SKB04N60_07 [INFINEON]

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode; 在NPT技术的快速IGBT具有柔软,快速恢复反并联二极管EMCON
SKB04N60_07
型号: SKB04N60_07
厂家: Infineon    Infineon
描述:

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
在NPT技术的快速IGBT具有柔软,快速恢复反并联二极管EMCON

二极管 双极性晶体管
文件: 总13页 (文件大小:1148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SKB04N60  
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode  
C
75% lower Eoff compared to previous generation  
combined with low conduction losses  
Short circuit withstand time – 10 µs  
G
E
Designed for frequency inverters for washing machines,  
fans, pumps and vacuum cleaners  
NPT-Technology for 600V applications offers:  
- very tight parameter distribution  
- high ruggedness, temperature stable behaviour  
- parallel switching capability  
PG-TO-263-3-2  
Very soft, fast recovery anti-parallel EmCon diode  
Qualified according to JEDEC1 for target applications  
Pb-free lead plating; RoHS compliant  
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/  
Type  
VCE  
IC  
VCE(sat)  
Tj  
Marking Package  
SKB04N60  
600V  
4A  
2.3V  
K04N60 PG-TO-263-3-2  
150°C  
Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
Collector-emitter voltage  
DC collector current  
TC = 25°C  
VCE  
IC  
600  
V
A
9.4  
4.9  
19  
TC = 100°C  
Pulsed collector current, tp limited by Tjmax  
Turn off safe operating area VCE 600V, Tj 150°C  
Diode forward current  
ICpul s  
-
IF  
19  
TC = 25°C  
TC = 100°C  
10  
4
Diode pulsed current, tp limited by Tjmax  
Gate-emitter voltage  
IFpul s  
VG E  
tSC  
19  
±20  
10  
V
Short circuit withstand time2  
µs  
VGE = 15V, VCC 600V, Tj 150°C  
Power dissipation  
TC = 25°C  
Pt ot  
W
50  
Operating junction and storage temperature  
Soldering temperature (reflow soldering, MSL1)  
Tj , Tstg  
Ts  
-55...+150  
245  
°C  
°C  
1 J-STD-020 and JESD-022  
2 Allowed number of short circuits: <1000; time between short circuits: >1s.  
1
Rev. 2.3 Oct. 07  
SKB04N60  
Thermal Resistance  
Parameter  
Symbol Conditions  
Max. Value  
Unit  
Characteristic  
IGBT thermal resistance,  
junction – case  
Rt hJC  
Rt hJCD  
Rt hJA  
2.5  
4.5  
40  
K/W  
Diode thermal resistance,  
junction – case  
SMD version, device on PCB1)  
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified  
Value  
Typ.  
Parameter  
Symbol  
Conditions  
Unit  
min.  
max.  
Static Characteristic  
Collector-emitter breakdown voltage V( BR)CES  
600  
-
-
V
V
G E=0V, IC =500µA  
Collector-emitter saturation voltage  
VC E( sat ) VG E = 15V, IC =4A  
Tj =25°C  
1.7  
-
2.0  
2.3  
2.4  
2.8  
Tj =150°C  
Diode forward voltage  
VF  
VG E=0V, IF =4A  
1.2  
-
1.4  
1.25  
1.8  
1.65  
Tj =25°C  
Tj =150°C  
Gate-emitter threshold voltage  
Zero gate voltage collector current  
VG E(t h)  
ICES  
3
4
5
IC =200µA,VCE=VGE  
VCE=600V,VGE=0V  
µA  
-
-
-
-
20  
500  
Tj =25°C  
Tj =150°C  
Gate-emitter leakage current  
Transconductance  
IGES  
gfs  
V
V
CE=0V,VG E=20V  
CE=20V, IC =4A  
-
-
100  
-
nA  
S
3.1  
Dynamic Characteristic  
Input capacitance  
Output capacitance  
Reverse transfer capacitance  
Gate charge  
Ciss  
Coss  
Crss  
V
V
CE=25V,  
G E=0V,  
-
-
-
-
264  
29  
17  
317  
35  
20  
pF  
f=1MHz  
V
V
QGate  
CC =480V, IC =4A  
G E=15V  
24  
31  
nC  
nH  
A
Internal emitter inductance  
LE  
-
-
7
-
-
measured 5mm (0.197 in.) from case  
Short circuit collector current2)  
IC( SC)  
40  
V
G E=15V,tSC10µs  
VCC 600V,  
Tj 150°C  
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for  
collector connection. PCB is vertical without blown air.  
2) Allowed number of short circuits: <1000; time between short circuits: >1s.  
2
Rev. 2.3 Oct. 07  
SKB04N60  
Switching Characteristic, Inductive Load, at Tj=25 °C  
Value  
Unit  
Parameter  
Symbol  
Conditions  
min.  
typ.  
max.  
IGBT Characteristic  
Turn-on delay time  
Rise time  
Turn-off delay time  
Fall time  
Turn-on energy  
Turn-off energy  
Total switching energy  
Anti-Parallel Diode Characteristic  
Diode reverse recovery time  
Tj =25°C,  
td(on)  
tr  
td(off)  
tf  
Eon  
Eoff  
Et s  
-
-
-
-
-
-
-
22  
15  
237  
26  
18  
284  
84  
0.081 mJ  
0.079  
0.160  
ns  
V
V
CC =400V,IC =4A,  
G E=0/15V,  
RG=67,  
1)  
Lσ =180nH,  
70  
1)  
Cσ =180pF  
0.070  
0.061  
0.131  
Energy losses include  
“tail” and diode  
reverse recovery.  
trr  
tS  
tF  
-
-
-
-
-
-
180  
15  
165  
130  
2.5  
-
-
-
-
-
-
ns  
Tj =25°C,  
VR =200V, IF =4A,  
diF/dt=200A/µs  
Diode reverse recovery charge  
Diode peak reverse recovery current Irrm  
Qrr  
nC  
A
A/µs  
Diode peak rate of fall of reverse  
dirr /dt  
180  
recovery current during tb  
Switching Characteristic, Inductive Load, at Tj=150 °C  
Value  
typ.  
Parameter  
Symbol  
Conditions  
Unit  
min.  
max.  
IGBT Characteristic  
Turn-on delay time  
Rise time  
Turn-off delay time  
Fall time  
Turn-on energy  
Turn-off energy  
Total switching energy  
Anti-Parallel Diode Characteristic  
Diode reverse recovery time  
Tj =150°C  
td(on)  
tr  
td(off)  
tf  
Eon  
Eoff  
Et s  
-
-
-
-
-
-
-
22  
16  
264  
26  
19  
317  
125  
0.132 mJ  
0.144  
0.277  
ns  
V
V
CC =400V,IC =4A,  
G E=0/15V,  
RG=67,  
1)  
Lσ =180nH,  
104  
1)  
Cσ =180pF  
0.115  
0.111  
0.226  
Energy losses include  
“tail” and diode  
reverse recovery.  
trr  
tS  
tF  
-
-
-
-
-
-
230  
23  
227  
300  
4
-
-
-
-
-
-
ns  
Tj =150°C  
VR =200V, IF =4A,  
diF/dt=200A/µs  
Diode reverse recovery charge  
Diode peak reverse recovery current Irrm  
Qrr  
nC  
A
A/µs  
Diode peak rate of fall of reverse  
dirr /dt  
200  
recovery current during tb  
1) Leakage inductance Lσ and Stray capacity Cσ due to dynamic test circuit in Figure E.  
3
Rev. 2.3 Oct. 07  
SKB04N60  
tp=2µs  
15µs  
Ic  
0A  
1A  
20A  
10A  
0A  
50µs  
TC=80°C  
200µs  
1ms  
DC  
.1A  
01A  
TC=110°C  
I
c  
1V  
10V  
100V  
1000V  
10Hz  
100Hz  
1kHz  
10kHz 100kHz  
f, SWITCHING FREQUENCY  
VCE, COLLECTOR-EMITTER VOLTAGE  
Figure 1. Collector current as a function of  
Figure 2. Safe operating area  
switching frequency  
(D = 0, TC = 25°C, Tj 150°C)  
(Tj 150°C, D = 0.5, VCE = 400V,  
VGE = 0/+15V, RG = 67)  
60W  
50W  
40W  
30W  
20W  
10W  
0W  
12A  
10A  
8A  
6A  
4A  
2A  
0A  
25°C  
50°C  
75°C 100°C 125°C  
25°C  
50°C  
75°C 100°C 125°C  
TC, CASE TEMPERATURE  
TC, CASE TEMPERATURE  
Figure 3. Power dissipation as a function  
of case temperature  
Figure 4. Collector current as a function of  
case temperature  
(Tj 150°C)  
(VGE 15V, Tj 150°C)  
4
Rev. 2.3 Oct. 07  
SKB04N60  
15A  
12A  
9A  
15A  
12A  
9A  
VGE=20V  
VGE=20V  
15V  
13V  
11V  
9V  
7V  
5V  
15V  
13V  
11V  
9V  
7V  
5V  
6A  
6A  
3A  
3A  
0A  
0A  
0V  
1V  
2V  
3V  
4V  
5V  
0V  
1V  
2V  
3V  
4V  
5V  
VCE, COLLECTOR-EMITTER VOLTAGE  
VCE, COLLECTOR-EMITTER VOLTAGE  
Figure 5. Typical output characteristics  
Figure 6. Typical output characteristics  
(Tj = 25°C)  
(Tj = 150°C)  
14A  
4.0V  
Tj=+25°C  
12A  
10A  
8A  
3.5V  
3.0V  
2.5V  
2.0V  
1.5V  
1.0V  
IC = 8A  
IC = 4A  
-55°C  
+150°C  
6A  
4A  
2A  
0A  
0V  
2V  
4V  
6V  
8V  
10V  
-50°C  
0°C  
50°C 100°C 150°C  
VGE, GATE-EMITTER VOLTAGE  
Tj, JUNCTION TEMPERATURE  
Figure 7. Typical transfer characteristics  
Figure 8. Typical collector-emitter  
saturation voltage as a function of junction  
temperature  
(VCE = 10V)  
(VGE = 15V)  
5
Rev. 2.3 Oct. 07  
SKB04N60  
td(off)  
td(off)  
tf  
100ns  
100ns  
tf  
td(on)  
td(on)  
tr  
8A  
tr  
200  
10ns  
0A  
10ns  
0Ω  
2A  
4A  
6A  
10A  
50Ω  
100Ω  
150Ω  
IC, COLLECTOR CURRENT  
RG, GATE RESISTOR  
Figure 9. Typical switching times as a  
function of collector current  
Figure 10. Typical switching times as a  
function of gate resistor  
(inductive load, Tj = 150°C, VCE = 400V,  
(inductive load, Tj = 150°C, VCE = 400V,  
V
GE = 0/+15V, IC = 4A,  
V
GE = 0/+15V, RG = 67,  
Dynamic test circuit in Figure E)  
Dynamic test circuit in Figure E)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
td(off)  
100ns  
tf  
max.  
typ.  
td(on)  
tr  
min.  
10ns  
0°C  
50°C  
100°C  
150°C  
-50°C  
0°C  
50°C 100°C 150°C  
Tj, JUNCTION TEMPERATURE  
Tj, JUNCTION TEMPERATURE  
Figure 11. Typical switching times as a  
function of junction temperature  
(inductive load, VCE = 400V, VGE = 0/+15V,  
IC = 4A, RG = 67,  
Figure 12. Gate-emitter threshold voltage  
as a function of junction temperature  
(IC = 0.2mA)  
Dynamic test circuit in Figure E)  
6
Rev. 2.3 Oct. 07  
SKB04N60  
0.6mJ  
0.5mJ  
0.4mJ  
0.3mJ  
0.2mJ  
0.1mJ  
0.0mJ  
0.4mJ  
0.3mJ  
0.2mJ  
0.1mJ  
0.0mJ  
*) Eon and Ets include losses  
*) Eon and Ets include losses  
due to diode recovery.  
due to diode recovery.  
Ets*  
Ets*  
Eon  
Eoff  
*
Eoff  
Eon  
*
0A  
2A  
4A  
6A  
8A  
10A  
0Ω  
50Ω  
100Ω  
150Ω  
200Ω  
IC, COLLECTOR CURRENT  
RG, GATE RESISTOR  
Figure 13. Typical switching energy losses  
as a function of collector current  
Figure 14. Typical switching energy losses  
as a function of gate resistor  
(inductive load, Tj = 150°C, VCE = 400V,  
(inductive load, Tj = 150°C, VCE = 400V,  
V
GE = 0/+15V, IC = 4A,  
V
GE = 0/+15V, RG = 67,  
Dynamic test circuit in Figure E)  
Dynamic test circuit in Figure E)  
0.3mJ  
*) Eon and Ets include losses  
due to diode recovery.  
0.2mJ  
Ets*  
0.1mJ  
Eon  
*
Eoff  
0.0mJ  
0°C  
50°C  
100°C  
150°C  
Tj, JUNCTION TEMPERATURE  
Figure 15. Typical switching energy losses  
as a function of junction temperature  
(inductive load, VCE = 400V, VGE = 0/+15V,  
IC = 4A, RG = 67,  
Dynamic test circuit in Figure E)  
7
Rev. 2.3 Oct. 07  
SKB04N60  
25V  
20V  
15V  
10V  
5V  
Ciss  
100pF  
120V  
480V  
Coss  
Crss  
10pF  
0V  
0nC  
10nC  
20nC  
30nC  
0V  
10V  
20V  
30V  
QGE, GATE CHARGE  
VCE, COLLECTOR-EMITTER VOLTAGE  
Figure 16. Typical gate charge  
Figure 17. Typical capacitance as a  
function of collector-emitter voltage  
(VGE = 0V, f = 1MHz)  
(IC = 4A)  
25µs  
70A  
60A  
50A  
40A  
30A  
20A  
10A  
0A  
20µs  
15µs  
10µs  
5µs  
0µs  
10V  
11V  
12V  
13V  
14V  
15V  
10V  
12V  
14V  
16V  
18V  
20V  
VGE, GATE-EMITTER VOLTAGE  
VGE, GATE-EMITTER VOLTAGE  
Figure 18. Short circuit withstand time as a  
function of gate-emitter voltage  
(VCE = 600V, start at Tj = 25°C)  
Figure 19. Typical short circuit collector  
current as a function of gate-emitter voltage  
(VCE 600V, Tj = 150°C)  
8
Rev. 2.3 Oct. 07  
SKB04N60  
500ns  
400ns  
300ns  
200ns  
100ns  
0ns  
560nC  
480nC  
400nC  
320nC  
240nC  
160nC  
80nC  
IF = 8A  
IF = 8A  
IF = 4A  
IF = 4A  
IF = 2A  
IF = 2A  
0nC  
40A/µs  
120A/µs 200A/µs 280A/µs 360A/µs  
40A/µs  
120A/µs 200A/µs 280A/µs 360A/µs  
diF/dt, DIODE CURRENT SLOPE  
diF/dt, DIODE CURRENT SLOPE  
Figure 20. Typical reverse recovery time as  
a function of diode current slope  
(VR = 200V, Tj = 125°C,  
Figure 21. Typical reverse recovery charge  
as a function of diode current slope  
(VR = 200V, Tj = 125°C,  
Dynamic test circuit in Figure E)  
Dynamic test circuit in Figure E)  
400A/µs  
320A/µs  
240A/µs  
160A/µs  
80A/µs  
0A/µs  
8A  
6A  
IF = 8A  
4A  
IF = 4A  
IF = 2A  
2A  
0A  
40A/µs  
120A/µs 200A/µs 280A/µs 360A/µs  
diF/dt, DIODE CURRENT SLOPE  
40A/µs  
120A/µs  
200A/µs  
280A/µs  
360A/µs  
diF/dt, DIODE CURRENT SLOPE  
Figure 22. Typical reverse recovery current  
as a function of diode current slope  
(VR = 200V, Tj = 125°C,  
Figure 23. Typical diode peak rate of fall of  
reverse recovery current as a function of  
diode current slope  
Dynamic test circuit in Figure E)  
(VR = 200V, Tj = 125°C,  
Dynamic test circuit in Figure E)  
9
Rev. 2.3 Oct. 07  
SKB04N60  
8A  
6A  
4A  
2A  
2.0V  
1.5V  
1.0V  
IF = 8A  
IF = 4A  
150°C  
100°C  
25°C  
-55°C  
0A  
0.0V  
0.5V  
1.0V  
1.5V  
2.0V  
-40°C 0°C  
40°C 80°C 120°C  
VF, FORWARD VOLTAGE  
Tj, JUNCTION TEMPERATURE  
Figure 24. Typical diode forward current as  
a function of forward voltage  
Figure 25. Typical diode forward voltage as  
a function of junction temperature  
D=0.5  
D=0.5  
100K/W  
0.2  
0.2  
0.1  
100K/W  
0.1  
0.05  
10-1K/W  
0.05  
0.02  
R , ( K / W )  
0.128  
τ , ( s )  
R , ( K / W )  
0.815  
τ , ( s )  
0.085  
0.02  
0.0407  
0.01  
5.24*10-3  
4.97*10-4  
4.31*10-5  
R2  
0.387  
7.30*10-3  
4.69*10-3  
7.34*10-4  
5.96*10-5  
0.698  
0.346  
10-1K/W  
10-2K/W  
0.941  
1.360  
0.01  
single pulse  
0.046  
10-2K/W  
10-3K/W  
2.280  
R1  
R1  
R2  
C1=τ1/R1 C2=τ2/R2  
single pulse  
C1=τ1/R1 C2=τ2/R2  
1µs  
10µs 100µs 1ms 10ms 100ms  
1s  
1µs  
10µs 100µs 1ms 10ms 100ms 1s  
tp, PULSE WIDTH  
tp, PULSE WIDTH  
Figure 26. Diode transient thermal  
impedance as a function of pulse width  
(D = tp / T)  
Figure 28. IGBT transient thermal  
impedance as a function of pulse width  
(D = tp / T)  
10  
Rev. 2.3 Oct. 07  
SKB04N60  
PG-TO263-3-2  
11  
Rev. 2.3 Oct. 07  
SKB04N60  
i,v  
tr r =tS +tF  
diF /dt  
Qr r =QS +QF  
tr r  
IF  
tS  
tF  
t
QS  
10% Ir r m  
QF  
Ir r m  
dir r /dt  
VR  
90% Ir r m  
Figure C. Definition of diodes  
switching characteristics  
τ1  
τ2  
r 2  
τn  
r1  
r n  
T (t)  
j
p(t)  
r 2  
r1  
rn  
Figure A. Definition of switching times  
T
C
Figure D. Thermal equivalent  
circuit  
Figure E. Dynamic test circuit  
Leakage inductance Lσ =180nH  
and Stray capacity Cσ =180pF.  
Figure B. Definition of switching losses  
12  
Rev. 2.3 Oct. 07  
SKB04N60  
Edition 2006-01  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 11/5/07.  
All Rights Reserved.  
Attention please!  
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical  
values stated herein and/or any information regarding the application of the device, Infineon Technologies  
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types  
in question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express  
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to  
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or  
system. Life support devices or systems are intended to be implanted in the human body, or to support  
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
13  
Rev. 2.3 Oct. 07  

相关型号:

SKB06N60

Fast S-IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
INFINEON

SKB06N60ATMA1

Insulated Gate Bipolar Transistor, 12A I(C), 600V V(BR)CES, N-Channel, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

SKB06N60HS

High Speed IGBT in NPT-technology
INFINEON

SKB06N60HSATMA1

Insulated Gate Bipolar Transistor, 12A I(C), 600V V(BR)CES, N-Channel, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

SKB06N60HS_07

High Speed IGBT in NPT-technology 30% lower Eoff compared to previous generation
INFINEON

SKB1.2/01

Bridge Rectifier Diode, 1 Phase, 1.2A, 100V V(RRM), Silicon, PLASTIC, CASE G1, 4 PIN
SEMIKRON

SKB1.2/02

Bridge Rectifier Diode, 1 Phase, 1.2A, 200V V(RRM), Silicon, PLASTIC, CASE G1, 4 PIN
SEMIKRON

SKB1.2/04

Bridge Rectifier Diode, 1 Phase, 1.2A, 400V V(RRM), Silicon, PLASTIC, CASE G1, 4 PIN
SEMIKRON

SKB1.2/08

Bridge Rectifier Diode, 1 Phase, 1.2A, 800V V(RRM), Silicon, PLASTIC, CASE G1, 4 PIN
SEMIKRON

SKB1.2/12

Bridge Rectifier Diode, 1 Phase, 1.2A, 1200V V(RRM), Silicon, PLASTIC, CASE G1, 4 PIN
SEMIKRON

SKB1.2XX

Miniature Bridge Rectifiers
SEMIKRON

SKB1.5/04

Bridge Rectifier Diode, 1.5A, 400V V(RRM),
SEMIKRON