SP001231818 [INFINEON]

Giant Magneto Resistance (GMR)-based principle;
SP001231818
型号: SP001231818
厂家: Infineon    Infineon
描述:

Giant Magneto Resistance (GMR)-based principle

文件: 总45页 (文件大小:1355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE5014  
Features  
Giant Magneto Resistance (GMR)-based principle  
Integrated magnetic field sensing for angle measurement  
360° angle measurement  
High voltage and reverse polarity capability  
EEPROM for storage of configuration (e.g. zero angle) and customer  
specific ID  
12 bit representation of absolute angle value on the output  
Max. 1° angle error over lifetime and temperature range  
Developed according to ISO26262 with process complying to ASIL-D  
Internal safety mechanisms with a SPFM > 97%  
Interfaces: PWM, SPC, SENT (based on SAE J2716-2010)  
32 point look-up table to correct for systematic angle errors (e.g. magnetic circuit)  
112 bit customer ID (programmable)  
Automotive qualified Q100, Grade 1: -40°C to 125°C (ambient temperature)  
ESD: 4kV (HBM) on VDD and output pin  
RoHS compliant and halogen free package  
Functional Safety  
Safety Manual and Safety Analysis Summary Report available on request  
Applications  
The TLE5014 GMR-based angle sensor is designed for angular position sensing in automotive applications  
with focus on steering angle sensor.  
Description  
Table 0-1 Derivative Ordering codes (see Chapter 6 for description of derivatives)  
Product Type  
TLE5014P16  
TLE5014S16  
TLE5014C16  
Marking  
014P  
Ordering Code  
SP001231814  
SP001231818  
SP001231806  
Package  
Comment  
PG-TDSO-16  
PG-TDSO-16  
PG-TDSO-16  
PWM Interface  
SENT Interface  
SPC Interface  
014S  
014C  
Final Datasheet  
www.infineon.com  
1
Rev. 1.0  
2018-04-04  
TLE5014  
Table of Contents  
1
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
1.3  
1.4  
1.5  
Block Diagram 6  
Functional Block Description 6  
Sensing Principle 7  
Pin Configuration 9  
Pin Description 9  
2
Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
3.1  
3.2  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute Maximum Ratings 12  
Operating Range 13  
3.3  
Electrical Characteristics 15  
3.3.1  
3.3.2  
3.3.3  
3.4  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
EEPROM Memory 21  
3.5  
Reset Concept and Fault Monitoring 21  
3.6  
External & Internal Faults 21  
3.7  
Power Dissipation 22  
3.8  
Device Programming (SICI Interface) 22  
4
4.1  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Sensor Output Driver 24  
4.2  
Pulse Width Modulation (PWM) Interface 24  
4.3  
Short PWM Code (SPC) 26  
4.3.1  
4.3.2  
4.3.2.1  
4.3.3  
4.4  
Master Trigger Pulse Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SPC Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Temperature Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Checksum Nibble Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SENT 32  
4.4.1  
4.4.2  
4.4.2.1  
4.5  
Checksum Nibble Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SENT Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Temperature Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SICI Interface 35  
5
End of Line Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1  
5.2  
5.3  
Angle Base and Rotation Direction 36  
Customer ID 36  
Look-up Table 36  
6
Pre-Configured Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.1  
6.2  
6.3  
TLE5014C16 37  
TLE5014S16 37  
TLE5014P16 38  
7
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1  
7.2  
7.3  
Package Parameters 39  
Package Outline 41  
Footprint 42  
Final Datasheet  
2
Rev. 1.0  
2018-04-04  
TLE5014  
7.4  
7.5  
Packing 42  
Marking 43  
8
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Final Datasheet  
3
Rev. 1.0  
2018-04-04  
TLE5014  
List of Tables  
Table 0-1 Derivative Ordering codes (see Chapter 6 for description of derivatives) . . . . . . . . . . . . . . . . . . . . . 1  
Table 1-1 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3-1 Maximum Ratings for Voltages and Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3-2 Maximum Temperature and Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3-3 Mission Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3-4 Lifetime & Ignition Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3-5 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 3-6 Magnetic Field Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3-7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3-8 Output driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 3-9 Signal Delay and Delay Time Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3-10 ESD Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 3-11 Angle Error for -40°C < TA < 85°C and magnetic field range 33mT < B < 50mT . . . . . . . . . . . . . . . . 20  
Table 3-12 Angle Error for -40°C < TA < 125°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 3-13 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 3-14 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 4-1 PWM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4-2 PWM Frequency tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 4-3 SPC unit times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 4-4 Structure of SPC status nibble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 4-5 Bus programming Address Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4-6 SPC trigger for bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4-7 SPC master pulse timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4-8 SPC blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 4-9 SENT unit times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 4-10 Structure of SENT status nibble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 6-1 SPC Derivative Configuration TLE5014C16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 6-2 SPC Derivative Configuration TLE5014C16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 6-3 SENT Derivative Configuration TLE5014S16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 6-4 SENT Derivative Configuration TLE5014S16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 6-5 PWM Derivative Configuration TLE5014P16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 6-6 PWM Derivative Configuration TLE5014P16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 7-1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 7-2 Position of the die in the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Final Datasheet  
4
Rev. 1.0  
2018-04-04  
TLE5014  
List of Figures  
Figure 1-1 TLE5014 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 1-2 Sensitive bridges of the GMR sensor (not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 1-3 Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 2-1 Application circuit for SPC interface, with a SPC address ID = 0 defined by pin IF1 and IF2 . . . . 10  
Figure 2-2 Application circuit for PWM interface, protocol starting with a rising edge. For interface  
configuration starting with a falling edge, a pull-up resistor is required instead. 10  
Figure 2-3 Application circuit for SENT interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 3-1 Allowed magnetic field range within ambient temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 3-2 Operating area and sensor reaction for over- and undervoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 3-3 Output level high / low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 3-4 Delay time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 3-5 Variation of delay time (jitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4-1 PWM interface with duty cycle range starting with a rising edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 4-2 SPC frame for bus mode with constant trigger length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 4-3 SPC Master pulse timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 4-4 SPC blanking time in case of same ID triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 4-5 SPC blanking time in case of different IDs are triggered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 4-6 SPC nibble low time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 4-7 Example of a SPC protocol frame configuration with short serial message enabled . . . . . . . . . . 31  
Figure 4-8 SENT frame example, implementation: single secure sensor without pause pulse . . . . . . . . . . . 32  
Figure 4-9 SENT nibble low time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 4-10 SENT protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 7-1 Tolerance of the die in the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 7-2 PG-TDSO-16 package dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 7-3 Position of sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 7-4 Footprint of PG TDSO-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 7-5 Tape and Reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 7-6 Marking of PG-TDSO-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Final Datasheet  
5
Rev. 1.0  
2018-04-04  
TLE5014  
Functional Description  
1
Functional Description  
1.1  
Block Diagram  
VDD  
EEPROM  
Filter  
PMU  
Clock  
ADC_X  
XMR_X  
Interface  
SPC  
SENT  
PWM  
ISM_ALG  
Angle  
Compare  
Out  
XMR_Y  
Temp.  
ADC_Y  
ADC_T  
Filter  
CORDIC  
(Hardware)  
(SICI)  
ISM_SAF  
Safety  
GND  
CORDIC  
(Software)  
Figure 1-1 TLE5014 block diagram  
1.2  
Functional Block Description  
Internal Power Supply (PMU)  
The internal blocks of the TLE5014 are supplied from several voltage regulators:  
GMR Voltage Regulator, VRS  
Analog Voltage Regulator, VRA  
Digital Voltage Regulator, VRD  
These regulators are directly connected to the supply voltage VDD.  
Oscillator and PLL (Clock)  
The digital clock of the TLE5014 is given by the Phase-Locked Loop (PLL), which is fed by an internal oscillator.  
SD-ADC  
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature  
voltage into the digital domain.  
Digital Signal Processing Unit ISM_ALG  
The Digital Signal Processing Unit ISM_ALG contains the:  
Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift,  
amplitude synchronicity and orthogonality of the raw signals from the GMR bridges.  
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle  
calculation  
Final Datasheet  
6
Rev. 1.0  
2018-04-04  
TLE5014  
Functional Description  
Digital Signal Processing Unit ISM_SAF  
The Digital Signal Processing Unit ISM_SAF performs the internal safety mechanism and plausibility checks.  
Furthermore, a second CORDIC algorithm is implemented in a diverse way as in the ISM_ALG. This is for cross  
checking the angle calculation  
Interface  
The Interface block is used to generate the PWM, SENT and SPC signals  
Angle Compare  
This digital block compares the angle value calculated by ISM_ALG and ISM_SAF. In case they are not identical,  
an error is indicated in the transmitted protocol.  
EEPROM  
The EEPROM contains the configuration and calibration parameters. A part of the EEPROM can be accessed by  
the customer for application specific configuration of the device. Programming of the EEPROM is achieved  
with the SICI interface. Programming mode can be accessed directly after power-up of the IC.  
1.3  
Sensing Principle  
The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the  
GMR-sensitive areas are integrated above the logic part of the TLE5014 device. These GMR elements change  
their resistance depending on the direction of the magnetic field.  
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense  
one of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each  
other.  
Final Datasheet  
7
Rev. 1.0  
2018-04-04  
TLE5014  
Functional Description  
16  
15  
14  
13  
12  
11  
10  
9
ReferenceDirection:  
Resistance low when  
external magnetic field is  
in this direction  
Y
X
0°  
1
2
3
4
5
6
7
8
Figure 1-2 Sensitive bridges of the GMR sensor (not to scale)  
Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0° position  
may deviate by up to 3° from the package edge direction indicated in Figure 1-2.  
In Figure 1-2 the arrows in the resistors represent the magnetic direction which is fixed in the reference layer.  
If the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If  
they are anti-parallel, resistance is maximal.  
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges  
are oriented orthogonally to each other to measure 360°.  
With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals  
from the sensor bridges.  
Final Datasheet  
8
Rev. 1.0  
2018-04-04  
TLE5014  
Functional Description  
1.4  
Pin Configuration  
16  
15  
14  
13  
12  
11  
10  
9
Center of  
Sensitive area  
1
2
3
4
5
6
7
8
Figure 1-3 Pin configuration (top view)  
1.5  
Pin Description  
The following Table 1-1 describes the pin-out of the chip.  
Table 1-1 Pin Description  
Pin No.  
1
Symbol  
IF1  
In/Out  
I
Function  
address coding for programming in bus mode,  
(see Table 4-5)  
connect to GND for SENT / PWM interface  
2
IF2  
I
address coding for programming in bus mode,  
(see Table 4-5)  
connect to GND for SENT / PWM interface  
3
4
5
6
7
8
IF3  
I
connect to IFC  
VDD  
GND  
IFA  
-
supply voltage, positive  
supply voltage, ground  
connect to GND.  
-
-
IFB  
IFC  
I/O  
O
SENT / SPC / PWM / SICI interface  
address coding for programming in bus mode,  
(see Table 4-5)  
connect to IF3  
9-16  
-
-
n.c.  
Final Datasheet  
9
Rev. 1.0  
2018-04-04  
TLE5014  
Application Circuits  
2
Application Circuits  
The application circuits in this chapter show the various communication possibilities of the TLE5014. To  
improve robustness against electro-magnetic disturbances, a capacitor of 100nF on the supply and a  
capacitor with minimum value of Cw = 1nF on the output pin is recommended. These capacitors shall be  
placed as close as possible to the corresponding sensor pins.  
VDD  
VµC  
TLE5014  
IF1  
IF2  
IF3  
IFA  
IFB  
IFC  
Rp  
VDD  
µController  
Master  
100nF  
SPC  
GND  
Cw  
GND  
Figure 2-1 Application circuit for SPC interface, with a SPC address ID = 0 defined by pin IF1 and IF2  
VDD  
VµC  
TLE5014  
IF1  
IF2  
IF3  
IFA  
IFB  
IFC  
VDD  
µController  
Master  
100nF  
PWM  
GND  
Rp  
Cw  
GND  
Figure 2-2 Application circuit for PWM interface, protocol starting with a rising edge. For interface  
configuration starting with a falling edge, a pull-up resistor is required instead.  
Final Datasheet  
10  
Rev. 1.0  
2018-04-04  
TLE5014  
Application Circuits  
VDD  
VµC  
TLE5014  
IF1  
IF2  
IF3  
IFA  
IFB  
IFC  
10k  
VDD  
µController  
Master  
100nF  
560  
2.2n  
10k  
GND  
68p  
100p  
GND  
Figure 2-3 Application circuit for SENT interface  
Final Datasheet  
11  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
3
Specification  
3.1  
Absolute Maximum Ratings  
Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute  
ratings; exceeding only one of these values may cause irreversible damage to the device.  
Table 3-1 Maximum Ratings for Voltages and Output Current  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
-18  
Max.  
26  
Absolute maximum supply VDD  
voltage  
V
for 40h, no damage of device;  
-18V means VDD < GND  
Voltage Peaks  
VDD  
30  
V
V
for 50µs, no current limitation  
Absolute maximum voltage VIO  
for pin IFB  
-18  
19.5  
for 40h; no damage of device,  
-18V means VDD < GND  
Absolute maximum voltage VIF  
for pin IF1, IF2, IF3, IFA, IFC  
-0.3  
6
V
no damage of device  
Voltage Peaks (for pin IFB) VIO  
30  
40  
V
for 50µs, no current limitation  
Maximum current through Ishort  
output in case of short  
circuit  
mA  
for 40h, no damage of the  
device, current limited by  
device  
Table 3-2 Maximum Temperature and Magnetic Field  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
-40  
Max.  
125  
Maximum ambient  
temperature  
TA  
°C  
Q100, Grade 1  
Maximum allowed magnetic B  
field  
200  
150  
40  
mT  
mT  
°C  
max 5 min @ TA = 25°C  
max 5 h @ TA = 25°C  
Maximum allowed magnetic B  
field  
Storage & Shipment1) 2)  
Tstorage  
5
for dry packed devices,  
Relative humidity < 90%,  
storage time < 3a  
1) Air-conditioning of ware houses, distribution centres etc. is not necessary, if the combination of the specified limits  
of 75% R.H. and 40 °C will not be exceeded during storage for more than 10 events per year, irrespective of the  
duration per event, and one of the specified limits (75 % R.H. or 40 °C) will not be exceeded for longer than 30 days  
per year  
2) See Infineon Application Note: “Storage of Products Supplied by Infineon Technologies”  
Final Datasheet  
12  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
Table 3-3 Mission Profile  
Parameter  
Symbol  
TA,max  
Values  
Typ.  
Unit Note / Test Condition  
°C for 2000h  
Min.  
Min.  
Max.  
125  
Mission Profile  
Table 3-4 Lifetime & Ignition Cycles  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Typ. Max.  
15.000  
Operating life time  
Total life time  
top_life  
ttot_life  
Nignition  
h
a
see Table 3-3 for mission profile  
additional 2a storage time1)  
19  
Ignition cycles  
200.000  
during operating lifetime top_life  
1) The lifetime shall be considered as an anticipation with regard to the product that shall not extend the warranty  
period  
The device qualification is done according to AEC Q100 Grade 1 for ambient temperature range -40°C < TA <  
125°C  
3.2  
Operating Range  
The following operating conditions must not be exceeded in order to ensure correct operation of the angle  
sensor. All parameters specified in the following sections refer to these operating conditions, unless otherwise  
noted. Table 3-5 is valid for -40°C < TA < 125°C unless otherwise noted.  
Table 3-5 Operating Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
4.2  
Max.  
5.5  
108  
Operating supply voltage  
Supply Voltage Slew Rate  
VDD  
V
-
-
-
VDD_slew  
TA  
0.1  
V/s  
°C  
Operating ambient  
temperature  
-40  
125  
Angle speed  
n
10000 °/s  
-
Min/max value for pull-up  
resistor for SENT  
Rp  
10  
55  
kOhm for SENT protocol  
Min/max value for pull-up  
resistor for SPC  
Rp  
1.45  
2.2  
kOhm for SPC protocol  
Value for pull-down resistor Rp  
for PWM  
50  
50  
kOhm for PWM protocol starting with  
rising edge  
Value for pull-up resistor for Rp  
PWM  
kOhm for PWM protocol starting with  
falling edge  
Capacitive output load on  
interface (SPC, SENT, PWM)  
Cw  
35001) pF  
incl. external circuit and cable  
1) Larger load capacitance up to 7nF is possible but may influence rise / fall time of the signal  
Magnetic Field Range  
Final Datasheet  
13  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
The operating range of the magnetic field describes the field values where the performance of the sensor,  
especially the accuracy, is as specified in Table 3-11 and Table 3-12. This value is valid for a NdFeB magnet with  
a Tc of -1300ppm/K. In case a different magnet is used, the individual Tc of this magnet has to be considered  
and ensured that the limits are not exceeded. The allowed magnetic field range for the ambient temperature  
range is given in Figure 3-1.  
Table 3-6 Magnetic Field Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
25  
Max.  
80  
Angle measurement field  
range @ 25°C  
B
mT  
TA = 25°C, valid for NdFeB  
magnet  
The below figure Figure 3-1 shows the magnetic field range which shall not be exceeded during operation at  
the respective ambient temperature. The temperature dependency of the magnetic field is based on a NdBFe  
magnet with Tc = -1300ppm/K.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
Temperature (°C)  
Figure 3-1 Allowed magnetic field range within ambient temperature range.  
It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle  
errors have to be considered.  
Final Datasheet  
14  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
3.3  
Electrical Characteristics  
3.3.1  
Input/Output Characteristics  
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 5.0V and an ambient temperature TA = 25°C, unless individually specified.  
All other values correspond to -40°C < TA < 125°C.  
Table 3-7 Electrical Characteristics  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Max.  
15  
Operating Supply Current  
IDD  
12  
mA  
ms  
-
Time between supply voltage tPon  
reaches reset value and valid  
angle value is available on the  
output (without interface  
delay  
7
Overvoltage detection on VDD VOV  
6.5  
7.0  
V
V
in an overvoltage condition  
the output switches to tri-  
state  
Undervoltage detection on VDD VUV  
Overvoltage detection on IFB VOB  
3.8  
4.1  
in an undervoltage condition  
the sensor performs a reset  
1.5V+VDD  
in an overvoltage condition  
the output switches to tri-  
state  
Ripple Current due to PWM  
slopes  
Iripple  
Iripple  
Δfclock  
9
9
5
mA  
mA  
%
peak-peak; VDD = 5V,  
30kHz lowpass filter  
Ripple Current due to SENT  
slopes  
peak-peak; VDD = 5V,  
30kHz lowpass filter  
Internal clock tolerance  
-5  
including temperature and  
lifetime  
The following Figure 3-2 shows the operating area of the device, the condition for overvoltage and  
undervoltage and the corresponding sensor reaction. The values for the over- and undervoltage comparators  
are the typical values from Table 3-7.  
In the extended range, the sensor fulfills the full specification. However, voltages above the operating range  
can only be applied for a limited time (see Table 3-1).  
Final Datasheet  
15  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
V_out  
No output  
8.0  
Sensor  
reset  
No output  
7.0  
5.7  
No output  
Operating  
range  
VDD  
6.5  
4.1 4.2  
5.5  
Figure 3-2 Operating area and sensor reaction for over- and undervoltage.  
Table 3-8 Output driver  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
VDD = 5V, Isink = 0.1mA (SENT spec)  
Min.  
Max.  
Output low level1)  
Output low level1)  
Output low level1)  
Output high level1)  
Output high level1)  
Output high level1)  
VOL  
VOL  
VOL  
VOH  
VOH  
VOH  
0.1*VDD  
0.2*VDD  
0.3*VDD  
VDD = 5V, Isink = 2mA  
VDD = 5V, Isink = 3mA  
0.9*VDD  
0.8*VDD  
0.7*VDD  
VDD = 5V, Isink = 0.1mA (SENT spec)  
VDD = 5V, Isink = 2mA  
VDD = 5V, Isink = 3mA  
1) In case several sensors are connected in a bus mode, the output levels may be influenced and out of specification in  
case a malfunction of one of the sensors on the bus occurs (e.g. one sensors has loss of VDD).  
Final Datasheet  
16  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
VOUT  
VDD  
VOH  
VOL  
t
Figure 3-3 Output level high / low  
Output Delay Time and Jitter  
Due to the internal signal sampling and signal conditioning, there will be a delay of the provided angle value  
at the output. The definition of this delay is described in below Figure 3-4  
Table 3-9 Signal Delay and Delay Time Jitter  
Parameter  
Symbol  
Values  
Typ.  
Unit  
µs  
Note /  
Test Condition  
Min.  
10.0  
Max.  
42.5  
Delay time between real angle  
and angle output (from  
SPC/SENT falling edge of sync  
pulse, without interface delay)  
incl. jitter and oscillator  
tolerances  
tadel  
25.6  
min/max values  
include already the  
jitter tdeljit  
Delay time between real angle  
and angle output (from PWM  
rising edge, without interface  
delay) incl. jitter and oscillator  
tolerances  
tadel  
36.7  
51.2  
67.4  
µs  
µs  
min/max values  
include already the  
jitter tdeljit  
Variation of delay time tadel  
tdeljit  
+/-14  
see Figure 3-5.  
already included in  
tadel specification  
The delay time describes the time difference of the real angle at the point in time were the SPC/SENT protocol  
issues a falling edge (synchronization nibble) and the angle value which is transmitted with this data frame. It  
is the “age” of the transmitted angle value in reference to the falling edge of the synchronization pulse.  
For PWM interface the reference point in time is the starting edge of the PWM (rising or falling, depending on  
protocol setting).  
The delay time values given in Table 3-9 include also the internal oscillator variation and jitter.  
The delay time variation (or jitter of delay time) describes the statistical variation of this parameter in case  
several measurements are done. The delay time tadel can be considered as the mean value with the jitter tdeljit  
as variation (see Figure 3-5).  
Final Datasheet  
17  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
α
α
tadel  
t
t
PWM_out  
TPWM  
α
SPC_out  
SPC trigger  
nibble  
α
t
SENT_out  
α
t
Figure 3-4 Delay time  
Probability  
tdeljit  
tdeljit  
t
tadel (typ.)  
Figure 3-5 Variation of delay time (jitter)  
Final Datasheet  
18  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
3.3.2  
ESD Protection  
Table 3-10 ESD Voltage  
Parameter  
Symbol  
VHBM  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
±4  
Electro-Static-Discharge  
voltage (HBM), according to  
ANSI/ESDA/JEDEC JS-001  
kV  
kV  
kV  
HBM contact discharge  
for pins VDD, GND, IFB  
Electro-Static-Discharge  
voltage (HBM), according to  
ANSI/ESDA/JEDEC JS-001  
VHBM  
±2  
HBM contact discharge  
for pins IF1, IF2, IF3, IFA, IFC  
Electro-Static-Discharge  
voltage (CDM), according to  
JESD22-C101  
VCDM  
±0.5  
for all pins except corner pins  
for corner pins only  
±0.75 kV  
Final Datasheet  
19  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
3.3.3  
Angle Performance  
After internal angle calculation, the sensor has a remaining error, as shown in Table 3-11 for an ambient  
temperature range up to 85°C and a reduced magnetic field range and in Table 3-12 for the ambient  
temperature range up to 125°C and full magnetic operating range. The error value refers to BZ= 0mT.  
The overall angle error represents the relative angle error. This error describes the deviation from the  
reference line after zero-angle definition. It is valid for a static magnetic field.  
If the magnetic field is rotating during the measurement, an additional propagation error is caused by the  
angle delay time (see Table 3-9).  
Table 3-11 Angle Error for -40°C < TA < 85°C and magnetic field range 33mT < B < 50mT  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
0.8  
Accuracy1) over temperature AErr,T  
w/o look-up table  
Accuracy1) over temperature AErr,s  
and lifetime,  
°
°
0h2), over temperature  
0.9  
lifetime stress:  
TA=85°C/1000h/50mT  
w/o look-up table  
Accuracy1)3) over  
temperature and lifetime,  
with look-up table  
AErr,sLUT  
0.65  
0.16  
°
°
lifetime stress:  
TA=85°C/1000h/50mT  
with look-up table correction  
Hysteresis4)  
AHyst  
0.1  
value includes quantization  
error of 12bit angle output  
1) Hysteresis and noise are included in the angle accuracy specification  
2) “0h” is the condition when the part leaves the production at Infineon  
3) Verified by characterization  
4) Hysteresis is the maximum difference of the angle value for forward and backward rotation  
Table 3-12 Angle Error for -40°C < TA < 125°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
0.8  
Accuracy1) over temperature AErr,T  
w/o look-up table  
Accuracy1) over temperature AErr,s  
and lifetime,  
°
°
0h2), over temperature  
B = 33mT to 80mT3)  
33mT…80mT3)  
1.0  
lifetime stress: TA=125°C/2000h  
w/o look-up table  
Accuracy1)4) over  
temperature and lifetime,  
with look-up table  
Hysteresis5)  
AErr,sLUT  
0.85  
0.16  
°
°
B = 33mT to 80mT3),  
lifetime stress: TA=125°C/2000h  
with look-up table correction  
B = 33mT to 80mT6), value  
includes quantization error of  
12bit angle output  
AHyst  
0.1  
1) Hysteresis and noise are included in the angle accuracy specification  
2) “0h” is the condition when the part leaves the production at Infineon  
3) For the magnetic field range of 25mT < B < 33mT, 0.2° have to be added to the max. angle accuracy  
4) Verified by characterization  
Final Datasheet  
20  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
5) Hysteresis is the maximum difference of the angle value for forward and backward rotation  
6) For the magnetic field range of 25mT < B < 33mT, 0.1° have to be added to the max. hysteresis AHyst  
3.4  
EEPROM Memory  
The sensor includes a non-volatile memory (NVM) where calibration data and sensor configuration data are  
stored. The customer has access to a part of this memory for storage of application specific data (e.g. look-up  
table & customer ID)  
The time for programming the customer relevant part of the NVM as well as maximum cycles of programming  
and data retention is given in Table 3-13  
Table 3-13 EEPROM  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
100  
Number of possible NVM  
programming cycles  
nProg  
-
NVM data retention  
tretention  
-
21  
a
s
includes 19a  
lifetime and 2a  
storage  
Time for programming of  
whole NVM (customer  
relevant part)  
tProg  
0.5  
incl. look-up  
table,  
configuration,  
customer ID;  
with 100kbit/s  
3.5  
Reset Concept and Fault Monitoring  
Some internal and external faults of the device can trigger a reset. During this reset, all output pins are high-  
ohmic to avoid any disturbance of other sensors which may be connected together in a bus mode. A reset is  
indicated as soon as the sensor is back at operational mode either by a status bit (SPC and SENT protocol) or  
with a duty cycle in the diagnostic range (PWM interface). In the case of a periodic reset (sensor toggles  
between on and off state) it is avoided that the output toggles with a frequency close to a valid PWM  
frequency. In this way it is ensured, that a reset can clearly be distinguished from a valid output signal.  
3.6  
External & Internal Faults  
In case of an occurrence of external or internal faults, as for example overvoltage or undervoltage, the sensor  
reacts in a way that these faults are indicated to the customer. This can be either by a status bit (SPC and SENT  
protocol) or with a duty cycle in the diagnostic range (PWM interface).  
The error signaling (safe state) is defined as:  
indication of an error (e.g. status bit)  
detectable wrong output (e.g. CRC failure)  
no output  
All errors are indicated as long as they persist, but at least once. After disappearance of the error, the error  
indication is also cleared. The error is signaled and communicated to the ECU latest after 5ms from occurrence  
of the fault. To achieve this, it has to be ensured that the protocol transmission time is not exceeding 1ms.  
Otherwise, the fault tolerant time interval is increased above 5ms.  
Final Datasheet  
21  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
Overvoltage, undervoltage  
It is ensured, that the sensor provides a valid output value as long as the voltage is within the operating range  
or no under- or overvoltage is indicated. At occurrence of an undervoltage, the sensor performs a reset. The  
implemented undervoltage comparator at VDD detects an undervoltage at ~4.1V (typ. value). At occurrence of  
an overvoltage, the sensor output goes to tristate and no protocol is transmitted. The implemented  
overvoltage comparator at VDD detects an overvoltage at ~6.5V (typ. value). An overvoltage on the output pin  
IFB is detected as soon as the voltage at IFB is more than ~1.5V above VDD.  
Open and Shorts  
All pins of the device withstand a short to ground (GND) and a short to VDD (as long as VDD is within the operating  
range). In case of an open VDD connection or an open GND the sensor provides a detectable wrong signal (e.g.  
no valid output protocol or duty cycle) which is considered as a safe state.  
It is also ensured that a short between two neighboring pins leads to a detectable wrong output signal.  
Communication Failures  
An external fault can happen where an ongoing communication is interrupted before it is finished correctly. In  
such an event, no sensor malfunction or dead-lock will occur.  
3.7  
Power Dissipation  
Following table describes the calculated power dissipation for the different application cases within the  
operating range defined in Table 3-5. It is a worst case assumption with the maximum values within the  
operating range.  
Table 3-14 Power Dissipation  
Scenario  
Configuration  
PWM  
V
DD (V)  
IDD (mA)  
15  
VOUT (V)  
IOUT (mA)  
P (mW)  
82.5  
1
2
3
4
5.5  
5.5  
5.5  
5.5  
SPC open drain  
SENT  
15  
1.1  
0.2  
1.1  
3
85.8  
15  
0.55  
3
82.6  
SPC bus mode  
15  
85.8  
3.8  
Device Programming (SICI Interface)  
To minimize the wiring in the application and to allow an end of line calibration and configuration of the  
device at the customer, the programming interface does not require additional pins or wiring. It is possible to  
do the programming on the available output line of the sensor output (SPC, SENT or PWM interface). This  
single wire interface is called SICI interface. It is only for programming purpose and not for communication or  
read out of angle values during operation. The programming mode can be accessed directly after start-up of  
the IC by sending the appropriate command on the output line.  
Following parameters can be programmed end of line:  
Zero angle (angle base)  
Rotation direction (clock wise or counter clock wise)  
Look-up table (32 points)  
Customer ID (112bit individual data)  
Final Datasheet  
22  
Rev. 1.0  
2018-04-04  
TLE5014  
Specification  
To align the angle output of the sensor with the application specific required zero angle direction this value  
can be programmed. All further output angles are in reference to this zero angle.  
In case several sensors are connected in a bus mode configuration (SPC interface) each sensor needs to have  
an individual address to enable a programming of the devices in the bus configuration. Please refer to  
Table 4-5 for details how to assign individual addresses to the sensors.  
Look-Up Table  
To increase the accuracy of the provided angle value, a look-up table is implemented which allows to  
compensate for external angle errors which may be introduced for example by the magnetic circuit. Alignment  
tolerances (eccentricity or tilt) may lead to a non-linearity of the output signal which can be compensated  
using the implemented look-up table. This look-up table has 32 equidistant points over 360° angle range with  
a linear interpolation between the 32 defined values  
Further details for programming and configuration of the device can be found in the corresponding user  
manual of the TLE5014.  
Final Datasheet  
23  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
4
Interfaces  
This chapter describes the interfaces of the sensor. Several interfaces are implemented, the active interface is  
predefined by Infineon and can not be changed. The available preconfigured devices are described in  
Chapter 6. The indicated parameters apply to the full operating range, unless otherwise specified. The typical  
values correspond to a supply voltage VDD = 5.0V and an ambient temperature of TA = 25°C, unless individually  
specified. All other values correspond to -40°C < TA < 125°C  
4.1  
Sensor Output Driver  
The TLE5014 has an output driver on the pin IFB which can be switched from a push-pull configuration to a  
quasi-open drain with active controlled slope.  
The push-pull configuration is preferred with SENT and PWM interface. It has controlled rising and falling  
slopes to reduce EMC emission and provides a controlled and defined pulse length independent of  
external circuitry. The push-pull output driver switches between 0V and VDD. An additional pull-down or  
pull-up resistor is recommended to ensure a defined output level at sensor start-up.  
For the SPC interface the open drain setting with controlled slopes is required. In this configuration, the  
TLE5014 has controlled rising and falling slopes but after reaching the HIGH-level, the output is switched  
to an open-drain behavior. The HIGH level is then maintained by the external pull-up resistor. It is  
necessary, that the sensor releases the output line once reaching the HIGH level so that the master (µ-  
Controller) can issue the SPC trigger pulse by pulling the line low.  
4.2  
Pulse Width Modulation (PWM) Interface  
PWM Interface: An uni-directional interface with the angle information coded in the length of a pulse. The  
angle value is proportional to the duty cycle of the output frequency.  
The duty cycle is calculated as the ratio of the “high” time to the period length. An increasing angle results in  
an increased duty cycle, with an angle of 0° having the smallest duty cycle.  
Table 4-1 PWM Interface  
Parameter  
Symbol  
fPWM1  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
200  
Max.  
2200  
PWM output frequencies  
Resolution  
Hz  
bit  
%
configurable  
12  
Data duty cycle range  
DCdata  
5
95  
configurable, the 12bit angle  
value is mapped to this duty  
cycle range  
Diagnostic duty cycle, low1) DCdiag,low  
Diagnostic duty cycle, high1) DCdiag,high  
0
25  
%
%
configurable, fault indication  
75  
100  
configurable, BIST error  
indication or reset indication  
1) Care has to be taken to ensure that there is no overlap of diagnostic duty cycle and data duty cycle range  
The starting edge of the PWM protocol can be programmed as rising or falling edge. In case the protocol shall  
start with a rising edge (start with a LOW level), a pull-down resistor is required (see Figure 2-2). For the start-  
up condition with a falling edge (start with a HIGH level), a pull-up resistor instead has to be implemented.  
The tolerance of the programmed PWM frequency over temperature and lifetime is given in Table 4-2  
Final Datasheet  
24  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
Table 4-2 PWM Frequency tolerance  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
%
Min.  
PWMfreq_tol -5  
Max.  
5
PWM Frequency tolerance  
PWM Interface Error Indication  
For diagnostic purpose and to indicate internal sensor failures, the output duty cycle of the PWM is limited.  
Within this reserved lower and upper duty cycle range, no valid angle information is provided. Instead, this  
duty cycle range is used for error indication with defined duty cycles which are clearly separated from the  
usable data duty cycle range. The following events are indicated:  
Error occurred during performing the built-in self test (BIST) after power-up  
Occurrence of internal or external fault  
Sensor reset occurred  
PWM Interface Configuration  
The PWM interface parameter can be configured in a wide range. Beside the frequency, it is also possible to  
define data duty cycle range and low and high value of the diagnostic duty cycle. It has to be ensured by proper  
device configuration that there is no overlap of data duty cycle range and low or high value of diagnostic duty  
cycle.  
A possible and valid configuration is:  
Data duty cycle: 12.5% ...87.5%, the 12bit angle value is mapped to this duty cycle  
Diagnostic duty cycle, low: 5%; an internal sensor fault is indicated with this duty cycle  
Diagnostic duty cycle, high: 95%; an start-up BIST error or sensor reset is indicated with this duty cycle  
The PWM interface with data duty cycle range and reserved duty cycle for diagnostics is shown in Figure 4-1  
PWM out  
TPWM = 1/fPWM  
Duty cycle range for angle  
value transmission  
t
Reserved duty cycle range for  
diagnostics  
Figure 4-1 PWM interface with duty cycle range starting with a rising edge  
As the PWM interface is an analog protocol, the rise and fall times, as well as the trigger level for the detection  
of the high and low state of the signal have influence on the measured duty cycle. Therefore, an additional  
angle error is introduced which varies with the measurement conditions (e.g. Rp, CW, trigger level). This error  
contribution is not included in Table 3-11 and Table 3-12.  
Final Datasheet  
25  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
4.3  
Short PWM Code (SPC)  
The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge  
Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous transmission of  
data, the SPC protocol transmits data only after receiving a specific trigger pulse from the microcontroller. The  
required length of the trigger pulse depends on the sensor number, which is configurable. Thereby, SPC allows  
the operation of up to four sensors on one bus line.  
As in SENT, the time between two consecutive falling edges defines the value of a 4-bit nibble, thus  
representing numbers between 0 and 15. The transmission time therefore depends on the transmitted data  
values. All values are multiples of a unit time frame concept (Table 4-3). A SPC frame consists of the following  
nibbles (see Figure 4-2):  
A trigger pulse from the master (microcontroller), which initiates the data transmission  
A synchronization period of 56 UT  
A status nibble of 12-27 UT  
3 data nibbles of 12-27 UT, transmitting a 12bit angle value  
A 4bit rolling counter of 12-27 UT (optional)  
A CRC nibble of 12-27 UT  
An end pulse to terminate the SPC transmission (12 UT)  
Table 4-3 SPC unit times  
Parameter  
Symbol  
UT  
Values  
Typ.  
Unit Note / Test Condition  
µs configurable in steps of 0.5µs,  
Min.  
1.5  
Max.  
3.0  
SPC unit time  
tolerance given by clock  
tolerance  
The CRC checksum includes the status nibble and the data nibbles and can be used to check the validity of the  
decoded data.  
The status nibble, which is sent with each SPC data frame, provides an error indication. In case the sensor  
detects an error, the corresponding error bit in the status nibble is set. An error is indicated by the  
corresponding error bit in the status nibble as long as it persists, but at least once.  
Table 4-4 Structure of SPC status nibble  
Bits  
Description  
[0] LSB  
[1]  
Short Serial Message bit (data) or bus mode ID LSB  
Short Serial Message bit (start indication) or bus mode ID MSB  
Warning indication (internal or external faults)  
Error indication (BIST error or sensor reset)  
[2]  
[3] MSB  
SPC bus mode  
When the sensor is used in a bus mode with other sensors on a common SPC line, individual addresses have  
to be assigned to each sensor for identification. These address is configured in the EEPROM of the device. A  
corresponding trigger nibble from the microcontroller can therefore address each individual sensor. The  
trigger nibble low time is shown in Table 4-6. Each low time corresponds to an individual sensor address. The  
total length of the trigger nibble can be selected to be constant at 90UT (constant trigger length) or variable  
according to Table 4-7 (variable trigger length).  
Final Datasheet  
26  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
Synchronisation  
Frame  
End  
pulse  
Trigger Nibble  
Status Nibble Data Nibble 1 Data Nibble 2 Data Nibble 3  
CRC  
Rolling counter  
90 UT  
56 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 UT  
µC Activity  
Sensor Activity  
Figure 4-2 SPC frame for bus mode with constant trigger length  
Selection of the addresses for SPC interface and bus programming  
The SPC protocol allows a bus configuration of up to 4 participants on one output line. To identify the  
individual devices and allow a programming in the bus mode, an individual address has to be assigned to each  
sensor. The programming interface SICI is using hard-wired addresses (see Table 4-5), whereas the SPC  
protocol uses the addresses configured in the corresponding EEPROM of the sensor. For the operation of the  
sensor in a SPC bus mode, it is strongly recommended that the hard-wired address is also written into the  
EEPROM of the sensor, as all sensors are preconfigured with the default value “ID = 0” (see user manual for  
further details).  
Table 4-5 Bus programming Address Configuration  
Address  
IF1  
IF2  
0
1
2
3
GND  
IFC  
GND  
GND  
IFC  
GND  
IFC  
IFC  
4.3.1  
Master Trigger Pulse Requirements  
A SPC transmission is initiated by a master trigger pulse on the output pin. To detect a low-level, the voltage  
must be below a threshold Vth. The sensor detects that the output line has been released as soon as Vth is  
crossed. Figure 4-3 shows the timing definitions for the master pulse. The master low time tmlow is given in  
Table 4-6. The total trigger time tmtr is given in Table 4-7.  
Final Datasheet  
27  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
tmtr  
SPC  
Vth, rising  
Vth, falling  
tmlow  
Figure 4-3 SPC Master pulse timing  
Table 4-6 SPC trigger for bus mode  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
9
Typ.  
Max.  
12  
Master nibble low time  
Master nibble low time  
Master nibble low time  
Master nibble low time  
tmlow  
tmlow  
tmlow  
tmlow  
UT  
UT  
UT  
UT  
addr. 0  
addr. 1  
addr. 2  
addr. 3  
19  
23  
35.5  
61.5  
40.5  
67.5  
Table 4-7 SPC master pulse timing  
Parameter  
Symbol  
Values  
Typ.  
35  
Unit Note / Test Condition  
Min.  
Max.  
1)  
Threshold, falling edge  
Threshold, rising edge  
Vth,falling  
Vth,rising  
% of  
VDD  
1)  
50  
90  
% of  
VDD  
Total trigger time  
Total trigger time  
tmtr  
tmtr  
UT  
UT  
2) for constant trigger length  
2) for variable trigger length  
tmlow  
12  
+
1) Not subject to production test - verified by design/characterization  
2) Trigger time in the sensor is fixed to the number of units specified in the “typ.” column, but the effective trigger time  
varies due to the sensor’s clock variation  
After a SPC frame is transmitted, it is necessary to wait for a specified delay time tframe,blanking , before the next  
SPC trigger can be issued. This time is defined from the falling edge of the end pulse to the falling edge of the  
trigger nibble (see Figure 4-4).  
Final Datasheet  
28  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
tframe,blanking  
Synchronisation  
Frame  
End  
pulse  
Status Nibble  
CRC  
Trigger Nibble  
Data Nibble 1  
90 UT  
12 … 27 UT  
12 UT  
56 UT  
12 … 27 UT  
12 … 27 UT  
µC Activity  
Sensor Activity  
Figure 4-4 SPC blanking time in case of same ID triggered  
tframe,blanking  
End  
Synchronisation  
Frame  
pulse  
Status Nibble  
CRC  
Trigger Nibble  
Data Nibble 1  
90 UT  
12 … 27 UT  
56 UT  
12 … 27 UT  
12 … 27 UT  
µC Activity  
Sensor Activity  
Figure 4-5 SPC blanking time in case of different IDs are triggered  
Table 4-8 SPC blanking time  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
1) same ID is triggered,  
Min.  
Max.  
SPC blanking time  
tframe,blanking  
12UT  
measured from falling edge of  
end pulse  
SPC blanking time  
tframe,blanking  
50µs  
1) different ID’s are triggered,  
measured from rising edge  
(50%) of end pulse  
1) Not subject to production test - verified by design/characterization  
The nibble low time tlow can be configured to be 3UT or 5UT. This can reduce the overall frame length. The low  
time includes the fall time of the edge, therefore it has to be ensured that the fall time of the edge is fast  
enough to reach the low level within the configured low time (Figure 4-6).  
Final Datasheet  
29  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
Synchronisation  
Frame  
Status Nibble  
Data Nibble 1 Data Nibble 2 Data Nibble 3  
tlow  
Figure 4-6 SPC nibble low time  
4.3.2  
SPC Features  
Rolling counter  
This 4bit counter counts the number of transmitted frames with rollover back to 0 and increment with each  
message. This counter is for verification in the ECU that no frame is missed or that no frame is sent repeatedly  
from the sensor. The rolling counter nibble is sent after the 3rd data nibble and before the CRC nibble.  
The rolling counter nibble can be disabled, but to meet the safety requirements and target ASIL level of the  
application, this is not recommended.  
Optional, the rolling counter can be included in the CRC nibble, thus reducing the total number of nibbles and  
therefore the total frame length. In this case, the rolling counter is reduced to a 2bit value. Further details can  
be found in Chapter 4.3.3  
Short Serial Message  
The short serial message is an additional option which can be enabled and disabled. The short serial message  
provides additional information in a slow channel transmitting a 8bit temperature value, a 16bit word  
containing angle base & rotation direction information and a 32bit sensor ID.  
In each SPC frame, one bit of information is transmitted. The start of the short serial message is indicated by  
a “1” in bit [1] of the status nibble. For the next 15 SPC frames, this bit will contain a “0”. Information is  
transmitted in blocks of 16bit with 1 bit per SPC frame in bit [0] of the status nibble.  
4 bit message ID  
8 bit data  
4bit CRC (calculated from message ID and data bits)  
The message ID is used for identification of the type of data received. All data are transmitted in the bit [0] of  
the status nibble in the order MSB to LSB.  
The transmitted information is as follows:  
Message -ID 0: 8bit temperature value starting with MSB  
Message -ID 1: 8bit of angle base (starting with MSB) address 0x00A0, bit [15:8]  
Message -ID 2: 8bit of angle base (starting with MSB-8) address 0x00A0, bit [7:0]  
Message -ID 3: 8bit temperature value starting with MSB  
Message -ID 4: 8bit of sensor ID1 (starting with MSB) address 0x00F2, bit [15:8]  
Message -ID 5: 8bit of sensor ID1 (starting with MSB-8) address 0x00F2, bit [7:0]  
Message -ID 6: 8bit of sensor ID2 (starting with MSB) address 0x00F4, bit [15:8]  
Message -ID 7: 8bit of sensor ID2 (starting with MSB-8) address 0x00F4, bit [7:0]  
Message -ID 8 to Message -ID 15: Message -ID 0 to Message -ID 7 will be repeated  
Final Datasheet  
30  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
In case the short serial message is enabled, the bits [0] and [1] of the status nibble for address (sensor ID)  
indication are not available. In this case, the sensor ID is coded in the CRC. Further details in Chapter 4.3.3.  
Short serial message (SSM), with rolling counter  
CRC &  
ID  
Status &  
SSM  
Rolling  
counter  
Data 3  
End  
Trigger  
Sync  
Data 1  
Data 2  
Figure 4-7 Example of a SPC protocol frame configuration with short serial message enabled  
4.3.2.1  
Temperature Calculation  
The temperature information which is transmitted with the short serial message is an 8-bit value. It has to be  
considered as a two-complement ranging from T[LSB] = -128LSB ... +127 LSB  
To obtain the temperature value in °C the following calculation has to be performed:  
(4.1)  
2 T[LSB] + 34.54  
TC] = -----------------------------------------------  
1.3815  
4.3.3  
Checksum Nibble Details  
The checksum nibble is a 4-bit CRC of the data nibbles including the status nibble. The CRC is calculated using  
a polynomial x4+x3+x2+1 with a seed value of 0101B. The remainder after the last data nibble is transmitted as  
CRC.  
Depending on SPC frame configuration, different options for the CRC calculation have to be considered:  
Short serial message disabled and rolling counter information as nibble:  
the input data for CRC calculation are: STATUS & DATA1 & DATA2 & DATA3 & ROLLING_COUNTER  
Rolling counter information is coded in the CRC (no explicit rolling counter nibble):  
The two LSBs of the rolling counter information is prepended to "00" and added to the input data of the CRC  
calculation (R1 R0 0 0). In this case, the rolling counter has only 2 bits.  
Short serial message enabled and rolling counter information transmitted as nibble:  
the sensor ID is coded in the CRC: the two bit value of the ID on LSB position is appended to “00” and added to  
the input data of the CRC calculation (0 0 ID1 ID0)  
Short serial message enabled and the rolling counter information coded in the CRC:  
the two bit value of the ID on LSB position is appended to the 2LSB value of the rolling counter on MSB position  
and added to the input data of the CRC calculation (R1 R0 ID1 ID0). In this case, the rolling counter has only 2  
bits.  
Final Datasheet  
31  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
4.4  
SENT  
SENT Interface: A standardized, uni-directional digital protocol. The information is coded in nibbles with  
different length. One nibble contains 4 bit of information. Beside the angle information also a status  
information and a CRC is transmitted.  
The SENT protocol is implemented according to the standard SAE J2716 JAN2010. The unit time UT is  
configurable according to Table 4-9.  
Table 4-9 SENT unit times  
Parameter  
Symbol  
UT  
Values  
Typ.  
Unit Note / Test Condition  
µs configurable in steps of 0.5µs.  
Min.  
1.5  
Max.  
3.0  
SENT unit time  
tolerance given by clock  
tolerance  
Two different sensor configurations are possible:  
Single Secure Sensor:  
The protocol consists of following nibbles  
A synchronization period (56UT)  
A status nibble of 12-27 UT  
3 data nibbles of 12-27 UT, transmitting a 12bit angle value  
2 nibbles with a 8bit rolling counter information  
1 nibble as the inverted 1st data nibble  
A CRC nibble of 12-27 UT  
A pause pulse, this is optional and can be deactivated  
A short serial message, this is optional and can be deactivated  
Standard Sensor:  
The protocol consists of following nibbles  
A synchronization period (56UT)  
A status nibble of 12-27 UT  
3 data nibbles of 12-27 UT, transmitting a 12bit angle value  
A CRC nibble of 12-27 UT  
A pause pulse, this is optional and can be deactivated  
A short serial message, this is optional and can be deactivated  
Inverted  
Data Nibble 1  
Synchronisation  
CRC  
Status Nibble  
Rolling Counter  
Data Nibble 1 Data Nibble 2 Data Nibble 3  
Rolling Counter  
Frame  
56 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
12 … 27 UT  
Figure 4-8 SENT frame example, implementation: single secure sensor without pause pulse  
Final Datasheet  
32  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
The nibble low time tlow can be configured to be 3UT or 5UT. This can reduce the overall frame length. The low  
time includes the fall time of the edge, therefore it has to be ensured that the fall time of the edge is fast  
enough to reach the low level within the configured low time (Figure 4-9).  
Note: A nibble low time of 3UT is not compliant with the SENT standard SAE J2716 JAN2010.  
Synchronisation  
Status Nibble  
Data Nibble 1 Data Nibble 2 Data Nibble 3  
Frame  
tlow  
Figure 4-9 SENT nibble low time  
Rolling counter  
This 8bit counter counts the number of transmitted frames with rollover back to 0 and increment with each  
message. This counter is for verification in the ECU that no frame is missed or that no frame is sent repeatedly  
from the sensor. The rolling counter nibbles are sent after the 3rd data nibble.  
SENT data range and error indication  
There are two options for the data range and error indication.  
0°... 360° are mapped to 12bit, i.e. 0... 4095. This information is coded in the three data nibbles. In case of  
an internal chip error or a start-up error (BIST error), the status bit [0] of the status nibble is set. An angle  
value is transmitted but might not be valid due to the occurred error.  
0° ... 360° are mapped to 1 ... 4088. In case of an internal sensor error or start-up error (BIST error), the  
message “4091” is transmitted and the status bit [0] of the status nibble is set. In case the sensor performs  
a reset, the first transmitted status nibble has the status bit [0] set but a valid angle value (within the range  
0... 4088) is transmitted with the 3 data nibbles.  
Table 4-10 Structure of SENT status nibble  
Bits  
Description  
[0] LSB  
[1]  
error indication or start-up (BIST) error or sensor reset  
reserved  
[2]  
short serial message bit (data bit)  
short serial message bit (start indication)  
[3] MSB  
4.4.1  
Checksum Nibble Details  
The checksum nibble is a 4-bit CRC of the data nibbles and is not including the status nibble. The CRC is  
calculated using a polynomial x4+x3+x2+1 with a seed value of 0101B. The remainder after the last data nibble  
is transmitted as CRC.  
4.4.2  
SENT Features  
Pause Pulse  
There is an optional pause pulse which can be activated or deactivated via corresponding bits in the EEPROM.  
The pause pulse is implemented in a way that the total frame length is adjusted to 282UT (for option with 6  
data nibbles, single secure sensor) or 203UT (3 data nibbles, standard sensor).  
Final Datasheet  
33  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
Short Serial Message  
The short serial message is an additional option which can be enabled and disabled. The short serial message  
provides additional information in a slow channel transmitting a 8bit temperature value, a 16bit word  
containing angle base & rotation direction information and a 32bit sensor ID.  
In each SENT frame, one bit of information is transmitted. The start of the short serial message is indicated by  
a “1” in bit [3] of the status nibble. For the next 15 SPC frames, this bit will contain a “0”. Information is  
transmitted in blocks of 16bit with 1 bit per SENT frame in bit [2] of the status nibble.  
4 bit message ID  
8 bit data  
4bit CRC (calculated from message ID and data bits)  
The message ID is used for identification of the type of data received. All data are transmitted in the bit [2] of  
the status nibble in the order MSB to LSB.  
The transmitted information is as follows:  
Message -ID 0: 8bit temperature value starting with MSB  
Message -ID 1: 8bit of angle base (starting with MSB) address 0x00A0, bit [15:8]  
Message -ID 2: 8bit of angle base (starting with MSB-8) address 0x00A0, bit [7:0]  
Message -ID 3: 8bit temperature value starting with MSB  
Message -ID 4: 8bit of sensor ID1 (starting with MSB) address 0x00F2, bit [15:8]  
Message -ID 5: 8bit of sensor ID1 (starting with MSB-8) address 0x00F2, bit [7:0]  
Message -ID 6: 8bit of sensor ID2 (starting with MSB) address 0x00F4, bit [15:8]  
Message -ID 7: 8bit of sensor ID2 (starting with MSB-8) address 0x00F4, bit [7:0]  
Message -ID 8 to Message -ID 15: Message -ID 0 to Message -ID 7 will be repeated  
4.4.2.1  
Temperature Calculation  
The temperature information which is transmitted with the short serial message is an 8-bit value. It has to be  
considered as a two-complement ranging from T[LSB] = -128LSB ... +127 LSB  
To obtain the temperature value in °C the following calculation has to be performed:  
(4.2)  
2 T[LSB] + 34.54  
TC] = -----------------------------------------------  
1.3815  
Single secure sensor, with short serial messager (SSM), with pause pulse  
Status &  
SSM  
Rolling  
counter  
Rolling  
counter  
Inverted  
Data 1  
Data 3  
CRC  
CRC  
Sync  
Data 1  
Data 2  
Pause  
Single secure sensor, with short serial messager (SSM), without pause pulse  
Status &  
SSM  
Rolling  
counter  
Rolling  
counter  
Inverted  
Data 1  
Data 3  
Sync  
Data 1  
Data 2  
Figure 4-10 SENT protocol  
Final Datasheet  
34  
Rev. 1.0  
2018-04-04  
TLE5014  
Interfaces  
4.5  
SICI Interface  
A single wire interface (SICI) which is on the same output pin as the SENT/SPC and PWM output, is  
implemented. This interface is used to perform the EEPROM programming with application and customer  
specific data (angle base, look-up table, customer-ID). In addition, some chip configuration can be done.  
Further details can be found in the corresponding user manual.  
Final Datasheet  
35  
Rev. 1.0  
2018-04-04  
TLE5014  
End of Line Configuration  
5
End of Line Configuration  
Several parameters can be programmed via the single wire interface SICI end of line. No additional  
programming pin is required, programming is performed via the output pin. Further details can be found in  
the corresponding user manual.  
5.1  
Angle Base and Rotation Direction  
An angle base value can be stored in the EEPROM. The output angle value is then referenced to this angle base.  
It is also possible to define the rotation direction, i.e. for a given magnet rotation direction the output angle  
value can either be selected to increase or decrease.  
5.2  
Customer ID  
A total storage of 112bits in the EEPROM is reserved for customer specific data (e.g. customer module ID,  
etc...). This data can be written via SICI interface. The read-out of the first 32bits of this data can be done with  
the short serial message feature during operation as a slow message (only SENT and SPC interface). The  
remaining 80bits can only be addressed via SICI and are not asccessible during operation.  
5.3  
Look-up Table  
To increase the sensor performance and angle accuracy, a look-up table with 32 points can optionally be used.  
Non-linearity errors coming for example from a misaligned magnetic circuit can thus be compensated. It is  
necessary to have an external angle reference for this calibration. The sensor output values at predefined,  
precise positions (0°, 11.25°, 22.5°, ...), given by the external reference, have to be determined. These 32 values  
are stored in the corresponding EEPROM registers. The sensor performs a linear interpolation between these  
reference points for the output value.  
Final Datasheet  
36  
Rev. 1.0  
2018-04-04  
TLE5014  
Pre-Configured Derivatives  
6
Pre-Configured Derivatives  
Derivatives of the TLE5014 are available with different pre-configured register settings for specific application  
(“settings”). For each derivative with such settings, the interface type is locked and cannot be changed. Only  
the derivatives with such settings have been released for production by Infineon.  
Other settings/parameters for other applications could be adjusted but such adjusted settings would not have  
been released for production by Infineon.  
Furthermore, the available safety analysis and safety manual does only include these preconfigured  
derivatives.  
6.1  
TLE5014C16  
The sensor has SPC as predefined interface which is locked and cannot be changed.  
The predefined SPC configuration of TLE5014C16 is shown below:  
Table 6-1 SPC Derivative Configuration TLE5014C16  
Interface  
SPC  
SPC unit time  
2.5µs  
SPC low time  
5UT  
SPC Trigger  
Short Serial Message  
enabled  
constant 90UT  
Table 6-2 SPC Derivative Configuration TLE5014C16  
Rolling Counter  
enabled  
Rolling Counter in CRC Look-up Table  
disabled  
SPC ID  
Output driver  
enabled, preconfigured 00B  
open drain w/  
controlled slope  
Following parameters and values are allowed to modify:  
SPC unit time: 1.5µs / 2.5µs  
Short serial message: enable / disable  
Rolling counter in CRC: enable /disable  
SPC ID: 0 / 1 / 2 / 3  
6.2  
TLE5014S16  
The sensor has SENT as predefined interface which is locked and cannot be changed.  
The predefined SENT configuration of TLE5014S16 is shown below:  
Table 6-3 SENT Derivative Configuration TLE5014S16  
Interface  
SENT  
SENT unit time  
3.0µs  
SENT low time  
5UT  
SENT Protocol Type Short Serial Message  
single secure sensor enabled  
Table 6-4 SENT Derivative Configuration TLE5014S16  
SENT Error Indication  
SENT Data Range Pause Pulse Look-up Table  
Output driver  
error code 4091 enabled 1 ... 4088  
enabled  
enabled, preconfigured push/pull  
Following parameters and values are allowed to modify:  
Short serial message: enable / disable  
Pause pulse: enable /disable  
Final Datasheet  
37  
Rev. 1.0  
2018-04-04  
TLE5014  
Pre-Configured Derivatives  
SENT Protocol Type: Standard / Single Secure Sensor  
SENT Error Indication: enable (data range: 1 ... 4088 , error code: 4091) / disable (data range: 0 ... 4095, no  
error code)  
6.3  
TLE5014P16  
The sensor has PWM as predefined interface which is locked and cannot be changed.  
Table 6-5 PWM Derivative Configuration TLE5014P16  
Interface  
PWM  
PWM Frequency  
200Hz  
PWM Data Range  
12.5% ... 87.5%  
PWM Fault  
indication  
PWM BIST Error or  
Reset Indication  
5%  
95%  
Table 6-6 PWM Derivative Configuration TLE5014P16  
PWM Starting Level  
high (rising edge)  
Look-up Table  
Output driver  
push/pull  
enabled, preconfigured  
To be compliant with the existing safety analysis no change of above parameters is allowed unless  
authorized by Infineon  
Final Datasheet  
38  
Rev. 1.0  
2018-04-04  
TLE5014  
Package Information  
7
Package Information  
The device is qualified with a MSL level of 3. It is halogen free, lead free and RoHS compliant.  
7.1  
Package Parameters  
Table 7-1 Package Parameters  
Parameter  
Symbol Limit Values  
Min. Typ. Max.  
150 K/W  
Unit  
Notes  
Thermal resistance  
RthJA  
RthJC  
RthJL  
Junction to air1)  
Junction to case  
Junction to lead  
260°C2)  
45  
70  
K/W  
K/W  
Moisture Sensitively Level MSL 3  
Lead Frame  
Plating  
Cu  
Sn 100%  
> 7 μm  
1) according to Jedec JESD51-7  
2) suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020E (December 2014)  
Table 7-2 Position of the die in the package  
Parameter  
Tilt  
Symbol Limit Values  
Min. Typ. Max.  
Unit  
°
Notes  
3
in respect to the z-axis and  
reference plane (see  
Figure 7-1),  
Rotational displacement  
3
°
in respect to the reference  
axis (see Figure 7-1)  
Placement tolerance in  
package  
100 µm  
in x and y direction  
z
y
Tilt angle  
Reference plane  
Chip  
Package  
Chip  
Die pad  
Rotational  
displacement  
x
x
Figure 7-1 Tolerance of the die in the package  
The active area of the GMR sensing element is 360µm x 470µm.  
It has to be ensured that a magnet is used which has sufficient size to provide a homogeneous magnetic field  
over the total sensing element area. For a practical application design this means that the magnet has to be  
Final Datasheet  
39  
Rev. 1.0  
2018-04-04  
TLE5014  
Package Information  
large enough to ensure that the non-homogeneity of the magnetic field in this area (plus relevant positioning  
tolerances) is negligible.  
Final Datasheet  
40  
Rev. 1.0  
2018-04-04  
TLE5014  
Package Information  
7.2  
Package Outline  
Figure 7-2 PG-TDSO-16 package dimension  
Figure 7-3 Position of sensing element  
Final Datasheet  
41  
Rev. 1.0  
2018-04-04  
TLE5014  
Package Information  
7.3  
Footprint  
Figure 7-4 Footprint of PG TDSO-16  
7.4  
Packing  
Figure 7-5 Tape and Reel  
Final Datasheet  
42  
Rev. 1.0  
2018-04-04  
TLE5014  
Package Information  
7.5  
Marking  
Position  
1st Line  
Marking  
Gxxxx  
Description  
G: green, 4-digit date code: YYWW  
e.g. “1801”: 1st week in 2018  
2nd Line  
3rd Line  
xxxxxxxx  
xxx  
Interface type and version  
Lot code  
Figure 7-6 Marking of PG-TDSO-16  
Final Datasheet  
43  
Rev. 1.0  
2018-04-04  
TLE5014  
Revision History  
8
Revision History  
Revision Date  
Changes  
1.0  
2018-03-27 initial version  
Final Datasheet  
44  
Rev. 1.0  
2018-04-04  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-04-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

SP001241596

Power Field-Effect Transistor,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001247004

AC Motor Controller,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001248276

RISC Microcontroller,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001256578

Brush DC Motor Controller,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001257856

Half Bridge Based Peripheral Driver,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001257948

Insulated Gate Bipolar Transistor,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001276040

Power Field-Effect Transistor,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001276042

Power Field-Effect Transistor,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001281886

Half Bridge Based Peripheral Driver,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001296130

Analog Circuit, 1 Func, PDSO16, TDSO-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001296204

Power Field-Effect Transistor,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

SP001303992

Fixed Positive LDO Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON