
2685000  
GPIO  
GPIO  
MP / LVDSM_N/ -3265500  
PU1 / VEXT  
183  
P22.1  
MP / LVDS_P / -3265500  
PU1 / VEXT  
2335000  
GPIO  
184  
185  
VSS  
Vx  
-3374000  
2270000  
2205000  
Must be bonded to VSS  
GPIO  
P22.2  
MP / LVDSM_N/ -3265500  
PU1 / VEXT  
186  
P22.3  
MP / LVDS_P / -3265500  
PU1 / VEXT  
1855000  
GPIO  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
VEXT  
VEXT  
Reserved  
VDD  
Vx  
Vx  
Vx  
Vx  
Vx  
-3374000  
-3265500  
-3374000  
-3374000  
-3374000  
1790000  
1735000  
1680000  
1580000  
1480000  
1425000  
1370000  
1270000  
1215000  
1155000  
1095000  
1040000  
940000  
885000  
825000  
765000  
710000  
655000  
520000  
420000  
312500  
Must be bonded to VEXT  
Must be bonded to VEXT  
Must be bonded to VSS  
Must be bonded to VDD  
Must be bonded to VSS  
GPIO  
VSS  
P22.4  
VSS  
LP / PU1 / VEXT -3265500  
Vx  
Vx  
-3374000  
-3374000  
Must be bonded to VSS  
Must be bonded to VDD  
GPIO  
VDD  
P22.5  
P22.6  
P22.7  
VSS  
LP / PU1 / VEXT -3265500  
LP / PU1 / VEXT -3374000  
LP / PU1 / VEXT -3265500  
GPIO  
GPIO  
Vx  
Vx  
-3374000  
-3374000  
Must be bonded to VSS  
Must be bonded to VDD  
GPIO  
VDD  
P22.8  
P22.9  
P22.10  
VSS  
LP / PU1 / VEXT -3265500  
LP / PU1 / VEXT -3374000  
LP / PU1 / VEXT -3265500  
GPIO  
GPIO  
Vx  
-3374000  
Must be bonded to VSS  
GPIO  
P22.11  
VDDOSC  
VSSOSC  
XTAL1  
LP / PU1 / VEXT -3265500  
Vx  
-3374000  
-3374000  
-3265500  
Must be bonded to VDD  
Must be bonded to VSS  
Vx  
XTAL1  
Main Oscillator/PLL/Clock  
Generator Input. Must be  
bonded to external quartz  
or resonator  
Data Sheet  
145  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
208  
XTAL2  
XTAL2  
-3265500  
212500  
Main Oscillator/PLL/Clock  
Generator Input. Must be  
bonded to external quartz  
or resonator  
209  
210  
211  
212  
213  
214  
VSSOSC3  
VDDOSC3  
VDDP3  
VDDP3  
VSS  
Vx  
Vx  
Vx  
Vx  
Vx  
-3374000  
-3265500  
-3374000  
-3265500  
-3374000  
-3374000  
105000  
55000  
Must be bonded to VSS  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VSS  
GPIO  
-35000  
-95000  
-145000  
-245000  
P21.0  
A2 / PU1 /  
VDDP3  
215  
P21.1  
A2 / PU1 /  
VDDP3  
-3265500  
-3374000  
-345000  
GPIO  
216  
217  
VSS  
Vx  
-395000  
-457500  
Must be bonded to VSS  
GPIO  
P21.2  
LVDSH_N / PU1 -3265500  
/ VDDP3  
218  
P21.3  
LVDSH_P / PU1 -3265500  
/ VDDP3  
-557500  
GPIO  
219  
220  
VDDP3  
P21.4  
Vx  
-3374000  
-620000  
-694500  
Must be bonded to VDDP3  
GPIO  
LVDSH_N / PU1 -3265500  
/ VDDP3  
221  
P21.5  
LVDSH_P / PU1 -3265500  
/ VDDP3  
-845500  
GPIO  
222  
223  
224  
225  
226  
227  
VDD  
Vx  
Vx  
-3374000  
-3374000  
-920000  
Must be bonded to VDD  
Must be bonded to VSS  
GPIO, TDI  
VSS  
-1020000  
-1070000  
-1120000  
-1345000  
-1395000  
P21.6  
A2 / PU / VDDP3 -3265500  
VDDP3  
VSS  
Vx  
Vx  
-3374000  
-3374000  
Must be bonded to VDDP3  
Must be bonded to VSS  
TMS / DAP1  
A2 / PD / VDDP3 -3265500  
JTAG Module State  
Machine Control Input /  
Device Access Port Line 1  
228  
229  
P21.7  
A2 / PU / VDDP3 -3374000  
A2 / PU / VDDP3 -3265500  
-1445000  
-1535000  
GPIO, TDO  
TRST (N)  
JTAG Module  
Reset/Enable Input  
230  
TCK / DAP0  
A2 / PU / VDDP3 -3374000  
-1585000  
JTAG Module Clock Input /  
Device Access Port Line 0  
231  
232  
233  
P20.0  
P20.1  
P20.2  
MP / PU1 / VEXT -3265500  
LP / PU1 / VEXT -3374000  
LP / PU / VEXT -3265500  
-1720000  
-1790000  
-1845000  
GPIO  
GPIO  
Testmode pin must be  
bonded  
234  
VSS  
Vx  
-3374000  
146  
-1895000  
Must be bonded to VSS  
Data Sheet  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
235  
Pad Name  
Pad Type  
X
Y
Comment  
P20.3  
LP / PU1 / VEXT -3265500  
MP / PU1 / VEXT -3374000  
-1950000  
-2020000  
GPIO  
236  
ESR1 (N) /  
EVRWUP  
External System Request  
Reset 1. Default NMI  
function. EVR Wakeup Pin.  
237  
PORST (N)  
I / PD1 / VEXT  
-3265500  
-2102500  
Power On Reset Input.  
Additional strong PD in  
case of power fail.  
238  
239  
VEXT  
Vx  
-3374000  
-3265500  
-2170000  
-2235000  
Must be bonded to VEXT  
ESR0 (N) /  
EVRWUP  
MP / OD  
External System Request  
Reset 0. Default  
configuration during and  
after reset is open-drain  
driver. The driver drives low  
during power-on reset. EVR  
Wakeup Pin.  
240  
241  
VDD  
VSS  
Vx  
Vx  
-3374000  
-3374000  
-2310000  
-2440000  
Must be bonded to VDD  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
240.  
242  
VSS  
Vx  
-3374000  
-2480000  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
239.  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
VDD  
Vx  
-3374000  
-2610000  
-2665000  
-2720000  
-2775000  
-2865000  
-2935000  
-2990000  
-3055000  
-3155000  
-3235000  
-3300000  
-3365000  
-3465000  
-3596500  
-3596500  
-3705000  
-3705000  
-3596500  
Must be bonded to VDD  
P20.6  
VSS  
LP / PU1 / VEXT -3265500  
Vx -3374000  
GPIO  
Must be bonded to VSS  
P20.7  
P20.8  
P20.9  
VEXT  
P20.10  
P20.11  
P20.12  
VSS  
LP / PU1 / VEXT -3265500  
MP / PU1 / VEXT -3374000  
LP / PU1 / VEXT -3265500  
GPIO  
GPIO  
GPIO  
Vx  
-3374000  
Must be bonded to VEXT  
MP / PU1 / VEXT -3265500  
MP / PU1 / VEXT -3374000  
MP / PU1 / VEXT -3265500  
GPIO  
GPIO  
GPIO  
Vx  
-3374000  
Must be bonded to VSS  
P20.13  
P20.14  
P15.0  
P15.1  
P15.2  
P15.3  
VEXT  
MP / PU1 / VEXT -3265500  
MP / PU1 / VEXT -3265500  
LP / PU1 / VEXT -3134000  
LP / PU1 / VEXT -3034000  
MP / PU1 / VEXT -2964000  
MP / PU1 / VEXT -2864000  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
-2799000  
Must be bonded to VEXT  
Data Sheet  
147  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
261  
Pad Name  
P15.4  
P15.5  
P15.6  
VSS  
Pad Type  
X
Y
Comment  
MP / PU1 / VEXT -2734000  
MP / PU1 / VEXT -2634000  
MP / PU1 / VEXT -2522000  
-3705000  
-3705000  
-3596500  
-3705000  
-3596500  
-3705000  
-3596500  
GPIO  
262  
GPIO  
263  
GPIO  
264  
Vx  
-2457000  
Must be bonded to VSS  
265  
P15.7  
P15.8  
P14.0  
MP / PU1 / VEXT -2392000  
MP / PU1 / VEXT -2312000  
GPIO  
GPIO  
GPIO  
266  
267  
MP+ / PU1 /  
VEXT  
-2222000  
268  
269  
270  
P14.1  
VEXT  
P14.2  
MP / PU1 / VEXT -2122000  
Vx -2057000  
-3596500  
-3705000  
-3596500  
GPIO  
Must be bonded to VEXT  
LP / PU1 / VEXT -2002000  
Must be bonded to VEXT if  
EVR13 active. Must be  
bonded to VSS if EVR13  
inactive.  
271  
272  
273  
274  
P14.3  
P14.4  
VSS  
LP / PU1 / VEXT -1942000  
LP / PU1 / VEXT -1872000  
-3705000  
-3596500  
-3705000  
-3596500  
GPIO  
GPIO  
Vx  
-1817000  
-1742000  
Must be bonded to VSS  
GPIO  
P14.5  
MP+ / PU1 /  
VEXT  
275  
P14.6  
MP+ / PU1 /  
VEXT  
-1642000  
-3705000  
GPIO  
276  
277  
278  
P14.7  
P14.8  
P14.9  
LP / PU1 / VEXT -1562000  
LP / PU1 / VEXT -1502000  
-3596500  
-3705000  
-3596500  
GPIO  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
-1422000  
279  
P14.10  
MP+ / PU1 /  
VEXT  
-1322000  
-3596500  
GPIO  
280  
281  
282  
283  
284  
Reserved  
VEXT  
VSS  
Vx  
Vx  
Vx  
Vx  
Vx  
-1247000  
-1197000  
-1147000  
-1097000  
-1017000  
-3705000  
-3596500  
-3705000  
-3596500  
-3705000  
Must be bonded to VSS  
Must be bonded to VEXT  
Must be bonded to VSS  
Must be bonded to VEXT  
VEXT  
VSS  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
284.  
285  
286  
VDDP3  
VSS  
Vx  
Vx  
-994500  
-972000  
-3596500  
-3705000  
Must be bonded to VDDP3  
Must be bonded to VSS.  
Double Pad (Elephant  
Pad), shared with Pad Nr  
282.  
287  
VDDP3  
Vx  
-877000  
148  
-3596500  
Must be bonded to VDDP3  
Data Sheet  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
288  
Pad Name  
VDDFL3  
VDDFL3  
VDDFL3  
VSS  
Pad Type  
X
Y
Comment  
Vx  
Vx  
Vx  
Vx  
-777000  
-697000  
-629500  
-577000  
-3596500  
-3705000  
-3596500  
-3705000  
-3596500  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VSS  
GPIO  
289  
290  
291  
292  
P13.0  
MP / LVDSM_N/ -512000  
PU1 / VEXT  
293  
P13.1  
MP / LVDS_P / -162000  
PU1 / VEXT  
-3596500  
GPIO  
294  
295  
VEXT  
P13.2  
Vx  
-97000  
-3705000  
-3596500  
Must be bonded to VEXT  
GPIO  
MP / LVDSM_N/ -32000  
PU1 / VEXT  
296  
297  
298  
299  
P13.3  
P12.0  
P12.1  
P11.0  
MP / LVDS_P / 318000  
PU1 / VEXT  
-3596500  
-3596500  
-3705000  
-3596500  
GPIO  
GPIO  
GPIO  
GPIO  
LP / PU1 /  
VFLEX  
458000  
518000  
598000  
LP / PU1 /  
VFLEX  
MP+ / PU1 /  
VFLEX  
300  
301  
VSSFLEX  
P11.1  
Vx  
673000  
748000  
-3705000  
-3596500  
Must be bonded to VSS  
GPIO  
MP+ / PU1 /  
VFLEX  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
VFLEX  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
P11.9  
P11.8  
VSSFLEX  
Vx  
823000  
-3705000  
-3596500  
-3596500  
-3705000  
-3596500  
-3705000  
-3596500  
-3705000  
-3596500  
-3705000  
Must be bonded to VEXT or  
VDDP3  
MPR / PU1 /  
VFLEX  
898000  
GPIO  
MPR / PU1 /  
VFLEX  
998000  
GPIO  
MP+ / PU1 /  
VFLEX  
1098000  
1178000  
1258000  
1338000  
1418000  
1498000  
1553000  
GPIO  
LP / PU1 /  
VFLEX  
GPIO  
MPR / PU1 /  
VFLEX  
GPIO  
LP / PU1 /  
VFLEX  
GPIO  
MP+ / PU1 /  
VFLEX  
GPIO  
LP / PU1 /  
VFLEX  
GPIO  
Vx  
Must be bonded to VSS  
Data Sheet  
149  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Table 2-40 List of the TC270x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
312  
VFLEX  
Vx  
1603000  
-3596500  
Must be bonded to VEXT or  
VDDP3  
313  
314  
P11.10  
P11.13  
LP / PU1 /  
VFLEX  
1698000  
1758000  
-3705000  
-3596500  
GPIO  
LP / PU1 /  
VFLEX  
GPIO  
315  
316  
VSSFLEX  
P11.11  
Vx  
1813000  
1888000  
-3705000  
-3596500  
Must be bonded to VSS  
GPIO  
MP+ / PU1 /  
VFLEX  
317  
318  
319  
P11.12  
P11.14  
P11.15  
MPR / PU1 /  
VFLEX  
1988000  
2068000  
2128000  
-3596500  
-3705000  
-3596500  
GPIO  
GPIO  
GPIO  
LP / PU1 /  
VFLEX  
LP / PU1 /  
VFLEX  
320  
321  
322  
323  
324  
VDD  
VSS  
Vx  
Vx  
Vx  
2183000  
2283000  
2403000  
-3705000  
-3705000  
-3705000  
-3596500  
-3705000  
Must be bonded to VDD  
Must be bonded to VSS  
Must be bonded to VSS  
GPIO  
VSS  
P10.0  
P10.1  
LP / PU1 / VEXT 2458000  
MP+ / PU1 /  
VEXT  
2543000  
GPIO  
325  
326  
327  
P10.2  
P10.3  
P10.4  
MP / PU1 / VEXT 2643000  
MP / PU1 / VEXT 2723000  
-3705000  
-3596500  
-3705000  
GPIO  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
2834000  
328  
329  
330  
331  
332  
VEXT  
P10.5  
P10.6  
VSS  
Vx  
2909000  
-3596500  
-3705000  
-3596500  
-3705000  
-3596500  
Must be bonded to VEXT  
LP / PU1 / VEXT 2964000  
LP / PU1 / VEXT 3024000  
GPIO  
GPIO  
Vx  
3079000  
Must be bonded to VSS  
GPIO  
P10.7  
LP / PU1 / VEXT 3134000  
Legend:  
Column “Number”:  
Running number of pads in the pad frame  
Column “Name”:  
Symbolic name of the pad.  
The functions mapped on GPIO pads “Px.y” are described in the User’s Manual chapter ”General Purpose I/O  
Ports and Peripheral I/O LInes (Ports)”  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP+ (5V/3.3V, LVTTL)  
Data Sheet  
150  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
MPR = Pad class MPR (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)  
S = Pad class S (ADC overlayed with General Purpose Input)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)  
PD = with pull-down device connected during reset (PORST = 0)  
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)  
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode  
OD = open drain during reset (PORST = 0)  
HighZ = tri-state during reset (PORST = 0)  
PORST = PORST input pad  
XTAL1 = XTAL1 input pad  
XTAL2 = XTAL2 input pad  
VGATE1P = VGATE1P  
VGATE3P = VGATE3P  
Vx = Supply  
NC = These pins are reserved for future extensions and shall not be connected externally  
NC1 = These pins are not connected on package level and will not be used for future extensions  
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
Column “X” / “Y”:  
Pad opening center coordinates (in nm)  
2.3.1  
Pad Openings  
Two different pad openings are used:  
Standard Pad Opening is 70um x 75um where 70um is the width of the opening (width as seen from the die  
side) and 75um is the depth of the opening (from the die side into the silicon).  
Double Pad or Elephant Pad Opening is 130um x 75um where 130um is the width of the opening (width as  
seen from the die side) and 75um is the depth of the opening (from the die side into the silicon). The Double  
Pad openings are represented with two opening coordinates and two pad numbers. Double Pads are used only  
for supply and can be identified by the words ´Double Pad´ or ´Elephant Pad´ in the Comment column.  
2.3.2  
Emergency Stop Function  
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input  
signal (EMGSTOPA or EMGSTOPB) into a defined state:  
1)The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak  
internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General  
Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.  
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups are active at GPIOs (Px.y) pins during  
and after reset. Exceptions are P33.8 (HighZ), P40.x (default configuration during and after reset: analog inputs, port input  
funtion disabled), ESR0, P21.6 / P21.7 (port pins overlayed with JTAG functionality).  
3) If HWCFG[6] is connected to ground, port pins are predominantly in HighZ during and after reset. Exceptions are P33.8  
(HighZ), P40.x (default configuration during and after reset: analog inputs, port input funtion disabled), ESR0, P21.6 / P21.7  
(port pins overlayed with JTAG functionality).  
Data Sheet  
151  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Package and Pinning DefinitionsTC270x Bare Die Pad Definition  
Input state and  
PU or HighZ depending on HWCFG[6] level latched during PORST active  
Control of the Emergency Stop function:  
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop  
Control”)  
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see  
chapter “SCU”, “Emergency Stop Control”)  
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x  
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O  
Lines”, “Emergency Stop Register”).  
The Emergency Stop function is available for all GPIO Ports with the following exceptions:  
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)  
Not available for P40.x (analoge input ANx overlayed with GPI)  
Not available for P32.0 EVR13 SMPS mode.  
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)  
The Emergency Stop function can be overruled on the following GPIO Ports:  
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register  
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)  
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).  
No Overruling in the DXCM (Debug over can message) mode  
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI  
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode  
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI  
2.3.3  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 2-41 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In  
case of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
Data Sheet  
152  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationParameter Interpretation  
3
Electrical Specification  
3.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the TC270 / TC275 / TC277 and partly  
its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they  
are marked with an two-letter abbreviation in column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics which are a distinctive feature of the TC270 / TC275 /  
TC277 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements which must provided by the microcontroller system in which  
the TC270 / TC275 / TC277 designed in.  
Data Sheet  
153  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationAbsolute Maximum Ratings  
3.2  
Absolute Maximum Ratings  
Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the Operational Conditions of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 3-1 Absolute Maximum Ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Storage Temperature  
T
ST SR  
-65  
-
170  
°C  
upto 65h @ TJ =  
150°C; upto 15h @ TJ  
= 170°C  
Voltage at VDD power supply  
pins with respect to VSS  
V
V
DD SR  
-
-
-
-
1.9  
V
V
1)  
Voltage at VDDP3 and VDDFL3  
DDP3 SR  
4.43  
power supply pins with respect  
1)  
to VSS  
Voltage at VDDM, VEXT and  
V
DDM SR  
-
-
-
7.0  
V
V
V
FLEX power supply pins with  
1)  
respect to VSS  
Voltage on any class A2 and  
LVDSH input pin with respect  
VIN SR  
-0.5  
min(  
VDDP3  
0.6 , 4.23  
Whatever is lower  
+
1)2)  
to VSS  
)
Voltage on all other input pins VIN SR  
with respect to VSS  
-0.5  
-10  
-
-
-
7.0  
10  
V
1)2)  
Input current on any pin during IIN SR  
mA  
mA  
overload condition 3)  
Absolute maximum sum of all ΣIIN SR  
input circuit currents during  
overload condition 3)  
-100  
100  
1) Valid for cumulated for up to 2.8h and pulse forms following a power supply switch on phase, where the rise and fall times  
are releated to the system capacities and coils.  
2) Voltages below VINmin have no Impact to the device reliabiltiy as Long as the times and currents defined in section Pin  
Reliability in Overload for the affected pad(s) are not violated.  
3) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may  
damage the device.  
Data Sheet  
154  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPin Reliability in Overload  
3.3  
Pin Reliability in Overload  
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and  
voltages that go beyond their own IO power supplies specification.  
The following table defines overload conditions that will not cause any negative reliability impact if all the following  
conditions are met:  
full operation life-time is not exceeded  
Operating Conditions are met for  
pad supply levels  
temperature  
If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters  
functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still  
possible in most cases but with relaxed parameters.  
Note:An overload condition on one or more pins does not require a reset.  
Table 3-2 Overload Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-5  
-15 1)  
Max.  
5
15 1)  
Input current on any digital pin IIN  
during overload condition  
-
-
mA  
mA  
except LVDS pins  
except LVDS pins;  
limited to max. 20  
pulses with 1ms pulse  
length  
Input current on LVDS pin  
during overload condition  
IINLVDS  
-3  
-
-
3
mA  
mA  
Absolute maximum sum of all IING  
input circuit currents during  
overload condition  
-50  
50  
Input current on analog input  
pin during overload condition  
IINANA  
-3  
-5  
-
-
3
5
mA  
mA  
limited to 60h over  
lifetime  
Absolute sum of all ADC inputs IINSCA  
during overload condition  
-20  
-
-
20  
mA  
mA  
Absolute maximum sum of all ΣIINS  
input circuit currents during  
overload condition  
-100  
100  
Signal voltage over/undershoot VOUS  
at GPIOs  
V
SS - 2  
-
VEXT/FLEX  
+ 2  
V
limited to 60h over  
lifetime; Valid for LP,  
MP, MP+, and MPR  
pads  
Inactive device pin current  
during overload condtion 2)  
IID  
-1  
-
-
1
mA  
mA  
All power supply  
voltages VDDx = 0  
Sum of all inactive device pin IIDS  
-100  
100  
currents 2)  
Data Sheet  
155  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPin Reliability in Overload  
Table 3-2 Overload Parameters (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Overload coupling factor for  
digital inputs, negative 3)  
KOVDN CC  
-
2*10-4  
6*10-4  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
LP and A2 pads; -2mA  
< IIN < 0mA  
-
-
-
-
1*10-2  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
LP and A2 pads; -5mA  
< IIN < -2mA  
1.7*10-3  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
MP, MP+, and MPR  
pads; -2mA < IIN <  
0mA  
-
-
-
-
2*10-2  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
MP, MP+, and MPR  
pads; -5mA < IIN < -  
2mA  
0.3  
Overload injected on  
LVDS pad and  
affecting neighbor  
LVDS pads  
-
-
-
-
0.93  
couplingbetweenpads  
21.2 and 21.3  
Overload coupling factor for  
digital inputs, positive 3)  
KOVDP CC  
1*10-5  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
GPIO non LVDS pads  
-
-
-
-
1*10-4  
5*10-4  
Overload injected on  
GPIO pad and  
affecting neighbor  
P32.0 pad  
Overload injected on  
LVDS pad and  
affecting neighbor  
LVDS pads  
Data Sheet  
156  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPin Reliability in Overload  
Table 3-2 Overload Parameters (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Overload coupling factor for  
analog inputs, negative  
KOVAN CC  
-
-
6*10-4 4)  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics;  
-1mA < IIN < 0mA  
-
-
1*10-2  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics;  
-5mA < IIN < -1mA  
-
-
-
-
1*10-4  
1*10-5  
else; -5mA < IIN < 0mA  
5mA < IIN < 0mA  
Overload coupling factor for  
analog inputs, positive  
KOVAP CC  
1) Reduced VADC / DSADC result accuracy and / or GPIO input levels (VIL and VIH) can differ from specified parameters.  
2) Limitations for time and supply levels specified in this section are not valid for this parameter.  
3) Overload is measured as increase of pad leakage caused by injection on neighbor pad.  
4) For analogue inputs overlaid with DSADC function the VCM holdbuffer shall be enabled, in case DSADCs are enabled.  
Note:DSADC input pins count as analog pins as they are overlaid with VADC pins.  
Table 3-3 PN-Junction Characteristics for positive Overload  
Pad Type  
IIN = 3 mA  
IIN = 5 mA  
F / A2  
UIN = VDDP3 + 0.5 V  
UIN = VEXT / FLEX + 0.75 V  
UIN = VEXT + 0.75 V  
UIN = VDDP3 + 0.5 V  
UIN = VDDM + 0.75 V  
UIN = VDDP3 + 0.6 V  
LP / MP / MP+ / MPR  
UIN = VEXT / FLEX + 0.8 V  
LVDSM  
LVDSH  
D
-
-
-
Table 3-4 PN-Junction Characteristics for negative Overload  
Pad Type  
IIN = -3 mA  
IIN = -5 mA  
F / A2  
UIN = VSS - 0.5 V  
UIN = VSS - 0.75 V  
UIN = VSS - 0.75 V  
UIN = VSS - 0.5 V  
UIN = VSS - 0.75 V  
UIN = VSS - 0.6 V  
LP / MP / MP+ / MPR  
UIN = VSS - 0.8 V  
LVDSM  
LVDSH  
D
-
-
-
Data Sheet  
157  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationOperating Conditions  
3.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the  
TC270 / TC275 / TC277. All parameters specified in the following tables refer to these operating conditions, unless  
otherwise noticed.  
Digital supply voltages applied to the TC270 / TC275 / TC277 must be static regulated voltages.  
All parameters specified in the following tables refer to these operating conditions (see table below), unless  
otherwise noticed in the Note / Test Condition column.  
Table 3-5 Operating Conditions  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
200  
200  
200  
200  
200  
200  
400  
100  
200  
100  
200  
100  
200  
100  
100  
100  
80  
SRI frequency  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
SRI SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
mA  
Max System Frequency  
CPU0 Frequency  
CPU1 Frequency  
CPU2 Frequency  
PLL output frequency  
PLL_ERAY output frequency  
SPB frequency  
MAX SR  
CPU0 SR  
CPU1 SR  
CPU2 SR  
PLL SR  
-
-
-
-
20  
PLLERAY SR 20  
SPB SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
ASCLIN fast frequency  
ASCLIN slow frequency  
Baud2 frequency  
Baud1 frequency  
FSI2 frequency  
ASCLINF SR  
ASCLINS SR  
BAUD2 SR  
BAUD1 SR  
FSI2 SR  
FSI frequency  
FSI SR  
GTM frequency  
GTM SR  
STM SR  
STM frequency  
ERAY frequency  
BBB frequency  
ERAY SR  
BBB SR  
100  
100  
100  
MultiCAN frequency  
CAN SR  
Absolute sum of short circuit  
currents of the device  
ΣISC_D SR  
Ambient Temperature  
TA SR  
-40  
-40  
-40  
-
-
-
125  
150  
170  
°C  
°C  
°C  
valid for all SAK  
products  
valid for all SAL  
products  
valid for all SAL  
products without  
package  
Junction Temperature  
TJ SR  
-40  
-40  
-
-
150  
170  
°C  
°C  
valid for all SAK  
products  
valid for all SAL  
products  
Data Sheet  
158  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationOperating Conditions  
Table 3-5 Operating Conditions (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Core Supply Voltage 1)  
V
DD SR  
1.17  
1.3  
1.43 2)  
V
Only required if  
externally supplied  
ADC analog supply voltage  
V
V
DDM SR  
EXT SR  
2.97  
2.97  
5.0  
-
5.5 3)  
4.5  
V
V
Digital external supply voltage  
for LP, MP, MP+ and LVDSM  
pads and EVR 4)  
3.3V pad parameters  
are valid  
4.5  
5.0  
-
5.5 3)  
4.5  
V
V
V
V
5V pad parameters are  
valid  
Digital supply voltage for Flex  
port  
V
FLEX SR  
2.97  
4.5  
3.3V pad parameters  
are valid  
5.0  
3.3  
5.5 3)  
3.63 6)  
5V pad parameters are  
valid  
Digital supply voltage for  
LVDSH and A2 pads 5)  
V
V
DDP3 SR  
2.97  
3.3V pad parameters  
are valid; only required  
if externally supplied  
Flash supply voltage 3.3V 1)  
DDFL3 SR 2.97  
3.3  
3.63  
V
Only required if  
externally supplied  
Digital ground voltage  
V
V
SS SR  
0
-
-
V
V
V
V
Analog ground voltage for VDDM  
SSM CC  
-0.1  
0
-
0.1  
Voltage to ensure defined pad VDDPPA CC 0.72  
-
-
A2 and LVDSH  
states 7)  
1.4  
-
LP, MP, MP+, MPR  
and LVDSM  
Digital external supply voltage  
for EVR and during Standby  
mode  
V
EVRSB SR 2.97  
-
5.5  
V
only available in BGA  
package. VEVRSB is  
bonded together with  
V
EXT supply pin in  
LQFP package.  
1) No external inductive load permissible if EVR is used. All VDD pins shall be connected together externally on the PCB.  
2) Voltage overshoot to 1.69V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and  
leakage is increased.  
3) Voltage overshoot to 6.5V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and  
leakage is increased.  
4) All VEXT pins shall be connected together externally on the PCB.  
5) All VDDP3 pins shall be connected together externally on the PCB.  
6) Voltage overshoot to 4.29V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and  
leakage is increased.  
7) This parameter is valid under the assumption the PORST signal is constantly at low level during the power-up/power-down  
of VDDP3  
.
Data Sheet  
159  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
3.5  
5 V / 3.3 V switchable Pads  
Pad classes LP, MP, MP+, and MPR support both Automotive Level (AL) or TTL level (TTL) operation. Parameters  
are defined for AL operation and degrade in TTL operation.  
Table 3-6 Standard_Pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pin capacitance (digital  
inputs/outputs)  
CIO CC  
-
6
10  
pF  
ns  
Spike filter always blocked  
pulse duration  
t
SF1 CC  
-
-
80  
-
PORST only  
PORST only  
Spike filter pass-through pulse tSF2 CC  
220  
-
ns  
duration  
PORST pad output current 1)  
I
PORST CC 11  
13  
-
-
mA  
mA  
V
EXT = 3.0V; VPORST  
0.9V; TJ = 165°C  
EXT = 4.5V; VPORST  
1.0V  
=
=
-
-
V
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
Table 3-7 Class LP 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input Hysteresis for LP pad 1) HYSLP CC 0.09 *  
VEXT/FLEX  
0.075 *  
VEXT/FLEX  
-
-
-
V
TTL  
Input Leakage current for LP  
pad  
I
OZLP CC  
-150  
150  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
-
-
350  
nA  
nA  
else  
Input leakage current for P32.0 IOZP320 CC -4900  
4900  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-9400  
-
9400  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); for TJ >  
150°C  
-5800  
-
-
-
-
-
5800  
nA  
nA  
µA  
µA  
µA  
else  
-12000  
12000  
else; for TJ > 150°C  
Pull-up current for LP pad  
I
PUHLP CC  
|30|  
|43|  
-
-
V
V
V
IHmin; AL  
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
Data Sheet  
160  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-7 Class LP 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-
Max.  
|100|  
-
Pull-down current for LP pad  
I
PDLLP CC  
-
µA  
V
V
V
IHmin; AL and TTL  
ILmax; AL  
|46|  
|21|  
200  
-
µA  
-
-
µA  
ILmax; TTL  
On-Resistance for LP pad,  
weak driver 2)  
RDSONLPW  
CC  
620  
1040  
Ohm  
PMOS/NMOS ;  
I
OH=0.5mA ;  
IOL=0.5mA  
On-Resistance for LP pad,  
medium driver 2)  
Rise / fall time for LP pad 3)  
RDSONLPM  
CC  
50  
-
155  
260  
Ohm  
PMOS/NMOS ;  
IOH=2mA ; IOL=2mA  
t
LP CC  
-
-
-
-
-
95+2.1 * ns  
CL  
CL50pF ; pin out  
driver=weak  
-
200+2.9 * ns  
( CL - 50 )  
CL50pF ; CL200pF ;  
pin out driver=weak  
-
25+0.5 * ns  
CL  
CL50pF ; pin out  
driver=medium  
-
50+0.75 * ns  
( CL - 50 )  
CL50pF ; CL200pF ;  
pin out driver=medium  
Input high voltage for LP pad  
Input low voltage for LP pad  
V
V
V
IHLP SR  
ILLP SR  
ILHLP CC  
(0.73*VEX  
T/FLEX)-  
0.25  
2.03 4)  
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
-
(0.52*VEX  
T/FLEX)-  
0.25  
0.8 5)  
-
-
-
V
V
Hysteresis active, TTL  
Input low / high voltage for LP  
pad  
1.85  
3.0  
Hysteresis inactive;  
not available for P14.2,  
P14.4, and P15.1  
Pad set-up time for LP pad  
t
SET_LP CC  
-
-
-
100  
ns  
Input leakage current for P02.1 IOZ021 CC  
-150  
1030  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ >  
150°C  
-150  
-
340  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ =  
150°C  
-420  
-350  
-
-
-
-
-
1100  
380  
|105|  
-
nA  
nA  
µA  
µA  
µA  
else; TJ > 150°C  
else; TJ = 150°C  
Pull down current for P32_0 pin IPDLP320 CC -  
|41|  
|16|  
V
V
V
IHmin; AL and TTL  
ILmax; AL  
-
ILmax; TTL  
Data Sheet  
161  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-7 Class LP 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pull Up Current for P32_0 pin  
I
PUHP320 CC |25|  
-
-
-
-
-
µA  
µA  
µA  
mA  
V
V
V
IHmin; AL  
|38|  
-
-
IHmin; TTL  
|112|  
10  
ILmax; AL and TTL  
Short Circuit current for LP pad ISC SR  
-10  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-8 Class LP 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input Hysteresis for LP pad 1) HYSLP CC 0.05 *  
VEXT/FLEX  
Input Leakage current for LP  
pad  
I
OZLP CC  
-150  
-
150  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
-
-
350  
nA  
nA  
else  
Input leakage current for P32.0 IOZP320 CC -4900  
4900  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-9400  
-
9400  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); for TJ >  
150 °C  
-5800  
-
5900  
nA  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
else  
-12000  
-
12000  
else; for TJ > 150°C  
Pull-up current for LP pad  
I
I
PUHLP CC  
|17|  
|19|  
-
-
-
V
V
V
V
V
V
IHmin; AL  
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for LP pad  
PDLLP CC  
-
-
|22|  
|11|  
250  
-
-
-
ILmax; TTL  
On-Resistance for LP pad,  
weak driver 2)  
RDSONLPW  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA ;  
IOL=0.25mA  
Data Sheet  
162  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-8 Class LP 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
On-Resistance for LP pad,  
medium driver 2)  
RDSONLPM  
CC  
70  
235  
400  
Ohm  
; NMOS/PMOS ;  
IOH=1mA ; IOL=1mA  
Rise / fall time for LP pad 3)  
t
LP CC  
-
-
-
-
-
-
-
-
-
150+3.4 * ns  
CL  
CL50pF ; pin out  
driver=weak  
320+4.5 * ns  
( CL - 50 )  
CL50pF ; CL200pF ;  
pin out driver=weak  
30+0.8*C ns  
CL50pF ; pin out  
driver=medium  
L
70+1.1 * ( ns  
CL - 50 )  
CL50pF ; CL200pF ;  
pin out driver=medium  
Input high voltage for LP pad  
Input low voltage for LP pad  
V
V
V
IHLP SR  
ILLP SR  
ILHLP CC  
(0.73*VEX  
T/FLEX)-  
0.25  
1.6 4)  
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Input low / high voltage for LP  
pad  
1.1  
1.9  
Hysteresis inactive;  
not available for P14.2,  
P14.4, and P15.1  
Pad set-up time for LP pad  
t
SET_LP CC  
-
-
-
100  
920  
ns  
Input leakage current for P02.1 IOZ021 CC  
-150  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ >  
150°C  
-150  
-
330  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ =  
150°C  
-360  
-350  
-
-
-
-
-
-
-
-
-
1000  
nA  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
else; TJ > 150°C  
else; TJ = 150°C  
375  
Pull down current for P32_0 pin IPDLP320 CC -  
|17|  
|80|  
V
V
V
V
V
V
IHmin; AL and TTL  
ILmax; AL  
-
|6|  
-
ILmax; TTL  
Pull Up Current for P32_0 pin  
I
PUHP320 CC |12|  
-
IHmin; AL  
|14|  
-
-
IHmin; TTL  
|80|  
10  
ILmax; AL and TTL  
Short Circuit current for LP pad ISC SR  
-10  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
Data Sheet  
163  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-9 Class MP 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input Hysteresis for MP pad 1) HYSMP CC 0.09 *  
VEXT/FLEX  
0.075 *  
VEXT/FLEX  
-
-
-
V
TTL  
Input Leakage current for MP  
pad  
I
I
OZMP CC  
-500  
500  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1000  
-
1000  
nA  
else  
Pull-up current for MP pad  
PUHMP CC |30|  
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|43|  
-
-
-
IHmin; TTL  
-
|107|  
|100|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP pad  
I
PDLMP CC  
-
-
|46|  
|21|  
-
-
-
ILmax; TTL  
On-Resistance for MP pad,  
weak driver 2)  
RDSONMPW 200  
CC  
620  
1040  
PMOS/NMOS ;  
I
OH=0.5mA ;  
IOL=0.5mA  
On-Resistance for MP pad,  
medium driver 2)  
RDSONMPM  
CC  
50  
20  
155  
75  
260  
130  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA ; IOL=2mA  
PMOS/NMOS ;  
IOH=8mA ; IOL=8mA  
On-Resistance for MP pad,  
strong driver 2)  
RDSONMPS  
CC  
Data Sheet  
164  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-9 Class MP 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise / fall time for MP pad 3)  
t
MP CC  
-
-
-
-
-
95+2.1*C ns  
CL50pF ; pin out  
driver=weak  
L
-
-
-
200+2.9*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=weak  
25+0.5*C ns  
CL50pF ; pin out  
driver=medium  
L
50 + 0.75 ns  
CL50pF ; CL200pF ;  
* ( CL - 50  
)
pin out driver=medium  
-
-
-
-
17.5+0.25 ns  
*CL  
CL50pF ;  
edge=medium ; pin out  
driver=strong  
30+0.3*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
7+0.2*CL ns  
CL50pF ; edge=sharp  
; pin out driver=strong  
17+0.3*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
Input high voltage for MP pad  
Input low voltage for MP pad  
V
V
IHMP SR  
(0.73*VEX  
T/FLEX)-  
0.25  
2.03 4)  
-
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
ILMP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.8 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP VILHMP CC 1.85  
3.0  
pad  
Pad set-up time for MP pad  
t
SET_MP CC  
-
-
-
100  
10  
ns  
Short Circuit current for MP pad ISC SR  
-10  
mA  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Data Sheet  
165  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-10 Class MP 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input Hysteresis for MP pad 1) HYSMP CC 0.05 *  
VEXT/FLEX  
Input Leakage current for MP  
pad  
I
OZMP CC  
-500  
-
500  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1000  
-
1000  
nA  
else  
Pull-up current for MP pad  
I
PUHMP CC |17|  
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|19|  
-
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP pad  
I
PDLMP CC  
-
-
|22|  
|11|  
-
-
-
ILmax; TTL  
On-Resistance for MP pad,  
weak driver 2)  
RDSONMPW 250  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA ;  
IOL=0.25mA  
On-Resistance for MP pad,  
medium driver 2)  
RDSONMPM  
CC  
70  
20  
-
235  
400  
200  
Ohm  
Ohm  
; NMOS/PMOS ;  
I
OH=1mA ; IOL=1mA  
On-Resistance for MP pad,  
strong driver 2)  
Rise / fall time for MP pad 3)  
RDSONMPS  
CC  
110  
PMOS/NMOS ;  
I
OH=4mA ; IOL=4mA  
t
MP CC  
-
-
-
-
-
150+3.4* ns  
CL  
CL50pF ; pin out  
driver=weak  
-
320+4.5*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=weak  
-
30+0.8*C ns  
CL50pF ; pin out  
driver=medium  
L
-
70+1.1*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=medium  
-
32.5+0.35 ns  
CL50pF ;  
*CL  
edge=medium ; pin out  
driver=strong  
-
-
50+0.45*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
14.5+0.35 ns  
*CL  
CL50pF ; edge=sharp  
; pin out driver=strong  
32+0.5*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
Data Sheet  
166  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-10 Class MP 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for MP pad  
V
V
IHMP SR  
(0.73*VEX  
T/FLEX)-  
0.25  
1.6 4)  
-
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage for MP pad  
ILMP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP VILHMP CC 1.1  
1.9  
pad  
Pad set-up time for MP pad  
t
SET_MP CC  
-
-
-
100  
10  
ns  
Short Circuit current for MP pad ISC SR  
-10  
mA  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-11 Class MP+ 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input hysteresis for MP+ pad 1) HYSMPP  
0.09 *  
CC  
VEXT/FLEX  
0.075 *  
VEXT/FLEX  
-
-
-
V
TTL  
Input leakage current for MP+  
pad  
I
I
OZMPP CC -750  
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPP CC |30|  
-
-
-
-
-
-
-
1500  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
else  
Pull-up current for MP+ pad  
-
V
V
V
V
V
V
IHmin; AL  
|43|  
-
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP+ pad IPDLMPP CC  
-
|100|  
|46|  
|21|  
-
-
ILmax; TTL  
Data Sheet  
167  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-11 Class MP+ 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
On-resistance for MP+ pad,  
weak driver 2)  
RDSONMPPW 200  
CC  
620  
1040  
Ohm  
PMOS/NMOS ;  
IOH=0.5mA ;  
IOL=0.5mA  
On-resistance for MP+ pad,  
medium driver 2)  
RDSONMPPM 50  
CC  
155  
260  
90  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA ; IOL=2mA  
On-resistance for MP+ pad,  
strong driver 2)  
Rise/fall time for MP+ pad 3)  
RDSONMPPS 20  
CC  
55  
-
PMOS/NMOS ;  
I
OH=8mA ; IOL=8mA  
t
MPP CC  
-
-
-
-
-
95+2.1*C ns  
CL50pF ; pin out  
driver=weak  
L
-
200+2.9*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=weak  
-
25+0.5*C ns  
CL50pF ; pin out  
driver=medium  
L
-
50+0.75*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=medium  
-
9+0.16*C ns  
CL50pF ;  
edge=medium ; pin out  
L
driver=strong  
-
-
17+0.2*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
4+0.16*C ns  
CL50pF ; edge=sharp  
; pin out driver=strong  
L
12+0.21*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
-
-
-
5
ns  
from 0.8V to 2.0V  
(RMII) ; CL=25pF ;  
edge=sharp ; pin out  
driver=strong  
-
-
4.5  
-
ns  
V
CL=15pF ; edge=sharp  
; pin out driver=strong  
Input high voltage for MP+ pad VIHMPP SR (0.73*VEX  
Hysteresis active, AL  
T/FLEX)-  
0.25  
2.03 4)  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage for MP+ pad  
V
ILMPP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.8 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP+ VILHMPP CC 1.85  
3.0  
pad  
Data Sheet  
168  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-11 Class MP+ 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
100  
10  
Pad set-up time for MP+ pad  
t
SET_MPP CC -  
SCMPP SR -10  
-
-
ns  
Short circuit current for MP+  
pad 6)  
I
mA  
absolute max value  
(PSI5)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-12 Class MP+ 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input hysteresis for MP+ pad 1) HYSMPP  
0.05 *  
CC  
VEXT/FLEX  
Input leakage current for MP+  
pad  
I
OZMPP CC -750  
-
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPP CC |17|  
-
1500  
nA  
else  
Pull-up current for MP+ pad  
I
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|19|  
-
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP+ pad IPDLMPP CC  
-
-
|22|  
|11|  
-
-
-
ILmax; TTL  
On-resistance for MP+ pad,  
weak driver 2)  
RDSONMPPW 250  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA ;  
IOL=0.25mA  
On-resistance for MP+ pad,  
medium driver 2)  
RDSONMPPM 70  
CC  
235  
75  
400  
130  
Ohm  
Ohm  
; NMOS/PMOS ;  
I
OH=1mA ; IOL=1mA  
PMOS/NMOS ;  
IOH=4mA ; IOL=4mA  
On-resistance for MP+ pad,  
strong driver 2)  
RDSONMPPS 20  
CC  
Data Sheet  
169  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-12 Class MP+ 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time for MP+ pad 3)  
t
MPP CC  
-
-
-
-
-
-
150+3.4* ns  
CL  
CL50pF ; pin out  
driver=weak  
-
-
-
-
320+4.5*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=weak  
30+0.8*C ns  
CL50pF ; pin out  
driver=medium  
L
70+1.1*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=medium  
20+0.2*C ns  
CL50pF ;  
edge=medium ; pin out  
L
driver=strong  
-
-
30+0.3*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
13+0.2*C ns  
CL50pF ; edge=sharp  
; pin out driver=strong  
L
23+0.3*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
-
-
-
-
-
5
ns  
ns  
V
from 0.8V to 2.0V  
(RMII) ; CL=25pF ;  
edge=sharp ; pin out  
driver=strong  
4.5  
from 0.2 * VEXT/FLEX to  
0.8 * VEXT/FLEX  
;
CL=15pF ; edge=sharp  
; pin out driver=strong  
Input high voltage for MP+ pad VIHMPP SR (0.73*VEX  
-
-
Hysteresis active, AL  
T/FLEX)-  
0.25  
1.6 4)  
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage for MP+ pad  
V
ILMPP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP+ VILHMPP CC 1.1  
1.9  
pad  
Pad set-up time for MP+ pad  
t
SET_MPP CC -  
SCMPP SR -10  
-
-
100  
10  
ns  
Short circuit current for MP+  
pad 6)  
I
mA  
absolute max value  
(PSI5)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
Data Sheet  
170  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-13 Class MPR 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input Hysteresis for MPR pads HYSMPR  
0.09 *  
VEXT/FLEX  
1)  
CC  
0.075*  
VEXT/FLEX  
-
-
-
V
TTL  
Input leakage current class  
MPR  
I
I
OZMPR CC -750  
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPR CC |30|  
-
1500  
nA  
else  
Pull-up current  
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|43|  
-
-
-
IHmin; TTL  
-
|107|  
|100|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current  
I
PDLMPR CC -  
-
|46|  
|21|  
-
-
-
ILmax; TTL  
On-resistance of the MPR pad, RDSONMPRW 200  
weak driver 2)  
CC  
620  
1040  
PMOS/NMOS ;  
I
OH=0.5mA ;  
IOL=0.5mA  
On-resistance of the MPR pad, RDSONMPRM 50  
medium driver 2)  
CC  
On-resistance of the MPR pad, RDSONMPRS 20  
strong driver 2)  
CC  
155  
55  
260  
90  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA ; IOL=2mA  
PMOS/NMOS ;  
OH=8mA ; IOL=8mA  
I
Data Sheet  
171  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-13 Class MPR 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time 3)  
t
MPR CC  
-
-
-
-
-
-
95+2.1*C ns  
CL50pF ; pin out  
driver=weak  
L
-
-
-
-
200+2.9*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=weak  
25+0.5*C ns  
CL50pF ; pin out  
driver=medium  
L
50+0.75*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=medium  
9+0.16*C ns  
CL0pF ; CL50pF ;  
edge=medium ; pin out  
driver=strong  
L
-
-
17+0.2*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
4+0.16*C ns  
CL50pF ; edge=sharp  
; pin out driver=strong  
L
12+0.21*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
-
-
-
-
-
5
ns  
ns  
V
from 0.8V to 2.0V  
(RMII) ; CL=25pF ;  
edge=sharp ; pin out  
driver=strong  
4.5  
from 0.2 * VEXT/FLEX to  
0.8 * VEXT/FLEX  
;
CL=15pF ; edge=sharp  
; pin out driver=strong  
Input high voltage, class MPR  
pads  
V
V
V
IHMPR SR (0.73*VEX  
-
-
Hysteresis active, AL  
T/FLEX)-  
0.25  
2.03 4)  
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage, class MPR  
pads  
ILMPR SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.8 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage, class  
MPR pads  
ILHMPR SR 1.2  
2.3  
Pad set-up time  
t
SET_MPR CC -  
-
-
100  
10  
ns  
Short circuit current Class MPR ISC SR  
-10  
mA  
absolute max value  
(PSI5)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
Data Sheet  
172  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
Table 3-14 Class MPR 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input Hysteresis for MPR pads HYSMPR  
0.05 *  
VEXT/FLEX  
1)  
CC  
Input leakage current class  
MPR  
I
OZMPR CC -750  
-
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPR CC |17|  
-
1500  
nA  
else  
Pull-up current  
I
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|19|  
-
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current  
I
PDLMPR CC -  
-
|22|  
|11|  
-
-
-
ILmax; TTL  
On-resistance of the MPR pad, RDSONMPRW 250  
weak driver 2)  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA ;  
IOL=0.25mA  
On-resistance of the MPR pad, RDSONMPRM 70  
medium driver 2)  
CC  
On-resistance of the MPR pad, RDSONMPRS 20  
strong driver 2)  
CC  
235  
75  
400  
130  
Ohm  
Ohm  
; NMOS/PMOS ;  
I
OH=1mA ; IOL=1mA  
PMOS/NMOS ;  
OH=4mA ; IOL=4mA  
I
Data Sheet  
173  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-14 Class MPR 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time 3)  
t
MPR CC  
-
-
-
-
-
-
150+3.4* ns  
CL  
CL50pF ; pin out  
driver=weak  
-
-
-
-
320+4.5*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=weak  
30+0.8*C ns  
CL50pF ; pin out  
driver=medium  
L
70+1.1*( ns  
CL-50)  
CL50pF ; CL200pF ;  
pin out driver=medium  
20+0.2*C ns  
CL0pF ; CL50pF ;  
edge=medium ; pin out  
driver=strong  
L
-
-
30+0.3*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
13+0.2*C ns  
CL50pF ; edge=sharp  
; pin out driver=strong  
L
23+0.3*( ns  
CL-50)  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
-
-
-
-
-
5
ns  
ns  
V
from 0.8V to 2.0V  
(RMII) ; CL=25pF ;  
edge=sharp ; pin out  
driver=strong  
4.5  
from 0.2 * VEXT/FLEX to  
0.8 * VEXT/FLEX  
;
CL=15pF ; edge=sharp  
; pin out driver=strong  
Input high voltage, class MPR  
pads  
V
V
V
IHMPR SR (0.73*VEX  
-
-
Hysteresis active, AL  
T/FLEX)-  
0.25  
1.6 4)  
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage, class MPR  
pads  
ILMPR SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage, class  
MPR pads  
ILHMPR SR 0.8  
1.7  
Pad set-up time  
t
SET_MPR CC -  
-10  
-
-
100  
10  
ns  
Short circuit current Class MPR ISC SR  
mA  
absolute max value  
(PSI5)  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
Data Sheet  
174  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
Table 3-15 Class S  
Parameter  
Symbol  
fIN SR  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-
Max.  
75  
Input frequency  
-
-
-
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
-
150  
-
Hysteresis inactive  
Input Hysteresis for S pad 1)  
Pull-up current for S pad  
HYSS CC  
0.3  
|30|  
-
I
PUHS CC  
-
µA  
VIHmin  
VILmax  
VIHmin  
VILmax  
|107|  
|100|  
-
µA  
Pull-down current for S pad  
I
PDLS CC  
-
µA  
|46|  
-350  
µA  
Input Leakage current Class S IOZS CC  
350  
nA  
Analog Inputs with pull  
down diagnostics  
-150  
-
-
-
150  
nA  
V
else  
Input voltage high for S pad  
Input voltage low for S pad  
V
V
IHS SR  
ILS SR  
(0.73*VDD  
M)-0.25  
Hysteresis active  
(0.52*VDD  
M)-0.25  
-
-
-
V
Hysteresis active  
Input low threshold variation for VILSD SR  
-50  
50  
mV  
max. variation of 1ms;  
VDDM=constant  
S pad 2)  
Input capacitance for S pad  
Pad set-up time for S pad  
C
INS CC  
-
-
-
-
10  
pF  
ns  
t
SETS CC  
100  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) VILSD is implemented to ensure J2716 specification. For details of dedicated pins please see AP32286 for details.  
Table 3-16 Class I 5V  
Parameter  
Symbol  
fIN SR  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
PORST pad only  
150  
-
Input Hysteresis for I pad 1)  
HYSI CC  
0.07 *  
VEXT/FLEX  
0.09 *  
VEXT/FLEX  
-
-
-
-
V
V
AL  
0.075 *  
TTL  
VEXT/FLEX  
Pull-up current for I pad  
Data Sheet  
I
PUHI CC  
|30|  
|43|  
-
-
-
-
-
µA  
µA  
µA  
V
V
V
IHmin; AL  
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
175  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-16 Class I 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-
Max.  
|100|  
-
Pull-down current for I pad  
I
PDLI CC  
-
-
-
-
µA  
µA  
µA  
nA  
V
V
V
IHmin; AL and TTL  
ILmax; AL  
|46|  
|21|  
-150  
-
ILmax; TTL  
Input Leakage Current for I pad IOZI CC  
150  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
2.03 2)  
-
-
-
350  
nA  
V
else  
Input high voltage for I pad  
Input low voltage for I pad  
V
V
IHI SR  
-
-
Hysteresis active, TTL  
(0.73*VEX  
T/FLEX)-  
0.25  
V
Hysteresis active; AL;  
not available for the  
PORST pad  
ILI SR  
-
-
-
-
0.8 3)  
V
V
Hysteresis active, TTL  
(0.52*VEX  
T/FLEX)-  
0.25  
Hysteresis active; AL;  
not available for the  
PORST pad  
Input low / high voltage for I pad VILHI CC  
Pad set-up time for I pad SETI CC  
1.85  
-
-
-
3.0  
V
Hysteresis inactive  
t
100  
ns  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) VIHx = 0.27 * VEXT/FLEX + 0.545V  
3) VILx = 0.17 * VEXT/FLEX  
Table 3-17 Class I 3.3V  
Parameter  
Symbol  
fIN SR  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
PORST pad only  
100  
-
Input Hysteresis for I pad 1)  
HYSI CC  
0.045 *  
VEXT/FLEX  
0.05 *  
-
-
V
AL and TTL  
VEXT/FLEX  
Pull-up current for I pad  
I
I
PUHI CC  
|17|  
|19|  
-
-
-
-
-
-
-
-
-
µA  
µA  
µA  
µA  
µA  
µA  
nA  
V
V
V
V
V
V
IHmin; AL  
-
IHmin; TTL  
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for I pad  
PDLI CC  
-
|22|  
|11|  
-150  
-
ILmax; TTL  
Input Leakage Current for I pad IOZI CC  
150  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
-
350  
nA  
else  
Data Sheet  
176  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-17 Class I 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for I pad  
V
V
IHI SR  
1.6 2)  
-
-
-
-
V
V
Hysteresis active, TTL  
(0.73*VEX  
T/FLEX)-  
0.25  
Hysteresis active; AL;  
not available for the  
PORST pad  
Input low voltage for I pad  
ILI SR  
-
-
-
-
0.5 3)  
V
V
Hysteresis active, TTL  
(0.52*VEX  
T/FLEX)-  
0.25  
Hysteresis active; AL;  
not available for the  
PORST pad  
Input low / high voltage for I pad VILHI CC  
Pad set-up time for I pad SETI CC  
1.1  
-
-
-
1.9  
V
Hysteresis inactive  
t
100  
ns  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) VIHx = 0.27 * VEXT/FLEX + 0.545V  
3) VILx = 0.17 * VEXT/FLEX  
Table 3-18 Driver Mode Selection for LP Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Speed grade 1  
Speed grade 2  
Driver Setting  
medium (LPm)  
weak (LPw)  
X
X
X
X
0
1
Table 3-19 Driver Mode Selection for MP / MP+ Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Driver Setting  
X
0
0
Speed grade 1  
Strong sharp edge  
(MPss / MP+ss / MPRss)  
X
X
X
0
1
1
1
0
1
Speed grade 2  
Speed grade 3  
Speed grade 4  
Strong medium edge (MPsm / MP+sm)  
medium (MPm / MP+m / MPRm)  
weak (MPw / MP+w / MPRw)  
Data Sheet  
177  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification3.3 V only Pads  
3.6  
3.3 V only Pads  
Pad classes LP, MP and MP+ support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are  
defined for AL operation and degrade in TTL operation.  
Table 3-20 Class A2  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
160  
-
Input frequency  
Input Hysteresis for A2 pad 1) HYSA2 CC 0.1 *  
fIN SR  
-
-
-
MHz  
V
TTL;else  
VDDP3  
0.06 *  
VDDP3  
-
-
-
V
valid for P21.6 and  
P21.7  
Input Leakage current for A2  
pad  
I
OZA2 CC  
-300  
300  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-800  
-
-
500  
|100|  
-
nA  
else  
Pull-up current for A2 pad  
I
I
PUHA2 CC  
-
µA  
VIHmin  
|25|  
|23|  
-
-
µA  
VILmax  
Pull-down current for A2 pad  
PDLA2 CC  
-
-
µA  
VIHmin  
-
|100|  
325  
µA  
VILmax  
On-Resistance for A2 pad,  
weak driver 2)  
RDSONA2W  
CC  
100  
200  
Ohm  
PMOS/NMOS ;  
I
OH=0.5mA ;  
IOL=0.5mA  
On-Resistance for A2 pad,  
medium driver 2)  
RDSONA2M  
CC  
40  
20  
-
70  
35  
-
100  
50  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA ; IOL=2mA  
On-Resistance for A2 pad,  
strong driver 2)  
Rise/fall time for A2 pad 3)  
RDSONA2S  
CC  
PMOS/NMOS ;  
I
OH=8mA ; IOL=8mA  
t
A2 CC  
20+0.8*C ns  
CL50pF ; pin out  
driver=weak  
L
-
-
17.5+0.85 ns  
CL50pF ; CL200pF ;  
*CL  
pin out driver=weak  
-
-
12+0.16* ns  
CL50pF ; pin out  
CL  
driver=medium  
-
-
11.5+0.17 ns  
CL50pF ; CL200pF ;  
*CL  
pin out driver=medium  
-
-
6+0.06*C ns  
CL50pF ;  
edge=medium ; pin out  
L
driver=strong  
-
-
5.5+0.07* ns  
CL  
CL50pF ; CL200pF ;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
0.0+0.12* ns  
CL  
CL50pF ; edge=sharp  
; pin out driver=strong  
0.0+0.12* ns  
CL  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=strong  
Data Sheet  
178  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical Specification3.3 V only Pads  
Table 3-20 Class A2 (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for A2 pad  
Input low voltage for A2 pad  
Pad set-up time for A2 pad  
V
IHA2 SR  
2.04 4)  
-
-
V
TTL;valid for all A2  
pads except  
TMS/DAP1, TRST,  
and TCK/DAP0  
0.7 *  
VDDP3  
-
-
-
V
V
valid for TMS/DAP1,  
TRST, and TCK/DAP0  
V
ILA2 SR  
-
0.8 5)  
TTL;valid for all A2  
pads except  
TMS/DAP1, TRST,  
and TCK/DAP0  
-
-
0.3 *  
VDDP3  
V
valid for TMS/DAP1,  
TRST, and TCK/DAP0  
t
SETA2 CC  
-
-
-
-
100  
20  
ns  
%
Deviation of symmetry for rising SYM CC  
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VDDP3  
4) VIHx = 0.57 * VDDP3 - 0.03V  
.
5) VILx = 0.25 * VDDP3 + 0.058V  
Table 3-21 Driver Mode Selection for A2 Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Speed grade 1  
Speed grade 2  
Speed grade 3  
Speed grade 4  
Driver Setting  
Strong sharp edge  
Strong medium edge  
medium  
X
X
X
X
0
0
1
1
0
1
0
1
weak  
Table 3-22 Driver Mode Selection for F Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Speed grade 1  
Speed grade 2  
Speed grade 3  
Speed grade 4  
Driver Setting  
X
X
X
X
0
0
1
1
0
1
0
1
Reduced Strong sharp edge  
Reduced Strong medium edge  
medium  
weak  
Data Sheet  
179  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
3.7  
High performance LVDS Pads (LVDSH)  
This LVDS pad type is used for the high speed chip to chip communication inferface of the new TC270 / TC275 /  
TC277. It compose out of a LVDSH pad and a Class F pad.  
This pad combination is always supplied by the 3.3V supply rail.  
Table 3-23 Class F  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
-
Input frequency  
Input Hysteresis for F pad 1)  
fIN SR  
-
-
-
MHz  
V
HYSF CC 0.1 *  
TTL  
VDDP3  
Input Leakage Current for F  
pad  
I
OZF CC  
-1000  
-1500  
-300  
-
-
-
1000  
1500  
300  
nA  
nA  
nA  
(0.1*VDDP3) < VIN <  
(0.9*VDDP3); valid for  
P21.2 and P21.3; TJ =  
150°C  
(0.1*VDDP3) < VIN <  
(0.9*VDDP3); valid for  
P21.2 and P21.3; TJ =  
170°C  
(0.1*VDDP3) < VIN <  
(0.9*VDDP3); valid for  
P21.4 and P21.5  
-2000  
-3000  
-600  
-
-
-
2000  
3000  
600  
nA  
nA  
nA  
else; valid for P21.2  
and P21.3; TJ = 150°C  
else; valid for P21.2  
and P21.3; TJ = 170°C  
else; valid for P21.4  
and P21.5  
Pull-up current for F pad  
I
I
PUHF CC  
PDLF CC  
|25|  
-
-
-
µA  
VIHmin  
-
|100|  
|100|  
-
µA  
VILmax  
Pull-down current for class F  
pads  
-
-
µA  
VIHmin  
|25|  
100  
-
µA  
VILmax  
On resistance for F pad, weak RDSONFW  
200  
325  
Ohm  
PMOS/NMOS ;  
IOH=0.5mA ;  
driver 2)  
CC  
IOL=0.5mA  
On resistance for F pad,  
medium driver 2)  
RDSONFM  
CC  
40  
70  
50  
100  
80  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA ; IOL=2mA  
PMOS/NMOS ;  
IOH=4mA ; IOL=4mA  
On resistance for F pad, strong RDSONFS CC 20  
driver 2)  
Data Sheet  
180  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
Table 3-23 Class F (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time for F pad 3)  
t
rfF CC  
-
-
-
-
-
-
20+0.8*C ns  
CL50pF ; pin out  
driver=weak  
L
-
-
-
-
17.5+0.85 ns  
*CL  
CL50pF ; CL200pF ;  
pin out driver=weak  
12+0.16* ns  
CL  
CL50pF ; pin out  
driver=medium  
11.5+0.17 ns  
*CL  
CL50pF ; CL200pF ;  
pin out driver=medium  
7+0.16*C ns  
CL50pF ;  
edge=medium ; pin out  
L
driver=reduced strong  
-
-
-
-
-
-
6.5+0.17* ns  
CL  
CL50pF ; CL200pF ;  
edge=meduim ; pin out  
driver>reduced strong  
4+0.16*C ns  
CL50pF ; edge=sharp  
; pin out  
driver=reduced strong  
L
3.5+0.17* ns  
CL  
CL50pF ; CL200pF ;  
edge=sharp ; pin out  
driver=reduced strong  
Input high voltage for F pad  
Input low voltage for F pad  
Pad set-up time for F pad  
V
V
IHF SR  
ILF SR  
2.04 4)  
-
-
-
-
-
V
TTL  
TTL  
-
-
-
0.8 5)  
100  
20  
V
t
SETF CC  
ns  
%
Deviation of symmetry for rising SYM CC  
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VDDP3  
4) VIHx = 0.57 * VDDP3 - 0.03V  
.
5) VILx = 0.25 * VDDP3 + 0.058V  
CL = 2.5 pF for all LVDSH parameters.  
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
-
Max.  
140  
0.5  
Output impedance  
Rise time 1)  
R0 CC  
-
-
Ohm  
ns  
Vcm = 1.0 V and 1.4 V  
t
rise20 CC  
ZL = 100 Ohm ±5%  
@2 pF  
Fall time 1)  
t
fall20 CC  
-
-
0.5  
ns  
ZL = 100 Ohm ±5% @  
2 pF  
Output differential voltage  
Data Sheet  
V
OD CC  
250  
-
400  
mV  
RT = 100 Ohm ±5%  
181  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Output voltage high  
Output voltage low  
V
V
OH CC  
OL CC  
-
-
1475  
mV  
RT = 100 Ohm ±5%  
(400 mV/2) + 1275 mV  
925  
-
-
-
mV  
mV  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
Output offset (Common mode) VOS CC  
1125  
1275  
voltage  
Input voltage range  
VI SR  
0
0
-
-
1600  
2000  
mV  
mV  
Driver ground potential  
difference < 925 mV;  
RT = 100 Ohm ±10%  
Driver ground potential  
difference < 925 mV;  
RT = 100 Ohm ±20%  
Input differential threshold  
Delta output impedance  
V
idth SR  
-100  
-
-
-
-
-
100  
10  
25  
25  
55  
mV  
%
Driver ground potential  
difference < 925 mV  
dR0 SR  
-
Vcm = 1.0 V and 1.4 V  
(mismatch Pd and Pn)  
Change in VOS between 0 and dVOS CC  
1
-
mV  
mV  
%
RT = 100 Ohm ±5%  
Change in Vod between 0 and dVod CC  
1
-
RT = 100 Ohm ±5%  
Duty cycle  
t
duty CC  
45  
1) Rise / fall times are defined for 20% - 80% of VOD  
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
140  
250  
1375  
-
Output impedance  
R0 CC  
-
-
-
-
-
Ohm  
mV  
mV  
mV  
mV  
Vcm = 1.0 V and 1.4 V  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
Output differential voltage  
Output voltage high  
Output voltage low  
V
V
V
OD CC  
OH CC  
OL CC  
150  
-
1025  
1125  
Output offset (Common mode) VOS CC  
1275  
voltage  
Input voltage range  
VI SR  
idth SR  
825  
-100  
-
-
-
-
-
-
1575  
100  
25  
mV  
mV  
mV  
mV  
%
Driver ground potential  
difference < 50 mV  
Input differential threshold  
V
Driver ground potential  
difference < 50 mV  
Change in VOS between 0 and dVOS CC  
1
RT = 100 Ohm ±5%  
Change in Vod between 0 and dVod CC  
1
-
25  
RT = 100 Ohm ±5%  
Duty cycle  
t
duty CC  
45  
55  
Data Sheet  
182  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) (cont’d)  
Parameter Symbol Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
V
OD Fall time  
t
fall10 CC  
-
-
0.5  
ns  
ns  
ZL = 100 Ohm ±5% @  
2pF  
1)  
VOD Rise time  
t
rise10 CC  
-
-
0.5  
ZL = 100 Ohm ±5% @  
2pF  
1) Rise / fall times are defined for 10% - 90% of VOD  
default after start-up = CMOS function  
Data Sheet  
183  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMedium performance LVDS Pads (LVDSM)  
3.8  
Medium performance LVDS Pads (LVDSM)  
This LVDS pad type is used for the medium speed chip to chip communication inferface of the new TC270 / TC275  
/ TC277. It compose out of a LVDSM pad and a MP pad.  
This pad combination is always supplied by the 5V or 3.3V.  
For the parameters of the MP pad please see Chapter 3.5.  
Table 3-26 LVDSM  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
-
Max.  
140  
2.5  
Output impedance  
Fall time  
RO CC  
tF CC  
100  
-
Ohm  
ns  
Zload = 100 Ohm;  
termination 100 Ohm  
±1%  
Rise time  
tR CC  
-
-
2.5  
ns  
Zload = 100 Ohm;  
termination 100 Ohm  
±1%  
Pad set-up time  
tSET_LVDS  
CC  
-
10  
-
13  
µs  
Output Differential Voltage  
Output voltage high  
Output voltage low  
Output Offset Voltage  
V
V
V
V
OD CC  
OH CC  
OL CC  
OS CC  
250  
-
400  
1475  
-
mV  
mV  
mV  
mV  
termination 100 Ohm  
±1%  
-
termination 100 Ohm  
±1%  
925  
1125  
-
termination 100 Ohm  
±1%  
-
1275  
termination 100 Ohm  
±1%  
default after start-up = CMOS function  
Data Sheet  
184  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationVADC Parameters  
3.9  
VADC Parameters  
VADC parameter are valid for VDDM = 4.5 V to 5.5 V.  
This tables also covers the parameters for Class D pads.  
Table 3-27 VADC  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Analog reference voltage 1)  
Analog reference ground  
V
V
V
AREF SR  
VAGND  
1.0  
+
-
VDDM  
0.05  
+
+
V
V
AGND SR VSSM  
-
-
VSSM  
0.05  
0.05  
Analog input voltage range  
Converter reference clock  
AIN SR  
VAGND  
-
VAREF  
20  
V
f
ADCI SR  
CONV CC  
2
-
-
MHz  
pC  
Charge consumption per  
conversion 2) 3)  
Q
50  
75  
VAIN = 5 V, charge  
consumed from  
reference pin,  
precharging disabled  
-
-
-
-
-
10  
22  
-
pC  
VAIN = 5 V, charge  
consumed from  
reference pin,  
precharging enabled  
Conversion time for 12-bit  
result  
t
t
C12 CC  
(16 +  
Includes sample time  
and post calibration  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 10-bit  
result  
C10 CC  
(14 +  
-
Includes sample time  
Includes sample time  
Includes sample time  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 8-bit result tC8 CC  
(12 +  
-
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for fast  
compare mode  
t
CF CC  
(4 + STC) -  
x tADCI + 2  
x tVADC  
Broken wire detection delay  
against VAGND  
t
t
BWG CC  
BWR CC  
-
-
-
-
120  
cycles Result below 10%  
cycles Result above 80%  
4)  
Broken wire detection delay  
-
60  
5)  
against VAREF  
Input leakage at analog inputs IOZ1 CC  
-350  
350  
nA  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics  
-150  
-4 6)  
-
-
150  
4 6)  
nA  
else  
Total Unadjusted Error 1)  
Data Sheet  
TUE CC  
LSB  
12-bit resolution  
185  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationVADC Parameters  
Table 3-27 VADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
3
INL Error  
EAINL CC  
-3  
-
-
-
-
-
LSB  
LSB  
LSB  
LSB  
pF  
12-bit resolution  
12-bit resolution  
12-bit resolution  
12-bit resolution  
Gain Error 1)  
DNL error 1)  
Offset Error 1)  
EAGAIN CC -3.5  
EADNL CC -3  
EAOFF CC -4  
3.5  
3
4
Total capacitance of an analog CAINT CC  
-
30  
input  
Switched capacitance of an  
analog input  
CAINS CC  
2
4
7
pF  
Resistance of the analog input RAIN CC  
path  
-
-
-
-
1.5  
1.8  
kOhm else  
kOhm valid for analog inputs  
mapped to GPIOs  
Switched capacitance of a  
reference input  
CAREFS CC  
-
-
30  
pF  
RMS Noise 7)  
ENRMS CC  
OZ2 CC  
-
0.5  
-
0.8 6)8)  
7
LSB  
Positive reference VAREFx pin  
I
-7  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
AREFx = VAREF2  
AREF>VDDMV;  
;
;
;
;
leakage  
TJ>150°C  
-4  
-
-
-
-
-
-
-
4
V
V
AREFx = VAREF2  
AREF>VDDMV;  
TJ150°C  
-2  
3
V
V
AREFx = VAREF2  
AREFVDDMV;  
TJ>150°C  
-1  
1
V
V
AREFx = VAREF2  
AREFVDDMV;  
TJ150°C  
Negative reference VAGNDx pin IOZ3 CC  
leakage  
-13  
-7  
13  
7
V
V
AGNDx = VAGND2  
AGND<VSSMV;  
;
;
;
;
TJ>150°C  
V
V
AGNDx = VAGND2  
AGND<VSSMV;  
TJ150°C  
-3.3  
-2.85  
2.5  
1
V
V
AGNDx = VAGND2  
AREFVDDMV;  
TJ>150°C  
V
V
AGNDx = VAGND2  
AREFVDDMV;  
TJ150°C  
Resistance of the reference  
input path  
CSD resistance 9)  
R
R
AREF CC  
CSD CC  
-
-
-
-
1
kOhm  
kOhm  
28  
Data Sheet  
186  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationVADC Parameters  
Table 3-27 VADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
35 - 8*VIN kOhm 0 V VIN 2.5 V  
Resistance of the multiplexer  
diagnostics pull-down device  
R
R
R
MDD CC  
MDU CC  
PDD CC  
25 + 1*VIN  
-
-
-5 +  
13*VIN  
15 +  
16*VIN  
kOhm 2.5 V VIN VDDM  
Resistance of the multiplexer  
diagnostics pull-up device  
45 - 6*VIN  
-
90 -  
16*VIN  
kOhm 0 V VIN 2.5 V  
40 - 4*VIN  
-
-
65 - 6*VIN kOhm 2.5 V VIN VDDM  
Resistance of the pull-down  
test device 10)  
-
0.3  
kOhm  
CSD voltage accuracy 11) 12)  
dVCSD CC -  
WU CC  
-
-
10  
12  
%
Wakeup time  
t
-
µs  
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor  
1/k. VAREF must be decoupled with an external capacitor.  
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx  
.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.  
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 500 ms.  
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.  
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS  
.
7) This parameter is valid for soldered devices and requires careful analog board design.  
8) Value is defined for one sigma Gauss distribution.  
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS  
.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad  
itself adds another 200-Ohm series resistance, when measuring through the pin.  
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.  
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current  
of max. VAREF / 45 kOhm.  
The following VADC parameter are valid for VDDM = 2.97 V to 3.63 V.  
Table 3-28 VADC_33V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Analog reference voltage 1)  
Analog reference ground  
V
V
V
AREF SR  
VAGND  
1.0  
+
-
VDDM  
0.05  
+
+
V
V
AGND SR VSSM  
-
-
VSSM  
0.05  
0.05  
Analog input voltage range  
Converter reference clock  
AIN SR  
VAGND  
-
-
VAREF  
V
f
ADCI SR  
2
20  
MHz  
Data Sheet  
187  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationVADC Parameters  
Table 3-28 VADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Charge consumption per  
conversion 2) 3)  
QCONV CC  
-
35  
50  
pC  
VAIN = 3.3 V, charge  
consumed from  
reference pin,  
precharging disabled  
-
-
-
-
-
8
17  
-
pC  
VAIN = 3.3 V, charge  
consumed from  
reference pin,  
precharging enabled  
Conversion time for 12-bit  
result  
t
t
C12 CC  
(16 +  
Includes sample time  
and post calibration  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 10-bit  
result  
C10 CC  
(14 +  
-
Includes sample time  
Includes sample time  
Includes sample time  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 8-bit result tC8 CC  
(12 +  
-
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for fast  
compare mode  
t
CF CC  
(4 + STC) -  
x tADCI + 2  
x tVADC  
Broken wire detection delay  
against VAGND  
t
t
BWG CC  
BWR CC  
-
-
-
-
120  
cycles Result below 10%  
cycles Result above 80%  
4)  
Broken wire detection delay  
-
60  
5)  
against VAREF  
Input leakage at analog inputs IOZ1 CC  
-350  
350  
nA  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics  
-150  
-12 6)  
-
-
150  
12 6)  
nA  
else  
Total Unadjusted Error 1)  
TUE CC  
EAINL CC  
LSB  
12-bit Resolution; TJ >  
150 °C  
-6 6)  
-12  
-5  
-
-
-
-
-
6 6)  
12  
5
LSB  
LSB  
LSB  
LSB  
LSB  
12-bit Resolution; TJ ≤  
150 °C  
INL Error  
12-bit Resolution; TJ >  
150 °C  
12-bit Resolution; TJ ≤  
150 °C  
Gain Error 1)  
EAGAIN CC -6  
-5.5  
6
12-bit Resolution; TJ >  
150 °C  
5.5  
12-bit Resolution; TJ ≤  
150 °C  
Data Sheet  
188  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationVADC Parameters  
Table 3-28 VADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
DNL error 1)  
Offset Error 1)  
EADNL CC -4  
EAOFF CC -6  
-
-
4
6
LSB  
LSB  
12-bit resolution  
12-bit Resolution; TJ >  
150 °C  
-5  
-
5
LSB  
pF  
12-bit Resolution; TJ ≤  
150 °C  
Total capacitance of an analog CAINT CC  
input  
-
-
30  
7
Switched capacitance of an  
analog input  
CAINS CC  
2
-
4
-
pF  
Resistance of the analog input RAIN CC  
path  
4.5  
30  
kOhm  
pF  
Switched capacitance of a  
reference input  
CAREFS CC  
-
-
RMS Noise 7)  
ENRMS CC  
OZ2 CC  
-
-
-
1.7 6)8)  
6
LSB  
µA  
Positive reference VAREFx pin  
I
-6  
V
V
AREFx = VAREF2  
AREF>VDDMV;  
;
;
;
;
leakage  
TJ>150°C  
-3.5  
-2  
-
-
-
-
-
-
-
3.5  
2.5  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
AREFx = VAREF2  
AREF>VDDMV;  
TJ150°C  
V
V
AREFx = VAREF2  
AREFVDDMV;  
TJ>150°C  
-1  
V
V
AREFx = VAREF2  
AREFVDDMV;  
TJ150°C  
Negative reference VAGNDx pin IOZ3 CC  
leakage  
-12  
-6.5  
-2.2  
-1  
12  
6.5  
2
V
V
AGNDx = VAGND2  
AGND<VSSMV;  
;
;
;
;
TJ>150°C  
V
V
AGNDx = VAGND2  
AGND<VSSMV;  
TJ150°C  
V
V
AGNDx = VAGND2  
AREFVDDMV;  
TJ>150°C  
1
V
V
AGNDx = VAGND2  
AREFVDDMV;  
TJ150°C  
Resistance of the reference  
input path  
CSD resistance 9)  
R
R
AREF CC  
CSD CC  
-
-
-
-
3
kOhm  
kOhm  
28  
Data Sheet  
189  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationVADC Parameters  
Table 3-28 VADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Resistance of the multiplexer  
diagnostics pull-down device  
R
MDD CC  
25 + 3*VIN  
-
40 +  
12*VIN  
kOhm 0 V VIN 1.667 V  
0 + 18*VIN  
-
-
0 + 18*VIN kOhm 1.667 V VIN VDDM  
Resistance of the multiplexer  
diagnostics pull-up device  
R
R
MDU CC  
60 -  
12*VIN  
120 -  
kOhm 0 V VIN 1.667 V  
kOhm 1.667 V VIN VDDM  
kOhm  
30*VIN  
55 - 9*VIN  
-
-
95 -  
15*VIN  
Resistance of the pull-down  
test device 10)  
PDD CC  
-
0.9  
CSD voltage accuracy 11) 12)  
dVCSD CC -  
WU CC  
-
-
10  
12  
%
Wakeup time  
t
-
µs  
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor  
1/k. VAREF must be decoupled with an external capacitor.  
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx  
.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.  
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 500 ms.  
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.  
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS  
.
7) This parameter is valid for soldered devices and requires careful analog board design.  
8) Value is defined for one sigma Gauss distribution.  
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS  
.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad  
itself adds another 200-Ohm series resistance, when measuring through the pin.  
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.  
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current  
of max. VAREF / 45 kOhm.  
A/D Converter  
RSource  
RAIN, On  
VAIN  
-
CExt  
CAINT CAINS  
CAINS  
MCS05570  
Figure 3-1 Equivalent Circuitry for Analog Inputs  
Data Sheet  
190  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDSADC Parameters  
3.10  
DSADC Parameters  
The following DSADC parameter are valid for VDDM = 4.5 V to 5.5 V.  
Table 3-29 DSADC  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
5
Analog input voltage range 1)  
V
DSIN SR  
0
0
-
-
V
V
single ended  
10  
differential;VDSxP -  
VDSxN  
Reference load current  
I
REF SR  
-
4.5  
6.3  
µA  
per twin-modulator (1  
or 2 channels)  
Modulator clock frequency 2)  
Gain error  
f
MOD SR  
10  
-
-
-
-
20  
1 3)  
3.5 4)  
0.2 5)  
MHz  
%
EDGAIN CC -1  
-3.5 4)  
-0.2  
Calibrated once  
Uncalibrated  
%
%
calibrated; GAIN = 1;  
MODCFG.INCFGx=01  
DC offset error  
EDOFF CC -5  
-
5 5)  
50  
100 4)  
mV  
mV  
mV  
calibrated  
-50  
-100 4)  
-
calibrated once  
gain = 1; uncalibrated  
04)  
500  
130  
Common Mode Rejection Ratio EDCM CC  
Input impedance 6)  
200  
-
R
DAIN CC  
100  
170  
kOhm Exact value (±1%)  
available in UCB  
Signal-Noise Ratio 7) 8) 9) 10)  
SNR CC  
80  
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
kHz  
fPB = 30 kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
78  
-
fPB = 50 kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
70  
-
fPB = 100 kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
74  
-
fPB = 100 kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
76  
-
fPB = 30 kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
74  
-
fPB = 50 kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
Pass band  
f
PB CC  
10 11)  
100  
Output data rate fD =  
f
PB * 3  
Pass band ripple 8)  
dfPB CC  
fD CC  
-1  
-
-
1
%
Output sampling rate  
30  
330  
kHz  
Data Sheet  
191  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDSADC Parameters  
Table 3-29 DSADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-3  
Max.  
DC compensation factor  
DCF CC  
-
-
-
dB  
µA  
10-5 fD  
Positive reference VAREF1 pin  
I
OZ5 CC  
-2  
2
all ADCs disabled  
leakage  
Negative reference VAGND1 pin IOZ6 CC  
-2  
-
2
µA  
all ADCs disabled  
leakage  
Stop band attenuation 8)  
SBA CC  
40  
45  
50  
55  
60  
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
V
0.5 ... 1 fD  
1 ... 1.5 fD  
1.5 ... 2 fD  
2 ... 2.5 fD  
2.5 ... OSR/2 fD  
Reference ground voltage  
Positive reference voltage  
V
V
AGND SR VSSM  
-
VSSM  
0.05  
+
+
0.05  
AREF SR  
V
DDMnom * -  
VDDM  
V
0.9  
0.05  
Common mode voltage  
accuracy  
dVCM CC  
-100  
-
-
100  
200  
mV  
mV  
from selected voltage  
Common mode hold voltage  
deviation 12)  
dVCMH CC -200  
From common mode  
voltage  
Analog filter settling time  
Modulator recovery time  
t
t
AFSET CC  
MREC CC  
-
-
2
4
µs  
µs  
If enabled  
3.5  
5.5  
After leaving overdrive  
state  
Modulator settling time 13)  
t
MSET CC  
-
1
-
-
-
µs  
After switching on,  
voltage regulator  
already running  
Spurious Free Dynamic Range SFDR CC 60  
dB  
V
CM = 2.2 V, DC  
7)14)  
coupled; VDDM = ±10%  
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external  
common mode voltage. In this case the Amplitude is limited to VCM * 2.  
2) All modulators must run on the same frequency.  
3) The calibration sequence must be executed once after an Application Reset  
4) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF  
5) Recalibration needed in case of a temperature change > 20ºC  
6) The variation of the impedance between different channels is < 1.5%.  
7) Derating factors:  
-2 dB in standard-performance mode.  
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.  
8) CIC3, FIR0, FIR1 filters enabled.  
9) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM  
(GAIN = 2).  
10) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM  
.
11) 10 kHz only reachable with 10 MHz modulator clock frequency.  
12) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM  
.
13) The modulator needs to settle after being switched on and after leaving the overdrive state.  
14) SFDR = 20 * log(INL / 2N); N = amount of bits  
Data Sheet  
192  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDSADC Parameters  
The following DSADC parameter are valid for VDDM = 2.97 V to 3.63 V.  
Table 3-30 DSADC_33V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
3.3  
Analog input voltage range 1)  
V
DSIN SR  
0
0
-
-
V
V
single ended  
6.6  
differential;VDSxP -  
VDSxN  
Reference load current  
I
REF SR  
-
4.5  
5.8  
µA  
per twin-modulator (1  
or 2 channels)  
Modulator clock frequency 2)  
Gain error  
f
MOD SR  
10  
-
-
-
-
20  
MHz  
%
EDGAIN CC -1.5  
-10 4)  
-0.3  
1.5 3)  
10 4)  
0.3 5)  
Calibrated once  
Uncalibrated  
%
%
calibrated; GAIN = 1;  
MODCFG.INCFGx=01  
DC offset error  
EDOFF CC -5  
-
5 5)  
50  
100 4)  
mV  
mV  
mV  
mV  
calibrated  
-50  
-100 4)  
-
calibrated once  
gain = 1; uncalibrated  
-
04)  
-
-
gain = 1; uncalibrated;  
uncalibrated  
Common Mode Rejection Ratio EDCM CC  
200  
100  
500  
130  
-
Input impedance 6)  
R
DAIN CC  
170  
kOhm Exact value (±1%)  
available in UCB  
Signal-Noise Ratio 7) 8) 9) 10)  
SNR CC  
45  
60  
60  
69  
55  
65  
63  
69  
68  
74  
66  
72  
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
fPB = 100kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
f
PB = 100kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
f
PB = 30kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
f
PB = 30kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
f
PB = 50kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
f
PB = 50kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
Pass band  
f
PB CC  
10 11)  
-1  
-
-
100  
1
kHz  
%
Output data rate fD =  
f
PB * 3  
Pass band ripple 8)  
dfPB CC  
Data Sheet  
193  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDSADC Parameters  
Table 3-30 DSADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
30  
Max.  
Output sampling rate  
fD CC  
-
-
-
330  
kHz  
dB  
DC compensation factor  
DCF CC  
-3  
-
10-5 fD  
Positive reference VAREF1 pin  
I
OZ5 CC  
-2  
2
µA  
leakage  
Negative reference VAGND1 pin IOZ6 CC  
-2  
-
2
µA  
leakage  
Stop band attenuation 8)  
SBA CC  
40  
45  
50  
55  
60  
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
V
0.5 ... 1 fD  
1 ... 1.5 fD  
1.5 ... 2 fD  
2 ... 2.5 fD  
2.5 ... OSR/2 fD  
Reference ground voltage  
Positive reference voltage  
V
V
AGND SR VSSM  
-
VSSM  
0.05  
+
+
0.05  
AREF SR  
V
DDMnom * -  
VDDM  
V
0.9  
0.05  
Common mode voltage  
accuracy  
dVCM CC  
-100  
-
-
100  
200  
mV  
mV  
from selected voltage  
Common mode hold voltage  
deviation 12)  
dVCMH CC -200  
From common mode  
voltage  
Analog filter settling time  
Modulator recovery time  
t
t
AFSET CC  
MREC CC  
-
-
2
4
-
µs  
µs  
If enabled  
3.5  
After leaving overdrive  
state  
Modulator settling time 13)  
t
MSET CC  
-
1
-
µs  
After switching on,  
voltage regulator  
already running  
Spurious Free Dynamic Range SFDR CC 52  
-
-
-
-
dB  
dB  
V
CM = 2.2 V, DC  
coupled; VDDM = ±10%  
CM = 2.2 V, DC  
coupled; VDDM = ±5%  
7)14)  
60  
V
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external  
common mode voltage. In this case the Amplitude is limited to VCM * 2.  
2) All modulators must run on the same frequency.  
3) The calibration sequence must be executed once after an Application Reset  
4) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF  
5) Recalibration needed in case of a temperature change > 20ºC.  
6) The variation of the impedance between different channels is < 1.5%.  
7) Derating factors:  
-2 dB in standard-performance mode.  
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.  
8) CIC3, FIR0, FIR1 filters enabled.  
9) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM  
(GAIN = 2).  
10) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM  
.
Data Sheet  
194  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDSADC Parameters  
11) 10 kHz bandwidth only with 10Mhz modulator clock frequency reachable  
12) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM  
.
13) The modulator needs to settle after being switched on and after leaving the overdrive state.  
14) SFDR = 20 * log(INL / 2N); N = amount of bits  
VCM  
Gain  
VOFFSET  
130 kΩ  
130 kΩ  
=
Modu-  
lator  
Gain  
MC_DSADC_MODULATORBLOCK  
Figure 3-2 DSADC Analog Inputs  
Data Sheet  
195  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMHz Oscillator  
3.11  
MHz Oscillator  
OSC_XTAL is used as accurate and exact clock source. OSC_XTAL supports 8 MHz to 40 MHz crystals external  
outside of the device. Support of ceramic resonators is also provided.  
Table 3-31 OSC_XTAL  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-25  
4
Max.  
25  
Input current at XTAL1  
Oscillator frequency  
I
IX1 CC  
-
-
µA  
VIN>0V ; VIN<VDDP3V  
f
OSC SR  
40  
MHz  
Direct Input Mode  
selected  
8
-
40  
MHz  
External Crystal Mode  
selected  
Oscillator start-up time 1)  
t
OSCS CC  
-
-
-
5 2)  
ms  
V
Input high voltage at XTAL1  
V
IHBX SR  
0.8  
VDDP3  
+
If shaper is bypassed  
If shaper is bypassed  
0.5  
Input low voltage at XTAL1  
Input voltage at XTAL1  
V
ILBX SR  
-0.5  
-0.5  
-
-
0.4  
V
V
VIX SR  
VDDP3  
0.5  
+
+
If shaper is not  
bypassed  
Input amplitude (peak to peak) VPPX SR  
at XTAL1  
0.3 *  
VDDP3  
-
-
VDDP3  
1.0  
V
V
If shaper is not  
bypassed; fOSC  
>
25MHz  
0.4 *  
VDDP3  
VDDP3  
1.0  
+
If shaper is not  
bypassed; fOSC  
25MHz  
Internal load capacitor  
Internal load capacitor  
Internal load capacitor  
Internal load capacitor  
CL0 CC  
CL1 CC  
CL2 CC  
CL3 CC  
2
2.35  
2.35  
3.5  
2.7  
2.7  
4
pF  
pF  
pF  
pF  
2
3
5.1  
5.9  
6.6  
1) tOSCS is defined from the moment when VDDP3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDP3  
.
The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended  
and specified by crystal suppliers.  
2) This value depends on the frequency of the used external crystal. For faster crystal frequencies this value decrease.  
Note:It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target  
system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits  
specified by the crystal or ceramic resonator supplier.  
Data Sheet  
196  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationBack-up Clock  
3.12  
Back-up Clock  
The back-up clock provides an alternative clock source.  
Table 3-32 Back-up Clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Back-up clock before trimming fBACKUT CC 75  
Back-up clock after trimming BACKT CC 97.5  
Max.  
125  
100  
100  
MHz  
MHz  
V
V
EXT2.97V  
EXT2.97V  
f
102.5  
Data Sheet  
197  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationTemperature Sensor  
3.13  
Temperature Sensor  
Table 3-33 DTS  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
100  
1
Measurement time  
tM CC  
-
-
-
µs  
°C  
Calibration reference accuracy TCALACC CC -1  
calibration points @  
TJ=-40°C and  
TJ=127°C  
Non-linearity accuracy over  
temperature range  
T
T
NL CC  
SR SR  
-2  
-
2
°C  
Temperature sensor range  
-40  
-
-
-
170  
20  
°C  
µs  
Start-up time after resets  
inactive  
tTSST SR  
The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the  
DTSSTAT register.  
(3.1)  
DTSSTATRESULT (607)  
Tj = ---------------------------------------------------------------------------  
2, 13  
Data Sheet  
198  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower Supply Current  
3.14  
Power Supply Current  
The total power supply current defined below consists of leakage and switching component.  
Application relevant values are typically lower than those given in the following table and depend on the customer's  
system operating conditions (e.g. thermal connection or used application configurations).  
The operating conditions for the parameters in the following table are:  
The real (realisic) power pattern defines the following conditions:  
TJ = 150 °C  
f
f
SRI = fMAX = fCPU0 = 200 MHz  
SPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 40 MHz  
V
V
V
DD = 1.326 V  
DDP3 = 3.366 V  
EXT / FLEX = VDDM = 5.1 V  
all cores are active including one lockstep core  
the following peripherals are inactive: HSM, HSCT, Ethernet, PSI5, I2C, FCE, MTU, and 50% of the DSADC  
channels  
The max power pattern defines the following conditions:  
TJ = 150 °C  
f
f
SRI = fMAX = fCPU0 = 200 MHz  
SPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 100 MHz  
V
V
V
DD = 1.43 V  
DDP3 = 3.63 V  
EXT / FLEX = VDDM = 5.5 V  
all cores and lockstep cores are active  
all peripherals are active  
Table 3-34 Power Supply  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
550  
350  
80  
Sum of IDD 1.3 V core and  
peripheral supply currents  
I
DD CC  
-
-
-
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
max power pattern  
real power pattern  
TJ=125°C  
I
DD core current during active IDDPORST  
power-on reset (PORST held CC  
low)  
160  
215  
36  
TJ=150°C  
TJ=165°C  
I
DD core current of CPU0  
lockstep core active  
DD core current of CPU1 main IDDC10 CC  
I
DDC01 CC  
real power pattern  
I
-
-
43  
mA  
real power pattern  
core with CPU1 lockstep core  
inactive  
I
DD core current of CPU1 main IDDC11 CC  
core with lockstep core active  
DD core current of CPU2 main IDDC20 CC  
-
-
-
-
IDDC10  
36  
+
mA  
mA  
real power pattern  
real power pattern  
I
37  
core  
Data Sheet  
199  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower Supply Current  
Table 3-34 Power Supply (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
I
DD core current added by HSM IDDHSM CC  
-
-
20  
mA  
mA  
HSM running at  
100MHz.  
Sum of 3.3 V supply currents IDDx3RAIL CC -  
-
57  
real power pattern  
without pad activity  
I
DDFL3 Flash memory current  
I
DDFL3 CC  
-
-
-
-
42 1)  
42 2)  
mA  
mA  
flash read current  
flash read current  
while programming  
Dflash  
I
DDP3 supply current without  
I
DDP3 CC  
-
-
-
-
15 1)  
37 3)  
mA  
mA  
real power pattern;  
incl. OSC current &  
flash read current  
pad activity  
incl. OSC current and  
flash 3.3V  
programming current  
when using external  
5V supply  
-
-
-
39 2)  
mA  
incl. OSC current and  
flash programming  
current at 3.3V  
I
DDP3 supply current for LVDSH IDDP3LVDSH  
-
-
16  
62  
mA  
mA  
pads in LVDS mode  
CC  
Σ Sum of external and ADC  
I
EXTRAIL CC -  
real power pattern  
supply currents (incl.  
I
EXTFLEX+IDDM+IEXTLVDSM)  
Sum of IEXT and IFLEX supply  
current without pad activity  
I
EXT/FLEX CC -  
-
-
4
mA  
mA  
real power pattern;  
PORST output  
inactive.  
I
EXT supply current for LVDSM IEXTLVDSM  
-
14 4)  
real power pattern  
pads in LVDS mode CC  
Data Sheet  
200  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower Supply Current  
Table 3-34 Power Supply (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
I
DDM supply current  
I
DDM CC  
-
-
44  
mA  
real power pattern;  
sum of currents of  
DSADC and VADC  
modules  
-
-
30  
mA  
current for DSADC  
module only; 50%  
DSADC channels  
active.  
-
-
-
-
14  
mA  
mA  
real pattern; current for  
VADC only  
59 5)  
max power pattern; All  
DSADC channels  
active 100% time.  
-
-
17 6)  
mA  
max power pattern; All  
VADC converters are  
active 100% time  
Σ Sum of all currents (incl.  
EXTRAIL+IDDx3RAIL+IDD)  
Σ Sum of all currents with DC- IDDTOTDC3  
I
DDTOT CC  
-
-
-
-
-
-
-
-
469  
mA  
mA  
mA  
µA  
real power pattern  
I
302  
real power pattern;  
7)  
DC EVR13 regulator active  
CC  
V
EXT = 3.3V  
real power pattern;  
EXT = 5V  
Σ Sum of all currents with DC- IDDTOTDC5  
240  
7)  
DC EVR13 regulator active  
CC  
V
Sum of all currents  
(STANDBY mode)  
I
I
EVRSB CC  
150 8)  
Standby RAM is  
active. Power to  
remaining domains  
switched off. TJ =  
25°C; VEVRSB = 5V  
Sum of all currents (SLEEP  
SLEEP CC  
-
-
15  
mA  
All CPUs in idle, All  
peripherals in sleep,  
mode)  
f
SRI/SPB = 1 MHz via  
LPDIV divider; TJ =  
25°C  
Maximum power dissipation  
PD CC  
-
-
-
-
1480  
1014  
mW  
mW  
max power pattern  
real power pattern  
1) Realistic Pflash read pattern with 70% Pflash bandwidth utlilization and a code mix of 50% 0s and 50% 1s. A common  
decoupling capacitor of atleast 100nF for (VDDFL3+VDDP3) is used. Dflash read current is also included. Flash read current  
is predominantly drawn from VDDFL3 pin and a minor part drawn from the neighbouring VDDP3 pin.  
2) Continuous Dflash programming in burst mode with 3.3 V supply and realistic Pflash read access in parallel. Erase currents  
of the corresponding flash modules are less than the respective programming currents at VDDP3 pin. Programming and  
erasing flash may generate transient current spikes of up to x mA for maximum x us which is handled by the decoupling  
and buffer capacitors. This parameter is relevant for external power supply dimensioning and not for thermal  
considerations.  
3) In addition to the current specified, upto 4 mA is additionally drawn at VEXT supply in burst programming mode with 5V  
external supply. Erase currents of the corresponding flash modules are less than the respective programming currents at  
V
DDP3 supply. This parameter is relevant for external power supply dimensioning and not for thermal considerations.  
Data Sheet  
201  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower Supply Current  
4) The current consumption is for 2 pairs of LVDSM differential pads (8 pins). A single pair of LVDSM differential pads (4 pins)  
consumes 7 mA.  
5) The current consumption is for 6 DS channels with standard performance (MCFG=11b). A single DS channel instance  
consumes 6-8 mA.  
6) A single converter instance of VADC unit consumes 2 mA.  
7) The total current drawn from external regulator is estimated with 72% EVR13 SMPS regulator Efficiency. IDDTOTDCx is  
calculated from IDDTOT using the scaled core current [(IDD x VDD)/(VinxEfficiency)] and constitutes all other rail currents and  
IDDM  
.
8) Current at VEVRSB supply pin during normal RUN mode is less than 5 mA at Tj =150 degC. The transition between RUN  
mode to STANDBY mode has a duration of less than 100us during which the current is higher but is less than 8 mA at Tj  
=150 degC. Once STANDBY mode is entered with only Standby RAM active the current is less than 5mA at Tj = 150 degC.  
It is recommended to have atleast 100 nF decoupling capacitor at this pin.  
3.14.1  
Calculating the 1.3 V Current Consumption  
The current consumption of the 1.3 V rail compose out of two parts:  
Static current consumption  
Dynamic current consumption  
The static current consumption is related to the device temperature TJ and the dynamic current consumption  
depends of the configured clocking frequencies and the software application executed. These two parts needs to  
be added in order to get the rail current consumption.  
(3.2)  
mA  
0, 02689 × T  
--------  
C
I
= 1, 135  
= 3, 264  
× e  
[C]  
J
0
(3.3)  
mA  
--------  
0, 0259 × T  
I
× e  
[C]  
J
0
C
Function 2 defines the typical static current consumption and Function 3 defines the maximum static current  
consumption. Both functions are valid for VDD = 1.326 V.  
Data Sheet  
202  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
3.15  
Power-up and Power-down  
External Supply Mode  
3.15.1  
5 V & 1.3 V supplies are externally supplied. 3.3V is generated internally by EVR33.  
External supplies VEXT and VDD may ramp-up or ramp-down independent of each other with regards to start,  
rise and fall time(s). Voltage Ramp-up from a residual threshold (Eg : up to 1 V) should also lead to a normal  
startup of the device.  
The rate at which current is drawn from the external regulator (dIEXT /dt or dIDD /dt) is limited in the Start-up  
phase to a maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary  
reset thresholds.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-3 is enumerated below  
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supplies  
ramp up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of  
EVR33 regulator is initiated.  
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR33 regulator  
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.  
Firmware execution is initiated.  
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or  
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset  
thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
203  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
VEXT  
(externally supplied )  
0
1
2
3
4
5.5 V  
5.0 V  
4.5 V  
2. 97 V  
Primary Reset Threshold  
0 V  
VDD (externally supplied )  
1. 33 V  
1.30  
1. 17 V  
V
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
VDDP3 (internally generated  
by EVR33)  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
T2  
T0  
T1  
T3  
T4  
Basic Supply & Clock  
Infrastructure  
EVR33 Ramp-up Phase  
Firmware Execution  
User Code Execution  
fCPU=100MHz default  
on firmware exit  
Power Ramp-down phase  
Startup_Diag_1 v 0.1  
Figure 3-3 External Supply Mode - 5 V and 1.3 V externally supplied  
Data Sheet  
204  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
3.15.2  
Single Supply Mode  
5 V single supply mode. 1.3 V & 3.3 V are generated internally by EVR13 & EVR33.  
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a  
maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary  
reset threshold.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-4 is enumerated below  
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply  
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of  
EVR13 and EVR33 regulators are initiated.  
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 and EVR33  
regulators have ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST  
rising edge. Firmware execution is initiated.  
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or  
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset  
thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
205  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
VEXT  
(externally supplied )  
0
1
2
3
4
5.5 V  
5.0 V  
4.5 V  
2. 97 V  
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
VDD  
(internally generated  
by EVR13)  
1. 33 V  
1.30  
V
1. 17 V  
Primary Reset Threshold  
0 V  
VDDP3  
(internally generated  
by EVR33)  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
T2  
T0  
T1  
T3  
T4  
EVR13 & EVR 33 Ramp-up  
Basic Supply & Clock  
Infrastructure  
User Code Execution  
fCPU=100MHz default  
on firmware exit  
Firmware Execution  
Power Ramp-down phase  
Phase  
Startup_Diag_2 v 0.1  
Figure 3-4 Single Supply Mode - 5 V single supply  
Data Sheet  
206  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
3.15.3  
External Supply Mode  
All supplies, namely 5 V, 3.3 V & 1.3 V, are externally supplied.  
External supplies VEXT ,, VDDP3 & VDD may ramp-up or ramp-down independent of each other with regards  
to start, rise and fall time(s).  
The rate at which current is drawn from the external regulator (dIEXT /dt, dIDD /dt or dIDDP3 /dt) is limited in  
the Start-up phase to a maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary  
reset thresholds.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-5 is enumerated below  
T1 refers to the point in time when all supplies are above their primary reset thresholds and basic clock  
infrastructure is available. The supply mode is evaluated based on the HWCFG [0:2] pins. PORST (output)  
is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated.  
T2 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T3 refers to the point in time during the Ramp-down phase when atleast one of the externally provided  
supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
207  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
VEXT  
(externally supplied )  
0
1
2
3
5.5 V  
5.0 V  
4.5 V  
2. 97 V  
Primary Reset Threshold  
0 V  
VDD (externally supplied )  
1. 33 V  
1.30  
1. 17 V  
V
Primary Reset Threshold  
0 V  
VDDP3  
(externally supplied)  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
T0  
T1  
T2  
T3  
Basic Supply & Clock  
Infrastructure  
User Code Execution  
fCPU=100 MHz default  
on firmware exit  
Firmware Execution  
Power Ramp-down phase  
Startup_Diag_3 v 0.1  
Figure 3-5 External Supply Mode - 5 V, 3.3 V & 1.3 V externally supplied  
Data Sheet  
208  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
3.15.4  
Single Supply Mode  
3.3 V single supply mode. 1.3 V is generated internally by EVR13.  
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a  
maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary  
reset threshold.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V or 3.3 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-6 is enumerated below  
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply  
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of  
EVR13 regulator is initiated.  
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 regulator  
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.  
Firmware execution is initiated.  
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or  
generated supplies (1.3 V or 3.3 V) drop below their respective primary under-voltage reset thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
209  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPower-up and Power-down  
VEXT  
0
1
2
3
4
(externally supplied )  
&
VDDP3 (externally  
supplied )  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
VDD (internally generated  
by EVR 13)  
1. 33 V  
1.30  
1. 17 V  
V
Primary Reset Threshold  
0 V  
T2  
T0  
T1  
T3  
T4  
Basic Supply & Clock  
Infrastructure  
User Code Execution  
fCPU=100MHz default  
on firmware exit  
EVR13 Ramp-up Phase  
Firmware Execution  
Power Ramp-down phase  
Startup_Diag_4 v 0.1  
Figure 3-6 Single Supply Mode - 3.3 V single supply  
Data Sheet  
210  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationReset Timing  
3.16  
Reset Timing  
Table 3-35 Reset Timings  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Application Reset Boot Time 1) tB CC  
-
-
350 2)  
µs  
operating with max.  
frequencies.  
System Reset Boot Time  
Power on Reset Boot Time 3)  
t
t
BS CC  
BP CC  
-
-
-
-
1
ms  
ms  
2.5 2)  
dV/dT=1V/ms.  
including EVR ramp-  
up and Firmware  
execution time  
-
-
-
1.11 2)  
ms  
µs  
Firmware execution  
time; without EVR  
operation (external  
supply only)  
Minimum PORST hold time  
incase of power fail event  
issued by EVR primary monitor  
t
EVRPOR CC 10  
-
EVR start-up or ramp-up time tEVRstartup  
-
-
-
1
-
ms  
ms  
dV/dT=1V/ms. EVR13  
and EVR33 active  
CC  
Minimum PORST active hold  
time after power supplies are  
stable at operating levels 4)  
t
POA CC  
1
Configurable PORST digital  
filter delay in addition to analog  
pad filter delay  
t
PORSTDF CC 600  
-
1200  
ns  
HWCFG pins hold time from  
ESR0 rising edge  
t
t
HDH CC  
HDS CC  
16 / fSPB  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
HWCFG pins setup time to  
ESR0 rising edge  
0
-
Ports inactive after ESR0 reset tPI CC  
active  
-
8/fSPB  
Ports inactive after PORST  
reset active 5)  
t
t
t
PIP CC  
POH SR  
POS SR  
-
150  
Hold time from PORST rising  
edge  
150  
0
-
-
Setup time to PORST rising  
edge  
1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when  
the first user instruction has entered the CPU pipeline and its processing starts.  
2) The timing values assumes programmed BMI with ESR0CNT inactive.  
3) The duration of the boot time is defined by all external supply voltages are inside there operation condictions and the clock  
cycle when the first user instruction has entered the CPU pipeline and its processing starts.  
Data Sheet  
211  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationReset Timing  
4) The regulator that supplies VEXT should ensure that VEXT is in the operational region before PORST is externally released  
by the regulator. Incase of 5V nominal supply, it should be ensured that VEXT > 4V before PORST is released. Incase of  
3.3V nominal supply , it should be ensured that VEXT > 3V before PORST is released. The additional minimum PORST hold  
time is required as an additional mechanism to avoid consecutive PORST toggling owing to slow supply slopes or residual  
supply ramp-ups. It is also required to activate external PORST atleast 100us before power-fail is recognised to avoid  
consecutive PORST toggling on a power fail event.  
5) This parameter includes the delay of the analog spike filter in the PORST pad.  
VDDPPA  
VDDPPA  
VDDP  
VDD  
VDDPR  
tPOA  
tPOA  
Warm  
PORST  
ESR0  
Cold  
t PI  
tPI  
tPIP  
Tristate Z / pullup H  
Programmed  
Z / H  
Programmed  
Z / H  
Programmed  
Pads  
Pad-  
state  
undefined  
Pad-  
state  
undefined  
tPOS  
tPOS  
tPOH  
tPOH  
TRST  
TESTMODE  
tHDH  
tHDH  
tHDA  
tHDH  
config  
tHDA  
HWCFG  
power -on config  
config  
reset_beh_aurix  
Figure 3-7 Power, Pad and Reset Timing  
Data Sheet  
212  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEVR  
3.17  
EVR  
Table 3-36 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
4
Max.  
5.50  
3.63  
Input voltage range 1)  
VIN SR  
-
V
V
pass device=on chip  
pass device=on chip  
Output voltage operational  
range including load/line  
regulation and aging incase of  
LDO regulator  
V
V
OUT CC  
2.97  
3.3  
Output VDDx3 static voltage  
accuracy after trimming and  
aging without dynamic load/line  
Regulation incase of LDO  
regulator.  
OUTT CC  
3.225  
3.3  
3.375  
V
pass device=on chip  
Output buffer capacitance on  
VOUT  
C
OUT CC  
-
-
1
-
-
µF  
V
pass device=on chip  
2)  
Primary Undervoltage Reset  
V
RST33 CC  
3.0  
by reset release before  
EVR trimming on  
supply ramp-up.  
3)  
threshold for VDDx3  
Startup time  
t
STR CC  
-
-
-
1000  
50  
µs  
Only EVR33 active. ;  
pass device=on chip  
External VIN supply ramp 4)  
Load step response  
dVin/dT  
SR  
1
-
V/ms pass device=on chip  
dVout/dIout -  
CC  
240  
mV  
mV  
mV  
dI=-70mA/20ns;  
Tsettle=20us; pass  
device=on chip  
-240  
-
-
-
dI=50mA/20ns;  
Tsettle=100us; pass  
device=on chip  
Line step response  
dVout/dVin -20  
20  
dV/dT=1V/ms; pass  
CC  
device=on chip  
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device  
operation.  
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the  
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.  
3) The reset release on supply ramp-up is delayed by a time duration 20-40 us after reaching undervoltage reset threshold.  
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to  
voltage drop/current jumps when reset is released. The reset limit of 2,97V at pin is for the case with 3.3V generated  
internally from EVR33. In case the 3.3V supply is provided externally, the bondwire drop will cause a reset at a higher  
voltage of 3.0V at the VDDP3 pin.  
4) EVR robust against residual voltage ramp-up starting between 0-1 V.  
Data Sheet  
213  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEVR  
Table 3-37 1.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2.97  
1.17  
Max.  
5.5  
Input voltage range 1)  
VIN SR  
-
V
V
pass device=off chip  
pass device=off chip  
Output voltage operational  
range including load/line  
regulation and aging incase of  
LDO regulator  
V
V
OUT CC  
1.3  
1.43  
Output VDD static voltage  
accuracy after trimming without  
dynamic load/line regulation  
with aging incase of LDO  
regulator.  
OUTT CC  
1.275  
1.3  
1.325  
V
pass device=off chip  
pass device=off chip  
Output buffer capacitance on  
COUT CC  
3
-
4.7  
-
6.3  
µF  
V
2)  
VOUT  
Primary undervoltage reset  
threshold for VDD  
V
RST13 CC  
1.17  
by reset release before  
EVR trimming on  
3)  
supply ramp-up. pass  
device=off chip  
Startup time  
t
STR CC  
-
-
-
1000  
50  
µs  
pass device=off chip.  
Only EVR13 active.  
External VIN supply ramp 4)  
Load step response  
dVin/dT  
SR  
1
-
V/ms pass device=off chip  
dVout/dIout -  
CC  
100  
mV  
mV  
mV  
dI=-150mA;  
Tsettle=20µs; pass  
device=off chip  
-100  
-
-
-
dI=100mA;  
Tsettle=20µs; pass  
device=off chip  
Line step response  
dVout/dVin -10  
10  
dV/dT=1V/ms; pass  
CC  
device=off chip  
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device  
operation.  
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the  
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.  
3) The reset release on supply ramp-up is delayed by a time duration 30-60 µs after reaching undervoltage reset threshold.  
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to  
voltage drop/current jumps when reset is released.  
4) EVR robust against residual voltage ramp-up starting between 0-1 V.  
Data Sheet  
214  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEVR  
Table 3-38 Supply Monitoring  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
V
EXT primary undervoltage  
VEXTPRIUV  
SR  
2.86  
2.92  
2.90  
1.15  
5.0  
2.97  
V
V
EXT = Undervoltage  
monitor accuracy after  
trimming 1)  
Reset Threshold  
VDDP3 primary undervoltage  
VDDP3PRIUV 2.86  
SR  
2.97  
1.17  
5.1  
V
V
V
DDP3 = Undervoltage  
monitor accuracy after  
trimming  
Reset Threshold  
1)  
VDD primary undervoltage  
VDDPRIUV  
SR  
1.13  
VDD = Undervoltage  
Reset Threshold  
monitor accuracy after  
trimming  
1)  
VEXT secondary supply monitor VEXTMON CC 4.9  
V
SWDxxVAL VEXT  
monitoring  
accuracy  
threshold=5V=DBh  
V
DDP3 secondary supply  
VDDP3MON  
CC  
3.23  
3.30  
1.30  
-
3.37  
1.33  
1.8  
V
EVR33xxVAL VDDP3  
monitoring  
threshold=3.3V=91h  
monitor accuracy  
VDD secondary supply monitor VDDMON CC 1.27  
V
EVR13xxVAL VDD  
monitoring  
threshold=1.3V=E4h  
accuracy  
EVR primary and secondary  
monitor measurement latency  
for a new supply value  
t
EVRMON CC -  
µs  
after trimming  
1) The monitor tolerances constitute the inherent variation of the bandgap and ADC over process, voltage and temperature  
operational ranges. The xxxPRIUV parameters are device individually tested in production with ±1% tolerance about the  
min and max xxxPRIUV limits.  
Table 3-39 EVR13 SMPS External components  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
29.7  
13.5  
50  
External output capacitor value COUTDC SR 15.4  
22  
10  
-
µF  
µF  
I
I
DDDC=1A  
1)  
6.5  
DDDC=400mA  
External output capacitor ESR CDC_ESR SR -  
mOhm f0.5MHz ; f10MHz  
-
-
100  
13.5  
9.18  
50  
Ohm  
µF  
f=10Hz  
External input capacitor value 1) CIN SR  
6.5  
4.42  
-
10  
6.8  
-
I
I
DDDC=1A  
µF  
DDDC=400mA  
External input capacitor ESR  
External inductor value 2)  
External inductor ESR  
C
IN_ESR SR  
mOhm f0.5MHz ; f10MHz  
-
-
100  
4.29  
6.11  
0.2  
Ohm  
µH  
f=100Hz  
L
DC SR  
2.31  
3.29  
3.3  
4.7  
-
f
f
DCDC=1.5MHz  
DCDC=1MHz  
µH  
L
DC_ESR SR -  
LL SR  
Ohm  
V
P + N-channel MOSFET logic  
level  
V
-
-
2.5  
Data Sheet  
215  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEVR  
Table 3-39 EVR13 SMPS External components (cont’d)  
Parameter Symbol Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
P + N-channel MOSFET drain |VBR_DS| SR -  
-
7
V
source breakdown voltage  
P + N-channel MOSFET drain RON SR  
source ON-state resistance  
-
-
150  
mOhm IDDDC=1A;VGS=2.5V ;  
TA=25°C  
-
-
200  
mOhm IDDDC=400mA;VGS=2.5  
V ; TA=25°C  
P + N-channel MOSFET Gate Qac SR  
Charge  
-
4
-
nC  
nC  
ns  
V
I
DDDC=1A; MOS-  
VGS=5V  
IDDDC=400mA; MOS-  
-
8
-
VGS=5V  
External MOSFET  
commutation time  
tc SR  
RDN SR  
10  
-
30  
0.8  
40  
-
configurable  
N-channel MOSFET reverse  
diode forward voltage  
V
1) Capacitor min-max range represent typical ±35% tolerance including DC bias effect. The trace resistance from the  
capacitor to the supply or ground rail should be limited to 25 mOhm.  
2) External inductor min-max range represent typical ±30% tolerance at a DC bias current of 100mA.  
Table 3-40 EVR13 SMPS  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2.97  
1.17  
Max.  
5.5  
Input VEXT Voltage range  
VIN SR  
-
-
V
V
SMPS regulator output voltage VDDDC CC  
range including load/line  
regulation and aging 1)  
1.43  
V
DD2.97V ; VDD5.5V  
; IDDDC1mA ;  
DDDC1A  
DD2.97V ; VDD5.5V  
; IDDDC1mA ;  
DDDC1A  
I
SMPS regulator static voltage  
output accuracy after trimming  
without dynamic load/line  
Regulation with aging. 2)  
V
DDDCT CC 1.275  
1.3  
1.325  
V
V
I
Programmable switching  
frequency  
f
DCDC CC  
0.4  
-
-
-
2.0  
2%  
15  
MHz  
MHz  
mV  
Switching frequency  
modulation spread  
fDCSPR CC -  
Maximum ripple at IMAX (peak- VDDDC CC -  
V
DD2.97V ; VDD5.5V  
; IDDDC300mA ;  
DDDC1A  
DCDC=1MHz  
to-peak) 3)  
I
No load current consumption of IDCNL CC  
-
5
10  
mA  
f
SMPS regulator  
Data Sheet  
216  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEVR  
Table 3-40 EVR13 SMPS (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
SMPS regulator load transient dVout/dIout -25  
response CC  
Max.  
-
25  
mV  
dI < 200mA ;  
f
DCDC=1MHz; tr=0.1µs;  
tf=0.1µs; VDDDC=1.3V  
-65  
-
65  
130  
1
mV  
mV  
A
dI < 400mA ;  
f
DCDC=1MHz; tr=0.1µs;  
tf=0.1µs; VDDDC=1.3V  
-130  
-
dI < 700mA ;  
f
DCDC=1MHz; tr=0.1µs;  
tf=0.1µs; VDDDC=1.3V  
Maximum output current of the IMAX SR  
regulator  
-
-
-
limited by thermal  
constraints and  
component choice  
SMPS regulator efficiency  
n
DC CC  
85  
-
%
VIN=3.3V;  
I
f
DDDC=300mA;  
DCDC=1MHz  
VIN=5V; IDDDC=400mA;  
DCDC=1.5MHz  
VIN=5V; IDDDC=400mA;  
DCDC=1MHz  
-
-
75  
80  
-
-
%
%
f
f
1) Incase of SMPS mode, It shall be ensured that the VDD output pin shall be connected on PCB level to all other VDD Input  
pins.  
2) Incase of fSRI running with max frequency, it shall be ensured that the VDD operating range is limited to 1.235V upto 1.430V.  
The DCDC may be configured in this case with a nominal voltage of 1.33V±7.5%. The static accuracy and regulation  
parameter ranges remain also valid for this case.  
3) If frequency spreading (SDFREQSPRD = 1) is activated, an additional ripple of 1% need to be considered.  
Data Sheet  
217  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPhase Locked Loop (PLL)  
3.18  
Phase Locked Loop (PLL)  
Table 3-41 PLL  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
PLLBASE CC 80  
Max.  
360  
800  
24  
PLL base frequency  
VCO frequency range  
VCO Input frequency range  
Modulation Amplitude  
Peak Period jitter  
f
f
f
150  
MHz  
MHz  
MHz  
%
VCO SR  
REF CC  
400  
8
-
-
-
-
-
-
MA CC  
DP CC  
0
2
-200  
-5  
200  
5
ps  
Peak Accumulated Jitter  
Total long term jitter  
DPP CC  
ns  
without modulation  
JTOT CC  
-
11.5  
ns  
including modulation;  
MA 1%  
System frequency deviation  
f
SYSD CC  
-
-
0.01  
5.4  
%
with active modulation  
Modulation variation frequency fMV CC  
PLL lock-in time tL CC  
2
3.6  
-
MHz  
µs  
11.5  
200  
Note:The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the  
maximum driver and sharp edge.  
Note:The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of  
V
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.  
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the  
supply pins and using PCB supply and ground planes.  
Data Sheet  
218  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationERAY Phase Locked Loop (ERAY_PLL)  
3.19  
ERAY Phase Locked Loop (ERAY_PLL)  
Table 3-42 PLL_ERAY  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
PLL Base Frequency of the  
ERAY PLL  
fPLLBASE_ERA 50  
Y CC  
200  
320  
MHz  
MHz  
MHz  
VCO frequency range of the  
ERAY PLL  
fVCO_ERAY  
400  
-
-
480  
24  
SR  
VCO input frequency of the  
ERAY PLL  
f
REF SR  
16  
Accumulated_Jitter  
DP CC  
DPP CC  
-0.5  
-0.8  
-
-
0.5  
0.8  
ns  
ns  
Accumulated jitter at SYSCLK  
pin  
PLL lock-in time  
tL CC  
5.6  
-
200  
µs  
Note:The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the  
maximum driver and sharp edge.  
Note:The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of  
V
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.  
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the  
supply pins and using PCB supply and ground planes.  
Data Sheet  
219  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationAC Specifications  
3.20  
AC Specifications  
All AC parameters are specified for the complette operating range defined in Chapter 3.4 unless otherwise noted  
in colum Note / test Condition.  
Unless otherwise noted in the figures the timings are defined with the following guidelines:  
VEXT/FLEX / VDDP3  
90%  
90%  
10%  
10%  
VSS  
tr  
tf  
rise_fall  
Figure 3-8 Definition of rise / fall times  
VEXT/FLEX / VDDP3  
Timing  
Reference  
Points  
VEXT/FLEX /VDDP3  
V
EXT /FLEX / VDDP3  
2
2
VSS  
timing_reference  
Figure 3-9 Time Reference Point Definition  
Data Sheet  
220  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationJTAG Parameters  
3.21  
JTAG Parameters  
The following parameters are applicable for communication through the JTAG debug interface. The JTAG module  
is fully compliant with IEEE1149.1-2000.  
Table 3-43 JTAG  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
25  
10  
10  
-
Max.  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
TCK low time  
-
TCK clock rise time  
TCK clock fall time  
4
4
-
-
TDI/TMS setup to TCK rising  
edge  
6.0  
TDI/TMS hold after TCK rising t7 SR  
6.0  
-
-
ns  
edge  
TDO valid after TCK falling  
edge (propagation delay) 1)  
t8 CC  
3.0  
-
-
-
-
-
ns  
ns  
ns  
CL20pF  
CL50pF  
16  
-
TDO hold after TCK falling  
edge 1)  
t
18 CC  
2
TDO high impedance to valid t9 CC  
-
-
-
-
17.5  
17  
ns  
ns  
CL50pF  
CL50pF  
from TCK falling edge 1)2)  
TDO valid output to high  
impedance from TCK falling  
edge 1)  
t10 CC  
1) The falling edge on TCK is used to generate the TDO timing.  
2) The setup time for TDO is given implicitly by the TCK cycle time.  
t1  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 3-10 Test Clock Timing (TCK)  
Data Sheet  
221  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationJTAG Parameters  
TCK  
TMS  
TDI  
t6  
t7  
t6  
t7  
t9  
t8  
t10  
TDO  
t18  
MC_JTAG  
Figure 3-11 JTAG Timing  
Data Sheet  
222  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDAP Parameters  
3.22  
DAP Parameters  
The following parameters are applicable for communication through the DAP debug interface.  
Table 3-44 DAP  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
DAP0 clock period  
DAP0 high time  
t
t
t
t
11 SR  
12 SR  
13 SR  
14 SR  
6.25  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
-
-
DAP0 low time  
-
DAP0 clock rise time  
1
2
1
2
-
f=160MHz  
f=80MHz  
f=160MHz  
f=80MHz  
-
DAP0 clock fall time  
t
15 SR  
-
-
DAP1 setup to DAP0 rising  
edge  
t
t
t
16 SR  
17 SR  
19 CC  
4
DAP1 hold after DAP0 rising  
edge  
2
-
-
ns  
DAP1 valid per DAP0 clock  
period 1)  
3
-
-
-
-
-
-
ns  
ns  
ns  
CL=20pF ; f=160MHz  
CL=20pF ; f=80MHz  
CL=50pF ; f=40MHz  
8
10  
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
t11  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t15  
t14  
t12  
t13  
MC_DAP0  
Figure 3-12 Test Clock Timing (DAP0)  
DAP0  
t16  
t17  
DAP1  
MC_DAP1_RX  
Figure 3-13 DAP Timing Host to Device  
Data Sheet  
223  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationDAP Parameters  
t11  
DAP1  
t19  
MC_DAP1_TX  
Figure 3-14 DAP Timing Device to Host (DAP1 and DAP2 pins)  
Note:The DAP1 and DAP2 device to host timing is individual for both pins. There is no guaranteed max. signal  
skew.  
Data Sheet  
224  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
3.23  
ASCLIN SPI Master Timing  
This section defines the timings for the ASCLIN in the TC270 / TC275 / TC277, for 5V power supply.  
Note:Pad asymmetry is already included in the following timings.  
Table 3-45 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-3  
3
0 < CL < 50pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-7  
5
-
-
-
-
6
35  
-
ns  
ns  
ns  
ns  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
CL=25pF; pad used =  
LPm  
MRST setup to ASCLKO  
latching edge  
28  
-6  
CL=25pF  
MRST hold from ASCLKO  
latching edge  
-
CL=25pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-46 Master Mode MP+sm/MPRsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
50  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-2  
3+0.01 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-10  
5
-
-
-
-
10  
35  
-
ns  
ns  
ns  
ns  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
CL=50pF; pad used =  
LPm  
MRST setup to ASCLKO  
latching edge  
50  
-10  
CL=50pF  
MRST hold from ASCLKO  
latching edge  
-
CL=50pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
225  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-47 Master Mode MPss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-2  
3.5+0.035 ns  
0 < CL < 200pF  
2)  
* CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
51 CC  
510 CC  
52 SR  
-7  
-7  
-
-
6
ns  
ns  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
6
CL=25pF  
MRST setup to ASCLKO  
latching edge  
30  
33 3)  
-
-
-
-
ns  
ns  
CL=25pF, else  
CL=25pF, for P14.2,  
P14.4, and P15.1  
MRST hold from ASCLKO  
latching edge  
t
53 SR  
-5  
-
-
ns  
CL=25pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
3) Please note that these pins didn't support the hystereses inactive feature.  
Table 3-48 Master Mode MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
4+0.04 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-11  
-11  
60  
-
-
-
-
10  
10  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-10  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
226  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-49 Master Mode medium output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-8  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
4+0.04 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-20  
-20  
70  
-
-
-
-
15  
20  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-10  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-50 Master Mode weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
1000  
-30  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
30+0.15 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-75  
-65  
510  
-50  
-
-
-
-
75  
65  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
227  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
t50  
ASCLKO  
MTSR  
t51  
t51  
t500  
t52  
t53  
MRST  
Data valid  
Data valid  
t510  
ASLSO  
ASCLIN_TmgMM.vsd  
Figure 3-15 ASCLIN SPI Master Timing  
Data Sheet  
228  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
3.24  
ASCLIN SPI Master Timing  
This section defines the timings for the ASCLIN in the TC270 / TC275 / TC277, for 3.3V power supply, Medium  
Performance pads, strong sharp edge (MPss), CL=25pF.  
Note:Pad asymmetry is already included in the following timings.  
Table 3-51 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-5  
5
0 < CL < 50pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-12  
0
-
-
-
-
12  
60  
-
ns  
ns  
ns  
ns  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
CL=25pF; pad used =  
LPm  
MRST setup to ASCLKO  
latching edge  
50  
-5  
CL=25pF  
MRST hold from ASCLKO  
latching edge  
-
CL=25pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-52 Master Mode MP+sm/MPRsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
7
0 < CL < 200pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-17  
0
-
-
-
-
17  
60  
-
ns  
ns  
ns  
ns  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
CL=50pF; pad used =  
LPm  
MRST setup to ASCLKO  
latching edge  
85  
-5  
CL=50pF  
MRST hold from ASCLKO  
latching edge  
-
CL=50pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
229  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-53 Master Mode MPss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-5  
7+0.07 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-12  
-12  
50  
-5  
-
-
-
-
12  
12  
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-54 Master Mode MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-5  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
9+0.06 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-19  
-19  
100  
-13  
-
-
-
-
17  
17  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-55 Master Mode medium output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ASCLKO clock period 1)  
t
50 CC  
400  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-6-0.07 *  
CL  
6+0.07 * ns  
CL  
0 < CL < 200pF  
2)  
Data Sheet  
230  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-55 Master Mode medium output pads (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-33  
-
-
-
-
25  
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
-35  
120  
-13  
35  
-
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-56 Master Mode weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2000  
-110  
Max.  
-
ASCLKO clock period 1)  
t
50 CC  
-
-
ns  
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
150  
0 < CL < 200pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-170  
-170  
510  
-40  
-
-
-
-
170  
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
170  
MRST setup to ASCLKO  
latching edge  
-
-
MRST hold from ASCLKO  
latching edge  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-57 Master Mode A2ss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-3  
3
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
51 CC  
-4  
-5  
-
-
4
4
ns  
ns  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
510 CC  
Data Sheet  
231  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-57 Master Mode A2ss output pads (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
MRST setup to ASCLKO  
latching edge  
t
t
52 SR  
53 SR  
17  
-
-
ns  
ns  
CL=50pF  
CL=50pF  
MRST hold from ASCLKO  
latching edge  
0
-
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-58 Master Mode A2sm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-4  
4
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-8  
-8  
26  
0
-
-
-
-
6
9
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
t50  
ASCLKO  
t51  
t51  
t500  
MTSR  
t52  
t53  
MRST  
Data valid  
Data valid  
t510  
ASLSO  
ASCLIN_TmgMM.vsd  
Figure 3-16 ASCLIN SPI Master Timing  
Data Sheet  
232  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
3.25  
QSPI Timings, Master and Slave Mode  
This section defines the timings for the QSPI in the TC270 / TC275 / TC277, for 5V pad power supply.  
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:  
LVDSM output pads,LVDSH input pad, master mode, CL=25pF  
Medium Performance Plus Pads (MP+):  
strong sharp edge (MP+ss), CL=25pF  
strong medium edge (MP+sm), CL=50pF  
medium edge (MP+m), CL=50pF  
weak edge (MP+w), CL=50pF  
Medium Performance Pads (MP):  
strong sharp edge (MPss), CL=25pF  
strong medium edge (MPsm), CL=50pF  
Medium and Low Performance Pads (MP/LP), the identical output strength settings:  
medium edge (LP/MPm), CL=50pF  
weak edge (MPw), CL=50pF  
Note:Pad asymmetry is already included in the following timings.  
Table 3-59 Master Mode Timing, LVDSM output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20 2)  
-1  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
CL=25pF  
Deviation from the ideal duty  
cycle 3) 4)  
500 CC  
1
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-3  
-
3
ns  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
0
-
-
-
-
-
30  
7
ns  
ns  
ns  
ns  
ns  
CL=25pF; MPsm  
CL=25pF; MPss  
MP+ss; CL=25pF  
MP+sm; CL=25pF  
-5  
-4  
7
-1  
19 5)  
15  
-
MRST setup to SCLK latching  
edge 5)  
t
52 SR  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
MRST hold from SCLK latching t53 SR  
edge  
-6 5)  
-
-
ns  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.  
3) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
4) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
5) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
Data Sheet  
233  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-60 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-3  
3
0 < CL < 50pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-7  
-
-
-
-
6
6
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-7  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
27 4)5)  
-6 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-61 Master Mode MP+sm/MPRsm output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
50  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-2  
3+0.01 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-10  
-
10  
ns  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-10  
-13  
0
-
-
-
10  
1
ns  
ns  
ns  
MP+sm; CL=50pF  
MPss; CL=50pF  
40  
MP+m, MPm, LPm;  
CL=50pF  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
50 4)5)  
-
-
-
-
ns  
ns  
CL=50pF  
MRST hold from SCLK latching t53 SR  
-10 4)5)  
CL=50pF  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
234  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-62 Master Mode timing MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
4+0.04 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-11  
-
-
-
-
10  
10  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-11  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
60 4)5)  
-10 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-63 Master Mode timing MPRm/MP+m/MPm/LPm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-10  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
10+0.04 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-15  
-
-
-
-
19  
20  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-20  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
70 4)5)  
-10 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
235  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-64 Master Mode Weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
1000  
-30  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
30+0.15 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-65  
-
-
-
-
65  
65  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-70  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
300 4)5)  
-40 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-65 Slave mode timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
4 x TMAX  
40  
Max.  
SCLK clock period  
SCLK duty cycle  
t
t
t
54 SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
%
55/t54 SR  
56 SR  
60  
-
MTSR setup to SCLK latching  
edge  
4 1)  
5 1)  
5 1)  
3 1)  
6 1)  
9 1)  
5 1)  
4 1)  
8 1)  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hystheresis Inactive  
Input Level AL  
-
-
Input Level TTL  
Hystheresis Inactive  
Input Level AL  
MTSR hold from SCLK latching t57 SR  
edge  
-
-
-
Input Level TTL  
Hystheresis Inactive  
Input Level AL  
SLSI setup to first SCLK shift  
edge  
t
58 SR  
-
-
-
Input Level TTL  
Only for pin 15.1, AL  
-
Data Sheet  
236  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-65 Slave mode timing (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
3 1)  
4 1)  
8 1)  
10  
Max.  
SLSI hold from last SCLK  
latching edge  
t
t
59 SR  
60 CC  
-
-
-
-
-
ns  
ns  
ns  
ns  
Hystheresis Inactive  
Input Level AL  
-
-
Input Level TTL  
MRST delay from SCLK shift  
edge  
70  
MP+m/MPRm;  
CL=50pF  
10  
5
-
-
-
50  
ns  
ns  
ns  
MP+sm/MPRsm;  
CL=50pF  
30  
MP+ss/MPRss;  
CL=25pF  
40  
300  
MP+w/MPRw;  
CL=50pF  
10  
10  
5
-
-
-
-
-
70  
55  
30  
300  
5
ns  
ns  
ns  
ns  
ns  
MPm/LPm; CL=50pF  
MPsm; CL=50pF  
MPss; CL=25pF  
40  
-
MPw/LPw; CL=50pF  
SLSI to valid data on MRST  
1) Except pin P15.1.  
t
61 SR  
t50  
t500  
0.5 VEXT/FLEX  
SCLK1)2)  
MTSR1)  
t51  
SAMPLING POINT  
0.5 VEXT/FLEX  
t52  
t53  
MRST1)  
Data valid  
Data valid  
t510  
SLSOn2)  
0.5 VEXT/FLEX  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).  
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.  
QSPI_TmgMM.vsd  
Figure 3-17 Master Mode Timing  
Data Sheet  
237  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
t54  
Last latching  
SCLK edge  
First latching  
SCLK edge  
SCLKI1)  
First shift  
SCLK edge  
0.5 VEXT/FLEX  
t55  
t55  
t56  
t56  
t57  
t57  
Data  
valid  
Data  
valid  
MTSR1)  
MRST1)  
SLSI  
t60  
t60  
0.5 VEXT/FLEX  
t58  
t59  
t61  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0.  
QSPI_TmgSM.vsd  
Figure 3-18 Slave Mode Timing  
3.26  
QSPI Timings, Master and Slave Mode  
This section defines the timings for the QSPI in the TC270 / TC275 / TC277, for 3.3V pad power supply.  
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:  
LVDSM output pads, LVDSH input pad, master mode, CL=25pF  
Medium Performance Plus Pads (MP+):  
strong sharp edge (MP+ss), CL=25pF  
strong medium edge (MP+sm), CL=50pF  
medium edge (MP+m), CL=50pF  
weak edge (MP+w), CL=50pF  
Medium Performance Pads (MP):  
strong sharp edge (MPss), CL=25pF  
strong medium edge (MPsm), CL=50pF  
Medium and Low Performance Pads (MP/LP), the identical output strength settings:  
medium edge (LP/MPm), CL=50pF  
weak edge (MPw), CL=50pF  
Note:Pad asymmetry is already included in the following timings.  
Table 3-66 Master Mode Timing, LVDSM output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-2  
2
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-5  
-
5
ns  
CL=25pF  
Data Sheet  
238  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-66 Master Mode Timing, LVDSM output pads for data and clock (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-2  
Max.  
55  
12  
12  
26  
-
SLSOn deviation from the ideal t510 CC  
programmed position  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
CL=25pF; MPsm  
CL=25pF; MPss  
MP+ss; CL=25pF  
MP+sm; CL=25pF  
-9  
-7  
-2  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
20  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
MRST hold from SCLK latching t53 SR  
edge  
-6  
-
-
ns  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
Table 3-67 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-5  
5
0 < CL < 50pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-12  
-
-
-
-
12  
12  
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-12  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
50 4)5)  
-6 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Data Sheet  
239  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-68 Master Mode MP+sm/MPRsm output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
7
0 < CL < 200pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-17  
-
17  
ns  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-17  
-22  
0
-
-
-
17  
2
ns  
ns  
ns  
MP+sm; CL=50pF  
MPss; CL=50pF  
70  
MP+m; MPm; LPm;  
CL=50pF  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
85 4)5)  
-
-
-
-
ns  
ns  
CL=50pF  
MRST hold from SCLK latching t53 SR  
-10 4)5)  
CL=50pF  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-69 Master Mode timing MPss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=25pF  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-5  
7+0.07 * ns  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-10  
-
-
-
-
10  
10  
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-10  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
50 4)5)  
-6 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
240  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-70 Master Mode timing MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-5  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
9+0.06 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-19  
-
-
-
-
19  
17  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-19  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
100 4)5)  
-13 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-71 Master Mode timing MPRm/MP+m/MPm/LPm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
400  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-6-0.07 *  
CL  
6+0.07 * ns  
CL  
0 < CL < 200pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-25  
-
-
-
-
33  
35  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-35  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
120 4)5)  
-13 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
241  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-72 Master Mode Weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2000  
-110  
Max.  
-
SCLKO clock period 1)  
t
t
50 CC  
-
-
ns  
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
110  
0 < CL < 200pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-170  
-
-
-
-
170  
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-170  
170  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
510 4)5)  
-40 4)5)  
-
-
MRST hold from SCLK latching t53 SR  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-73 Slave mode timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
4 x TMAX  
40  
7 1)  
9 1)  
7 1)  
5 1)  
11 1)  
16 1)  
7 1)  
Max.  
SCLK clock period  
SCLK duty cycle  
t
t
t
54 SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
%
55/t54 SR  
56 SR  
60  
-
MTSR setup to SCLK latching  
edge  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hystheresis inactive  
Input Level AL  
-
-
Input Level TTL  
MTSR hold from SCLK latching t57 SR  
edge  
-
Hystheresis inactive  
Input Level AL  
-
-
Input Level TTL  
SLSI setup to first SCLK shift  
edge  
t
58 SR  
-
Hystheresis inactive  
Input Level AL  
7 1)  
14 1)  
-
-
Input Level TTL  
11  
-
Only for pin P15.1, AL  
Data Sheet  
242  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-73 Slave mode timing (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
5 1)  
7 1)  
Max.  
SLSI hold from last SCLK  
latching edge  
t
t
59 SR  
60 CC  
-
-
-
-
-
ns  
ns  
ns  
ns  
Hystheresis inactive  
Input Level AL  
-
14 1)  
-
Input Level TTL  
MRST delay from SCLK shift  
edge  
13  
120  
MP+m/MPRm;  
CL=50pF  
13  
6
-
-
-
85  
ns  
ns  
ns  
MP+sm/MPRsm;  
CL=50pF  
50  
MP+ss/MPRss;  
CL=25pF  
70  
500  
MP+w/MPRw;  
CL=50pF  
13  
13  
6
-
-
-
-
-
120  
100  
52  
ns  
ns  
ns  
ns  
ns  
MPm/LPm; CL=50pF  
MPsm; CL=50pF  
MPss; CL=25pF  
70  
-
500  
9
MPw/LPw; CL=50pF  
SLSI to valid data on MRST  
1) Except pin P15.1  
t
61 SR  
t50  
t500  
0.5 VEXT/FLEX  
SCLK1)2)  
MTSR1)  
t51  
SAMPLING POINT  
0.5 VEXT/FLEX  
t52  
t53  
MRST1)  
Data valid  
Data valid  
t510  
SLSOn2)  
0.5 VEXT/FLEX  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).  
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.  
QSPI_TmgMM.vsd  
Figure 3-19 Master Mode Timing  
Data Sheet  
243  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
t54  
Last latching  
SCLK edge  
First latching  
SCLK edge  
SCLKI1)  
First shift  
SCLK edge  
0.5 VEXT/FLEX  
t55  
t55  
t56  
t56  
t57  
t57  
Data  
valid  
Data  
valid  
MTSR1)  
MRST1)  
SLSI  
t60  
t60  
0.5 VEXT/FLEX  
t58  
t59  
t61  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0.  
QSPI_TmgSM.vsd  
Figure 3-20 Slave Mode Timing  
Data Sheet  
244  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 5 V Operation  
3.27  
MSC Timing 5 V Operation  
The following section defines the timings for 5V pad power supply.  
Note:Pad asymmetry is already included in the following timings.  
Note:Load for LVDS pads are defined as differential loads in the following timings.  
Table 3-74 LVDS clock/data (LVDS pads in LVDS mode)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-1  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
ns  
LVDSM; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
1
LVDSM; 0 < CL < 50pF  
4) 5)  
SOPx output delay 6)  
t
t
44 CC  
-3  
-4  
-4  
-3  
-3  
-
-
-
-
-
4
ns  
ns  
ns  
ns  
ns  
LVDSM; CL=50pF;  
option EN01  
4.5  
5
LVDSM; CL=50pF;  
option EN01D  
ENx output delay 6)  
45 CC  
MP+ss/MPRss; option  
EN01; CL=25pF  
7
MP+ss/MPRss; option  
EN01; CL=50pF  
11  
MP+sm/MPRsm;  
option EN01D;  
CL=50pF  
-2  
-2  
-3  
-7  
-5  
-4  
-7  
-
-
-
-
-
-
-
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MP+ss/MPRss; option  
EN23; CL=25pF  
11  
11  
2
MP+ss/MPRss; option  
EN23; CL=50pF  
MPss; option EN01;  
CL=50pF  
MP+ss/MPRss; option  
EN01; CL=0pF  
3
MP+sm/MPRsm;  
option EN01D; CL=0pF  
5
MP+ss/MPRss; option  
EN23; CL=0pF  
4
MPss; option EN01;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.  
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.  
Data Sheet  
245  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 5 V Operation  
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Data Sheet  
246  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 5 V Operation  
Timing Options for t45  
The wiring shown in the Figure 3-21 provides three useful timing options for t45. depending on the signals selected  
with the alternate output lines (ALT1 to ALT7) in the ports:  
EN01 - FCLN, SON, EN0, EN1  
EN01D - FCLND, SOND, EN0, EN1 - t45 window shifted to the left  
EN23 - FCLN, SON, EN2, EN3 - t45 window shifted to the right  
- t45 reference timing  
The timings corresponding to EN01, EN01D, and EN23 are defined in the LVDS. In order to use the EN23 timings,  
the application should use the EN2 and EN3 outputs of the MSC module.  
ALT1  
FCLN ALTx  
ALTy  
LVDSM  
FCLP  
FCLN  
FCLND  
ALT7  
PAD  
ALT1  
SON ALTx  
ALTy  
LVDSM  
SOP  
SON  
SOND  
ALT7  
PAD  
ALT1  
ALTx  
ALTy  
EN0  
EN1  
CMOS  
ALT7  
PAD  
EN2  
EN3  
ALT1  
ALTx  
ALTy  
CMOS  
MSC  
ALT7  
PAD  
_DoublePath_4a.vsd  
Figure 3-21 Timing Options for t45  
Table 3-75 MPss clock/data (LVDS pads in CMOS mode, option EN01)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-2  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
MPss; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
6+0.035 * ns  
MPss; 0 < CL < 100pF  
4) 5)  
CL  
SOPx output delay 6)  
t
44 CC  
-4  
-
7
ns  
MPss; CL=50pF  
Data Sheet  
247  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 5 V Operation  
Table 3-75 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ENx output delay 6)  
t
45 CC  
-5  
-
7
ns  
ns  
MP+ss/MPRss;  
CL=50pF  
-2  
-
15  
MP+sm/MPRsm;  
CL=50pF  
-4  
0
-
-
10  
30  
ns  
ns  
MPss; CL=50pF  
MPsm; CL=50pF;  
except pin P13.0  
0
-
-
-
-
31  
45  
2
ns  
ns  
ns  
ns  
MPsm; CL=50pF; pin  
P13.0  
6
MPm/MP+m/MPRm;  
CL=50pF  
-11  
-4  
MP+ss/MPRss;  
CL=0pF  
7
MP+sm/MPRsm;  
CL=0pF  
-10  
-1  
-
-
-
2
ns  
ns  
ns  
MPss; CL=0pF  
MPsm; CL=0pF  
16  
18  
-2  
MP+m/MPm/MPRm;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.  
3) FCLP signal high and low can be minimum 1 * TMSC  
.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Table 3-76 MP+sm/MPRsm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
-
-
ns  
MP+sm/MPRsm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-2  
-5  
3+0.01 * ns  
CL  
MP+sm/MPRsm; 0 <  
CL < 200pF  
2) 3)  
SOPx output delay 4)  
Data Sheet  
t
44 CC  
7
ns  
MP+sm; CL=50pF  
248  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 5 V Operation  
Table 3-76 MP+sm/MPRsm clock/data (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-13  
-5  
Max.  
2 5)  
ENx output delay 4)  
t
45 CC  
-
-
ns  
ns  
MPss; CL=50pF  
11  
MP+sm/MPRsm;  
CL=50pF  
1
4
-
-
24  
37  
ns  
ns  
MPsm; CL=50pF  
MP+m/MPm/MPRm;  
CL=50pF  
-19  
-13  
-5  
-
-
-
-
-1  
2
ns  
ns  
ns  
ns  
MPss; CL=0pF  
MP+sm; CL=0pF  
MPsm; CL=0pF  
8
-5  
10  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) From FCLP rising edge.  
5) If EN1 is configured to P13.0 the max limt is increased by 0.5ns to 2.5ns.  
Table 3-77 MPm/MP+m/MPRm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
ns  
MPm/MP+m/MPRm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-8  
-
15+0.04 * ns  
CL  
MPm/MP+m; 0 < CL <  
200pF  
2) 3)  
SOPx output delay 4)  
ENx output delay 4)  
t
t
44 CC  
45 CC  
-11  
-15  
-
-
9
ns  
ns  
MPm/MP+m; CL=50pF  
11  
MPm/MP+m/MPRm;  
CL=50pF  
-33  
-
-4  
ns  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) From FCLP rising edge.  
Data Sheet  
249  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 3.3 V Operation  
t40  
t400  
FCLP  
SOP  
t44  
t44  
t45  
t45  
0.5 VEXT/FLEX  
EN  
t48  
t49  
0.9 VEXT/FLEX  
0.1 VEXT/FLEX  
SDI  
t46  
t46  
MSC_Timing_A.vsd  
Figure 3-22 MSC Interface Timing  
Note:The SOP data signal is sampled with the falling edge of FCLP in the target device.  
3.28  
MSC Timing 3.3 V Operation  
The following section defines the timings for 3.3V pad power supply.  
Note:Pad asymmetry is already included in the following timings.  
Note:Load for LVDS pads are defined as differential loads in the following timings.  
Mapping A, Combo Pads in LVDS Mode or CMOS Mode  
The timing applies for the LVDS pads in LVDS operating mode:  
The LVDSM output pads for clock and data signals set in LVDS mode  
The CMOS MP pads for enable signals, with strong driver sharp edge (MPss) or strong driver medium edge  
(MPsm).  
Table 3-78 LVDS clock/data (LVDS pads in LVDS mode)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-2  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
ns  
LVDSM; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
2
LVDSM; 0 < CL < 50pF  
4) 5)  
SOPx output delay 6)  
t
44 CC  
-5  
-7  
-
-
5
7
ns  
ns  
LVDSM; CL=50pF;  
option EN01  
LVDSM; CL=50pF;  
option EN01D  
Data Sheet  
250  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 3.3 V Operation  
Table 3-78 LVDS clock/data (LVDS pads in LVDS mode) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ENx output delay 6)  
t
45 CC  
-7  
-
-
-
10  
ns  
ns  
ns  
MP+ss/MPRss; option  
EN01; CL=25pF  
-5  
-5  
13  
26  
MP+ss/MPRss; option  
EN01; CL=50pF  
MP+sm/MPRsm;  
option EN01D;  
CL=50pF  
-4  
-
-
-
-
-
-
-
16  
17  
19  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MP+ss/MPRss; option  
EN23; CL=25pF  
-4  
MP+ss/MPRss; option  
EN23; CL=50pF  
-5  
MPss; option EN01;  
CL=50pF  
-12  
-9  
MP+ss/MPRss; option  
EN01; CL=0pF  
11  
9
MP+sm/MPRsm;  
option EN01D; CL=0pF  
-7  
MP+ss/MPRss; option  
EN23; CL=0pF  
-12  
7
MPss; option EN01;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns  
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.  
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Table 3-79 MPss clock/data (LVDS pads in CMOS mode, option EN01)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-5  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
MPss; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
7+0.07 * ns  
MPss; 0 < CL < 100pF  
4) 5)  
CL  
Data Sheet  
251  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 3.3 V Operation  
Table 3-79 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-7  
Max.  
12  
SOPx output delay 6)  
ENx output delay 6)  
t
t
44 CC  
45 CC  
-
-
ns  
ns  
MPss; CL=50pF  
-9  
12  
MP+ss/MPRss;  
CL=50pF  
-4  
-
26  
ns  
MP+sm/MPRsm;  
CL=50pF  
-7  
0
-
-
17  
54  
ns  
ns  
MPss; CL=50pF  
MPsm; CL=50pF;  
except pin P13.0  
0
-
-
-
-
58  
77  
4
ns  
ns  
ns  
ns  
MPsm; CL=50pF; pin  
P13.0  
4
MPm/MP+m/MPRm;  
CL=50pF  
-19  
-7  
MP+ss/MPRss;  
CL=0pF  
12  
MP+sm/MPRsm;  
CL=0pF  
-17  
-2  
-
-
-
4
ns  
ns  
ns  
MPss; CL=0pF  
MPsm; CL=0pF  
28  
31  
-4  
MP+m/MPm/MPRm;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns  
3) FCLP signal high and low can be minimum 1 * TMSC  
.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Mapping B, CMOS MP Pads  
This timing applies for the dedicated CMOS pads, pin Mapping B:  
MP strong sharp (MPss) output pads for the clock and the data signals  
MP strong sharp or strong medium (MPss or MPsm) output pads for enable signals  
Data Sheet  
252  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 3.3 V Operation  
Table 3-80 MP+sm/MPRsm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
ns  
ns  
MP+sm/MPRsm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-3  
-
7
MP+sm/MPRsm; 0 <  
CL < 200pF  
2) 3)  
SOPx output delay 4)  
ENx output delay 4)  
t
t
44 CC  
45 CC  
-9  
-
-
-
12  
4
ns  
ns  
ns  
MP+sm; CL=50pF  
MPss; CL=50pF  
-20  
-9  
19  
MP+sm/MPRsm;  
CL=50pF  
0
0
-
-
44  
63  
ns  
ns  
MPsm; CL=50pF  
MP+m/MPm/MPRm;  
CL=50pF  
-33  
-23  
-
-
0
4
ns  
ns  
MPss; CL=0pF  
MP+sm/MPRsm;  
CL=0pF  
-9  
-9  
-
-
14  
17  
ns  
ns  
MPsm; CL=0pF  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) From FCLP rising edge.  
Table 3-81 MPm/MP+m/MPRm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
ns  
MPm/MP+m/MPRm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-6-0.07 *  
CL  
-
6+0.07 * ns  
CL  
MPm/MP+m/MPRm; 0  
< CL < 200pF  
2) 3)  
SOPx output delay 4)  
ENx output delay 4)  
t
t
44 CC  
45 CC  
-19  
-19  
-
-
17  
20  
ns  
ns  
MPm/MP+m; CL=50pF  
MPm/MP+m/MPRm;  
CL=50pF  
-57  
-
0
ns  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
253  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationMSC Timing 3.3 V Operation  
4) From FCLP rising edge.  
t40  
t400  
FCLP  
t44  
t44  
SOP  
EN  
t45  
t45  
0.5 VEXT/FLEX  
t48  
t49  
0.9 VEXT/FLEX  
0.1 VEXT/FLEX  
SDI  
t46  
t46  
MSC_Timing_A.vsd  
Figure 3-23 MSC Interface Timing  
Note:The SOP data signal is sampled with the falling edge of FCLP in the target device.  
Data Sheet  
254  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29  
Ethernet Interface (ETH) Characteristics  
3.29.1  
ETH Measurement Reference Points  
ETH Clock  
ETH I/O  
1.4  
2.0  
V
1.4 V  
V
2.0  
V
0.8  
V
0.8  
V
tR  
tF  
ETH_Testpoints.vsd  
Figure 3-24 ETH Measurement Reference Points  
Data Sheet  
255  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29.2  
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)  
Table 3-82 ETH Management Signal Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
400  
160  
160  
10  
Max.  
ETH_MDC period  
ETH_MDC high time  
ETH_MDC low time  
t1 CC  
t2 CC  
t3 CC  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
-
-
ETH_MDIO setup time (output) t4 CC  
ETH_MDIO hold time (output) t5 CC  
ETH_MDIO data valid (input) t6 SR  
-
10  
-
0
300  
t1  
t3  
t2  
ETH_MDC  
ETH_MDIO  
sourced by controller :  
ETH_MDC  
t4  
t5  
ETH_MDIO  
(output )  
Valid Data  
ETH_MDIO sourced by PHY:  
ETH_MDC  
t6  
ETH_MDIO  
(input )  
Valid Data  
ETH_Timing-Mgmt.vsd  
Figure 3-25 ETH Management Signal Timing  
Data Sheet  
256  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29.3  
ETH MII Parameters  
In the following, the parameters of the MII (Media Independent Interface) are described.  
Table 3-83 ETH MII Signal Timing Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Clock period  
t7 SR  
40  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
CL=25pF;  
baudrate=100Mbps  
400  
14  
-
CL=25pF;  
baudrate=10Mbps  
Clock high time  
Clock low time  
t8 SR  
t9 SR  
26  
CL=25pF;  
baudrate=100Mbps  
140 1)  
14  
260 2)  
26  
CL=25pF;  
baudrate=10Mbps  
CL=25pF;  
baudrate=100Mbps  
140 1)  
260 2)  
CL=25pF;  
baudrate=10Mbps  
Input setup time  
Input hold time  
t
t
t
10 SR  
11 SR  
12 CC  
10  
10  
0
-
-
-
-
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
-
Output valid time  
25  
1) Defined by 35% of clock period.  
2) Defined by 65% of clock period.  
t7  
t9  
t8  
ETH_MII_RX_CLK  
ETH_MII_TX_CLK  
ETH_MII_RX_CLK  
t10  
t11  
ETH_MII_RXD[3:0]  
ETH_MII_RX_DV  
ETH_MII_RX_ER  
(sourced by PHY )  
Valid Data  
ETH_MII_TX_CLK  
t12  
ETH_MII_TXD[3:0]  
ETH_MII_TXEN  
Valid Data  
(sourced by controller )  
ETH_Timing-MII.vsd  
Figure 3-26 ETH MII Signal Timing  
Data Sheet  
257  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29.4  
ETH RMII Parameters  
In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.  
Table 3-84 ETH RMII Signal Timing Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ETH_RMII_REF_CL clock  
period  
t
13 CC  
20  
-
-
-
-
-
ns  
ns  
ns  
ns  
CL=25pF; 50ppm  
CL=25pF  
ETH_RMII_REF_CL clock high t14 CC  
time  
7 1)  
7 1)  
4
13 2)  
13 2)  
-
ETH_RMII_REF_CL clock low t15 CC  
time  
CL=25pF  
ETHTXEN, ETHTXD[1:0],  
ETHRXD[1:0], ETHCRSDV,  
ETHRXER; setup time  
t
t
16 CC  
17 CC  
CL=25pF  
ETHTXEN, ETHTXD[1:0],  
ETHRXD[1:0], ETHCRSDV,  
ETHRXER; hold time  
2
-
-
ns  
CL=25pF  
1) Defined by 35% of clock period.  
2) Defined by 65% of clock period.  
t13  
t15  
t14  
ETH_RMII_REF_CL  
ETH_RMII_REF_CL  
t16  
t17  
ETHTXEN,  
ETHTXD[1:0],  
ETHRXD[1:0],  
ETHCRSDV,  
ETHRXER  
Valid Data  
ETH_Timing-RMII.vsd  
Figure 3-27 ETH RMII Signal Timing  
Data Sheet  
258  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationE-Ray Parameters  
3.30  
E-Ray Parameters  
The timings of this section are valid for the strong driver and either sharp edge settings of the output drivers with  
CL = 25 pF. For the inputs the hysteresis has to be configured to inactive.  
Table 3-85 Transmit Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise time of TxEN  
Fall time of TxEN  
tdCCTxENRise2  
5 CC  
-
-
-
-
9
ns  
ns  
ns  
CL=25pF  
tdCCTxENFall25  
CC  
-
-
9
9
CL=25pF  
Sum of rise and fall time  
tdCCTxRise25+  
20% - 80%; CL=25pF  
dCCTxFall25  
CC  
Sum of delay between TP1_FF tdCCTxEN01  
-
-
-
-
25  
25  
ns  
ns  
and TP1_CC and delays  
derived from TP1_FFi, rising  
edge of TxEN  
CC  
Sum of delay between TP1_FF tdCCTxEN10  
and TP1_CC and delays  
derived from TP1_FFi, falling  
edge of TxEN  
CC  
Asymmetry of sending  
t
tx_asym CC -2.45  
-
-
2.45  
25  
ns  
ns  
CL=25pF  
Sum of delay between TP1_FF tdCCTxD01  
-
-
-
and TP1_CC and delays  
derived from TP1_FFi, rising  
edge of TxD  
CC  
Sum of delay between TP1_FF tdCCTxD10  
-
-
25  
9
ns  
ns  
and TP1_CC and delays  
derived from TP1_FFi, falling  
edge of TxD  
CC  
TxD signal sum of rise and fall ttxd_sum CC  
time at TP1_BD  
Table 3-86 Receive Parameters  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Acceptance of asymmetry at  
receiving part  
tdCCTxAsymAcc -30.5  
ept25 SR  
-
43.0  
ns  
ns  
%
%
CL=25pF  
CL=15pF  
Acceptance of asymmetry at  
receiving part  
tdCCTxAsymAcc -31.5  
ept15 SR  
-
-
-
44.0  
70  
Threshold for detecting logical TuCCLogic1  
high SR  
Threshold for detecting logical TuCCLogic0  
35  
30  
65  
low  
SR  
Data Sheet  
259  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationE-Ray Parameters  
Table 3-86 Receive Parameters (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Sum of delay between TP4_CC tdCCRxD01  
-
-
10  
ns  
and TP4_FF and delays  
derived from TP4_FFi, rising  
edge of RxD  
CC  
Sum of delay between TP1_CC tdCCRxD10  
-
-
10  
ns  
and TP1_CC and delays  
derived from TP4_FFi, falling  
edge of RxD  
CC  
Data Sheet  
260  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHSCT Parameters  
3.31  
HSCT Parameters  
Table 3-87 HSCT - Rx/Tx setup timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
-
Max.  
60  
RX o/p duty cycle  
Bias startup time  
DCrx CC  
-
%
t
bias CC  
5
10  
µs  
Bias distributor waking  
up from power down  
and provide stable  
Bias.  
RX startup time  
TX startup time  
trxi CC  
ttx CC  
-
-
5
5
-
-
µs  
µs  
Wake-up RX from  
power down.  
Wake-up TX from  
power down.  
Table 3-88 HSCT - Rx parasitics and loads  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Capacitance total budget  
Ctotal CC  
-
3.5  
5
pF  
Total Budget for  
complete receiver  
including silicon,  
package, pins and  
bond wire  
Parasitic inductance budget  
Htotal CC  
-
5
-
nH  
Table 3-89 LVDSH - Reduced TX and RX (RED)  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Output differential voltage  
V
OD CC  
150  
200  
285  
mV  
Rt = 100 Ohm ±20%  
@2pF  
Output voltage high  
Output voltage low  
V
V
OH CC  
OL CC  
-
-
1463  
-
mV  
mV  
V
Rt = 100 Ohm ±20%  
Rt = 100 Ohm ±20%  
937  
1.08  
-
Output offset (Common mode) VOS CC  
voltage  
1.2  
1.32  
Rt = 100 Ohm ±20%  
@2pF  
Input voltage range  
VI SR  
-
-
-
-
1.6  
-
V
Absolute max = 1.6 V +  
(285mV/2) = 1.743  
0.15  
-100  
V
Absolute min = 0.15 V -  
(285 mV /2) = 0 V  
Input differential threshold  
Data frequency  
V
idth SR  
100  
mV  
100 mV for 55% of bit  
period; Note Absolute  
Value (Vidth - Vidthl)  
DR CC  
5
-
320  
Mbps  
Data Sheet  
261  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHSCT Parameters  
Table 3-89 LVDSH - Reduced TX and RX (RED) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
90  
80  
-
Max.  
110  
120  
2
Receiver differential input  
impedance  
Rin CC  
100  
Ohm  
Ohm  
V/ns  
mV  
0 V < VI < 1.6V  
100  
1.6 V < VI < 2.0V  
Slew rate  
SRtx CC  
-
-
Change in VOS between 0 and dVOS CC  
1
-
50  
Peak to peak  
(including DC  
transients).  
Change in Vod between 0 and dVod CC  
1
-
-
50  
mV  
Peak to peak  
(including DC  
transients)  
Fall time 1)  
Rise time 1)  
t
t
fall CC  
rise CC  
0.26  
0.26  
-
-
1.2  
1.2  
ns  
ns  
Rt = 100 Ohm ±20%  
@2pF  
Rt = 100 Ohm ±20%  
@2pF  
1) Rise / fall times are defined for 10% - 90% of VOD  
Table 3-90 HSCT PLL  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
12.5  
10  
-
Typ.  
Max.  
320  
PLL frequency range  
PLL input frequency  
PLL lock-in time  
f
f
t
PLL CC  
REF CC  
LOCK CC  
320  
MHz  
MHz  
µs  
-
-
-
20  
50  
Bit Error Rate based on 10 MHz BER10 CC  
reference clock at Slave PLL  
side  
-
10EXP-9  
-
Bit Error Rate based  
on Slave interface  
reference clock at 10  
MHz  
Bit Error Rate based on 20 MHz BER20 CC  
reference clock at Slave PLL  
side  
-
-
-
-
10EXP-  
12  
-
Bit Error Rate based  
on Slave interface  
reference clock at 20  
MHz  
Absolute RMS Jitter (TX out)  
JABS10 CC  
-125  
-85  
125  
85  
ps  
ps  
Measured at link TX  
out; valid for  
Reference frequency  
at 10 MHz  
Absolute RMS Jitter (TX out)  
JABS20 CC  
Measured at link TX  
out; valid for  
Reference frequency  
at 20 MHz  
Data Sheet  
262  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationHSCT Parameters  
Table 3-90 HSCT PLL (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Accumulated RMS Jitter (RX  
side)  
J
ACC10 CC  
-
-
-
-
145  
ps  
Measured at link RX  
input, based on 5000  
measures, each 300  
clock cycles; valid for  
Reference frequency  
at 10 MHz  
Accumulated RMS Jitter (link  
RX side)  
JACC20 CC  
-
-
115  
ps  
Measured at link RX  
input, based on 5000  
measures, each 300  
clock cycles; valid for  
Reference frequency  
at 20 MHz  
Total Jitter peak to peak  
TJpp CC  
2083  
ps  
Total Jitter as sum of  
deterministic jitter and  
random jitter  
Table 3-91 HSCT Sysclk  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
20  
1
Frequency  
f
SYSCLK CC 10  
-
-
-
-
-
-
MHz  
%
Frequency error  
Duty Cycle  
dfERR CC -1  
DCsys CC 45  
55  
-
%
Load impedance  
Load capacitance  
Integrated phase noise  
R
LOAD CC  
LOAD CC  
PN CC  
10  
-
kOhm  
pF  
C
10  
-58  
I
-
dB  
single sideband phase  
noise in 10 kHz to 10  
Mhz at 20 MHz SysClk  
Data Sheet  
263  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationInter-IC (I2C) Interface Timing  
3.32  
Inter-IC (I2C) Interface Timing  
This section defines the timings for I2C in the TC270 / TC275 / TC277.  
All I2C timing parameter are SR for Master Mode and CC for Slave Mode.  
Table 3-92 I2C Standard Mode Timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Fall time of both SDA and SCL t1  
-
-
300  
ns  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Capacitive load for each bus  
line  
Cb SR  
-
-
-
400  
-
pF  
µs  
Bus free time between a STOP t10  
4.7  
Measured with a pull-  
up resistor of 4.7  
and ATART condition  
kohms at each of the  
SCL and SDA line  
Rise time of both SDA and SCL t2  
-
-
-
-
-
-
-
1000  
ns  
µs  
ns  
µs  
µs  
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data hold time  
t3  
t4  
t5  
t6  
t7  
0
-
-
-
-
-
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data set-up time  
250  
4.7  
4
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Low period of SCL clock  
High period of SCL clock  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Hold time for the (repeated)  
START condition  
4
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data Sheet  
264  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationInter-IC (I2C) Interface Timing  
Table 3-92 I2C Standard Mode Timing (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Set-up time for (repeated)  
START condition  
t8  
4.7  
-
-
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Set-up time for STOP condition t9  
4
-
-
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Table 3-93 I2C Fast Mode Timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Fall time of both SDA and SCL t1  
20+0.1*C -  
300  
ns  
Measured with a pull-  
up resistor of 4.7  
b
kohms at each of the  
SCL and SDA line  
Capacitive load for each bus  
line  
Cb SR  
-
-
-
400  
-
pF  
µs  
Bus free time between a STOP t10  
1.3  
Measured with a pull-  
up resistor of 4.7  
and ATART condition  
kohms at each of the  
SCL and SDA line  
Rise time of both SDA and SCL t2  
20+0.1*C -  
300  
ns  
µs  
ns  
µs  
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
b
Data hold time  
t3  
t4  
t5  
t6  
0
-
-
-
-
-
-
-
-
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data set-up time  
100  
1.3  
0.6  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Low period of SCL clock  
High period of SCL clock  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data Sheet  
265  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationInter-IC (I2C) Interface Timing  
Table 3-93 I2C Fast Mode Timing (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Hold time for the (repeated)  
START condition  
t7  
0.6  
-
-
-
-
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Set-up time for (repeated)  
START condition  
t8  
0.6  
0.6  
-
-
µs  
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Set-up time for STOP condition t9  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data Sheet  
266  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationFlash Target Parameters  
3.33  
Flash Target Parameters  
Program Flash program and erase operation is only allowed up the TJ = 150°C.  
Table 3-94 FLASH  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Program Flash Erase Time per tERP CC  
logical sector  
-
-
-
1
-
s
s
cycle count < 1000  
0.207 +  
0.003 * (S  
[KByte]) /  
(fFSI  
cycle count < 1000, for  
sector of size S  
[MHz])1)  
Program Flash Erase Time per tMERP CC  
Multi-Sector Command  
-
-
-
1
-
s
s
Forconsecutivelogical  
sectors in a physical  
sector, cycle count <  
1000  
0.207 +  
0.003 * (S  
[KByte]) /  
(fFSI  
Forconsecutivelogical  
sector range of size S  
in a physical sector,  
cycle count < 1000  
[MHz])1)  
Program Flash program time  
per page in 5 V mode  
t
t
t
t
PRP5 CC  
PRP3 CC  
PRPB5 CC  
PRPB3 CC  
-
-
-
-
-
-
-
-
-
-
50 +  
3000/(fFSI  
[MHz])  
µs  
µs  
µs  
µs  
s
32 Byte  
32 Byte  
256 Byte  
256 Byte  
Program Flash program time  
per page in 3.3 V mode  
81 +  
3400/(fFSI  
[MHz])  
Program Flash program time  
per burst in 5 V mode  
125 +  
9500/(fFSI  
[MHz])  
Program Flash program time  
per burst in 3.3 V mode  
410 +  
12000/(fF  
SI [MHz])  
Program Flash program time  
for 1 MByte with burst  
programming in 3 V mode  
excluding communication  
tPRPB3_1MB  
CC  
2.2  
0.9  
3.6  
Derived value for  
documentation  
purpose, valid for fFSI  
=
=
=
100MHz  
Program Flash program time  
for 1 MByte with burst  
programming in 5 V mode  
excluding communication  
tPRPB5_1MB  
CC  
-
-
-
-
s
s
Derived value for  
documentation  
purpose, valid for fFSI  
100MHz  
Program Flash program time  
for complete PFlash with burst CC  
programming in 5 V mode  
excluding communication  
tPRPB5_PF  
Derived value for  
documentation  
purpose, valid for fFSI  
100MHz  
Data Sheet  
267  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationFlash Target Parameters  
Table 3-94 FLASH (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Write Page Once adder  
t
ADD CC  
-
-
15 +  
500/(fFSI  
[MHz])  
µs  
Adder to Program  
Time when using Write  
Page Once  
Program Flash suspend to read tSPNDP CC  
latency  
-
-
12000/(fF µs  
SI [MHz])  
For Write Burst, Verify  
Erased and for multi-  
(logical) sector erase  
commands  
Data Flash Erase Time per  
Sector 2)  
t
t
ERD CC  
-
-
-
0.12 +  
0.08/(fFSI  
[MHz])1)  
-
s
s
s
cycle count < 1000  
0.57 +  
0.928 +  
cycle count < 125000  
0.15/(fFSI 0.15/(fFSI  
[MHz])1)  
[MHz])  
Data Flash Erase Time per  
Multi-Sector Command 2)  
MERD CC  
0.12 +  
-
Forconsecutivelogical  
sector range of size S,  
cycle count < 1000  
0.01 * (S  
[KByte]) /  
(fFSI  
[MHz])1)  
-
0.57 +  
0.019 * (S 0.019 * (S  
[KByte]) / [KByte]) /  
0.928 +  
s
Forconsecutivelogical  
sector range of size S,  
cycle count < 125000  
(fFSI  
(fFSI  
[MHz])  
[MHz])1)  
Data Flash erase disturb limit  
N
DFD CC  
-
-
-
-
50  
cycles  
µs  
Program time data flash per  
page 3)  
t
PRD CC  
50 +  
2500/(fFSI  
[MHz]) 3)  
8 Byte  
Complete Device Flash Erase  
Time PFlash and DFlash 4)  
t
ER_Dev CC  
-
-
-
-
9
s
Derived value for  
documentation  
purpose (excl. UCBs  
and HSMs), valid for  
f
FSI = 100MHz  
Data Flash program time per  
burst 3)  
t
t
PRDB CC  
96 +  
4400/(fFSI  
[MHz]) 3)  
µs  
32 Bytes  
Data Flash suspend to read  
latency  
SPNDD CC  
-
-
-
-
-
12000/(fF µs  
SI [MHz])  
Wait time after margin change tFL_MarginDel  
-
10  
-
µs  
CC  
Program Flash Retention Time, tRET CC  
Sector  
20  
years  
Max. 1000  
erase/program cycles  
Data Flash Endurance per  
EEPROMx sector 5)  
NE_EEP10  
CC  
125000  
-
cycles Max. data retention  
time 10 years  
Data Sheet  
268  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationFlash Target Parameters  
Table 3-94 FLASH (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
E_HSM CC 125000  
Max.  
Data Flash Endurance per  
HSMx sector 5)  
N
-
-
cycles Max. data retention  
time 10 years  
UCB Retention Time  
t
RTU CC  
20  
-
-
years  
Max. 100  
erase/program cycles  
per UCB, max 400  
erase/program cycles  
in total  
Data Flash access delay  
Data Flash ECC Delay  
t
t
t
t
DF CC  
-
-
-
-
-
-
-
-
100  
20  
ns  
ns  
ns  
ns  
see  
PMU_FCON.WSDFLA  
SH  
DFECC CC  
see  
PMU_FCON.WSECD  
F
Program Flash access delay  
Program Flash ECC delay  
PF CC  
30  
see  
PMU_FCON.WSPFLA  
SH  
PFECC CC  
10  
see  
PMU_FCON.WSECP  
F
Number of erase operations on NERD0 CC  
DF0 over lifetime  
-
-
-
-
-
-
750000  
500000  
150  
cycles  
cycles  
°C  
Number of erase operations on NERD1 CC  
DF1 over lifetime  
Junction temperature limit for  
PFlash program/erase  
operations  
TJPFlash SR  
1) All typical values were characterised, but are not tested. Typical values are safe median values at room temperature  
2) Under out-of-spec conditions (e.g. over-cycling) or in case of activation of WL oriented defects, the duration of erase  
processes may be increased by up to 50%.  
3) Time is not dependent on program mode (5V or 3.3V).  
4) Using 512 KByte erase commands.  
5) Only valid when a robust EEPROM emulation algorithm is used. For more details see the Users Manual.  
Data Sheet  
269  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPackage Outline  
3.34  
Package Outline  
Figure 3-28 Package Outlines PG-LQFP-176-22  
Table 3-95 Exposed Pad Dimensions  
Ax (nominal EPad size)  
7.9 mm ± 50 µm  
7.9 mm ± 50 µm  
8.7 mm ± 50 µm  
8.7 mm ± 50 µm  
Ay (nominal EPad size)  
Ex (solder able EPad size)  
Ey (solder able EPad size)  
292 x  
M
0.5 ±0 .0 5  
1.7 MAX  
0.15  
0.08  
C
C
A B  
17 ±0.1  
M
B
A
20  
19  
18  
0.1 C  
17  
16  
15  
14  
13  
12  
11  
10  
9
CODE  
8
7
292x  
0.15  
6
5
4
3
COPLANARITY  
2
1
Y W V U T R P N M L  
K J HG F E D C B A  
INDEX  
INDEX MARKING  
(LASERED )  
0.8  
MARKING  
19 x 0.8 = 15.2  
C
0.33 MIN  
STANDOFF  
Figure 3-29 Package Outlines LF-BGA-292-6  
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:  
http://www.infineon.com/products.  
Data Sheet  
270  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPackage Outline  
3.34.1  
Package Parameters  
Table 3-96 Thermal Characteristics of the Package  
Device  
Package  
RQJCT1)  
RQJCB1) RQJA  
Unit  
Note  
TC275  
PG-LQFP-176-22  
9,6  
1,25  
14,72)  
K/W  
with soldered  
exposed pad  
TC277  
LF-BGA-292-6  
5,1  
7,2  
15,83)  
K/W  
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the  
thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal  
resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT  
,
R
TCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility.  
The junction temperature can be calculated using the following equation: TJ = TA + RTJA * PD, where the RTJA is the total  
thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from  
the upper four partial thermal resistances.  
Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1).  
2) Value is defined in accordance with JEDEC JESD51-3, JESD51-5, and JESD51-7.  
3) Value is defined in accordance with JEDEC JESD51-1.  
3.34.2  
TC270 Carrier Tape  
Figure 3-30 Carrier Tape Dimenions  
Data Sheet  
271  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationPackage Outline  
Table 3-97 TC270 Chip Dimenions  
Device  
A
B
T
TC270  
7,590 mm  
6,930 mm  
0,3 mm  
Data Sheet  
272  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
Electrical SpecificationQuality Declarations  
3.35  
Quality Declarations  
Table 3-98 Quality Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
24500  
2000  
Operation Lifetime  
tOP  
-
-
-
-
hour  
V
ESD susceptibility according to VHBM  
Conforming to  
Human Body Model (HBM)  
JESD22-A114-B  
ESD susceptibility of the LVDS VHBM1  
pins  
-
-
-
-
500  
500  
V
V
ESD susceptibility according to VCDM  
for all other balls/pins;  
conforming to  
Charged Device Model (CDM)  
JESD22-C101-C  
-
-
-
-
750  
3
V
for corner balls/pins;  
conforming to  
JESD22-C101-C  
Moisture Sensitivity Level  
MSL  
Conforming to Jedec  
J-STD--020C for 240C  
Data Sheet  
273  
V 1.0 2017-01  
TC270 / TC275 / TC277 DC-Step  
HistoryChanges from TC27xDB_v10 to 1.0  
4
History  
4.1  
Changes from TC27xDB_v10 to 1.0  
Replace PG-LQFP-176-18 with correct package LF-BGA-292-6 in table 1  
VADC  
Add parameter tWU  
Add parameter RMDU  
Add parameter RMDD  
Data Sheet  
274  
V 1.0 2017-01  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAK-TC275TP-64F200W DC

SAK-TC275TP-64F200W DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC277T-64F200N DC

SAK-TC277T-64F200N DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC277T-64F200S DC

SAK-TC277T-64F200S DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC277TC-64F200N DC

SAK-TC277TC-64F200N DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC277TC-64F200S DC

SAK-TC277TC-64F200S DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC277TP-64F200N DC

SAK-TC277TP-64F200N DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC277TP-64F200S DC

SAK-TC277TP-64F200S DC 属于第一代 Aurix TC27xT 产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC27xT 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC297T-96F300N BC

SAK-TC297T-96F300N BC 属于第一代 Aurix TC29xT 系列产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC29xT 系列属于第一代 TC2xxAurix应用。TC29xT 系列产品配备 300 MHz TriCore、5V 或者 3.3V 单供电电压和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON

SAK-TC297TA-128F300N BC

AURIX™ Webinar for the Asia Pacific: learn more
INFINEON

SAK-TC297TA-128F300S BC

AURIX™ Webinar for the Asia Pacific: learn more
INFINEON

SAK-TC297TA-64F300S BC

AURIX™ Webinar for the Asia Pacific: learn more
INFINEON

SAK-TC297TC-96F300S BC

SAK-TC297TC-96F300S BC 属于第一代 Aurix TC29xT 系列产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC29xT 系列属于第一代 TC2xxAurix应用。TC29xT 系列产品配备 300 MHz TriCore、5V 或者 3.3V 单供电电压和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。
INFINEON