TC1197 [INFINEON]

32-Bit Single-Chip Microcontroller; 32位单芯片微控制器
TC1197
型号: TC1197
厂家: Infineon    Infineon
描述:

32-Bit Single-Chip Microcontroller
32位单芯片微控制器

微控制器
文件: 总183页 (文件大小:1977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
32-Bit  
TC1197  
32-Bit Single-Chip Microcontroller  
Data Sheet  
V1.1 2009-05  
Microcontrollers  
Edition 2009-05  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2009 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
32-Bit  
TC1197  
32-Bit Single-Chip Microcontroller  
Data Sheet  
V1.1 2009-05  
Microcontrollers  
TC1197  
TC1197 Data Sheet  
Revision History: V1.1, 2009-05  
Previous Version: V1.0, 2009-01  
Page  
Subjects (major changes since last revision)  
Typo of TTCAN-related text is deleted from the MultiCAN features.  
Page 1-4  
Page 1-6  
Description is added for the derivatives of TC1797.  
Page 2-26  
Page 2-53  
Page 5-129  
Page 5-133  
Page 5-141  
Page 5-149  
Text which describes the endurance of PFlash and DFlash is enhanced.  
Typo of big-endian support is deleted from the EBU section.  
The spike-filters parameters are included, tSF1, tSF2  
.
The maximum limit for IOZ1 is updated.  
The temperature sensor measurement time parameter is added.  
The condition for HWCFG is deleted from hold time from PORST rising  
edge.  
Page 5-150  
Page 5-151  
Page 5-166  
The power, pad, reset timing figure is updated.  
The notes under the PLL sections are updated.  
Footnote for t12 and t21 for EBU Burst Mode Access Timing section is  
updated.  
Page 5-166  
Footnote 2 is added for t10, footnote 5 is added for t23, t24 t25 and t26 in  
EBU Burst Mode Access Timing section.  
Trademarks  
TriCore® is a trademark of Infineon Technologies AG.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.1, 2009-05  
TC1197  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
2.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
About this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Related Documentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Text Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Reserved, Undefined, and Unimplemented Terminology . . . . . . . . . . . . 9  
Register Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
System Architecture of the TC1197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TC1197 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CPU Cores of the TC1197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
High-performance 32-bit CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
High-performance 32-bit Peripheral Control Processor . . . . . . . . . . . 17  
On-Chip System Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Flexible Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features of the Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
External Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
General Purpose I/O Ports and Peripheral I/O Lines . . . . . . . . . . . . . . . 23  
Program Memory Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Boot ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Overlay RAM and Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Emulation Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Tuning Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Program and Data Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data Access Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
On-Chip Peripheral Units of the TC1197 . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Asynchronous/Synchronous Serial Interfaces . . . . . . . . . . . . . . . . . . . . 33  
High-Speed Synchronous Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . 35  
Micro Second Channel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
MultiCAN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Micro Link Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
General Purpose Timer Array (GPTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.2.3.1  
2.2.3.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.4.1  
2.3.4.2  
2.3.4.3  
2.3.4.4  
2.3.4.5  
2.3.5  
2.3.6  
2.3.6.1  
2.3.6.2  
2.3.6.3  
2.3.6.4  
2.3.6.5  
2.3.7  
2.4  
2.5  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
Data Sheet  
1
V1.1, 2009-05  
TC1197  
Table of Contents  
2.5.6.1  
2.5.6.2  
2.5.7  
2.5.7.1  
2.5.7.2  
2.5.8  
2.6  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
Functionality of GPTA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Functionality of LTCA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
FADC Short Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Real Time Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Calibration Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Tool Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Self-Test Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
FAR Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3
3.1  
3.1.1  
3.1.2  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
TC1197 Pin Definition and Functions: PG-BGA-416-10 . . . . . . . . . . . . . . 57  
TC1197 PG-BGA-416-10 Package Variant Pin Configuration . . . . . . . . 58  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . 118  
4
Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
5
5.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . 123  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Analog to Digital Converters (ADC0/ADC1/ADC2) . . . . . . . . . . . . . . . 133  
Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . . 138  
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
BFCLKO Output Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
EBU Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
Data Sheet  
2
V1.1, 2009-05  
TC1197  
Table of Contents  
5.3.9.1  
5.3.9.2  
5.3.9.3  
5.3.10  
5.3.10.1  
5.3.10.2  
5.3.10.3  
5.4  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
EBU Asynchronous Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
EBU Burst Mode Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
EBU Arbitration Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . 172  
SSC Master/Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Data Sheet  
3
V1.1, 2009-05  
TC1197  
Summary of Features  
1
Summary of Features  
• High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline  
– Superior real-time performance  
– Strong bit handling  
– Fully integrated DSP capabilities  
– Single precision Floating Point Unit (FPU)  
– 180 MHz operation at full temperature range  
• 32-bit Peripheral Control Processor with single cycle instruction (PCP2)  
– 16 Kbyte Parameter Memory (PRAM)  
– 32 Kbyte Code Memory (CMEM)  
– 180 MHz operation at full temperature range  
• Multiple on-chip memories  
– 4 or 21) Mbyte Program Flash Memory (PFLASH) with ECC  
– 64 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation  
– 128 Kbyte Data Memory (LDRAM)  
– 40 Kbyte Code Scratchpad Memory (SPRAM)  
– Instruction Cache: up to 16 Kbyte (ICACHE, configurable)  
– Data Cache: up to 4 Kbyte (DCACHE, configurable)  
– 8 Kbyte Overlay Memory (OVRAM)  
– 16 Kbyte BootROM (BROM)  
• 16-Channel DMA Controller  
• 32-bit External Bus Interface Unit (EBU) with  
– 32-bit demultiplexed / 16-bit multiplexed external bus interface (3.3V, 2.5V)  
– Support for Burst Flash memory devices  
– Scalable external bus timing up to 75 MHz  
• Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels  
serviced by CPU or PCP2  
• High performing on-chip bus structure  
– 64-bit Local Memory Buses between CPU, EBU, Flash and Data Memory  
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units  
– One bus bridges (LFI Bridge)  
• Versatile On-chip Peripheral Units  
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,  
parity, framing and overrun error detection  
– Two High-Speed Synchronous Serial Channels (SSC) with programmable data  
length and shift direction  
– Two serial Micro Second Bus interface (MSC) for serial port expansion to external  
power devices  
1) Derivative dependent.  
Data Sheet  
4
V1.1, 2009-05  
TC1197  
Summary of Features  
– Two High-Speed Micro Link interface (MLI) for serial inter-processor  
communication  
– One MultiCAN Module with 4 CAN nodes and 128 free assignable message  
objects for high efficiency data handling via FIFO buffering and gateway data  
transfer  
– Two General Purpose Timer Array Modules (GPTA) with additional Local Timer  
Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer  
functionality to realize autonomous and complex Input/Output management  
• 44 analog input lines for ADC  
– 3 independent kernels (ADC0, ADC1, ADC2)  
– Analog supply voltage range from 3.3 V to 5 V (single supply)  
– Performance for 12 bit resolution (@fADCI = 10 MHz)  
• 4 different FADC input channels  
– channels with impedance control and overlaid with ADC1 inputs  
– Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz)  
– 10-bit A/D conversion (higher resolution can be achieved by averaging of  
consecutive conversions in digital data reduction filter)  
• 221 digital general purpose I/O lines1) (GPIO), 4 input lines  
• Digital I/O ports with 3.3 V capability  
• On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)  
• Dedicated Emulation Device chip available (TC1797ED)  
– multi-core debugging, real time tracing, and calibration  
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface  
• Power Management System  
• Clock Generation Unit with PLL  
• Core supply voltage of 1.5 V  
• I/O voltage of 3.3 V  
• Temperature range: -40° to +125°C  
• Package variants: PG-BGA-416-10  
1) TC1197 package variant PG-BGA-416-10: 86 GPIO´s  
Data Sheet  
5
V1.1, 2009-05  
TC1197  
Summary of Features  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• The derivative itself, i.e. its function set, the temperature range, and the supply  
voltage  
• The package and the type of delivery.  
For the available ordering codes for the TC1197 please refer to the “Product Catalog  
Microcontrollers”, which summarizes all available microcontroller variants.  
This document describes the derivatives of the device.The Table 1 enumerates these  
derivatives and summarizes the differences.  
Table 1  
TC1197 Derivative Synopsis  
AmbientTemperature Program Flash CPU  
Derivative  
Range  
frequency  
180MHz  
180MHz  
SAK-TC1197-512F180E  
SAK-TC1197-256F180E  
TA = -40oC to +125oC  
TA = -40oC to +125oC  
4 MBytes  
2 MBytes  
Data Sheet  
6
V1.1, 2009-05  
TC1197  
Introduction  
2
Introduction  
This Data Sheet describes the Infineon TC1197, a 32-bit microcontroller DSP, based on  
the Infineon TriCore Architecture.  
2.1  
About this Document  
This document is designed to be read primarily by design engineers and software  
engineers who need a detailed description of the interactions of the TC1197 functional  
units, registers, instructions, and exceptions.  
This TC1197 Data Sheet describes the features of the TC1197 with respect to the  
TriCore Architecture. Where the TC1197 directly implements TriCore architectural  
functions, this manual simply refers to those functions as features of the TC1197. In all  
cases where this manual describes a TC1197 feature without referring to the TriCore  
Architecture, this means that the TC1197 is a direct implementation of the TriCore  
Architecture.  
Where the TC1197 implements a subset of TriCore architectural features, this manual  
describes the TC1197 implementation, and then describes how it differs from the TriCore  
Architecture. Such differences between the TC1197 and the TriCore Architecture are  
documented in the section covering each such subject.  
2.1.1  
Related Documentations  
A complete description of the TriCore architecture is found in the document entitled  
“TriCore Architecture Manual”. The architecture of the TC1197 is described separately  
this way because of the configurable nature of the TriCore specification: Different  
versions of the architecture may contain a different mix of systems components. The  
TriCore architecture, however, remains constant across all derivative designs in order to  
preserve compatibility.  
This Data Sheets together with the “TriCore Architecture Manual” are required to  
understand the complete TC1197 micro controller functionality.  
2.1.2  
Text Conventions  
This document uses the following text conventions for named components of the  
TC1197:  
• Functional units of the TC1197 are given in plain UPPER CASE. For example: “The  
SSC supports full-duplex and half-duplex synchronous communication”.  
• Pins using negative logic are indicated by an overline. For example: “The external  
reset pin, ESR0, has a dual function.”.  
• Bit fields and bits in registers are in general referenced as  
“Module_Register name.Bit field” or “Module_Register name.Bit”. For example: “The  
Current CPU Priority Number bit field CPU_ICR.CCPN is cleared”. Most of the  
Data Sheet  
7
V1.1, 2009-05  
TC1197  
Introduction  
register names contain a module name prefix, separated by an underscore character  
“_” from the actual register name (for example, “ASC0_CON”, where “ASC0” is the  
module name prefix, and “CON” is the kernel register name). In chapters describing  
the kernels of the peripheral modules, the registers are mainly referenced with their  
kernel register names. The peripheral module implementation sections mainly refer  
to the actual register names with module prefixes.  
• Variables used to describe sets of processing units or registers appear in mixed  
upper and lower cases. For example, register name “MSGCFGn” refers to multiple  
“MSGCFG” registers with variable n. The bounds of the variables are always given  
where the register expression is first used (for example, “n = 0-31”), and are repeated  
as needed in the rest of the text.  
• The default radix is decimal. Hexadecimal constants are suffixed with a subscript  
letter “H”, as in 100H. Binary constants are suffixed with a subscript letter “B”, as in:  
111B.  
• When the extent of register fields, groups register bits, or groups of pins are  
collectively named in the body of the document, they are represented as  
“NAME[A:B]”, which defines a range for the named group from B to A. Individual bits,  
signals, or pins are given as “NAME[C]” where the range of the variable C is given in  
the text. For example: CFG[2:0] and SRPN[0].  
• Units are abbreviated as follows:  
MHz = Megahertz  
μs = Microseconds  
kBaud, kbit = 1000 characters/bits per second  
MBaud, Mbit = 1,000,000 characters/bits per second  
Kbyte, KB = 1024 bytes of memory  
Mbyte, MB= 1048576 bytes of memory  
In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by  
1024. Hence, the Kbyte unit scales the expression preceding it by 1024. The  
kBaud unit scales the expression preceding it by 1000. The M prefix scales by  
1,000,000 or 1048576, and μ scales by .000001. For example, 1 Kbyte is  
1024 bytes, 1 Mbyte is 1024 × 1024 bytes, 1 kBaud/kbit are 1000 characters/bits  
per second, 1 MBaud/Mbit are 1000000 characters/bits per second, and 1 MHz is  
1,000,000 Hz.  
• Data format quantities are defined as follows:  
Byte = 8-bit quantity  
Half-word = 16-bit quantity  
Word = 32-bit quantity  
Double-word = 64-bit quantity  
Data Sheet  
8
V1.1, 2009-05  
TC1197  
Introduction  
2.1.3  
Reserved, Undefined, and Unimplemented Terminology  
In tables where register bit fields are defined, the following conventions are used to  
indicate undefined and unimplemented function. Furthermore, types of bits and bit fields  
are defined using the abbreviations as shown in Table 2.  
Table 2  
Bit Function Terminology  
Function of Bits  
Description  
Unimplemented,  
Reserved  
Register bit fields named 0 indicate unimplemented functions  
with the following behavior.  
• Reading these bit fields returns 0.  
• These bit fields should be written with 0 if the bit field is  
defined as r or rh.  
• These bit fields have to be written with 0 if the bit field is  
defined as rw.  
These bit fields are reserved. The detailed description of these  
bit fields can be found in the register descriptions.  
rw  
rwh  
r
The bit or bit field can be read and written.  
As rw, but bit or bit field can be also set or reset by hardware.  
The bit or bit field can only be read (read-only).  
w
The bit or bit field can only be written (write-only). A read to this  
register will always give a default value back.  
rh  
s
This bit or bit field can be modified by hardware (read-hardware,  
typical example: status flags). A read of this bit or bit field give  
the actual status of this bit or bit field back. Writing to this bit or  
bit field has no effect to the setting of this bit or bit field.  
Bits with this attribute are “sticky” in one direction. If their reset  
value is once overwritten by software, they can be switched  
again into their reset state only by a reset operation. Software  
cannot switch this type of bit into its reset state by writing the  
register. This attribute can be combined to “rws” or “rwhs”.  
f
Bits with this attribute are readable only when they are accessed  
by an instruction fetch. Normal data read operations will return  
other values.  
2.1.4  
Register Access Modes  
Read and write access to registers and memory locations are sometimes restricted. In  
memory and register access tables, the terms as defined in Table 3 are used.  
Data Sheet  
9
V1.1, 2009-05  
TC1197  
Introduction  
Table 3  
Symbol  
U
Access Terms  
Description  
Access Mode: Access permitted in User Mode 0 or 1.  
Reset Value: Value or bit is not changed by a reset operation.  
Access permitted in Supervisor Mode.  
SV  
R
Read-only register.  
32  
Only 32-bit word accesses are permitted to this register/address range.  
Endinit-protected register/address.  
E
PW  
NC  
BE  
nBE  
Password-protected register/address.  
No change, indicated register is not changed.  
Indicates that an access to this address range generates a Bus Error.  
Indicates that no Bus Error is generated when accessing this address  
range, even though it is either an access to an undefined address or the  
access does not follow the given rules.  
nE  
Indicates that no Error is generated when accessing this address or  
address range, even though the access is to an undefined address or  
address range. True for CPU accesses (MTCR/MFCR) to undefined  
addresses in the CSFR range.  
2.1.5  
Abbreviations and Acronyms  
The following acronyms and terms are used in this document:  
ADC  
Analog-to-Digital Converter  
Address General Purpose Register  
Arithmetic and Logic Unit  
Asynchronous/Synchronous Serial Controller  
Bus Control Unit  
AGPR  
ALU  
ASC  
BCU  
BROM  
CAN  
Boot ROM & Test ROM  
Controller Area Network  
CMEM  
CISC  
CPS  
PCP Code Memory  
Complex Instruction Set Computing  
CPU Slave Interface  
CPU  
Central Processing Unit  
Data Sheet  
10  
V1.1, 2009-05  
TC1197  
Introduction  
CSA  
Context Save Area  
CSFR  
DAP  
Core Special Function Register  
Device Access Port  
DAS  
Device Access Server  
DCACHE  
DFLASH  
DGPR  
DMA  
DMI  
Data Cache  
Data Flash Memory  
Data General Purpose Register  
Direct Memory Access  
Data Memory Interface  
External Bus Interface  
EBU  
EMI  
Electro-Magnetic Interference  
Fast Analog-to-Digital Converter  
Flash Array Module  
FADC  
FAM  
FCS  
Flash Command State Machine  
Flash Interface and Control Module  
Flexible Peripheral Interconnect (Bus)  
Floating Point Unit  
FIM  
FPI  
FPU  
GPIO  
GPR  
GPTA  
ICACHE  
I/O  
General Purpose Input/Output  
General Purpose Register  
General Purpose Timer Array  
Instruction Cache  
Input / Output  
JTAG  
LBCU  
LDRAM  
LFI  
Joint Test Action Group = IEEE1149.1  
Local Memory Bus Control Unit  
Local Data RAM  
Local Memory-to-FPI Bus Interface  
Local Memory Bus  
LMB  
LTC  
Local Timer Cell  
MLI  
Micro Link Interface  
MMU  
MSB  
MSC  
Memory Management Unit  
Most Significant Bit  
Micro Second Channel  
Data Sheet  
11  
V1.1, 2009-05  
TC1197  
Introduction  
NC  
Not Connected  
NMI  
Non-Maskable Interrupt  
On-Chip Debug Support  
Overlay Memory  
OCDS  
OVRAM  
PCP  
Peripheral Control Processor  
Program Memory Unit  
Phase Locked Loop  
PMU  
PLL  
PCODE  
PFLASH  
PMI  
PCP Code Memory  
Program Flash Memory  
Program Memory Interface  
Program Memory Unit  
PCP Parameter RAM  
Random Access Memory  
Reduced Instruction Set Computing  
System Peripheral Bus Control Unit  
System Control Unit  
PMU  
PRAM  
RAM  
RISC  
SBCU  
SCU  
SFR  
Special Function Register  
System Peripheral Bus  
Scratch-Pad RAM  
SPB  
SPRAM  
SRAM  
SRN  
Static Data Memory  
Service Request Node  
Synchronous Serial Controller  
System Timer  
SSC  
STM  
WDT  
Watchdog Timer  
Data Sheet  
12  
V1.1, 2009-05  
TC1197  
Introduction  
2.2  
System Architecture of the TC1197  
The TC1197 combines three powerful technologies within one silicon die, achieving new  
levels of power, speed, and economy for embedded applications:  
• Reduced Instruction Set Computing (RISC) processor architecture  
• Digital Signal Processing (DSP) operations and addressing modes  
• On-chip memories and peripherals  
DSP operations and addressing modes provide the computational power necessary to  
efficiently analyze complex real-world signals. The RISC load/store architecture  
provides high computational bandwidth with low system cost. On-chip memory and  
peripherals are designed to support even the most demanding high-bandwidth real-time  
embedded control-systems tasks.  
Additional high-level features of the TC1197 include:  
• Efficient memory organization: instruction and data scratch memories, caches  
• Serial communication interfaces – flexible synchronous and asynchronous modes  
• Peripheral Control Processor – standalone data operations and interrupt servicing  
• DMA Controller – DMA operations and interrupt servicing  
• General-purpose timers  
• High-performance on-chip buses  
• On-chip debugging and emulation facilities  
• Flexible interconnections to external components  
• Flexible power-management  
The TC1197 is a high-performance microcontroller with TriCore CPU, program and data  
memories, buses, bus arbitration, an interrupt controller, a peripheral control processor  
and a DMA controller and several on-chip peripherals. The TC1197 is designed to meet  
the needs of the most demanding embedded control systems applications where the  
competing issues of price/performance, real-time responsiveness, computational power,  
data bandwidth, and power consumption are key design elements.  
The TC1197 offers several versatile on-chip peripheral units such as serial controllers,  
timer units, and Analog-to-Digital converters. Within the TC1197, all these peripheral  
units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect  
(FPI) Bus and the Local Memory Bus (LMB). Several I/O lines on the TC1197 ports are  
reserved for these peripheral units to communicate with the external world.  
Data Sheet  
13  
V1.1, 2009-05  
TC1197  
Introduction  
2.2.1  
TC1197 Block Diagram  
Figure 1-1 shows the block diagram of the TC1197.  
Abbreviations:  
ICACHE: Instruction Cache  
DCACHE Data Cache  
FPU  
DMI  
PMI  
SPRAM:  
LDRAM:  
OVRAM:  
BROM:  
PFlash:  
DFlash:  
PRAM:  
Scratch-Pad RAM  
Local Data RAM  
Overlay RAM  
Boot ROM  
Program Flash  
Data Flash  
Parameter RAM in PCP  
Code RAM in PCP  
TriCore  
CPU  
124 KB LDRAM  
24 KB SPRAM  
4 KB DCACHE  
16 KB ICACHE  
(Configurable)  
(Configurable)  
CPS  
PCODE:  
Local Memory Bus (LMB)  
EBU  
BCU  
1.5V, 3.3V  
Ext. Supply  
PMU0  
PMU1  
M
1)  
DMA  
2 MB PFlash  
64 KB DFlash  
8 KB OVRAM  
16 KB BROM  
Bridge  
16 channels  
OCDS L1 Debug  
Interface/JTAG  
2 MB PFlash  
M/S  
1) The 2 MBs of the PMU1  
are available only  
in the 4MByte derivative  
MLI0  
MLI1  
System Peripheral Bus  
(SPB)  
16 KB PRAM  
Interrupt  
System  
MemCheck  
ASC0  
ASC1  
PCP2  
Core  
STM  
SCU  
s well)  
5V (3.3V supported a  
Ext. ADC Supply  
32 KB CMEM  
ADC0  
ADC1  
ADC2  
Ports  
SBCU  
GPTA0  
SSC0  
SSC1  
FADC  
GPTA1  
LTCA2  
3.3V  
Ext. FADC Supply  
Multi  
CAN  
(4 Nodes,  
128 MO)  
Ext.  
Request  
Unit  
MSC  
MSC  
1
0
(LVDS)  
(LVDS)  
BlockDiagram  
TC1197  
Figure 1  
TC1197 Block Diagram  
Data Sheet  
14  
V1.1, 2009-05  
TC1197  
Introduction  
2.2.2  
System Features  
The TC1197 has the following features:  
Package  
• PG-BGA-416-10 package, 1mm pitch  
Clock Frequencies for the 180 MHz derivative  
• Maximum CPU clock frequency: 180 MHz1)  
• Maximum PCP clock frequency: 180 MHz2)  
• Maximum system clock frequency: 90 MHz3)  
1) For CPU frequencies > 90 MHz, 2:1 mode has to be enabled. CPU 2:1 mode means: fFPI = 0.5 * fCPU  
2) For PCP frequencies > 90 MHz, 2:1 mode has to be enabled. PCP 2:1 mode means: fFPI = 0.5 * fPCP  
3) CPU 1:1 Mode means: fFPI = fCPU . PCP 1:1 mode means: fFPI = fPCP  
Data Sheet  
15  
V1.1, 2009-05  
TC1197  
Introduction  
2.2.3  
CPU Cores of the TC1197  
The TC1197 includes a high Performance CPU and a Peripheral Control Processor.  
2.2.3.1  
High-performance 32-bit CPU  
This chapter gives an overview about the TriCore 1 architecture.  
TriCore (TC1.3.1) Architectural Highlights  
• Unified RISC MCU/DSP  
• 32-bit architecture with 4 Gbytes unified data, program, and input/output address  
space  
• Fast automatic context-switching  
• Multiply-accumulate unit  
• Floating point unit  
• Saturating integer arithmetic  
• High-performance on-chip peripheral bus (FPI Bus)  
• Register based design with multiple variable register banks  
• Bit handling  
• Packed data operations  
• Zero overhead loop  
• Precise exceptions  
• Flexible power management  
High-efficiency TriCore Instruction Set  
• 16/32-bit instructions for reduced code size  
• Data types include: Boolean, array of bits, character, signed and unsigned integer,  
integer with saturation, signed fraction, double-word integers, and IEEE-754 single-  
precision floating point  
• Data formats include: Bit, 8-bit byte, 16-bit half-word, 32-bit word, and 64-bit double-  
word data formats  
• Powerful instruction set  
• Flexible and efficient addressing mode for high code density  
Integrated CPU related On-Chip Memories  
• Instruction memory: 40 KB total. After reset, configured into:1)  
– 40 Kbyte Scratch-Pad RAM (SPRAM)  
– 0 Kbyte Instruction Cache (ICACHE)  
• Data memory: 128 KB total. After reset, configured into:1)  
– 128 Kbyte Local Data RAM (LDRAM)  
1) Software configurable. Available options are described in the CPU chapter.  
Data Sheet  
16  
V1.1, 2009-05  
TC1197  
Introduction  
– 0 Kbyte Data Cache (DACHE)  
• On-chip SRAMs with parity error detection  
2.2.3.2  
High-performance 32-bit Peripheral Control Processor  
The PCP is a flexible Peripheral Control Processor optimized for interrupt handling and  
thus unloading the CPU.  
Features  
• Data move between any two memory or I/O locations  
• Data move until predefined limit supported  
• Read-Modify-Write capabilities  
• Full computation capabilities including basic MUL/DIV  
• Read/move data and accumulate it to previously read data  
• Read two data values and perform arithmetic or logical operation and store result  
• Bit-handling capabilities (testing, setting, clearing)  
• Flow control instructions (conditional/unconditional jumps, breakpoint)  
• Dedicated Interrupt System  
• PCP SRAMs with parity error detection  
• PCP/FPI clock mode 1:1 and 2:1 available  
Integrated PCP related On-Chip Memories  
• 32 Kbyte Code Memory (CMEM)  
• 16 Kbyte Parameter Memory (PRAM)  
Data Sheet  
17  
V1.1, 2009-05  
TC1197  
Introduction  
2.3  
On-Chip System Units  
The TC1197 microcontroller offers several versatile on-chip system peripheral units  
such as DMA controller, embedded Flash module, interrupt system and ports.  
2.3.1  
Flexible Interrupt System  
The TC1197 includes a programmable interrupt system with the following features:  
Features  
• Fast interrupt response  
• Independent interrupt systems for CPU and PCP  
• Each SRN can be mapped to the CPU or PCP interrupt system  
• Flexible interrupt-prioritizing scheme with 255 interrupt priority levels per interrupt  
system  
2.3.2  
Direct Memory Access Controller  
The TC1197 includes a fast and flexible DMA controller with 16 independant DMA  
channels (two DMA Move Engines).  
Features  
• 8 independent DMA channels  
– 8 DMA channels in the DMA Sub-Block  
– Up to 16 selectable request inputs per DMA channel  
– 2-level programmable priority of DMA channels within the DMA Sub-Block  
– Software and hardware DMA request  
– Hardware requests by selected on-chip peripherals and external inputs  
• 3-level programmable priority of the DMA Sub-Block at the on chip bus interfaces  
• Buffer capability for move actions on the buses (at least 1 move per bus is buffered)  
• Individually programmable operation modes for each DMA channel  
– Single Mode: stops and disables DMA channel after a predefined number of DMA  
transfers  
– Continuous Mode: DMA channel remains enabled after a predefined number of  
DMA transfers; DMA transaction can be repeated  
– Programmable address modification  
– Two shadow register modes (with / w/o automatic re-set and direct write access).  
• Full 32-bit addressing capability of each DMA channel  
– 4 Gbyte address range  
– Data block move supports > 32 Kbyte moves per DMA transaction  
– Circular buffer addressing mode with flexible circular buffer sizes  
• Programmable data width of DMA transfer/transaction: 8-bit, 16-bit, or 32-bit  
• Register set for each DMA channel  
Data Sheet  
18  
V1.1, 2009-05  
TC1197  
Introduction  
– Source and destination address register  
– Channel control and status register  
– Transfer count register  
• Flexible interrupt generation (the service request node logic for the MLI channel is  
also implemented in the DMA module)  
• DMA module is working on SPB frequency, LMB interface on LMB frequency.  
• Dependant on the target/destination address, Read/write requests from the Move  
Engine are directed to the SPB, LMB, MLI or to the the Cerberus.  
Data Sheet  
19  
V1.1, 2009-05  
TC1197  
Introduction  
2.3.3  
System Timer  
The TC1197’s STM is designed for global system timing applications requiring both high  
precision and long range.  
Features  
• Free-running 56-bit counter  
• All 56 bits can be read synchronously  
• Different 32-bit portions of the 56-bit counter can be read synchronously  
• Flexible interrupt generation based on compare match with partial STM content  
• Driven by maximum 90 MHz (= fSYS, default after reset = fSYS/2)  
• Counting starts automatically after a reset operation  
• STM registers are reset by an application reset if bit ARSTDIS.STMDIS is cleared. If  
bit ARSTDIS.STMDIS is set, the STM is not reset.  
• STM can be halted in debug/suspend mode  
Special STM register semantics provide synchronous views of the entire 56-bit counter,  
or 32-bit subsets at different levels of resolution.  
The maximum clock period is 256 × fSTM. At fSTM = 90 MHz, for example, the STM counts  
25.39 years before overflowing. Thus, it is capable of continuously timing the entire  
expected product life time of a system without overflowing.  
In case of a power-on reset, a watchdog reset, or a software reset, the STM is reset. After  
one of these reset conditions, the STM is enabled and immediately starts counting up. It  
is not possible to affect the content of the timer during normal operation of the TC1197.  
The STM can be optionally disabled for power-saving purposes, or suspended for  
debugging purposes via its clock control register. In suspend mode of the TC1197  
(initiated by writing an appropriate value to STM_CLC register), the STM clock is  
stopped but all registers are still readable.  
Due to the 56-bit width of the STM, it is not possible to read its entire content with one  
instruction. It needs to be read with two load instructions. Since the timer would continue  
to count between the two load operations, there is a chance that the two values read are  
not consistent (due to possible overflow from the low part of the timer to the high part  
between the two read operations). To enable a synchronous and consistent reading of  
the STM content, a capture register (STM_CAP) is implemented. It latches the content  
of the high part of the STM each time when one of the registers STM_TIM0 to STM_TIM5  
is read. Thus, STM_CAP holds the upper value of the timer at exactly the same time  
when the lower part is read. The second read operation would then read the content of  
the STM_CAP to get the complete timer value.  
The content of the 56-bit System Timer can be compared against the content of two  
compare values stored in the STM_CMP0 and STM_CMP1 registers. Interrupts can be  
generated on a compare match of the STM with the STM_CMP0 or STM_CMP1  
registers.  
Data Sheet  
20  
V1.1, 2009-05  
TC1197  
Introduction  
Figure 2 provides an overview on the STM module. It shows the options for reading  
parts of STM content.  
STM Module  
31  
23  
15  
7
0
STM_CMP0  
Compare Register 0  
to DMA etc.  
31  
23  
15  
7
0
STM_CMP1  
Compare Register1  
STM  
IRQ0  
55  
47  
39  
31  
23  
15  
7
0
Interrupt  
Control  
STM  
IRQ1  
56-bit System Timer  
Enable /  
Disable  
00H  
00H  
STM_CAP  
STM_TIM6  
Clock  
Control  
fSTM  
STM_TIM5  
STM_TIM4  
Address  
Decoder  
STM_TIM3  
STM_TIM2  
STM_TIM1  
STM_TIM0  
PORST  
MCB06185_mod  
Figure 2  
General Block Diagram of the STM Module Registers  
Data Sheet  
21  
V1.1, 2009-05  
TC1197  
Introduction  
2.3.4  
System Control Unit  
The following SCU introduction gives an overview about the TC1197 System Control  
Unit (SCU) For Information about the SCU see chapter 3.  
2.3.4.1 Clock Generation Unit  
The Clock Generation Unit (CGU) allows a very flexible clock generation for the TC1197.  
During user program execution the frequency can be programmed for an optimal ratio  
between performance and power consumption.  
2.3.4.2 Features of the Watchdog Timer  
The main features of the WDT are summarized here.  
• 16-bit Watchdog counter  
• Selectable input frequency: fFPI/256 or fFPI/16384  
• 16-bit user-definable reload value for normal Watchdog operation, fixed reload value  
for Time-Out and Prewarning Modes  
• Incorporation of the ENDINIT bit and monitoring of its modifications  
• Sophisticated Password Access mechanism with fixed and user-definable password  
fields  
• Access Error Detection: Invalid password (during first access) or invalid guard bits  
(during second access) trigger the Watchdog reset generation  
• Overflow Error Detection: An overflow of the counter triggers the Watchdog reset  
generation  
• Watchdog function can be disabled; access protection and ENDINIT monitor function  
remain enabled  
• Double Reset Detection  
2.3.4.3 Reset Operation  
The following reset request triggers are available:  
• 1 External power-on hardware reset request trigger; PORST, (cold reset)  
• 2 External System Request reset triggers; ESR0 and ESR1,(warm reset)  
• Watchdog Timer (WDT) reset request trigger, (warm reset)  
• Software reset (SW), (warm reset)  
• Debug (OCDS) reset request trigger, (warm reset)  
• Resets via the JTAG interface  
There are two basic types of reset request triggers:  
• Trigger sources that do not depend on a clock, such as the PORST. This trigger force  
the device into an asynchronous reset assertion independently of any clock. The  
activation of an asynchronous reset is asynchronous to the system clock, whereas  
its de-assertion is synchronized.  
Data Sheet  
22  
V1.1, 2009-05  
TC1197  
Introduction  
• Trigger sources that need a clock in order to be asserted, such as the input signals  
ESR0, ESR1, the WDT trigger, the parity trigger, or the SW trigger.  
2.3.4.4 External Interface  
The SCU provides interface pads for system purpose. Various functions are covered by  
these pins. Due to the different tasks some of the pads can not be shared with other  
functions but most of them can be shared with other functions. The following functions  
are covered by the SCU controlled pads:  
• Reset request triggers  
• Reset indication  
• Trap request triggers  
• Interrupt request triggers  
• Non SCU module triggers  
The first three points are covered by the ESR pads and the last two points by the ERU  
pads.  
2.3.4.5 Die Temperature Measurement  
The Die Temperature Sensor (DTS) generates a measurement result that indicates  
directly the current temperature. The result of the measurement can be read via an DTS  
register.  
2.3.5  
General Purpose I/O Ports and Peripheral I/O Lines  
The TC1197 includes a flexible Ports structure with the following features:  
Features  
• Digital General-Purpose Input/Output (GPIO) port lines  
• Input/output functionality individually programmable for each port line  
• Programmable input characteristics (pull-up, pull-down, no pull device)  
• Programmable output driver strength for EMI minimization (weak, medium, strong)  
• Programmable output characteristics (push-pull, open drain)  
• Programmable alternate output functions  
• Output lines of each port can be updated port-wise or set/reset/toggled bit-wise  
2.3.6  
Program Memory Unit (PMU)  
The devices of the AudoF family contain at least one Program Memory Unit. This is  
named “PMU0”. Some devices contain additional PMUs which are named “PMU1”, …  
In the TC1197, the PMU0 contains the following submodules:  
• The Flash command and fetch control interface for Program Flash and Data Flash.  
• The Overlay RAM interface with Online Data Acquisition (OLDA) support.  
Data Sheet  
23  
V1.1, 2009-05  
TC1197  
Introduction  
• The Boot ROM interface.  
• The Emulation Memory interface.  
• The Local Memory Bus LMB slave interface.  
Following memories are controlled by and belong to the PMU0:  
• 2 Mbyte of Program Flash memory (PFlash)  
• 64 Kbyte of Data Flash memory (DFlash, represents 16 Kbyte EEPROM)  
• 16 Kbyte of Boot ROM (BROM)  
• 8 Kbyte Overlay RAM (OVRAM)  
In the TC1197 an additional PMU is included with only a subset of PMU0’s submodules:  
• The Flash command and fetch control interface but only for Program Flash.  
• The Local Memory Bus LMB slave interface.  
The following memories are controlled and belong to the PMU1:  
• 2 Mbyte of Program Flash memory (PFlash).  
Because of its independence from PMU0 this second PMU enables additional  
functionality: Read while Write (RWW), Write while Write (WWW) or concurrent data and  
instruction accesses, if those are operating on different PMUs.  
Data Sheet  
24  
V1.1, 2009-05  
TC1197  
Introduction  
The following figure shows the block diagram of the PMU0:  
To/From  
Local Memory Bus  
64  
LMB Interface  
PMU0  
Slave  
Overlay RAM  
PMU  
Control  
Interface  
64  
64  
ROM Control  
64  
64  
OVRAM  
Flash Interface Module  
64  
64  
BROM  
DFLASH  
PFLASH  
Emulation  
Memory  
Interface  
PMU0_BasicBlockDiag_generic  
Emulation Memory  
(ED chip only)  
Figure 3  
PMU0 Basic Block Diagram  
As described before the PMU1 is reduced to the PFLASH and its controlling  
submodules.  
2.3.6.1 Boot ROM  
The internal 16 Kbyte Boot ROM (BROM) is divided into two parts, used for:  
• firmware (Boot ROM), and  
• factory test routines (Test ROM).  
The different sections of the firmware in Boot ROM provide startup and boot operations  
after reset. The TestROM is reserved for special routines, which are used for testing,  
stressing and qualification of the component.  
Data Sheet  
25  
V1.1, 2009-05  
TC1197  
Introduction  
2.3.6.2 Overlay RAM and Data Acquisition  
The overlay memory OVRAM is provided in the PMU especially for redirection of data  
accesses to program memory to the OVRAM by using the data overlay function. The  
data overlay functionality itself is controlled in the DMI module.  
For online data acquisition (OLDA) of application or calibration data a virtual 32 KB  
memory range is provided which can be accessed without error reporting. Accesses to  
this OLDA range can also be redirected to an overlay memory.  
2.3.6.3 Emulation Memory Interface  
In TC1197 Emulation Device, an Emulation Memory (EMEM) is provided, which can fully  
be used for calibration via program memory or OLDA overlay. The Emulation Memory  
interface shown in Figure 0-1 is a 64-bit wide memory interface that controls the CPU-  
accesses to the Emulation Memory in the TC1197 Emulation Device. In the TC1197  
production device, the EMEM interface is always disabled.  
2.3.6.4 Tuning Protection  
Tuning protection is required by the user to absolutely protect control data (e.g. for  
engine control), serial number and user software, stored in the Flash, from being  
manipulated, and to safely detect changed or disturbed data. For the internal Flash,  
these protection requirements are excellently fulfilled in the TC1197 with  
• Flash read and write protection with user-specific protection levels, and with  
• dedicated HW and firmware, supporting the internal Flash read protection, and with  
• the Alternate Boot Mode.  
Special tuning protection support is provided for external Flash, which must also be  
protected.  
2.3.6.5 Program and Data Flash  
The embedded Flash modules of PMU0 includes 2 Mbyte of Flash memory for code or  
constant data (called Program Flash) and additionally 64 Kbyte of Flash memory used  
for emulation of EEPROM data (called Data Flash). The Program Flash is realized as  
one independent Flash bank, whereas the Data Flash is built of two Flash banks,  
allowing the following combinations of concurrent Flash operations:  
• Read code or data from Program Flash, while one bank of Data Flash is busy with a  
program or erase operation.  
• Read data from one bank of Data Flash, while the other bank of Data Flash is busy  
with a program or erase operation.  
• Program one bank of Data Flash while erasing the other bank of Data Flash, read  
from Program Flash.  
Data Sheet  
26  
V1.1, 2009-05  
TC1197  
Introduction  
In TC1197 the PMU1 contains 2 Mbyte of Program Flash realized as one Flash bank. It  
does not contain any Data Flash.  
Since in TC1197 the two PMUs can work in parallel, further combinations of concurrent  
operations are supported if those are operating on Flash modules in different PMUs, e.g.  
• Read data from Flash1 while accessing code from Flash0.  
• Read code or data from one Flash while the other Flash is busy with program or erase  
operation.  
• Both Flash modules are concurrently busy with program or erase operation.  
Both, the Program Flash and the Data Flash, provide error correction of single-bit errors  
within a 64-bit read double-word, resulting in an extremely low failure rate. Read  
accesses to Program Flash are executed in 256-bit width, to Data Flash in 64-bit width  
(both plus ECC). Single-cycle burst transfers of up to 4 double-words and sequential  
prefetching with control of prefetch hit are supported for Program Flash.  
The minimum programming width is the page, including 256 bytes in Program Flash and  
128 bytes in Data Flash. Concurrent programming and erasing in Data Flash is  
performed using an automatic erase suspend and resume function.  
A basic block diagram of the Flash Module is shown in the following figure.  
Redundancy  
Control  
FSI  
Voltage Control  
Control  
Control  
Flash Command  
State Machine FCS  
SFRs  
FSRAM  
Microcode  
Address  
Addr Bus  
Write Bus  
Page  
Write  
Buffers  
256 byte  
and  
Program  
Flash  
64  
64  
WR_DATA  
128 byte  
8
8
PF-Read  
Buffer  
256+32 bit  
and  
ECC Code  
Bank 0  
Bank 1  
ECC Block  
Data  
Flash  
64  
DF-Read  
Buffer  
64+8 bit  
Read Bus  
64  
RD_DATA  
Flash Array Module  
FAM  
Flash Interface&Control Module  
FIM  
PMU  
Flash FSI & Array  
Flash_BasicBlockDiagram_generic.vsd  
Figure 4  
Basic Block Diagram of Flash Module  
All Flash operations are controlled simply by transferring command sequences to the  
Flash which are based on JEDEC standard. This user interface of the embedded Flash  
is very comfortable, because all operations are controlled with high level commands,  
such as “Erase Sector”. State transitions, such as termination of command execution, or  
errors are reported to the user by maskable interrupts. Command sequences are  
Data Sheet  
27  
V1.1, 2009-05  
TC1197  
Introduction  
normally written to Flash by the CPU, but may also be issued by the DMA controller (or  
OCDS).  
The Flash also features an advanced read/write protection architecture, including a read  
protection for the whole Flash array (optionally without Data Flash) and separate write  
protection for all sectors (only Program Flash). Write protected sectors can be made re-  
programmable (enabled with passwords), or they can be locked for ever (ROM function).  
Each sector can be assigned to up to three different users for write protection. The  
different users are organized hierarchically.  
Program Flash Features and Functions  
• 2 Mbyte on-chip Program Flash in PMU0.  
• 2 Mbyte on-chip Program Flash in PMU1.  
• Any use for instruction code or constant data.  
• Double Flash module system approach:  
– Concurrent read access of code and data.  
– Read while write (RWW).  
– Concurrent program/erase in both modules.  
• 256 bit read interface (burst transfer operation).  
• Dynamic correction of single-bit errors during read access.  
• Transfer rate in burst mode: One 64-bit double-word per clock cycle.  
• Sector architecture:  
– Eight 16 Kbyte, one 128 Kbyte and seven 256 Kbyte sectors.  
– Each sector separately erasable.  
– Each sector lockable for protection against erase and program (write protection).  
• One additional configuration sector (not accessible to the user).  
• Optional read protection for whole Flash, with sophisticated read access supervision.  
Combined with whole Flash write protection — thus supporting protection against  
Trojan horse programs.  
• Sector specific write protection with support of re-programmability or locked forever.  
• Comfortable password checking for temporary disable of write or read protection.  
• User controlled configuration blocks (UCB) in configuration sector for keywords and  
for sector-specific lock bits (one block for every user; up to three users).  
• Pad supply voltage (VDDP) also used for program and erase (no VPP pin).  
• Efficient 256 byte page program operation.  
• All Flash operations controlled by CPU per command sequences (unlock sequences)  
for protection against unintended operation.  
• End-of-busy as well as error reporting with interrupt and bus error trap.  
• Write state machine for automatic program and erase, including verification of  
operation quality.  
• Support of margin check.  
• Delivery in erased state (read all zeros).  
• Global and sector status information.  
Data Sheet  
28  
V1.1, 2009-05  
TC1197  
Introduction  
• Overlay support with SRAM for calibration applications.  
• Configurable wait state selection for different CPU frequencies.  
• Endurance = 1000; minimum 1000 program/erase cycles per physical sector;  
reduced endurance of 100 per 16 KB sector.  
• Operating lifetime (incl. Retention): 20 years with endurance=1000.  
• For further operating conditions see data sheet section “Flash Memory Parameters”.  
Data Flash Features and Functions  
Note: Only available in PMU0.  
• 64 Kbyte on-chip Flash, configured in two independent Flash banks of equal size.  
• 64 bit read interface.  
• Erase/program one bank while data read access from the other bank.  
• Programming one bank while erasing the other bank using an automatic  
suspend/resume function.  
• Dynamic correction of single-bit errors during read access.  
• Sector architecture:  
– Two sectors of equal size.  
– Each sector separately erasable.  
• 128 byte pages to be written in one step.  
• Operational control per command sequences (unlock sequences, same as those of  
Program Flash) for protection against unintended operation.  
• End-of-busy as well as error reporting with interrupt and bus error trap.  
• Write state machine for automatic program and erase.  
• Margin check for detection of problematic Flash bits.  
• Endurance = 30000 (can be device dependent); i.e. 30000 program/erase cycles per  
sector are allowed, with a retention of min. 5 years.  
• Dedicated DFlash status information.  
• Other characteristics: Same as Program Flash.  
Data Sheet  
29  
V1.1, 2009-05  
TC1197  
Introduction  
2.3.7  
Data Access Overlay  
The data overlay functionality provides the capability to redirect data accesses by the  
TriCore to program memory (internal Program Flash or external memory) to the Overlay  
SRAM in the PMU, or to the Emulation Memory in Emulation Device ED, or to the  
external memory. This functionality makes it possible, for example, to modify the  
application’s test and calibration parameters (which are typically stored in the program  
memory) during run time of a program. Note that read and write data accesses from/to  
program memory are redirected.  
Attention: As the address translation is implemented in the DMI, it is only effective  
for data accesses by the TriCore. Instruction fetches by the TriCore or  
accesses by any other master (including the debug interface) are not  
affected!  
Note: The external memory can be used as overlay memory only in Emulation Devices  
“ED” with an EBU. Generally this feature is not supported in Production Devices  
“PD”. However, this function is fully described here in this spec.  
Summary of Features and Functions  
• 16 overlay ranges (“blocks”) configurable for Program Flash and external memory  
• Support of 8 Kbyte embedded Overlay SRAM (OVRAM) in PMU  
• Support of up to 512 Kbyte overlay/calibration memory in Emulation Device (EMEM)  
• Support of up to 2 MB overlay memory in external memory (EBU space)  
• Support of Online Data Acquisition into range of up to 32 KB and of its overlay  
• Support of different overlay memory selections for every enabled overlay block  
• Sizes of overlay blocks selectable from 16 byte to 2 Kbyte for redirection to OVRAM  
• Sizes of overlay blocks selectable from 1 Kbyte to 128 Kbyte for redirection to EMEM  
or to external memory  
• All configured overlay ranges can be enabled with only one register write access  
• Programmable flush (invalidate) control for data cache in DMI  
2.4  
Development Support  
Overview about the TC1197 development environment:  
Complete Development Support  
A variety of software and hardware development tools for the 32-bit microcontroller  
TC1197 are available from experienced international tool suppliers. The development  
environment for the Infineon 32-bit microcontroller includes the following tools:  
• Embedded Development Environment for TriCore Products  
• The TC1197 On-chip Debug Support (OCDS) provides a JTAG port for  
communication between external hardware and the system  
Data Sheet  
30  
V1.1, 2009-05  
TC1197  
Introduction  
• Flexible Peripheral Interconnect Buses (FPI Bus) for on-chip interconnections and its  
FPI Bus control unit (SBCU)  
• The System Timer (STM) with high-precision, long-range timing capabilities  
• The TC1197 includes a power management system, a watchdog timer as well as  
reset logic  
Data Sheet  
31  
V1.1, 2009-05  
TC1197  
Introduction  
2.5  
On-Chip Peripheral Units of the TC1197  
The TC1197 microcontroller offers several versatile on-chip peripheral units such as  
serial controllers, timer units, and Analog-to-Digital converters. Several I/O lines on the  
TC1197 ports are reserved for these peripheral units to communicate with the external  
world.  
On-Chip Peripheral Units  
• Two Asynchronous/Synchronous Serial Channels (ASC) with baud-rate generator,  
parity, framing and overrun error detection  
• Two Synchronous Serial Channels (SSC) with programmable data length and shift  
direction  
• Two Micro Second Bus Interfaces (MSC) for serial communication  
• One CAN Module with four CAN nodes (MultiCAN) for high-efficiency data handling  
via FIFO buffering and gateway data transfer  
• Two Micro Link Serial Bus Interfaces (MLI) for serial multiprocessor communication  
• Two General Purpose Timer Arrays (GPTA) with a powerful set of digital signal  
filtering and timer functionality to accomplish autonomous and complex Input/Output  
management. One additional Local Timer Cell Array (LCTA).  
• Three Analog-to-Digital Converter Units (ADC) with 8-bit, 10-bit, or 12-bit resolution.  
• One fast Analog-to-Digital Converter Unit (FADC)  
• One External Bus Interface (EBU)  
Data Sheet  
32  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.1  
Asynchronous/Synchronous Serial Interfaces  
The TC1197 includes two Asynchronous/Synchronous Serial Interfaces, ASC0 and  
ASC1. Both ASC modules have the same functionality.  
Figure 5 shows a global view of the Asynchronous/Synchronous Serial Interface (ASC).  
fASC  
Clock  
Control  
RXD  
TXD  
RXD  
TXD  
Address  
Decoder  
ASC  
Module  
(Kernel)  
Port  
Control  
EIR  
TBIR  
TIR  
RIR  
Interrupt  
Control  
To DMA  
MCB05762_mod  
Figure 5  
General Block Diagram of the ASC Interface  
The ASC provides serial communication between the TC1197 and other  
microcontrollers, microprocessors, or external peripherals.  
The ASC supports full-duplex asynchronous communication and half-duplex  
synchronous communication. In Synchronous Mode, data is transmitted or received  
synchronous to a shift clock that is generated by the ASC internally. In Asynchronous  
Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be  
selected. Parity, framing, and overrun error detection are provided to increase the  
reliability of data transfers. Transmission and reception of data is double-buffered. For  
multiprocessor communication, a mechanism is included to distinguish address bytes  
from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator  
provides the ASC with a separate serial clock signal, which can be accurately adjusted  
by a prescaler implemented as fractional divider.  
Data Sheet  
33  
V1.1, 2009-05  
TC1197  
Introduction  
Features  
• Full-duplex asynchronous operating modes  
– 8-bit or 9-bit data frames, LSB first  
– Parity-bit generation/checking  
– One or two stop bits  
– Baud rate from 5.625 Mbit/s to 1.34 bit/s (@ 90 MHz module clock)  
– Multiprocessor mode for automatic address/data byte detection  
– Loop-back capability  
• Half-duplex 8-bit synchronous operating mode  
– Baud rate from 11.25 Mbit/s to 915.5 bit/s (@ 90 MHz module clock)  
• Double-buffered transmitter/receiver  
• Interrupt generation  
– On a transmit buffer empty condition  
– On a transmit last bit of a frame condition  
– On a receive buffer full condition  
– On an error condition (frame, parity, overrun error)  
• Implementation features  
– Connections to DMA Controller  
– Connections of receiver input to GPTA (LTC) for baud rate detection and LIN break  
signal measuring  
Data Sheet  
34  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.2  
High-Speed Synchronous Serial Interfaces  
The TC1197 includes two High-Speed Synchronous Serial Interfaces, SSC0 and SSC1.  
Both SSC modules have the same functionality.  
Figure 6 shows a global view of the Synchronous Serial interface (SSC).  
MRSTA  
MRSTB  
MTSR  
fSSC  
fCLC  
Master  
Clock  
Control  
MTSR  
MRST  
MTSRA  
MTSRB  
MRST  
Slave  
Slave  
Address  
Decoder  
SCLKA  
SCLKB  
SCLK  
SSC  
Module  
(Kernel)  
Port  
Control  
RIR  
TIR  
EIR  
Master  
Slave  
SCLK  
SLSI[7:1]  
Interrupt  
Control  
SLSI[7:1]  
SLSO[7:0]  
SLSOANDO[7:0]  
SLSOANDI[7:0]  
SLSO[7:0]  
SLSOANDO[7:0]  
Master  
DMA Requests  
Enable  
M/S Select  
MCB06058_mod  
Figure 6  
General Block Diagram of the SSC Interface  
The SSC supports full-duplex and half-duplex serial synchronous communication up to  
45 Mbit/s (@ 90 MHz module clock, Master Mode). The serial clock signal can be  
generated by the SSC itself (Master Mode) or can be received from an external master  
(Slave Mode). Data width, shift direction, clock polarity and phase are programmable.  
This allows communication with SPI-compatible devices. Transmission and reception of  
data are double-buffered. A shift clock generator provides the SSC with a separate serial  
clock signal. One slave select input is available for slave mode operation. Eight  
programmable slave select outputs (chip selects) are supported in Master Mode.  
Data Sheet  
35  
V1.1, 2009-05  
TC1197  
Introduction  
Features  
• Master and Slave Mode operation  
– Full-duplex or half-duplex operation  
– Automatic pad control possible  
• Flexible data format  
– Programmable number of data bits: 2 to 16 bits  
– Programmable shift direction: LSB or MSB shift first  
– Programmable clock polarity: Idle low or idle high state for the shift clock  
– Programmable clock/data phase: Data shift with leading or trailing edge of the shift  
clock  
• Baud rate generation  
– Master Mode:  
– Slave Mode:  
• Interrupt generation  
– On a transmitter empty condition  
– On a receiver full condition  
– On an error condition (receive, phase, baud rate, transmit error)  
• Flexible SSC pin configuration  
• Seven slave select inputs SLSI[7:1] in Slave Mode  
• Eight programmable slave select outputs SLSO[7:0] in Master Mode  
– Automatic SLSO generation with programmable timing  
– Programmable active level and enable control  
– Combinable with SLSO output signals from other SSC modules  
Data Sheet  
36  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.3  
Micro Second Channel Interface  
The TC1197 includes two Micro Second Channel interfaces, MSC0 and MSC1. Both  
MSC modules have the same functionality.  
Each Micro Second Channel (MSC) interface provides serial communication links  
typically used to connect power switches or other peripheral devices. The serial  
communication link includes a fast synchronous downstream channel and a slow  
asynchronous upstream channel. Figure 7 shows a global view of the interface signals  
of an MSC interface.  
fMSC  
Clock  
Control  
fCLC  
FCLP  
FCLN  
SOP  
SON  
EN0  
Address  
Decoder  
MSC  
Module  
(Kernel)  
SR[3:0]  
16  
Interrupt  
Control  
EN1  
4
EN2  
To DMA  
EN3  
ALTINL[15:0]  
ALTINH[15:0]  
EMGSTOPMSC  
8
SDI[7:0]  
16  
MCB06059  
Figure 7  
General Block Diagram of the MSC Interface  
The downstream and upstream channels of the MSC module communicate with the  
external world via nine I/O lines. Eight output lines are required for the serial  
communication of the downstream channel (clock, data, and enable signals). One out of  
eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The  
source of the serial data to be transmitted by the downstream channel can be MSC  
register contents or data that is provided on the ALTINL/ALTINH input lines. These input  
lines are typically connected with other on-chip peripheral units (for example with a timer  
unit such as the GPTA). An emergency stop input signal makes it possible to set bits of  
the serial data stream to dedicated values in an emergency case.  
Clock control, address decoding, and interrupt service request control are managed  
outside the MSC module kernel. Service request outputs are able to trigger an interrupt  
or a DMA request.  
Data Sheet  
37  
V1.1, 2009-05  
TC1197  
Introduction  
Features  
• Fast synchronous serial interface to connect power switches in particular, or other  
peripheral devices via serial buses  
• High-speed synchronous serial transmission on downstream channel  
– Serial output clock frequency: fFCL = fMSC/2 (fMSCmax = 90 MHz)  
– Fractional clock divider for precise frequency control of serial clock fMSC  
– Command, data, and passive frame types  
– Start of serial frame: Software-controlled, timer-controlled, or free-running  
– Programmable upstream data frame length (16 or 12 bits)  
– Transmission with or without SEL bit  
– Flexible chip select generation indicates status during serial frame transmission  
– Emergency stop without CPU intervention  
• Low-speed asynchronous serial reception on upstream channel  
– Baud rate: fMSC divided by 4, 8, 16, 32, 64, 128, or 256 (fMSCmax = 90 MHz)  
– Standard asynchronous serial frames  
– Parity error checker  
– 8-to-1 input multiplexer for SDI lines  
– Built-in spike filter on SDI lines  
• Selectable pin types of downstream channel interface:  
four LVDS differential output drivers or four digital GPIO pins  
Data Sheet  
38  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.4  
MultiCAN Controller  
The MultiCAN module provides four independent CAN nodes, representing four serial  
communication interfaces. The number of available message objects is 128.  
MultiCAN Module Kernel  
fCAN  
TXDC3  
CAN  
Clock  
Control  
Node 3  
fCLC  
RXDC3  
TXDC2  
RXDC2  
TXDC1  
Message  
Object  
Buffer  
CAN  
Node 2  
Linked  
List  
Control  
Port  
Control  
Address  
Decoder  
CAN  
Node 1  
128  
Objects  
RXDC1  
TXDC0  
CAN  
Node 0  
RXDC0  
Interrupt  
Control  
CAN Control  
MCA06060_N4  
Figure 8  
Overview of the MultiCAN Module  
The MultiCAN module contains four independently operating CAN nodes with Full-CAN  
functionality that are able to exchange Data and Remote Frames via a gateway function.  
Transmission and reception of CAN frames is handled in accordance to CAN  
specification V2.0 B (active). Each CAN node can receive and transmit standard frames  
with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
All four CAN nodes share a common set of message objects. Each message object can  
be individually allocated to one of the CAN nodes. Besides serving as a storage  
container for incoming and outgoing frames, message objects can be combined to build  
gateways between the CAN nodes or to set up a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN  
node has its own list of message objects. A CAN node stores frames only into message  
objects that are allocated to the message object list of the CAN node, and it transmits  
only messages belonging to this message object list. A powerful, command-driven list  
controller performs all message object list operations.  
The bit timings for the CAN nodes are derived from the module timer clock (fCAN) and are  
programmable up to a data rate of 1 Mbit/s. External bus transceivers are connected to  
a CAN node via a pair of receive and transmit pins.  
Data Sheet  
39  
V1.1, 2009-05  
TC1197  
Introduction  
Features  
• Compliant with ISO 11898  
• CAN functionality according to CAN specification V2.0 B active  
• Dedicated control registers for each CAN node  
• Data transfer rates up to 1 Mbit/s  
• Flexible and powerful message transfer control and error handling capabilities  
• Advanced CAN bus bit timing analysis and baud rate detection for each CAN node  
via a frame counter  
• Full-CAN functionality: A set of 128 message objects can be individually  
– Allocated (assigned) to any CAN node  
– Configured as transmit or receive object  
– Setup to handle frames with 11-bit or 29-bit identifier  
– Identified by a timestamp via a frame counter  
– Configured to remote monitoring mode  
• Advanced Acceptance Filtering  
– Each message object provides an individual acceptance mask to filter incoming  
frames.  
– A message object can be configured to accept standard or extended frames or to  
accept both standard and extended frames.  
– Message objects can be grouped into four priority classes for transmission and  
reception.  
– The selection of the message to be transmitted first can be based on frame  
identifier, IDE bit and RTR bit according to CAN arbitration rules, or on its order in  
the list.  
• Advanced message object functionality  
– Message objects can be combined to build FIFO message buffers of arbitrary size,  
limited only by the total number of message objects.  
– Message objects can be linked to form a gateway that automatically transfers  
frames between 2 different CAN buses. A single gateway can link any two CAN  
nodes. An arbitrary number of gateways can be defined.  
• Advanced data management  
– The message objects are organized in double-chained lists.  
– List reorganizations can be performed at any time, even during full operation of the  
CAN nodes.  
– A powerful, command-driven list controller manages the organization of the list  
structure and ensures consistency of the list.  
– Message FIFOs are based on the list structure and can easily be scaled in size  
during CAN operation.  
– Static allocation commands offer compatibility with MultiCAN applications that are  
not list-based.  
• Advanced interrupt handling  
Data Sheet  
40  
V1.1, 2009-05  
TC1197  
Introduction  
– Up to 16 interrupt output lines are available. Interrupt requests can be routed  
individually to one of the 16 interrupt output lines.  
– Message post-processing notifications can be combined flexibly into a dedicated  
register field of 256 notification bits.  
Data Sheet  
41  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.5  
Micro Link Serial Bus Interface  
This TC1197 contains two Micro Link Serial Bus Interfaces, MLI0 and MLI1.  
The Micro Link Interface (MLI) is a fast synchronous serial interface to exchange data  
between microcontrollers or other devices, such as stand-alone peripheral components.  
Figure 9 shows how two microcontrollers are typically connected together via their MLI  
interfaces.  
Controller 1  
CPU  
Controller 2  
CPU  
Peripheral  
A
Peripheral  
B
Peripheral  
C
Peripheral  
D
Memory  
MLI  
MLI  
Memory  
System Bus  
System Bus  
MCA06061  
Figure 9  
Features  
Typical Micro Link Interface Connection  
• Synchronous serial communication between an MLI transmitter and an MLI receiver  
• Different system clock speeds supported in MLI transmitter and MLI receiver due to  
full handshake protocol (4 lines between a transmitter and a receiver)  
• Fully transparent read/write access supported (= remote programming)  
• Complete address range of target device available  
• Specific frame protocol to transfer commands, addresses and data  
• Error detection by parity bit  
• 32-bit, 16-bit, or 8-bit data transfers supported  
• Programmable baud rate: fMLI/2 (max. fMLI = fSYS  
)
• Address range protection scheme to block unauthorized accesses  
• Multiple receiving devices supported  
Data Sheet  
42  
V1.1, 2009-05  
TC1197  
Introduction  
Figure 10 shows a general block diagram of the MLI module.  
TREADY[D:A]  
4
4
TVALID[D:A]  
TDATA  
fSYS  
Fract.  
Divider  
MLI  
Transmitter  
I/O  
Control  
TCLK  
TR[3:0]  
fMLI  
Port  
Control  
MLI Module  
BRKOUT  
SR[7:0]  
RCLK[D:A]  
4
4
4
4
RREADY[D:A]  
RVALID[D:A]  
RDATA[D:A]  
Move  
Engine  
MLI  
Receiver  
I/O  
Control  
MCB06062_mod  
Figure 10  
General Block Diagram of the MLI Modules  
The MLI transmitter and MLI receiver communicate with other MLI receivers and MLI  
transmitters via a four-line serial connection each. Several I/O lines of these connections  
are available outside the MLI module kernel as a four-line output or input vector with  
index numbering A, B, C and D. The MLI module internal I/O control blocks define which  
signal of a vector is actually taken into account and also allow polarity inversions (to  
adapt to different physical interconnection means)  
Data Sheet  
43  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.6  
General Purpose Timer Array (GPTA)  
The TC1197 contains the General Purpose Timer Array (GPTA0), plus the additional  
Local Timer Cell Array (LTCA2). Figure 11 shows a global view of the GPTA modules.  
The GPTA provides a set of timer, compare, and capture functionalities that can be  
flexibly combined to form signal measurement and signal generation units. They are  
optimized for tasks typical of engine, gearbox, and electrical motor control applications,  
but can also be used to generate simple and complex signal waveforms required for  
other industrial applications.  
GPTA0  
Clock Generation Cells  
FPC0  
DCM0  
FPC1  
FPC2  
FPC3  
FPC4  
FPC5  
PDL0  
PDL1  
DCM1  
DCM2  
DCM3  
DIGITAL  
PLL  
fGPTA Clock Distribution Cells  
Clock  
Conn .  
Signal  
Generation Cells  
GT0  
GT1  
LTCA2  
GTC00  
GTC01  
GTC02  
GTC03  
LTC00  
LTC01  
LTC02  
LTC03  
LTC00  
LTC01  
LTC02  
LTC03  
Global  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
GTC30  
GTC31  
LTC62  
LTC63  
LTC62  
LTC63  
I/O Line  
Sharing Block  
I/O Line Sharing Block  
Interrupt Sharing Block  
Interrupt  
Sharing Block  
MCB05910_TC1767  
Figure 11  
General Block Diagram of the GPTA Modules in the TC1197  
Data Sheet  
44  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.6.1 Functionality of GPTA0  
The General Purpose Timer Array (GPTA0) provides a set of hardware modules  
required for high-speed digital signal processing:  
• Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation.  
• Phase Discrimination Logic units (PDL) decode the direction information output by a  
rotation tracking system.  
• Duty Cycle Measurement Cells (DCM) provide pulse-width measurement  
capabilities.  
• A Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA  
module clock ticks during an input signal’s period.  
• Global Timer units (GT) driven by various clock sources are implemented to operate  
as a time base for the associated Global Timer Cells.  
• Global Timer Cells (GTC) can be programmed to capture the contents of a Global  
Timer on an external or internal event. A GTC may also be used to control an external  
port pin depending on the result of an internal compare operation. GTCs can be  
logically concatenated to provide a common external port pin with a complex signal  
waveform.  
• Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be  
logically tied together to drive a common external port pin with a complex signal  
waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or  
triggered by various external or internal events.  
• On-chip Trigger and Gating Signals (OTGS) can be configured to provide trigger or  
gating signals to integrated peripherals.  
Input lines can be shared by an LTC and a GTC to trigger their programmed operation  
simultaneously.  
The following list summarizes the specific features of the GPTA units.  
Clock Generation Unit  
• Filter and Prescaler Cell (FPC)  
– Six independent units  
– Three basic operating modes:  
Prescaler, Delayed Debounce Filter, Immediate Debounce Filter  
– Selectable input sources:  
Port lines, GPTA module clock, FPC output of preceding FPC cell  
– Selectable input clocks:  
GPTA module clock, prescaled GPTA module clock, DCM clock, compensated or  
uncompensated PLL clock.  
fGPTA/2 maximum input signal frequency in Filter Modes  
• Phase Discriminator Logic (PDL)  
– Two independent units  
– Two operating modes (2- and 3- sensor signals)  
Data Sheet  
45  
V1.1, 2009-05  
TC1197  
Introduction  
fGPTA/4 maximum input signal frequency in 2-sensor Mode, fGPTA/6 maximum input  
signal frequency in 3-sensor Mode  
• Duty Cycle Measurement (DCM)  
– Four independent units  
– 0 - 100% margin and time-out handling  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Digital Phase Locked Loop (PLL)  
– One unit  
– Arbitrary multiplication factor between 1 and 65535  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Clock Distribution Unit (CDU)  
– One unit  
– Provides nine clock output signals:  
f
GPTA, divided fGPTA clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock  
Signal Generation Unit  
• Global Timers (GT)  
– Two independent units  
– Two operating modes (Free-Running Timer and Reload Timer)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Global Timer Cell (GTC)  
– 32 units related to the Global Timers  
– Two operating modes (Capture, Compare and Capture after Compare)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Local Timer Cell (LTC)  
– 64 independent units  
– Three basic operating modes (Timer, Capture and Compare) for 63 units  
– Special compare modes for one unit  
– 16-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Interrupt Sharing Unit  
• 286 interrupt sources, generating up to 92 service requests  
Data Sheet  
46  
V1.1, 2009-05  
TC1197  
Introduction  
On-chip Trigger Unit  
• 16 on-chip trigger signals  
I/O Sharing Unit  
• Interconnecting inputs and outputs from internal clocks, FPC, GTC, LTC, ports, and  
MSC interface  
2.5.6.2 Functionality of LTCA2  
The Local Timer Cell Array (LTCA2) provides a set of hardware modules required for  
high-speed digital signal processing:  
• Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be  
logically tied together to drive a common external port pin with a complex signal  
waveform. LTCs – enabled in Timer Mode or Capture Mode – can be clocked or  
triggered by various external or internal events.  
The following list summarizes the specific features of the LTCA unit.  
The Local Timer Arrays (LTCA2) provides a set of hardware modules required for high-  
speed digital signal processing:  
Signal Generation Unit  
• Local Timer Cell (LTC)  
– 32 independent units  
– Three basic operating modes (Timer, Capture and Compare) for 63 units  
– Special compare modes for one unit  
– 16-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
I/O Sharing Unit  
• Interconnecting inputs and outputs from internal clocks, LTC, ports, and MSC  
interface  
Data Sheet  
47  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.7  
Analog-to-Digital Converters  
The TC1197 includes three Analog to Digital Converter modules (ADC0, ADC1, ADC2)  
and one Fast Analog to Digital Converter (FADC).  
2.5.7.1 ADC Block Diagram  
The analog to digital converter module (ADC) allows the conversion of analog input  
values into discrete digital values based on the successive approximation method.  
This module contains 3 independent kernels (ADC0, ADC1, ADC2) that can operate  
autonomously or can be synchronized to each other. An ADC kernel is a unit used to  
convert an analog input signal (done by an analog part) and provides means for  
triggering conversions, data handling and storage (done by a digital part).  
analog part kernel 0  
digital part kernel 0  
analog  
inputs  
AD  
converter  
data (result)  
handling  
conversion  
control  
request  
control  
analog part kernel 1  
digital part kernel 1  
analog  
inputs  
AD  
converter  
data (result)  
handling  
bus  
inter-  
face  
conversion  
control  
request  
control  
analog part kernel 2  
digital part kernel 2  
analog  
inputs  
AD  
converter  
data (result)  
handling  
conversion  
control  
request  
control  
ADC_3_kernels  
Figure 12  
ADC Module with three ADC Kernels  
Features of the analog part of each ADC kernel:  
Data Sheet  
48  
V1.1, 2009-05  
TC1197  
Introduction  
• Input voltage range from 0V to analog supply voltage  
• Analog supply voltage range from 3.3 V to 5 V (single supply)  
(5V nominal supply voltage, performance degradation accepted for lower voltages)  
• Input multiplexer width of 16 possible analog input channels (not all of them are  
necessarily available on pins)  
• Performance for 12 bit resolution (@fADCI = 10 MHz):  
- conversion time about 2µs, TUE1) of ±4 LSB12 @ operating voltage 5 V  
- conversion time about 2µs, TUE of ±4 LSB12 @ operating voltage 3.3 V  
• VAREF and 1 alternative reference input at channel 0  
• Programmable sample time (in periods of fADCI  
)
• Wide range of accepted analog clock frequencies fADCI  
• Multiplexer test mode (channel 7 input can be connected to ground via a resistor for  
test purposes during run time by specific control bit)  
• Power saving mechanisms  
Features of the digital part of each ADC kernel:  
• Independent result registers (16 independent registers)  
• 5 conversion request sources (e.g. for external events, auto-scan, programmable  
sequence, etc.)  
• Synchronization of the ADC kernels for concurrent conversion starts  
• Control an external analog multiplexer, respecting the additional set up time  
• Programmable sampling times for different channels  
• Possibility to cancel running conversions on demand with automatic restart  
• Flexible interrupt generation (possibility of DMA support)  
• Limit checking to reduce interrupt load  
• Programmable data reduction filter by adding conversion results  
• Support of conversion data FIFO  
• Support of suspend and power down modes  
• Individually programmable reference selection for each channel (with exception of  
dedicated channels always referring to VAREF  
)
1) This value reflects the ADC module capability in an adapted electrical environment, e.g. characterized by  
“clean” routing of analog and digital signals and separation of analog and digital PCB areas, low noise on  
analog power supply (< 30mV), low switching activity of digital pins near to the ADC, etc.  
Data Sheet  
49  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.7.2 FADC Short Description  
General Features  
• Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz)  
• 10-bit A/D conversion (higher resolution can be achieved by averaging of  
consecutive conversions in digital data reduction filter)  
• Successive approximation conversion method  
• Two differential input channels with impedance control available on dedicated pins  
• Two differential input channels with impedance control overlaid with ADC1 inputs  
• Each differential input channel can also be used as single-ended input  
• Offset calibration support for each channel  
• Programmable gain of 1, 2, 4, or 8 for each channel  
• Free-running (Channel Timers) or triggered conversion modes  
• Trigger and gating control for external signals  
• Built-in Channel Timers for internal triggering  
• Channel timer request periods independently selectable for each channel  
• Selectable, programmable digital anti-aliasing and data reduction filter block with four  
independent filter units  
VDDAF  
VFAGND VSSAF  
VFAREF  
VDDMF VDDIF  
VSSMF  
fFADC  
fCLC  
Data  
Reduction  
Unit  
Clock  
Control  
FAIN0P  
FAIN0N  
FAIN1P  
FAIN1N  
FAIN2P  
FAIN2N  
FAIN3P  
FAIN3N  
input  
channel 0  
A/D  
Control  
input  
channel 1  
A/D  
Converter  
Stage  
SRx  
SRx  
Interrupt  
Control  
input  
channel 2  
input  
channel 3  
DMA  
TS[H:A]  
GS[H:A]  
Channel  
Trigger  
Control  
Channel  
Timers  
MCB06065_m4  
Figure 13  
Block Diagram of the FADC Module with 4 Input Channels  
Data Sheet  
50  
V1.1, 2009-05  
TC1197  
Introduction  
As shown in Figure 13, the main FADC functional blocks are:  
• An Input Structure containing the differential inputs and impedance control.  
• An A/D Converter Stage responsible for the analog-to-digital conversion including an  
input multiplexer to select between the channel amplifiers  
• A Data Reduction Unit containing programmable anti-aliasing and data reduction  
filters  
• A Channel Trigger Control block determining the trigger and gating conditions for the  
FADC channels  
• A Channel Timer for each channel to independently trigger the conversions  
• An A/D Control block responsible for the overall FADC functionality  
FADC Power Supply and References  
The FADC module is supplied by the following power supply and reference voltage lines:  
• VDDMF / VSSMF: FADC Analog Channel Amplifier Power Supply (3.3 V)  
• VDDIF / VSSMF: FADC Analog Input Stage Power Supply (3.3 - 5 V),  
the VDDIF supply does not appear as supply pin, because it is internally connected to  
the VDDM supply of the ADC that is sharing the FADC input pins.  
• VDDAF / VSSAF: FADC Analog Part Power Supply (1.5 V),  
to be fed in externally  
• VFAREF / VFAGND: FADC Reference Voltage (3.3 V max.) and FADC Reference Ground  
Input Structure  
The input structure of the FADC in the TC1197 contains:  
• A differential analog input stage for each input channel to select the input impedance  
(differential or single-ended measurement) and to decouple the FADC input signal  
from the pins.  
• Input channels 2 and 3 are overlaid with ADC1 input signals (AN28, AN29, AN30,  
AN31), whereas input channels 0 and 1 are available on dedicated input pins (AN32,  
AN33, AN34, AN35).  
• A channel amplifier for each input channel with a settling time (about 5µs) when  
changing the characteristics of an input stage (changing between unused,  
differential, single-ended N, or single-ended P mode).  
Data Sheet  
51  
V1.1, 2009-05  
TC1197  
Introduction  
Analog Input  
Stages  
Channel Amplifier  
Stages  
Converter Stage  
V
DDMF  
FAIN0P  
FAIN0N  
Rp  
conversion  
control  
A/D  
Control  
Rn  
gain  
VSSMF  
CHNR  
Rp  
Rn  
V
DDMF  
FAIN2P  
FAIN2N  
V
SSMF  
A/D  
Rp  
Rn  
V
DDMF  
FAIN1P  
FAIN1N  
V
DDAF  
V
SSAF  
VSSMF  
Rp  
Rn  
V
DDMF  
FAIN3P  
FAIN3N  
VSSMF  
MCA06432_m4n  
V
DDIF  
VSSMF  
Figure 14  
FADC Input Structure in TC1197  
Data Sheet  
52  
V1.1, 2009-05  
TC1197  
Introduction  
2.5.8  
External Bus Interface  
The External Bus Unit (EBU) of the TC1197 controls the accesses from peripheral units  
to external memories.  
Features:  
• 64-bit internal LMB interface  
• 32-bit demultiplexed / 16-bit multiplexed external bus interface (3.3V, 2.5V)  
– Support for Intel-style and Motorola-style interface signals  
– Support for Burst Flash memory devices  
– Flexibly programmable access parameters  
– Programmable chip select lines  
– Little-endian support  
• Examples for memories that has to be supported  
– Burst Flash:  
– Spansion: S29CD016, S29CD032  
– Spansion: S29CL032J1RFAM010 @3,3V  
– ST: M58BW016, M58BW032  
– ST: M58BW032GB B45ZA3T @3,3V  
– Flash (for 16 bit muxed mode):  
http://www.spansion.com/products/Am29LV160B.html  
– SRAM (for 16 bit muxed mode):  
http://www.idt.com/products/files/10372/71V016saautomotive.pdf  
http://213.174.55.51/zmd.biz/pdf/ UL62H1616A.pdf  
– IDT 71V416YS15BEI  
• Scalable external bus frequency  
– Derived from LMB frequency (fCPU) divided by 1, 2, 3, or 4  
– Maximum 75 MHz1)  
• Data buffering supported  
– Code prefetch buffer  
– Read/write buffer  
2.6  
On-Chip Debug Support (OCDS)  
The TC1197 contains resources for different kinds of “debugging”, covering needs from  
software development to real-time-tuning. These resources are either embedded in  
specific modules (e.g. breakpoint logic of the TriCore) or part of a central peripheral  
(known as CERBERUS).  
1) Maximum frequency of today available automotive Burst Flash devices.  
Data Sheet  
53  
V1.1, 2009-05  
TC1197  
Introduction  
2.6.1  
On-Chip Debug Support  
The classic software debug approach (start/stop, single-stepping) is supported by  
several features labelled “OCDS Level 1”:  
• Run/stop and single-step execution independently for TriCore and PCP.  
• Means to request all kinds of reset without usage of sideband pins.  
• Halt-after-Reset for repeatable debug sessions.  
• Different Boot modes to use application software not yet programmed to the Flash.  
• A total of four hardware breakpoints for the TriCore based on instruction address,  
data address or combination of both.  
• Unlimited number of software breakpoints (DEBUG instruction) for TriCore and PCP.  
• Debug event generated by access to a specific address via the system bus.  
• Tool access to all SFRs and internal memories independent of the Cores.  
• Two central Break Switches to collect debug events from all modules (TriCore, PCP,  
DMA, BCU, break input pins) and distribute them selectively to breakable modules  
(TriCore, PCP, break output pins).  
• Central Suspend Switch to suspend parts of the system (TriCore, PCP, Peripherals)  
instead if breaking them as reaction to a debug event.  
• Dedicated interrupt resources to handle debug events inside TriCore (breakpoint  
trap, software interrupt) and Cerberus (can trigger PCP), e.g. for implementing  
Monitor programs.  
• Access to all OCDS Level 1 resources also for TriCore and PCP themselves for  
debug tools integrated into the application code.  
• Triggered Transfer of data in response to a debug event; if target is programmed to  
be a device interface simple variable tracing can be done.  
• In depth performance analysis and profiling support given by the Emulation Device  
through MCDS Event Counters driven by a variety of trigger signals (e.g. cache hit,  
wait state, interrupt accepted).  
2.6.2  
Real Time Trace  
For detailed tracing of the system’s behavior a pin-compatible Emulation Device will be  
available.1)  
2.6.3  
Calibration Support  
Two main use cases are catered for by resources in addition the OCDS Level 1  
infrastructure: Overlay of non-volatile on-chip memory and non-intrusive signaling:  
• 8 KB SRAM for Overlay.  
• Can be split into up to 16 blocks which can overlay independent regions of on-chip  
Data Flash.  
1) The OCDS L2 interface of AudoNG is not available.  
Data Sheet  
54  
V1.1, 2009-05  
TC1197  
Introduction  
• Changing the configuration is triggered by a single SFR access to maintain  
consistency.  
• Overlay configuration switch does not require the TriCore to be stopped or  
suspended.  
• Invalidation of the Data Cache (maintaining write-back data) can be done  
concurrently with the same SFR.  
• 256 KB additional Overlay RAM on Emulation Device.  
• The 256 KB Trace memory of the Emulation Device can optionally be used for  
Overlay also.  
• A dedicated trigger SFR with 32 independent status bits is provided to centrally post  
requests from application code to the host computer.  
• The host is notified automatically when the trigger SFR is updated by the TriCore or  
PCP. No polling via a system bus is required.  
2.6.4  
Tool Interfaces  
Three options exist for the communication channel between Tools (e.g. Debugger,  
Calibration Tool) and TC1197:  
• Two wire DAP (Device Access Port) protocol for long connections or noisy  
environments.  
• Four (or five) wire JTAG (IEEE 1149.1) for standardized manufacturing tests.  
• CAN (plus software linked into the application code) for low bandwidth deeply  
embedded purposes.  
• DAP and JTAG are clocked by the tool.  
• Bit clock up to 40 MHz for JTAG, up to 80 MHz for DAP.  
• Hot attach (i.e. physical disconnect/reconnect of the host connection without reset of  
the TC1197) for all interfaces.  
• Infineon standard DAS (Device Access Server) implementation for seamless,  
transparent tool access over any supported interface.  
• Lock mechanism to prevent unauthorized tool access to critical application code.  
2.6.5  
Self-Test Support  
Some manufacturing tests can be invoked by the application (e.g. after power-on) if  
needed:  
• Hardware-accelerated checksum calculation (e.g. for Flash content).  
• RAM tests optimized for the implemented architecture.  
2.6.6  
FAR Support  
To efficiently locate and identify faults after integration of a TC1197 into a system special  
functions are available:  
• Boundary Scan (IEEE 1149.1) via JTAG and DAP.  
Data Sheet  
55  
V1.1, 2009-05  
TC1197  
Introduction  
• SSCM (Single Scan Chain Mode1)) for structural scan testing of the chip itself.  
1) This function requires access to some device pins (e.g. TESTMODE) in addition to those needed for OCDS.  
Data Sheet  
56  
V1.1, 2009-05  
TC1197  
Pinning  
3
Pinning  
3.1  
TC1197 Pin Definition and Functions: PG-BGA-416-10  
Figure 15 is showing the TC1197 Logic Symbol for the package variant:  
PG-BGA-416-10.  
Alternate Functions :  
PORST  
16  
TESTMODE  
ESR0  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
GPTA / HWCFG  
General Control  
16  
16  
16  
16  
16  
12  
8
GPTA / MLI0 / ERU / SSC1  
GPTA / SSC0 / SSC1  
ESR1  
TRST  
TCK / DAP0  
GPTA  
TDI / BRKIN/  
BRKOUT  
OCDS /  
JTAG Control  
ASC0 / ASC1 / MSC0 /  
MSC1 / LVDS / MLI0  
TDO /BRKOUT/  
DAP2 / BRKIN  
ASC0 / ASC1 / SSC1 / CAN /  
ERU / ADC-Mux  
TMS / DAP1  
XTAL1  
8
MLI1 / GPTA  
XTAL2  
VDD OSC  
15  
MSC0 / MSC1 / GPTA  
SSC0  
VDD OSC3  
6
16  
8
Oscillator  
Port 10  
Port 11  
Port 12  
Port 13  
Port 14  
Port 15  
Port 16  
VSSOSC  
/
TC1197  
VSS  
EBU  
VDD PF  
EBU  
VDD PF3C3  
16  
16  
16  
9
11  
13  
3
GPTA / EBU  
GPTA / EBU  
EBU  
VDD EBU  
VDD P  
VD D  
Digital Circuitry  
Power Supply  
VD DFL3  
VDD SBRAM  
VSS  
4
EBU  
79  
VSSAF  
ADC  
Analog Inputs  
VSSMF  
AN[43:0]  
VFAGND  
VFAR EF  
VDD MF  
VDD AF  
FADC Analog  
Power Supply  
3
VAREFx  
VAGN Dx  
VD DM  
3
ADC0 /ADC1  
Analog Power Supply  
9
VSSM  
N.C.  
TC1197_LogSym_416  
Figure 15  
TC1197 Logic Symbol for the package variant PG-BGA-416-10.  
Data Sheet  
57  
V1.1, 2009-05  
TC1197  
Pinning  
3.1.1  
TC1197 PG-BGA-416-10 Package Variant Pin Configuration  
Figure 16 shows the TC1197 pin configuration for the PG-BGA-416-10 package variant.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
A
B
A
VDDFL3  
ESR1 ESR0  
VDDP VSS  
N.C. P2.9 P2.13 P2.15 P0.14 P0.5 P0.2 P0.1 P0.0 P3.14 P3.5 P3.1 P5.1 P5.2 P5.7 P5.12 P5.15  
P2.6 P2.7 P2.10 P2.14 P0.9 P0.6 P0.4 P0.3 P3.15 P3.6 P3.3 P3.0 P5.0 P5.3 P5.6 P5.13 P5.14  
P9.0 P9.3 P9.9  
P9.1 P9.2 P9.10  
N.C.  
PO TEST  
B
VDDFL3  
VDDP VSS  
VDD  
MODE  
RST  
C
C
VDDP VSS  
VDD  
P2.5 P2.8 P2.11 P2.12 P0.12 P0.10 P0.8 P0.7 P3.7 P3.10 P3.9 P3.4 P3.2 P5.5 P5.4 P5.9 P5.10 P5.11 P9.6 P9.8 P9.11 N.C.  
P9.13  
P9.14  
D
D
VDDP VSS  
VDD  
VDDP VSS  
VDD  
VDDP VSS VDD TDO  
P2.4 P2.3 P2.2 P0.15 P0.13 P0.11  
P6.12 P6.11 P6.6 P6.9  
P3.8 P3.12 P3.13 P3.11  
P5.8 P9.4 P9.5 P9.7 P9.12  
VDD  
OSC3  
E
E
VDD TCK TDI  
VSS  
OSC  
VDD  
OSC  
F
F
TRST TMS  
P6.14 P6.10 P6.4 P6.8  
XTAL XTAL  
G
G
H
VDDPF VDDPF3  
P6.15 P6.13 P6.7 P6.5  
2
1
H
VDDFL3 VDD  
VDDEBU VDDEBU VDDEBU VDDEBU  
P11.3 P12.6 P12.7 P11.0  
P8.1 P8.0  
J
J
VSS  
P8.4 P8.3 P8.2  
P8.7 P8.5 P8.6  
K
K
VDDP  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P11.7 P11.4 P11.1 P11.2  
P11.  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L
L
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P1.15 P1.14 P1.13 P1.11  
P1.10 P1.9 P1.8 P1.5  
P1.3 P1.7 P1.6 P1.4  
P11.5 P11.6  
11  
P11.  
10  
M
N
M
N
VDDEBU  
P11.9 P11.8  
P11. P11. P11. P11.  
13  
14  
15  
12  
P
P
VDD  
P1.2 P1.1 P1.0 P1.12  
VDD  
P12.1 P12.2 P12.0  
P12.3 P12.5 P12.4  
P13.1 P13.3 P13.0  
R
R
VDD  
VSS  
P7.1 P7.0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SBRAM  
T
T
VSS  
VDDEBU  
P7.6 P7.5 P7.4  
U
U
AN23 P7.7 P7.3 P7.2  
AN22 AN21 AN19 AN16  
P13.6 P13.9 P13.5 P13.2  
P13.  
V
V
VDD  
P13.8 P13.4  
13  
P13.  
P13.7  
12  
W
Y
W
Y
VDDM  
VSS  
AN20 AN17 AN13  
AN18 AN14 AN10  
P14.0  
P13. P13.  
VSSM  
VDDEBU  
P14.2  
14  
10  
P13.  
11  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
AN15 AN11 AN5 AN2  
P14.3 P14.6 P14.1  
P13.  
15  
VDD  
AN12 AN9 AN3 AN7  
P14.5 P14.4  
P14.  
VSS  
VSS  
VSS  
VDDEBU  
VAGND1  
VDDAF  
VDD  
P10.5 VDDP  
VDD  
VDDEBU VSS  
AN8 AN4 AN32 AN38 AN42  
AN6 AN1 AN34 AN40 AN35  
AN26 AN24  
AN27 AN25  
P4.4 P4.8 P4.12  
N.C.  
P14.9 P14.7  
12  
P14. P14.  
VAREF1  
VAREF2  
P10.2 VDDP P15.5 P16.1 P15.3 P15.2 P15.1 P16.2  
P15.  
P4.0 P4.2 P4.5 P4.11 P4.15  
N.C.  
P14.8  
P14. P14. P14.  
15  
11  
VAREF0  
VFAGND VDDMF  
P10.4 P10.0  
VDDP  
P15.4 P15.7 P16.3  
P15.0  
N.C. N.C.  
AN0 AN33 AN36 AN41  
N.C. AN37 AN39 AN43  
AN28 AN30  
AN29 AN31  
P4.1 P4.3 P4.7 P4.13  
P4.6 P4.9 P4.10 P4.14  
11  
P15.8 P15.9  
20 21  
14  
13  
10  
P15.  
P16.0 P15.6  
12  
P15. P15. P15. P15.  
VAGND0  
5
VFAREF VSSMF  
P10.3 P10.1  
14 15  
VDDP  
16  
N.C.  
10  
13  
14  
15  
1
2
3
4
6
7
8
9
10  
11  
12  
13  
17  
18  
19  
22  
23  
24  
25  
26  
mca05584_97.vsd  
Figure 16  
TC1197 Pinning for PG-BGA-416-10 Package  
Data Sheet  
58  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package)  
Symbol Ctrl. Type Function  
Port 0  
A9  
P0.0  
I/O0 A1/  
Port 0 General Purpose I/O Line 0  
PU  
HWCFG0  
OUT56  
OUT56  
OUT80  
P0.1  
I
Hardware Configuration Input 0  
OUT56 Line of GPTA0  
O1  
O2  
OUT56 Line of GPTA1  
O3  
OUT80 Line of LTCA2  
A8  
A7  
B8  
I/O0 A1/  
Port 0 General Purpose I/O Line 1  
Hardware Configuration Input 1  
OUT57 Line of GPTA0  
PU  
HWCFG1  
OUT57  
OUT57  
OUT81  
P0.2  
I
O1  
O2  
OUT57 Line of GPTA1  
O3  
OUT81 Line of LTCA2  
I/O0 A1/  
Port 0 General Purpose I/O Line 2  
Hardware Configuration Input 2  
OUT58 Line of GPTA0  
PU  
HWCFG2  
OUT58  
OUT58  
OUT82  
P0.3  
I
O1  
O2  
OUT58 Line of GPTA1  
O3  
OUT82 Line of LTCA2  
I/O0 A1/  
Port 0 General Purpose I/O Line 3  
Hardware Configuration Input 3  
OUT59 Line of GPTA0  
PU  
HWCFG3  
OUT59  
OUT59  
OUT83  
I
O1  
O2  
O3  
OUT59 Line of GPTA1  
OUT83 Line of LTCA2  
Data Sheet  
59  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
B7  
P0.4  
I/O0 A1/  
Port 0 General Purpose I/O Line 4  
PU  
HWCFG4  
OUT60  
OUT60  
OUT84  
P0.5  
I
Hardware Configuration Input 4  
OUT60 Line of GPTA0  
OUT60 Line of GPTA1  
OUT84 Line of LTCA2  
Port 0 General Purpose I/O Line 5  
Hardware Configuration Input 5  
OUT61 Line of GPTA0  
OUT61 Line of GPTA1  
OUT85 Line of LTCA2  
Port 0 General Purpose I/O Line 6  
Hardware Configuration Input 6  
OUT62 Line of GPTA0  
OUT62 Line of GPTA1  
OUT86 Line of LTCA2  
Port 0 General Purpose I/O Line 7  
Hardware Configuration Input 7  
OUT63 Line of GPTA0  
OUT63 Line of GPTA1  
OUT87 Line of LTCA2  
Port 0 General Purpose I/O Line 8  
-
O1  
O2  
O3  
A6  
B6  
C8  
C7  
I/O0 A1/  
PU  
HWCFG5  
OUT61  
OUT61  
OUT85  
P0.6  
I
O1  
O2  
O3  
I/O0 A1/  
PU  
HWCFG6  
OUT62  
OUT62  
OUT86  
P0.7  
I
O1  
O2  
O3  
I/O0 A1/  
PU  
HWCFG7  
OUT63  
OUT63  
OUT87  
P0.8  
I
O1  
O2  
O3  
I/O0 A1/  
PU  
Reserved  
Reserved  
Reserved  
O1  
O2  
O3  
-
-
Data Sheet  
60  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
B5  
P0.9  
I/O0 A1/  
Port 0 General Purpose I/O Line 9  
PU  
Reserved  
Reserved  
Reserved  
Reserved  
P0.10  
I
-
O1  
-
O2  
-
O3  
-
C6  
D6  
C5  
D5  
I/O0 A2/  
Port 0 General Purpose I/O Line 10  
PU  
Reserved  
Reserved  
Reserved  
P0.11  
O1  
-
O2  
-
O3  
-
I/O0 A2/  
Port 0 General Purpose I/O Line 11  
PU  
Reserved  
Reserved  
Reserved  
P0.12  
O1  
-
O2  
-
O3  
-
I/O0 A2/  
Port 0 General Purpose I/O Line 12  
PU  
Reserved  
Reserved  
Reserved  
P0.13  
O1  
-
O2  
-
O3  
-
I/O0 A1/  
Port 0 General Purpose I/O Line 13  
PU  
Reserved  
Reserved  
Reserved  
Reserved  
P0.14  
I
-
O1  
-
O2  
-
O3  
-
A5  
I/O0 A2/  
Port 0 General Purpose I/O Line 14  
PU  
Reserved  
Reserved  
Reserved  
O1  
-
-
-
O2  
O3  
Data Sheet  
61  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
D4  
P0.15  
I/O0 A1/  
Port 0 General Purpose I/O Line 15  
PU  
Reserved  
Reserved  
Reserved  
O1  
-
-
-
O2  
O3  
Port 1  
P3  
P1.0  
I/O0 A2/  
Port 1 General Purpose I/O Line 0  
PU  
REQ0  
I
External trigger Input 0  
EXTCLK1  
Reserved  
Reserved  
P1.1  
O1  
External Clock Output 1  
O2  
-
O3  
-
P2  
P1  
N1  
I/O0 A1/  
Port 1 General Purpose I/O Line 1  
PU  
REQ1  
I
External trigger Input 1  
Reserved  
Reserved  
Reserved  
P1.2  
O1  
-
O2  
-
O3  
-
I/O0 A1/  
Port 1 General Purpose I/O Line 2  
PU  
REQ2  
I
External trigger Input 2  
Reserved  
Reserved  
Reserved  
P1.3  
O1  
-
O2  
-
O3  
-
I/O0 A1/  
Port 1 General Purpose I/O Line 3  
External trigger Input 3  
PU  
REQ3  
I
TREADY0B  
Reserved  
Reserved  
Reserved  
I
MLI0 Transmit Channel ready Input B  
O1  
O2  
O3  
-
-
-
Data Sheet  
62  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
N4  
P1.4  
I/O0 A2/  
Port 1 General Purpose I/O Line 4  
MLI0 Transmit Channel Clock Output  
PU  
TCLK0  
O1  
Reserved  
Reserved  
P1.5  
O2  
-
O3  
-
M4  
I/O0 A1/  
Port 1 General Purpose I/O Line 35  
MLI0 Transmit Channel ready Input A  
-
PU  
TREADY0A  
Reserved  
Reserved  
Reserved  
P1.6  
I
O1  
O2  
-
O3  
-
N3  
N2  
M3  
I/O0 A2/  
Port 1 General Purpose I/O Line 6  
MLI0 Transmit Channel valid Output A  
Slave Select Output Line 10  
-
PU  
TVALID0A  
SLSO10  
Reserved  
P1.7  
O1  
O2  
O3  
I/O0 A2/  
Port 1 General Purpose I/O Line 7  
MLI0 Transmit Channel Data Output  
-
PU  
TData0  
Reserved  
Reserved  
P1.8  
O1  
O2  
O3  
-
I/O0 A1/  
Port 1 General Purpose I/O Line 8  
MLI0 Receive Channel Clock Input A  
OUT64 Line of GPTA0  
OUT64 Line of GPTA1  
OUT88 Line of LTCA2  
Port 1 General Purpose I/O Line 9  
MLI0 Receive Channel ready Output A  
Slave Select Output Line 11  
OUT65 Line of GPTA0  
PU  
RCLK0A  
OUT64  
OUT64  
OUT88  
P1.9  
I
O1  
O2  
O3  
M2  
I/O0 A2/  
PU  
RREADY0A O1  
SLSO11  
OUT65  
O2  
O3  
Data Sheet  
63  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
M1  
P1.10  
I/O0 A1/  
Port 1 General Purpose I/O Line 10  
PU  
RVALID0A  
OUT66  
OUT66  
OUT90  
P1.11  
I
MLI0 Receive Channel valid Input A  
OUT66 Line of GPTA0  
O1  
O2  
OUT66 Line of GPTA1  
O3  
OUT90 Line of LTCA2  
L4  
I/O0 A1/  
Port 1 General Purpose I/O Line 11  
MLI0 Receive Channel Data Input A  
OUT67 Line of GPTA0  
PU  
RData0A  
OUT67  
OUT67  
OUT91  
P1.12  
I
O1  
O2  
OUT67 Line of GPTA1  
O3  
OUT91 Line of LTCA2  
P4  
L3  
I/O0 A2/  
Port 1 General Purpose I/O Line 12  
External Clock Output 0  
PU  
EXTCLK0  
OUT68  
OUT68  
P1.13  
O1  
O2  
OUT68 Line of GPTA0  
O3  
OUT68 Line of GPTA1  
I/O0 A1/  
Port 1 General Purpose I/O Line 13  
MLI0 Receive Channel Clock Input B  
OUT69 Line of GPTA0  
PU  
RCLK0B  
OUT69  
OUT69  
OUT93  
P1.14  
I
O1  
O2  
OUT69 Line of GPTA1  
O3  
OUT93 Line of LTCA2  
L2  
I/O0 A1/  
Port 1 General Purpose I/O Line 14  
MLI0 Receive Channel valid Input B  
OUT70 Line of GPTA0  
PU  
RVALID0B  
OUT70  
OUT70  
OUT94  
I
O1  
O2  
O3  
OUT70 Line of GPTA1  
OUT94 Line of LTCA2  
Data Sheet  
64  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
L1  
P1.15  
I/O0 A1/  
Port 1 General Purpose I/O Line 15  
PU  
RData0B  
OUT70  
OUT70  
OUT95  
I
MLI0 Receive Channel Data Input B  
OUT71 Line of GPTA0  
O1  
O2  
O3  
OUT71 Line of GPTA1  
OUT95 Line of LTCA2  
Port 2  
D3  
P2.2  
I/O0 A2/  
Port 2 General Purpose I/O Line 2  
Slave Select Output Line 2  
PU  
SLSO02  
SLSO12  
O1  
O2  
O3  
Slave Select Output Line 12  
SLSO02  
AND  
Slave Select Output Line 2 AND Slave Select  
Output Line 12  
SLSO12  
D2  
D1  
P2.3  
I/O0 A2/  
Port 2 General Purpose I/O Line 3  
Slave Select Output Line 3  
PU  
SLSO03  
SLSO13  
O1  
O2  
O3  
Slave Select Output Line 13  
SLSO03  
AND  
SLSO13  
Slave Select Output Line 3 AND Slave Select  
Output Line 13  
P2.4  
I/O0 A2/  
Port 2 General Purpose I/O Line 4  
Slave Select Output Line 4  
PU  
SLSO04  
SLSO14  
O1  
O2  
O3  
Slave Select Output Line 14  
SLSO04  
AND  
Slave Select Output Line 4 AND Slave Select  
Output Line 14  
SLSO14  
Data Sheet  
65  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
C1  
P2.5  
I/O0 A2/  
Port 2 General Purpose I/O Line 5  
PU  
SLSO05  
SLSO15  
O1  
Slave Select Output Line 5  
Slave Select Output Line 15  
O2  
O3  
SLSO05  
AND  
Slave Select Output Line 5 AND Slave Select  
Output Line 15  
SLSO15  
B1  
B2  
C2  
P2.6  
I/O0 A2/  
Port 2 General Purpose I/O Line 6  
Slave Select Output Line 6  
PU  
SLSO06  
SLSO16  
O1  
O2  
O3  
Slave Select Output Line 16  
SLSO06  
AND  
SLSO16  
Slave Select Output Line 6 AND Slave Select  
Output Line 16  
P2.7  
I/O0 A2/  
Port 2 General Purpose I/O Line 7  
Slave Select Output Line 7  
PU  
SLSO07  
SLSO17  
O1  
O2  
O3  
Slave Select Output Line 17  
SLSO07  
AND  
SLSO17  
Slave Select Output Line 7AND Slave Select  
Output Line 17  
P2.8  
IN0  
I/O0 A1/  
Port 2 General Purpose I/O Line 8  
IN0 Line of GPTA0  
PU  
I
IN0  
I
IN0 Line of GPTA1  
IN0  
I
IN0 Line of LTCA2  
OUT0  
OUT0  
OUT0  
O1  
O2  
O3  
OUT0 Line of GPTA0  
OUT0 Line of GPTA1  
OUT0 Line of LTCA2  
Data Sheet  
66  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
A2  
P2.9  
IN1  
I/O0 A1/  
Port 2 General Purpose I/O Line 9  
PU  
I
IN1 Line of GPTA0  
IN1  
I
IN1 Line of GPTA1  
IN1  
I
IN1 Line of LTCA2  
OUT1  
OUT1  
OUT1  
P2.10  
IN2  
O1  
OUT1 Line of GPTA0  
OUT1 Line of GPTA1  
OUT1 Line of LTCA2  
Port 2 General Purpose I/O Line 10  
IN2 Line of GPTA0  
O2  
O3  
B3  
I/O0 A1/  
PU  
I
IN2  
I
IN2 Line of GPTA1  
IN2  
I
IN2 Line of LTCA2  
OUT2  
OUT2  
OUT2  
P2.11  
IN3  
O1  
OUT2 Line of GPTA0  
OUT2 Line of GPTA1  
OUT2 Line of LTCA2  
Port 2 General Purpose I/O Line 11  
IN3 Line of GPTA0  
O2  
O3  
C3  
I/O0 A1/  
PU  
I
IN3  
I
IN3 Line of GPTA1  
IN3  
I
IN3 Line of LTCA2  
OUT3  
OUT3  
OUT3  
O1  
O2  
O3  
OUT3 Line of GPTA0  
OUT3 Line of GPTA1  
OUT3 Line of LTCA2  
Data Sheet  
67  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
C4  
P2.12  
IN4  
I/O0 A1/  
Port 2 General Purpose I/O Line 12  
PU  
I
IN4 Line of GPTA0  
IN4  
I
IN4 Line of GPTA1  
IN4  
I
IN4 Line of LTCA2  
OUT4  
OUT4  
OUT4  
P2.13  
IN5  
O1  
OUT4 Line of GPTA0  
OUT4 Line of GPTA1  
OUT4 Line of LTCA2  
Port 2 General Purpose I/O Line 13  
IN5 Line of GPTA0  
O2  
O3  
A3  
I/O0 A1/  
PU  
I
IN5  
I
IN5 Line of GPTA1  
IN5  
I
IN5 Line of LTCA2  
OUT5  
OUT5  
OUT5  
P2.14  
IN6  
O1  
OUT5 Line of GPTA0  
OUT5 Line of GPTA1  
OUT5 Line of LTCA2  
Port 2 General Purpose I/O Line 14  
IN6 Line of GPTA0  
O2  
O3  
B4  
I/O0 A1/  
PU  
I
IN6  
I
IN6 Line of GPTA1  
IN6  
I
IN6 Line of LTCA2  
OUT6  
OUT6  
OUT6  
O1  
O2  
O3  
OUT6 Line of GPTA0  
OUT6 Line of GPTA1  
OUT6 Line of LTCA2  
Data Sheet  
68  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
A4  
P2.15  
IN7  
I/O0 A1/  
Port 2 General Purpose I/O Line 15  
PU  
I
IN7 Line of GPTA0  
IN7 Line of GPTA1  
IN7 Line of LTCA2  
OUT7 Line of GPTA0  
OUT7 Line of GPTA1  
OUT7 Line of LTCA2  
IN7  
I
IN7  
I
OUT7  
OUT7  
OUT7  
O1  
O2  
O3  
Port 3  
B12  
P3.0  
IN8  
I/O0 A1/  
Port 3 General Purpose I/O Line 0  
IN8 Line of GPTA0  
PU  
I
IN8  
I
IN8 Line of GPTA1  
IN8  
I
IN8 Line of LTCA2  
OUT8  
OUT8  
OUT8  
P3.1  
IN9  
O1  
OUT8 Line of GPTA0  
OUT8 Line of GPTA1  
OUT8 Line of LTCA2  
Port 3 General Purpose I/O Line 1  
IN9 Line of GPTA0  
O2  
O3  
A12  
I/O0 A1/  
PU  
I
IN9  
I
IN9 Line of GPTA1  
IN9  
I
IN9 Line of LTCA2  
OUT9  
OUT9  
OUT9  
O1  
O2  
O3  
OUT9 Line of GPTA0  
OUT9 Line of GPTA1  
OUT9 Line of LTCA2  
Data Sheet  
69  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
C13  
P3.2  
I/O0 A1/  
Port 3 General Purpose I/O Line 2  
PU  
IN10  
I
IN10 Line of GPTA0  
IN10  
I
IN10 Line of GPTA1  
IN10  
I
IN10 Line of LTCA2  
OUT10  
OUT10  
OUT10  
P3.3  
O1  
OUT10 Line of GPTA0  
OUT10 Line of GPTA1  
OUT10 Line of LTCA2  
Port 3 General Purpose I/O Line 3  
IN11 Line of GPTA0  
O2  
O3  
B11  
I/O0 A1/  
PU  
IN11  
I
IN11  
I
IN11 Line of GPTA1  
IN11  
I
IN11 Line of LTCA2  
OUT11  
OUT11  
OUT11  
P3.4  
O1  
OUT11 Line of GPTA0  
OUT11 Line of GPTA1  
OUT11 Line of LTCA2  
Port 3 General Purpose I/O Line 4  
IN12 Line of GPTA0  
O2  
O3  
C12  
I/O0 A1/  
PU  
IN12  
I
IN12  
I
IN12 Line of GPTA1  
IN12  
I
IN12 Line of LTCA2  
OUT12  
OUT12  
OUT12  
O1  
O2  
O3  
OUT12 Line of GPTA0  
OUT12 Line of GPTA1  
OUT12 Line of LTCA2  
Data Sheet  
70  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
A11  
P3.5  
I/O0 A1/  
Port 3 General Purpose I/O Line 5  
PU  
IN13  
I
IN13 Line of GPTA0  
IN13  
I
IN13 Line of GPTA1  
IN13  
I
IN13 Line of LTCA2  
OUT13  
OUT13  
OUT13  
P3.6  
O1  
OUT13 Line of GPTA0  
OUT13 Line of GPTA1  
OUT13 Line of LTCA2  
Port 3 General Purpose I/O Line 6  
IN14 Line of GPTA0  
O2  
O3  
B10  
I/O0 A1/  
PU  
IN14  
I
IN14  
I
IN14 Line of GPTA1  
IN14  
I
IN14 Line of LTCA2  
OUT14  
OUT14  
OUT14  
P3.7  
O1  
OUT14 Line of GPTA0  
OUT14 Line of GPTA1  
OUT14 Line of LTCA2  
Port 3 General Purpose I/O Line 7  
IN15 Line of GPTA0  
O2  
O3  
C9  
I/O0 A1/  
PU  
IN15  
I
IN15  
I
IN15 Line of GPTA1  
IN15  
I
IN15 Line of LTCA2  
OUT15  
OUT15  
OUT15  
O1  
O2  
O3  
OUT15 Line of GPTA0  
OUT15 Line of GPTA1  
OUT15 Line of LTCA2  
Data Sheet  
71  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
D10  
P3.8  
I/O0 A1/  
Port 3 General Purpose I/O Line 8  
PU  
IN16  
I
IN16 Line of GPTA0  
IN16  
I
IN16 Line of GPTA1  
IN16  
I
IN16 Line of LTCA2  
OUT16  
OUT16  
OUT16  
P3.9  
O1  
OUT16 Line of GPTA0  
OUT16 Line of GPTA1  
OUT16 Line of LTCA2  
Port 3 General Purpose I/O Line 9  
IN17 Line of GPTA0  
O2  
O3  
C11  
I/O0 A1/  
PU  
IN17  
I
IN17  
I
IN17 Line of GPTA1  
IN17  
I
IN17 Line of LTCA2  
OUT17  
OUT17  
OUT17  
P3.10  
IN18  
O1  
OUT17 Line of GPTA0  
OUT17 Line of GPTA1  
OUT17 Line of LTCA2  
Port 3 General Purpose I/O Line 10  
IN18 Line of GPTA0  
O2  
O3  
C10  
I/O0 A1/  
PU  
I
IN18  
I
IN18 Line of GPTA1  
IN18  
I
IN18 Line of LTCA2  
OUT18  
OUT18  
OUT18  
O1  
O2  
O3  
OUT18 Line of GPTA0  
OUT18 Line of GPTA1  
OUT18 Line of LTCA2  
Data Sheet  
72  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
D13  
P3.11  
IN19  
I/O0 A1/  
Port 3 General Purpose I/O Line 11  
PU  
I
IN19 Line of GPTA0  
IN19  
I
IN19 Line of GPTA1  
IN19  
I
IN19 Line of LTCA2  
OUT19  
OUT19  
OUT19  
P3.12  
IN20  
O1  
OUT19 Line of GPTA0  
OUT19 Line of GPTA1  
OUT19 Line of LTCA2  
Port 3 General Purpose I/O Line 12  
IN20 Line of GPTA0  
O2  
O3  
D11  
I/O0 A1/  
PU  
I
IN20  
I
IN20 Line of GPTA1  
IN20  
I
IN20 Line of LTCA2  
OUT20  
OUT20  
OUT20  
P3.13  
IN21  
O1  
OUT20 Line of GPTA0  
OUT20 Line of GPTA1  
OUT20 Line of LTCA2  
Port 3 General Purpose I/O Line 13  
IN21 Line of GPTA0  
O2  
O3  
D12  
I/O0 A1/  
PU  
I
IN21  
I
IN21 Line of GPTA1  
IN21  
I
IN21 Line of LTCA2  
OUT21  
OUT21  
OUT21  
O1  
O2  
O3  
OUT21 Line of GPTA0  
OUT21 Line of GPTA1  
OUT21 Line of LTCA2  
Data Sheet  
73  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
A10  
P3.14  
IN22  
I/O0 A1/  
Port 3 General Purpose I/O Line 14  
PU  
I
IN22 Line of GPTA0  
IN22  
I
IN22 Line of GPTA1  
IN22  
I
IN22 Line of LTCA2  
OUT22  
OUT22  
OUT22  
P3.15  
IN23  
O1  
OUT22 Line of GPTA0  
OUT22 Line of GPTA1  
OUT22 Line of LTCA2  
Port 3 General Purpose I/O Line 15  
IN23 Line of GPTA0  
O2  
O3  
B9  
I/O0 A1/  
PU  
I
IN23  
I
IN23 Line of GPTA1  
IN23  
I
IN23 Line of LTCA2  
OUT23  
OUT23  
OUT23  
O1  
O2  
O3  
OUT23 Line of GPTA0  
OUT23 Line of GPTA1  
OUT23 Line of LTCA2  
Port 4  
AD10 P4.0  
IN24  
I/O0 A2/  
Port 4 General Purpose I/O Line 0  
IN24 Line of GPTA0  
PU  
I
IN24  
I
IN24 Line of GPTA1  
IN24  
I
IN24 Line of LTCA2  
OUT24  
O1  
O2  
O3  
OUT24 Line of GPTA0  
OUT24 Line of GPTA1  
OUT24 Line of LTCA2  
OUT24  
OUT24  
Data Sheet  
74  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AE10 P4.1  
IN25  
I/O0 A2/  
Port 4 General Purpose I/O Line 1  
PU  
I
IN25 Line of GPTA0  
IN25  
I
IN25 Line of GPTA1  
IN25  
I
IN25 Line of LTCA2  
OUT25  
O1  
OUT25 Line of GPTA0  
OUT25 Line of GPTA1  
OUT25 Line of LTCA2  
Port 4 General Purpose I/O Line 2  
IN26 Line of GPTA0  
OUT25  
OUT25  
O2  
O3  
AD11 P4.2  
I/O0 A2/  
PU  
IN26  
I
IN26  
I
IN26 Line of GPTA1  
IN26  
I
IN26 Line of LTCA2  
OUT26  
OUT26  
OUT26  
O1  
OUT26 Line of GPTA0  
OUT26 Line of GPTA1  
OUT26 Line of LTCA2  
Port 4 General Purpose I/O Line 3  
IN27 Line of GPTA0  
O2  
O3  
AE11 P4.3  
I/O0 A2/  
PU  
IN27  
I
IN27  
I
IN27 Line of GPTA1  
IN27  
I
IN27 Line of LTCA2  
OUT27  
OUT27  
OUT27  
O1  
O2  
O3  
OUT27 Line of GPTA0  
OUT27 Line of GPTA1  
OUT27 Line of LTCA2  
Data Sheet  
75  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AC12 P4.4  
IN28  
I/O0 A2/  
Port 4 General Purpose I/O Line 4  
PU  
I
IN28 Line of GPTA0  
IN28  
I
IN28 Line of GPTA1  
IN28  
I
IN28 Line of LTCA2  
OUT28  
O1  
OUT28 Line of GPTA0  
OUT28 Line of GPTA1  
OUT28 Line of LTCA2  
Port 4 General Purpose I/O Line 5  
IN29 Line of GPTA0  
OUT28  
OUT28  
O2  
O3  
AD12 P4.5  
I/O0 A2/  
PU  
IN29  
I
IN29  
I
IN29 Line of GPTA1  
IN29  
I
IN29 Line of LTCA2  
OUT29  
OUT29  
OUT29  
O1  
OUT29 Line of GPTA0  
OUT29 Line of GPTA1  
OUT29 Line of LTCA2  
Port 4 General Purpose I/O Line 6  
IN30 Line of GPTA0  
O2  
O3  
AF10 P4.6  
I/O0 A2/  
PU  
IN30  
I
IN30  
I
IN30 Line of GPTA1  
IN30  
I
IN30 Line of LTCA2  
OUT30  
OUT30  
OUT30  
O1  
O2  
O3  
OUT30 Line of GPTA0  
OUT30 Line of GPTA1  
OUT30 Line of LTCA2  
Data Sheet  
76  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AE12 P4.7  
IN31  
I/O0 A2/  
Port 4 General Purpose I/O Line 7  
PU  
I
IN31 Line of GPTA0  
IN31  
I
IN31 Line of GPTA1  
IN31  
I
IN31Line of LTCA2  
OUT31  
O1  
OUT31 Line of GPTA0  
OUT31 Line of GPTA1  
OUT31 Line of LTCA2  
Port 4 General Purpose I/O Line 8  
IN32 Line of GPTA0  
OUT31  
OUT31  
O2  
O3  
AC13 P4.8  
I/O0 A1/  
PU  
IN32  
I
IN32  
I
IN32 Line of GPTA1  
OUT32  
OUT32  
OUT0  
O1  
OUT32 Line of GPTA0  
OUT32 Line of GPTA1  
OUT0 Line of LTCA2  
Port 4 General Purpose I/O Line 9  
IN33 Line of GPTA0  
O2  
O3  
AF11 P4.9  
I/O0 A1/  
PU  
IN33  
IN33  
I
I
IN33 Line of GPTA1  
OUT33  
OUT33  
OUT1  
O1  
OUT33 Line of GPTA0  
OUT33 Line of GPTA1  
OUT1 Line of LTCA2  
Port 4 General Purpose I/O Line 10  
IN34 Line of GPTA0  
O2  
O3  
AF12 P4.10  
IN34  
I/O0 A1/  
PU  
I
IN34  
I
IN34 Line of GPTA1  
OUT34  
OUT34  
OUT2  
O1  
O2  
O3  
OUT34 Line of GPTA0  
OUT34 Line of GPTA1  
OUT2 Line of LTCA2  
Data Sheet  
77  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AD13 P4.11  
IN35  
I/O0 A1/  
Port 4 General Purpose I/O Line 11  
PU  
I
IN35 Line of GPTA0  
IN35  
I
IN35 Line of GPTA1  
OUT35  
OUT35  
OUT3  
O1  
OUT35 Line of GPTA0  
OUT35 Line of GPTA1  
OUT3 Line of LTCA2  
Port 4 General Purpose I/O Line 12  
IN36 Line of GPTA0  
O2  
O3  
AC14 P4.12  
IN36  
I/O0 A1/  
PU  
I
IN36  
I
IN36 Line of GPTA1  
OUT36  
OUT36  
OUT4  
O1  
OUT36 Line of GPTA0  
OUT36 Line of GPTA1  
OUT4 Line of LTCA2  
Port 4 General Purpose I/O Line 13  
IN37 Line of GPTA0  
O2  
O3  
AE13 P4.13  
IN37  
I/O0 A1/  
PU  
I
IN37  
I
IN37 Line of GPTA1  
OUT37  
OUT37  
OUT5  
O1  
OUT37 Line of GPTA0  
OUT37 Line of GPTA1  
OUT5 Line of LTCA2  
Port 4 General Purpose I/O Line 14  
IN38 Line of GPTA0  
O2  
O3  
AF13 P4.14  
IN38  
I/O0 A1/  
PU  
I
IN38  
I
IN38 Line of GPTA1  
OUT38  
OUT38  
OUT6  
O1  
O2  
O3  
OUT38 Line of GPTA0  
OUT38 Line of GPTA1  
OUT6 Line of LTCA2  
Data Sheet  
78  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AD14 P4.15  
IN39  
I/O0 A1/  
Port 4 General Purpose I/O Line 15  
PU  
I
IN39 Line of GPTA0  
IN39 Line of GPTA1  
OUT39 Line of GPTA0  
OUT39 Line of GPTA1  
OUT7 Line of LTCA2  
IN39  
I
OUT39  
OUT39  
OUT7  
O1  
O2  
O3  
Port 5  
B13  
P5.0  
I/O0 A2/  
Port 5 General Purpose I/O Line 0  
ASC0 Receiver Input/Output A  
ASC0 Receiver Input/Output A  
OUT72 Line of GPTA0  
PU  
RXD0A  
RXD0A  
OUT72  
OUT72  
P5.1  
I
O1  
O2  
O3  
OUT72 Line of GPTA1  
A13  
A14  
I/O0 A2/  
Port 5 General Purpose I/O Line 1  
ASC0 Transmitter Output A  
OUT73 Line of GPTA0  
PU  
TXD0  
O1  
OUT73  
OUT73  
P5.2  
O2  
O3  
OUT73 Line of GPTA1  
I/O0 A2/  
Port 5 General Purpose I/O Line 2  
ASC1 Receiver Input/Output A  
ASC1 Receiver Input/Output A  
OUT74 Line of GPTA0  
PU  
RXD1A  
RXD1A  
OUT74  
OUT74  
P5.3  
I
O1  
O2  
O3  
OUT74 Line of GPTA1  
B14  
I/O0 A2/  
Port 5 General Purpose I/O Line 3  
ASC1 Transmitter Output A  
OUT75 Line of GPTA0  
PU  
TXD1  
O1  
OUT75  
OUT75  
O2  
O3  
OUT75 Line of GPTA1  
Data Sheet  
79  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
C15  
P5.4  
I/O0 A2/  
Port 5 General Purpose I/O Line 4  
MSC0 Device Select Output 0  
PU  
EN00  
O1  
RREADY0B O2  
MLI0 Receive Channel ready Output B  
OUT76 Line of GPTA0  
OUT76  
P5.5  
O3  
C14  
I/O0 A2/  
Port 5 General Purpose I/O Line 5  
MSC0 serial Data Input  
PU  
SDI0  
I
OUT77  
OUT77  
OUT101  
P5.6  
O1  
OUT77 Line of GPTA0  
O2  
OUT77 Line of GPTA1  
O3  
OUT101 Line of LTCA2  
B15  
A15  
I/O0 A2/  
Port 5 General Purpose I/O Line 6  
MSC1 Device Select Output 0  
MLI0 Transmit Channel valid Output B  
OUT78 Line of GPTA0  
PU  
EN10  
O1  
TVALID0B  
OUT78  
P5.7  
O2  
O3  
I/O0 A2/  
Port 5 General Purpose I/O Line 7  
MSC1 serial Data Input  
PU  
SDI1  
I
OUT79  
OUT79  
OUT103  
P5.8  
O1  
OUT79 Line of GPTA0  
O2  
OUT79 Line of GPTA1  
O3  
OUT103 Line of LTCA2  
D17  
I/O0 F/  
Port 5 General Purpose I/O Line 8  
PU  
SON0  
O1  
MSC0 Differential Driver serial Data Output  
Negative  
OUT80  
OUT80  
O2  
O3  
OUT80 Line of GPTA0  
OUT 80 Line of GPTA1  
Data Sheet  
80  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
I/O0 F/ Port 5 General Purpose I/O Line 9  
C16  
P5.9  
PU  
SOP0A  
O1  
MSC0 Differential Driver serial Data Output  
Positive A  
OUT81  
OUT81  
P5.10  
O2  
OUT81 Line of GPTA0  
O3  
OUT81 Line of GPTA1  
C17  
C18  
A16  
B16  
I/O0 F/  
Port 5 General Purpose I/O Line 10  
PU  
FCLN0  
O1  
MSC0 Differential Driver Clock Output  
Negative  
OUT82  
OUT82  
P5.11  
O2  
OUT82 Line of GPTA0  
O3  
OUT82 Line of GPTA1  
I/O0 F/  
Port 5 General Purpose I/O Line 11  
PU  
FCLP0A  
O1  
MSC0 Differential Driver Clock Output  
Positive A  
OUT83  
OUT83  
P5.12  
O2  
OUT83 Line of GPTA0  
O3  
OUT83 Line of GPTA1  
I/O0 F/  
Port 5 General Purpose I/O Line 12  
PU  
SON1  
O1  
MSC1 Differential Driver serial Data  
OutputNegative  
OUT84  
OUT84  
P5.13  
O2  
OUT84 Line of GPTA0  
O3  
OUT84 Line of GPTA1  
I/O0 F/  
Port 5 General Purpose I/O Line 13  
PU  
SOP1A  
O1  
MSC1 Differential Driver serial Data Output  
Positive A  
OUT85  
OUT85  
O2  
O3  
OUT85 Line of GPTA0  
OUT85 Line of GPTA1  
Data Sheet  
81  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
I/O0 F/ Port 5 General Purpose I/O Line 14  
MSC1 Differential Driver Clock Output  
B17  
P5.14  
PU  
FCLN1  
O1  
Negative  
OUT86  
OUT86  
P5.15  
O2  
OUT86 Line of GPTA0  
OUT86 Line of GPTA1  
Port 5 General Purpose I/O Line 15  
O3  
A17  
I/O0 F/  
PU  
FCLNP1A  
O1  
MSC1 Differential Driver Clock Output  
Positive A  
OUT87  
OUT87  
O2  
O3  
OUT87 Line of GPTA0  
OUT87 Line of GPTA1  
Port 6  
F3  
P6.4  
I/O0 A2/  
Port 6 General Purpose I/O Line 4  
PU  
MTSR1  
MTSR1  
I
SSC1 Slave Receive Input (Slave Mode)  
O1  
SSC1 Master Transmit Output (Master  
Mode)  
Reserved  
Reserved  
P6.5  
O2  
-
O3  
-
G4  
E3  
I/O0 A2/  
Port 6 General Purpose I/O Line 5  
PU  
MRST1  
MRST1  
Reserved  
Reserved  
P6.6  
I
SSC1 Master Receive Input (Master Mode)  
O1  
SSC1 Slave Transmit Output (Slave Mode)  
O2  
-
O3  
-
I/O0 A2/  
Port 6 General Purpose I/O Line 6  
PU  
SCLK1  
I
SSC1 Clock Input/Output  
SCLK1  
O1  
O2  
O3  
SSC1 Clock Input/Output  
Reserved  
Reserved  
-
-
Data Sheet  
82  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
G3  
P6.7  
I/O0 A2/  
Port 6 General Purpose I/O Line 7  
PU  
SLSI11  
Reserved  
Reserved  
Reserved  
P6.8  
I
SSC1 Slave Select Input  
O1  
-
O2  
-
O3  
-
F4  
I/O0 A2/  
Port 6 General Purpose I/O Line 8  
PU  
RXDCAN0  
I
CAN Node 0 Receiver Input 0  
CAN Node 3 Receiver Input 1  
RXD0B  
Reserved  
RXD0B  
Reserved  
P6.9  
I
ASC0 Receiver Input/Output B  
O1  
-
O2  
ASC0 Receiver Input/Output B  
-
O3  
E4  
F2  
I/O0 A2/  
Port 6 General Purpose I/O Line 9  
CAN Node 0 Transmitter Output  
ASC0 Transmitter Output B  
-
PU  
TXDCAN0  
TXD0  
O1  
O2  
Reserved  
P6.10  
O3  
I/O0 A2/  
Port 6 General Purpose I/O Line 10  
PU  
RXDCAN1  
I
CAN Node 1 Receiver Input 0  
CAN Node 0 Receiver Input 1  
RXD1B  
I
ASC1 Receiver Input/Output B  
Reserved  
RXD1B  
O1  
O2  
O3  
-
ASC1 Receiver Input/Output B  
-
Reserved  
Data Sheet  
83  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
E2  
P6.11  
I/O0 A2/  
Port 6 General Purpose I/O Line 11  
PU  
TXDCAN1  
TXD1  
O1  
CAN Node 1 Transmitter Output  
ASC1 Transmitter Output B  
-
O2  
Reserved  
P6.12  
O3  
E1  
I/O0 A1/  
Port 6 General Purpose I/O Line 12  
PU  
RXDCAN2  
I
CAN Node 2 Receiver Input 0  
CAN Node 1 Receiver Input 1  
Reserved  
Reserved  
Reserved  
Reserved  
P6.13  
I
-
O1  
-
O2  
-
O3  
-
G2  
F1  
I/O0 A2/  
Port 6 General Purpose I/O Line 13  
PU  
TXDCAN2  
Reserved  
Reserved  
P6.14  
O1  
CAN Node 2 Transmitter Output  
O2  
-
O3  
-
I/O0 A1/  
Port 6 General Purpose I/O Line 14  
PU  
RXDCAN3  
I
CAN Node 3 Receiver Input 0  
CAN Node 2 Receiver Input 1  
Reserved  
Reserved  
Reserved  
Reserved  
P6.15  
I
-
O1  
-
O2  
-
O3  
-
G1  
I/O0 A2/  
Port 6 General Purpose I/O Line 15  
PU  
TXDCAN3  
Reserved  
Reserved  
O1  
CAN Node 3 Transmitter Output  
O2  
O3  
-
-
Data Sheet  
84  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Port 7  
R3  
P7.0  
I/O0 A1/  
Port 7 General Purpose I/O Line 0  
External trigger Input 4  
PU  
REQ4  
I
AD2EMUX0 O1  
ADC2 external multiplexer Control Output 2  
Reserved  
Reserved  
P7.1  
O2  
-
O3  
-
R2  
I/O0 A1/  
Port 7 General Purpose I/O Line 1  
PU  
REQ5  
I
External trigger Input 5  
AD0EMUX2 O1  
ADC0 external multiplexer Control Output 2  
Reserved  
Reserved  
P7.2  
O2  
O3  
-
-
U4  
U3  
T3  
I/O0 A1/  
PU  
Port 7 General Purpose I/O Line 2  
AD0EMUX0 O1  
ADC0 external multiplexer Control Output 0  
Reserved  
Reserved  
P7.3  
O2  
O3  
-
-
I/O0 A1/  
PU  
Port 7 General Purpose I/O Line 3  
AD0EMUX1 O1  
ADC0 external multiplexer Control Output 1  
Reserved  
Reserved  
P7.4  
O2  
-
O3  
-
I/O0 A1/  
Port 7 General Purpose I/O Line 4  
PU  
REQ6  
I
External trigger Input 6  
AD2EMUX0 O1  
ADC2 external multiplexer Control Output 0  
Reserved  
Reserved  
O2  
O3  
-
-
Data Sheet  
85  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
T2  
P7.5  
I/O0 A1/  
Port 7 General Purpose I/O Line 5  
External trigger Input 7  
PU  
REQ7  
I
AD2EMUX1 O1  
ADC2 external multiplexer Control Output 1  
Reserved  
Reserved  
P7.6  
O2  
O3  
-
-
T1  
U2  
I/O0 A1/  
PU  
Port 7 General Purpose I/O Line 6  
AD1EMUX0 O1  
ADC1 external multiplexer Control Output 0  
Reserved  
Reserved  
P7.7  
O2  
O3  
-
-
I/O0 A1/  
PU  
Port 7 General Purpose I/O Line 7  
AD1EMUX1 O1  
ADC1 external multiplexer Control Output 1  
Reserved  
Reserved  
O2  
O3  
-
-
Port 8  
H2  
P8.0  
I/O0 A2/  
Port 8 General Purpose I/O Line 0  
I/O Line of GPTA0  
PU  
IN40  
I
IN40  
I
I/O Line of GPTA1  
OUT40  
OUT40  
TCLK1  
O1  
O2  
O3  
I/O Line of GPTA0  
I/O Line of GPTA1  
MLI1 Transmit Channel Clock Output  
Data Sheet  
86  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
H1  
P8.1  
I/O0 A1/  
Port 8 General Purpose I/O Line 1  
PU  
IN41  
I
I/O Line of GPTA0  
I/O Line of GPTA1  
IN41  
I
TREADY1A  
OUT41  
OUT41  
Reserved  
P8.2  
I
MLI1 Transmit Channel ready Input A  
I/O Line of GPTA0  
O1  
O2  
I/O Line of GPTA1  
O3  
-
J3  
J2  
J1  
I/O0 A2/  
Port 8 General Purpose I/O Line 2  
I/O Line of GPTA0  
PU  
IN42  
I
IN42  
I
I/O Line of GPTA1  
OUT42  
OUT42  
TVALID1A  
P8.3  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MLI1 Transmit Channel valid Output A  
Port 8 General Purpose I/O Line 3  
I/O Line of GPTA0  
I/O0 A2/  
PU  
IN43  
I
IN43  
I
I/O Line of GPTA1  
OUT43  
OUT43  
TData1  
P8.4  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MLI1 Transmit Channel Data Output A  
Port 8 General Purpose I/O Line 4  
I/O Line of GPTA0  
I/O0 A1/  
PU  
IN44  
I
IN44  
I
I/O Line of GPTA1  
RCLK1A  
OUT44  
OUT44  
Reserved  
I
MLI1 Receive Channel Clock Input A  
I/O Line of GPTA0  
O1  
O2  
O3  
I/O Line of GPTA1  
-
Data Sheet  
87  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
K2  
P8.5  
I/O0 A2/  
Port 8 General Purpose I/O Line 5  
PU  
IN45  
I
I/O Line of GPTA0  
I/O Line of GPTA1  
I/O Line of GPTA0  
I/O Line of GPTA1  
IN45  
I
OUT45  
OUT45  
O1  
O2  
RREADY1A O3  
MLI1 Receive Channel ready Output A  
Port 8 General Purpose I/O Line 6  
I/O Line of GPTA0  
K3  
P8.6  
I/O0 A1/  
PU  
IN46  
I
IN46  
I
I/O Line of GPTA1  
RVALID1A  
OUT46  
OUT46  
Reserved  
P8.7  
I
MLI1 Receive Channel valid Input A  
I/O Line of GPTA0  
O1  
O2  
O3  
I/O Line of GPTA1  
-
K1  
I/O0 A1/  
Port 8 General Purpose I/O Line 7  
I/O Line of GPTA0  
PU  
IN47  
I
IN47  
I
I/O Line of GPTA1  
RData1A  
OUT47  
OUT47  
Reserved  
I
MLI1 Receive Channel Data Input A  
I/O Line of GPTA0  
O1  
O2  
O3  
I/O Line of GPTA1  
-
Port 9  
Data Sheet  
88  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
A19  
P9.0  
I/O0 A2/  
Port 9 General Purpose I/O Line 0  
PU  
IN48  
I
I/O Line of GPTA0  
IN48  
I
I/O Line of GPTA1  
OUT48  
OUT48  
EN12  
P9.1  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MSC1 Device Select Output 2  
Port 9 General Purpose I/O Line 1  
I/O Line of GPTA0  
B19  
B20  
A20  
I/O0 A2/  
PU  
IN49  
I
IN49  
I
I/O Line of GPTA1  
OUT49  
OUT49  
EN11  
P9.2  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MSC1 Device Select Output 1  
Port 9 General Purpose I/O Line 2  
I/O Line of GPTA0  
I/O0 A2/  
PU  
IN50  
I
IN50  
I
I/O Line of GPTA1  
OUT50  
OUT50  
SOP1B  
P9.3  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MSC1 serial Data Output  
Port 9 General Purpose I/O Line 3  
I/O Line of GPTA0  
I/O0 A2/  
PU  
IN51  
I
IN51  
I
I/O Line of GPTA1  
OUT51  
OUT51  
FCLP1B  
O1  
O2  
O3  
I/O Line of GPTA0  
I/O Line of GPTA1  
MSC1 Clock Output  
Data Sheet  
89  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
D18  
P9.4  
I/O0 A2/  
Port 9 General Purpose I/O Line 4  
PU  
IN52  
I
I/O Line of GPTA0  
IN52  
I
I/O Line of GPTA1  
OUT52  
OUT52  
EN03  
P9.5  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MSC0 Device Select Output 3  
Port 9 General Purpose I/O Line 5  
I/O Line of GPTA0  
’D19  
C19  
D20  
I/O0 A2/  
PU  
IN53  
I
IN53  
I
I/O Line of GPTA1  
OUT53  
OUT53  
EN02  
P9.6  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MSC0 Device Select Output 2  
Port 9 General Purpose I/O Line 6  
I/O Line of GPTA0  
I/O0 A2/  
PU  
IN54  
I
IN54  
I
I/O Line of GPTA1  
OUT54  
OUT54  
EN01  
P9.7  
O1  
I/O Line of GPTA0  
O2  
I/O Line of GPTA1  
O3  
MSC0 Device Select Output 1  
Port 9 General Purpose I/O Line 7  
I/O Line of GPTA0  
I/O0 A2/  
PU  
IN55  
I
IN55  
I
I/O Line of GPTA1  
OUT55  
OUT55  
SOP0B  
O1  
O2  
O3  
I/O Line of GPTA0  
I/O Line of GPTA1  
MSC0 serial Data Output  
Data Sheet  
90  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
C20  
P9.8  
I/O0 A2/  
Port 9 General Purpose I/O Line 8  
PU  
FCLP0B  
FCLP0B  
FCLP0B  
P9.9  
O1  
MSC0 Clock Output  
O2  
MSC0 Clock Output  
O3  
MSC0 Clock Output  
A21  
B21  
I/O0 A1/  
Port 9 General Purpose I/O Line 9  
PU  
Reserved  
Reserved  
Reserved  
P9.10  
O1  
-
O2  
-
O3  
-
I/O0 A1/  
Port 9 General Purpose I/O Line 10  
PU  
EMGSTOP  
Reserved  
Reserved  
Reserved  
P9.11  
I
Emergency Stop  
O1  
-
O2  
-
O3  
-
C21  
D21  
I/O0 A1/  
Port 9 General Purpose I/O Line 11  
PU  
Reserved  
Reserved  
Reserved  
P9.12  
O1  
-
O2  
-
O3  
-
I/O0 A1/  
Port 9 General Purpose I/O Line 12  
PU  
Reserved  
Reserved  
Reserved  
O1  
-
-
-
O2  
O3  
Data Sheet  
91  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
C26  
P9.13  
I/O0 A2/  
Port 9 General Purpose I/O Line 13  
PU  
BRKIN  
I
OCDS Break Input  
Reserved  
Reserved  
Reserved  
BRKOUT  
P9.14  
O1  
-
O2  
-
O3  
-
O
OCDS Break Output  
D26  
I/O0 A2/  
Port 9 General Purpose I/O Line 14  
PU  
BRKIN  
I
OCDS Break Input  
Reserved  
Reserved  
Reserved  
BRKOUT  
O1  
O2  
O3  
O
-
-
-
OCDS Break Output  
Port 10  
AE15 P10.0  
MRST0  
I/O0 A2/  
Port 10 General Purpose I/O Line 0  
PU  
I
SSC0 Master Receive Input (Master Mode)  
MRST0  
O1  
SSC0 Slave Transmit Output (Slave Mode)  
Reserved  
Reserved  
AF15 P10.1  
MTSR0  
O2  
-
O3  
-
I/O0 A2/  
Port 10 General Purpose I/O Line 1  
PU  
I
SSC0 Slave Receive Input (Slave Mode)  
MTSR0  
O1  
SSC0 Master Transmit Output (Master  
Mode)  
Reserved  
Reserved  
O2  
O3  
-
-
Data Sheet  
92  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Pin  
AD15 P10.2  
SLSI01  
I/O0 A1/  
Port 10 General Purpose I/O Line 2  
PU  
I
SSC0 Slave Select Input  
Reserved  
Reserved  
Reserved  
AF14 P10.3  
SCLK0  
O1  
-
O2  
-
O3  
-
I/O0 A2/  
Port 10 General Purpose I/O Line 3  
PU  
I
SSC0 Clock Input/Output  
SCLK0  
O1  
SSC0 Clock Input/Output  
Reserved  
Reserved  
AE14 P10.4  
SLSO00  
O2  
-
O3  
-
I/O0 A2/  
Port 10 General Purpose I/O Line 4  
PU  
O1  
SSC0 Slave Select Output Line 0  
Reserved  
Reserved  
AC15 P10.5  
SLSO01  
O2  
-
O3  
-
I/O0 A2/  
Port 10 General Purpose I/O Line 5  
PU  
O1  
SSC0 Slave Select Output Line 1  
Reserved  
Reserved  
Port 11  
O2  
O3  
-
-
J26  
P11.0  
I/O0 B1/  
Port 11 General Purpose I/O Line 0  
PU  
Reserved  
Reserved  
Reserved  
A0  
O1  
-
O2  
O3  
O
-
-
EBU Address Bus Line 0  
Data Sheet  
93  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
K25  
P11.1  
I/O0 B1/  
Port 11 General Purpose I/O Line 1  
PU  
Reserved  
Reserved  
Reserved  
A1  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 1  
K26  
J23  
K24  
L25  
P11.2  
I/O0 B1/  
Port 11 General Purpose I/O Line 2  
PU  
Reserved  
Reserved  
Reserved  
A2  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 2  
P11.3  
I/O0 B1/  
Port 11 General Purpose I/O Line 3  
PU  
Reserved  
Reserved  
Reserved  
A3  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 3  
P11.4  
I/O0 B1/  
Port 11 General Purpose I/O Line 4  
PU  
Reserved  
Reserved  
Reserved  
A4  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 4  
P11.5  
I/O0 B1/  
Port 11 General Purpose I/O Line 5  
PU  
Reserved  
Reserved  
Reserved  
A5  
O1  
-
O2  
O3  
O
-
-
EBU Address Bus Line 5  
Data Sheet  
94  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
L26  
P11.6  
I/O0 B1/  
Port 11 General Purpose I/O Line 6  
PU  
Reserved  
Reserved  
Reserved  
A6  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 6  
K23  
M26  
M25  
M24  
P11.7  
I/O0 B1/  
Port 11 General Purpose I/O Line 7  
PU  
Reserved  
Reserved  
Reserved  
A7  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 7  
P11.8  
I/O0 B1/  
Port 11 General Purpose I/O Line 8  
PU  
Reserved  
Reserved  
Reserved  
A8  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 8  
P11.9  
I/O0 B1/  
Port 11 General Purpose I/O Line 9  
PU  
Reserved  
Reserved  
Reserved  
A9  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 9  
P11.10  
Reserved  
Reserved  
Reserved  
A10  
I/O0 B1/  
Port 11 General Purpose I/O Line 10  
PU  
O1  
-
O2  
O3  
O
-
-
EBU Address Bus Line 10  
Data Sheet  
95  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
L24  
P11.11  
I/O0 B1/  
Port 11 General Purpose I/O Line 11  
PU  
Reserved  
Reserved  
Reserved  
A11  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 11  
N26  
P11.12  
I/O0 B1/  
Port 11 General Purpose I/O Line 12  
PU  
Reserved  
Reserved  
Reserved  
A12  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 12  
N23  
P11.13  
I/O0 B1/  
Port 11 General Purpose I/O Line 13  
PU  
Reserved  
Reserved  
Reserved  
A13  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 13  
N24  
P11.14  
I/O0 B1/  
Port 11 General Purpose I/O Line 14  
PU  
Reserved  
Reserved  
Reserved  
A14  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 14  
N25  
P11.15  
I/O0 B1/  
Port 11 General Purpose I/O Line 15  
PU  
Reserved  
Reserved  
Reserved  
A15  
O1  
-
O2  
O3  
O
-
-
EBU Address Bus Line 15  
Port 12  
Data Sheet  
96  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
P26  
P12.0  
I/O0 B1/  
Port 12 General Purpose I/O Line 0  
PU  
Reserved  
Reserved  
Reserved  
A16  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 16  
P24  
P25  
R24  
R26  
P12.1  
I/O0 B1/  
Port 12 General Purpose I/O Line 1  
PU  
Reserved  
Reserved  
Reserved  
A17  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 17  
P12.2  
I/O0 B1/  
Port 12 General Purpose I/O Line 2  
PU  
Reserved  
Reserved  
Reserved  
A18  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 18  
P12.3  
I/O0 B1/  
Port 12 General Purpose I/O Line 3  
PU  
Reserved  
Reserved  
Reserved  
A19  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 19  
P12.4  
I/O0 B1/  
Port 12 General Purpose I/O Line 4  
PU  
Reserved  
Reserved  
Reserved  
A20  
O1  
-
O2  
O3  
O
-
-
EBU Address Bus Line 20  
Data Sheet  
97  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
R25  
P12.5  
I/O0 B1/  
Port 12 General Purpose I/O Line 5  
PU  
Reserved  
Reserved  
Reserved  
A21  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 21  
J24  
J25  
P12.6  
I/O0 B1/  
Port 12 General Purpose I/O Line 6  
PU  
Reserved  
Reserved  
Reserved  
A22  
O1  
-
O2  
-
O3  
-
O
EBU Address Bus Line 22  
P12.7  
I/O0 B1/  
Port 12 General Purpose I/O Line 7  
PU  
Reserved  
Reserved  
Reserved  
A23  
O1  
-
O2  
O3  
O
-
-
EBU Address Bus Line 23  
Port 13  
T26  
P13.0  
AD0  
I/O0 B1/  
Port 13 General Purpose I/O Line 0  
EBU Address/Data Bus Line 0  
OUT88 Line of GPTA0  
PU  
I
OUT88  
OUT88  
OUT80  
AD0  
O1  
O2  
O3  
O
OUT88 Line of GPTA1  
OUT80 Line of LTCA2  
EBU Address/Data Bus Line 0  
Data Sheet  
98  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
T24  
P13.1  
AD1  
I/O0 B1/  
Port 13 General Purpose I/O Line 1  
PU  
I
EBU Address/Data Bus Line 1  
OUT89 Line of GPTA0  
OUT89  
OUT89  
OUT81  
AD1  
O1  
O2  
OUT89 Line of GPTA1  
O3  
OUT81 Line of LTCA2  
O
EBU Address/Data Bus Line 1  
Port 13 General Purpose I/O Line 2  
EBU Address/Data Bus Line 2  
OUT90 Line of GPTA0  
U26  
T25  
V26  
P13.2  
AD2  
I/O0 B1/  
PU  
I
OUT90  
OUT90  
OUT82  
AD2  
O1  
O2  
OUT90 Line of GPTA1  
O3  
OUT82 Line of LTCA2  
O
EBU Address/Data Bus Line 2  
Port 13 General Purpose I/O Line 3  
EBU Address/Data Bus Line 3  
OUT91 Line of GPTA0  
P13.3  
AD3  
I/O0 B1/  
PU  
I
OUT91  
OUT91  
OUT83  
AD3  
O1  
O2  
OUT91 Line of GPTA1  
O3  
OUT83 Line of LTCA2  
O
EBU Address/Data Bus Line 3  
Port 13 General Purpose I/O Line 4  
EBU Address/Data Bus Line 4  
OUT92 Line of GPTA0  
P13.4  
AD4  
I/O0 B1/  
PU  
I
OUT92  
OUT92  
OUT84  
AD4  
O1  
O2  
O3  
O
OUT92 Line of GPTA1  
OUT84 Line of LTCA2  
EBU Address/Data Bus Line 4  
Data Sheet  
99  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
U25  
P13.5  
AD5  
I/O0 B1/  
Port 13 General Purpose I/O Line 5  
PU  
I
EBU Address/Data Bus Line 5  
OUT93 Line of GPTA0  
OUT93  
OUT93  
OUT85  
AD5  
O1  
O2  
OUT93 Line of GPTA1  
O3  
OUT85 Line of LTCA2  
O
EBU Address/Data Bus Line 5  
Port 13 General Purpose I/O Line 6  
EBU Address/Data Bus Line 6  
OUT94 Line of GPTA0  
U23  
W26  
V25  
P13.6  
AD6  
I/O0 B1/  
PU  
I
OUT94  
OUT94  
OUT86  
AD6  
O1  
O2  
OUT94 Line of GPTA1  
O3  
OUT86 Line of LTCA2  
O
EBU Address/Data Bus Line 6  
Port 13 General Purpose I/O Line 7  
EBU Address/Data Bus Line 7  
OUT95 Line of GPTA0  
P13.7  
AD7  
I/O0 B1/  
PU  
I
OUT95  
OUT95  
OUT87  
AD7  
O1  
O2  
OUT95 Line of GPTA1  
O3  
OUT87 Line of LTCA2  
O
EBU Address/Data Bus Line 7  
Port 13 General Purpose I/O Line 8  
EBU Address/Data Bus Line 8  
OUT96 Line of GPTA0  
P13.8  
AD8  
I/O0 B1/  
PU  
I
OUT96  
OUT96  
OUT88  
AD8  
O1  
O2  
O3  
O
OUT96 Line of GPTA1  
OUT88 Line of LTCA2  
EBU Address/Data Bus Line 8  
Data Sheet  
100  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
U24  
P13.9  
AD9  
I/O0 B1/  
Port 13 General Purpose I/O Line 9  
PU  
I
EBU Address/Data Bus Line 9  
OUT97 Line of GPTA0  
OUT97  
OUT97  
OUT89  
AD9  
O1  
O2  
OUT97 Line of GPTA1  
O3  
OUT89 Line of LTCA2  
O
EBU Address/Data Bus Line 9  
Port 13 General Purpose I/O Line 10  
EBU Address/Data Bus Line 10  
OUT98 Line of GPTA0  
Y26  
P13.10  
AD10  
I/O0 B1/  
PU  
I
OUT98  
OUT98  
OUT90  
AD10  
O1  
O2  
OUT98 Line of GPTA1  
O3  
OUT90 Line of LTCA2  
O
EBU Address/Data Bus Line 10  
Port 13 General Purpose I/O Line 11  
EBU Address/Data Bus Line 11  
OUT99 Line of GPTA0  
AA26 P13.11  
AD11  
I/O0 B1/  
PU  
I
OUT99  
O1  
OUT99  
O2  
OUT99 Line of GPTA1  
OUT91  
O3  
OUT91 Line of LTCA2  
AD11  
O
EBU Address/Data Bus Line 11  
Port 13 General Purpose I/O Line 12  
EBU Address/Data Bus Line 12  
OUT100 Line of GPTA0  
W25  
P13.12  
AD12  
I/O0 B1/  
PU  
I
OUT100  
OUT100  
OUT92  
AD12  
O1  
O2  
O3  
O
OUT100 Line of GPTA1  
OUT92 Line of LTCA2  
EBU Address/Data Bus Line 12  
Data Sheet  
101  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
V24  
P13.13  
AD13  
I/O0 B1/  
Port 13 General Purpose I/O Line 13  
PU  
I
EBU Address/Data Bus Line 13  
OUT101 Line of GPTA0  
OUT101  
OUT101  
OUT93  
AD13  
O1  
O2  
OUT101 Line of GPTA1  
O3  
OUT93 Line of LTCA2  
O
EBU Address/Data Bus Line 13  
Port 13 General Purpose I/O Line 14  
EBU Address/Data Bus Line 14  
OUT102 Line of GPTA0  
Y25  
P13.14  
AD14  
I/O0 B1/  
PU  
I
OUT102  
OUT102  
OUT94  
AD14  
O1  
O2  
OUT102 Line of GPTA1  
O3  
OUT94 Line of LTCA2  
O
EBU Address/Data Bus Line 14  
Port 13 General Purpose I/O Line 15  
EBU Address/Data Bus Line 15  
OUT103 Line of GPTA0  
AB26 P13.15  
AD15  
I/O0 B1/  
PU  
I
OUT103  
OUT103  
OUT95  
O1  
O2  
O3  
O
OUT103 Line of GPTA1  
OUT95 Line of LTCA2  
AD15  
EBU Address/Data Bus Line 15  
Port 14  
W24  
P14.0  
I/O0 B1/  
Port 14 General Purpose I/O Line 0  
EBU Address/Data Bus Line 16  
OUT96 Line of GPTA0  
PU  
AD16  
I
OUT96  
OUT96  
OUT96  
AD16  
O1  
O2  
O3  
O
OUT96 Line of GPTA1  
OUT96 Line of LTCA2  
EBU Address/Data Bus Line 16  
Data Sheet  
102  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AA25 P14.1  
AD17  
I/O0 B1/  
Port 14 General Purpose I/O Line 1  
PU  
I
EBU Address/Data Bus Line 17  
OUT97 Line of GPTA0  
OUT97  
OUT97  
OUT97  
AD17  
O1  
O2  
OUT97 Line of GPTA1  
O3  
OUT97 Line of LTCA2  
O
EBU Address/Data Bus Line 17  
Port 14 General Purpose I/O Line 2  
EBU Address/Data Bus Line 18  
OUT98 Line of GPTA0  
Y24  
P14.2  
I/O0 B1/  
PU  
AD18  
I
OUT98  
OUT98  
OUT98  
AD18  
O1  
O2  
OUT98 Line of GPTA1  
O3  
OUT98 Line of LTCA2  
O
EBU Address/Data Bus Line 18  
Port 14 General Purpose I/O Line 3  
EBU Address/Data Bus Line 19  
OUT99 Line of GPTA0  
AA23 P14.3  
AD19  
I/O0 B1/  
PU  
I
OUT99  
O1  
OUT99  
O2  
OUT99 Line of GPTA1  
OUT99  
O3  
OUT99 Line of LTCA2  
AD19  
O
EBU Address/Data Bus Line 19  
Port 14 General Purpose I/O Line 4  
EBU Address/Data Bus Line 20  
OUT100 Line of GPTA0  
AB25 P14.4  
AD20  
I/O0 B1/  
PU  
I
OUT100  
OUT100  
OUT100  
AD20  
O1  
O2  
O3  
O
OUT100 Line of GPTA1  
OUT100 Line of LTCA2  
EBU Address/Data Bus Line 20  
Data Sheet  
103  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AB24 P14.5  
AD21  
I/O0 B1/  
Port 14 General Purpose I/O Line 5  
PU  
I
EBU Address/Data Bus Line 21  
OUT101 Line of GPTA0  
OUT101  
O1  
OUT101  
OUT101  
AD21  
O2  
OUT101 Line of GPTA1  
O3  
OUT101 Line of LTCA2  
O
EBU Address/Data Bus Line 21  
Port 14 General Purpose I/O Line 6  
EBU Address/Data Bus Line 22  
OUT102 Line of GPTA0  
AA24 P14.6  
I/O0 B1/  
PU  
AD22  
I
OUT102  
OUT102  
OUT102  
AD22  
O1  
O2  
OUT102 Line of GPTA1  
O3  
OUT102 Line of LTCA2  
O
EBU Address/Data Bus Line 22  
Port 14 General Purpose I/O Line 7  
EBU Address/Data Bus Line 23  
OUT103 Line of GPTA0  
AC26 P14.7  
I/O0 B1/  
PU  
AD23  
I
OUT103  
OUT103  
OUT103  
AD23  
O1  
O2  
OUT103 Line of GPTA1  
O3  
OUT103 Line of LTCA2  
O
EBU Address/Data Bus Line 23  
Port 14 General Purpose I/O Line 8  
EBU Address/Data Bus Line 24  
OUT104 Line of GPTA0  
AD26 P14.8  
I/O0 B1/  
PU  
AD24  
I
OUT104  
OUT104  
OUT104  
AD24  
O1  
O2  
O3  
O
OUT104 Line of GPTA1  
OUT104 Line of LTCA2  
EBU Address/Data Bus Line 24  
Data Sheet  
104  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AC25 P14.9  
AD25  
I/O0 B1/  
Port 14 General Purpose I/O Line 9  
PU  
I
EBU Address/Data Bus Line 25  
OUT105 Line of GPTA0  
OUT105  
O1  
OUT105  
OUT105  
AD25  
O2  
OUT105 Line of GPTA1  
O3  
OUT105 Line of LTCA2  
O
EBU Address/Data Bus Line 25  
Port 14 General Purpose I/O Line 10  
EBU Address/Data Bus Line 26  
OUT106 Line of GPTA0  
AE26 P14.10  
AD26  
I/O0 B1/  
PU  
I
OUT106  
OUT106  
OUT106  
AD26  
O1  
O2  
OUT106 Line of GPTA1  
O3  
OUT106 Line of LTCA2  
O
EBU Address/Data Bus Line 26  
Port 14 General Purpose I/O Line 11  
EBU Address/Data Bus Line 27  
OUT107 Line of GPTA0  
AD25 P14.11  
AD27  
I/O0 B1/  
PU  
I
OUT107  
OUT107  
OUT107  
AD27  
O1  
O2  
OUT107 Line of GPTA1  
O3  
OUT107 Line of LTCA2  
O
EBU Address/Data Bus Line 27  
Port 14 General Purpose I/O Line 12  
EBU Address/Data Bus Line 28  
OUT108 Line of GPTA0  
AC24 P14.12  
AD28  
I/O0 B1/  
PU  
I
OUT108  
OUT108  
OUT108  
AD28  
O1  
O2  
O3  
O
OUT108 Line of GPTA1  
OUT108 Line of LTCA2  
EBU Address/Data Bus Line 28  
Data Sheet  
105  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Pin  
AE25 P14.13  
AD29  
I/O0 B1/  
Port 14 General Purpose I/O Line 13  
PU  
I
EBU Address/Data Bus Line 29  
OUT109 Line of GPTA0  
OUT109  
OUT109  
OUT109  
AD29  
O1  
O2  
OUT109 Line of GPTA1  
O3  
OUT109 Line of LTCA2  
O
EBU Address/Data Bus Line 29  
Port 14 General Purpose I/O Line 14  
EBU Address/Data Bus Line 30  
OUT110 Line of GPTA0  
AE24 P14.14  
AD30  
I/O0 B1/  
PU  
I
OUT110  
OUT110  
OUT110  
AD30  
O1  
O2  
OUT110 Line of GPTA1  
O3  
OUT110 Line of LTCA2  
O
EBU Address/Data Bus Line 30  
Port 14 General Purpose I/O Line 15  
EBU Address/Data Bus Line 31  
OUT111 Line of GPTA0  
AD24 P14.15  
AD31  
I/O0 B1/  
PU  
I
OUT111  
OUT111  
OUT111  
AD31  
O1  
O2  
O3  
O
OUT111 Line of GPTA1  
OUT111 Line of LTCA2  
EBU Address/Data Bus Line 31  
Port 15  
AE21 P15.0  
Reserved  
Reserved  
Reserved  
CS0  
I/O0 B1/  
Port 15 General Purpose I/O Line 0  
PU  
O1  
-
O2  
O3  
O
-
-
Chip Select Output Line 0  
Data Sheet  
106  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Pin  
AD21 P15.1  
I/O0 B1/  
Port 15 General Purpose I/O Line 1  
PU  
Reserved  
O1  
-
Reserved  
Reserved  
CS1  
O2  
-
O3  
-
O
Chip Select Output Line 1  
AD20 P15.2  
I/O0 B1/  
Port 15 General Purpose I/O Line 2  
PU  
Reserved  
Reserved  
Reserved  
CS2  
O1  
-
O2  
-
O3  
-
O
Chip Select Output Line 2  
AD19 P15.3  
I/O0 B1/  
Port 15 General Purpose I/O Line 3  
PU  
Reserved  
Reserved  
Reserved  
CS3  
O1  
-
O2  
-
O3  
-
O
Chip Select Output Line 3  
AE17 P15.4  
I/O0 B1/  
Port 15 General Purpose I/O Line 4  
PU  
Reserved  
Reserved  
Reserved  
BC0  
O1  
-
O2  
-
O3  
-
O
Byte Control Line 0  
AD17 P15.5  
I/O0 B1/  
Port 15 General Purpose I/O Line 5  
PU  
Reserved  
Reserved  
Reserved  
BC1  
O1  
-
O2  
O3  
O
-
-
Byte Control Line 1  
Data Sheet  
107  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Pin  
AF18 P15.6  
I/O0 B1/  
Port 15 General Purpose I/O Line 6  
PU  
Reserved  
O1  
-
Reserved  
Reserved  
BC2  
O2  
-
O3  
-
O
Byte Control Line 2  
AE18 P15.7  
I/O0 B1/  
Port 15 General Purpose I/O Line 7  
PU  
Reserved  
Reserved  
Reserved  
BC3  
O1  
-
O2  
-
O3  
-
O
Byte Control Line 3  
AF20 P15.8  
I/O0 B1/  
Port 15 General Purpose I/O Line 8  
PU  
Reserved  
Reserved  
Reserved  
RD  
O1  
-
O2  
-
O3  
-
O
Read Control Line  
AF21 P15.9  
I/O0 B1/  
Port 15 General Purpose I/O Line 9  
PU  
Reserved  
Reserved  
Reserved  
RD/WR  
O1  
-
O2  
-
O3  
-
O
Write Control Line  
AF22 P15.10  
I/O0 B1/  
Port 15 General Purpose I/O Line 10  
PU  
Reserved  
Reserved  
Reserved  
ADV  
O1  
-
O2  
O3  
O
-
-
Address Valid Output  
Data Sheet  
108  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AE20 P15.11  
WAIT  
I/O0 B1/  
Port 15 General Purpose I/O Line 11  
PU  
I
Wait Input for inserting Wait-States  
Reserved  
O1  
-
Reserved  
Reserved  
O2  
-
O3  
-
AF19 P15.12  
I/O0 B1/  
Port 15 General Purpose I/O Line 12  
PU  
Reserved  
Reserved  
Reserved  
MR/W  
O1  
-
-
-
O2  
O3  
O
Motorola-style Read/Write Control Signal  
AF23 P15.13  
I/O0 B1/  
Port 15 General Purpose I/O Line 13  
PU  
Reserved  
Reserved  
Reserved  
BAA  
O1  
-
O2  
-
O3  
-
O
Burst Address Advance Output  
AF24 P15.14  
I/O0 B1/  
Port 15 General Purpose I/O Line 14  
PU  
BFCLKI  
I
Burst FLASH Clock Input (Clock Feedback).  
Reserved  
Reserved  
Reserved  
O1  
-
O2  
-
O3  
-
AF25 P15.15  
I/O0 B2/  
Port 15 General Purpose I/O Line 15  
PU  
Reserved  
Reserved  
Reserved  
BFCLKO  
O1  
-
-
-
O2  
O3  
O
Burst Mode Flash Clock Output (Non-  
Differential)  
Data Sheet  
109  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Port 16  
AF17 P16.0  
HOLD  
I/O0 B1/  
Port 16 General Purpose I/O Line 0  
PU  
I
Hold Request Input  
Reserved  
O1  
-
Reserved  
Reserved  
O2  
-
O3  
-
AD18 P16.1  
I/O0 B1/  
Port 16 General Purpose I/O Line 1  
PU  
HLDA  
I
Hold Acknowledge Output  
Reserved  
Reserved  
Reserved  
HLDA  
O1  
-
O2  
-
O3  
-
O
Hold Acknowledge Output  
AD22 P16.2  
I/O0 B1/  
Port 16 General Purpose I/O Line 2  
PU  
Reserved  
Reserved  
Reserved  
BREQ  
O1  
-
O2  
-
O3  
-
O
Bus Request Output  
AE19 P16.3  
I/O0 B1/  
Port 16 General Purpose I/O Line 3  
PU  
Reserved  
Reserved  
O1  
-
O2  
O3  
O
-
Reserved  
-
CSCOMB  
Combined Chip Select Output  
Analog Input Port  
AE1  
AD2  
AA4  
AN0  
AN1  
AN2  
I
I
I
D
D
D
Analog Input 0  
Analog Input 1  
Analog Input 2  
Data Sheet  
110  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AB3  
AC2  
AA3  
AD1  
AB4  
AC1  
AB2  
Y3  
AN3  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Analog Input 3  
Analog Input 4  
Analog Input 5  
Analog Input 6  
Analog Input 7  
Analog Input 8  
Analog Input 9  
Analog Input 10  
Analog Input 11  
Analog Input 12  
Analog Input 13  
Analog Input 14  
Analog Input 15  
Analog Input 16  
Analog Input 17  
Analog Input 18  
Analog Input 19  
Analog Input 20  
Analog Input 21  
Analog Input 22  
Analog Input 23  
Analog Input 24  
Analog Input 25  
Analog Input 26  
Analog Input 27  
Analog Input 28  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AA2  
AB1  
W3  
Y2  
AA1  
V4  
W2  
Y1  
V3  
W1  
V2  
V1  
U1  
AC8  
AD8  
AC7  
AD7  
AE6  
Data Sheet  
111  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AF6  
AE7  
AF7  
AC3  
AE2  
AD3  
AD5  
AE3  
AF2  
AC4  
AF3  
AD4  
AE4  
AC5  
AF4  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
AN40  
AN41  
AN42  
AN43  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Analog Input 29  
Analog Input 30  
Analog Input 31  
Analog Input 32  
Analog Input 33  
Analog Input 34  
Analog Input 35  
Analog Input 36  
Analog Input 37  
Analog Input 38  
Analog Input 39  
Analog Input 40  
Analog Input 41  
Analog Input 42  
Analog Input 43  
System I/O  
B22  
A23  
PORST  
I
Input Power-on Reset Input  
only/ (input pad with input spike-filter)  
PD  
ESR0  
ESR1  
I/O  
A2  
External System Request Reset Input 0  
Default configuration during and after reset is  
open-drain Driver, corresponding to A2 strong  
Driver, sharp edge. The Driver drives low during  
power-on reset.  
A22  
E24  
I/O  
A2/  
PD  
External System Request Reset Input 1  
TCK  
I
I
Input JTAG Module Clock Input  
only/  
PD  
DAP0  
Device Access Port Line 0  
Data Sheet  
112  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
E25  
TDI  
I
A2/  
PU  
JTAG Module Serial Data Input  
BRKIN  
BRKOUT  
I
OCDS Break Input (Alternate Output)  
OCDS Break Output (Alternate Input)  
O
B23  
TESTMODE I  
Input Test Mode Select Input  
only/  
PU  
F24  
F23  
TMS  
I
A2/  
PD  
JTAG Module State Machine Control Input  
Device Access Port Line 1  
DAP1  
TRST  
I/O  
I
Input JTAG Module Reset/Enable Input  
only/  
PD  
G26  
G25  
D25  
XTAL1  
XTAL2  
TDO  
I
Main Oscillator/PLL/Clock Generator Input  
Main Oscillator/PLL/Clock Generator Output  
O
O
I
A2/  
PU  
JTAG Module Serial Data Output  
OCDS Break Input (Alternate Input)  
OCDS Break Output (Alternate Output)  
Device Access Port Line 2  
BRKIN  
BRKOUT  
DAP2  
N.C.  
O
O
-
A1,  
AF1,  
AF26,  
A24,  
-
Not connected. These pins are reserved for  
future extension and shall not be connected  
externally.  
C22,  
AC21,  
AD23,  
AE22,  
AE23  
Power Supply  
W4  
Y4  
VDDM  
VSSM  
-
-
-
-
-
-
ADC Analog Part Power Supply (3.3V - 5V)  
ADC Analog Part Ground  
AE5  
VAREF0  
ADC0 Reference Voltage  
Data Sheet  
113  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AF5  
VAGND0  
VAGND2  
VAREF1  
VAGND1  
VAREF2  
VFAREF  
VFAGND  
VDDMF  
VDDAF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC0 Reference Ground  
ADC2 Reference Ground  
ADC1 Reference Voltage  
ADC1 Reference Ground  
ADC2 Reference Voltage  
FADC Reference Voltage  
FADC Reference Ground  
AD6  
AC6  
AD9  
AF8  
AE8  
AE9  
AC9  
FADC Analog Part Power Supply (3.3V)1)  
FADC Analog Part Logic Power Supply  
(1.5V)  
AF9  
VSSMF  
VSSAF  
VDDFL3  
-
-
-
-
-
-
FADC Analog Part Ground  
FADC Analog Part Logic Ground  
Flash Power Supply (3.3V)  
A18,  
B18,  
H3  
F25  
VSSOSC  
VSS  
-
-
-
-
-
-
-
-
-
-
-
-
Main Oscillator Ground  
Digital Ground  
F26  
E26  
G23  
G24  
VDDOSC  
VDDOSC3  
VDDPF  
Main Oscillator Power Supply (1.5V)  
Main Oscillator Power Supply (3.3V)  
PLL Power Supply (1.5V)  
PLL Power Supply (3.3V)  
VDDPF3  
Data Sheet  
114  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AC11, VDD  
AC20,  
AB23,  
V23,  
-
-
Digital Core Power Supply (1.5V)  
P23,  
E23,  
D24,  
C25,  
B26,  
D16,  
D9,  
H4,  
R4  
AC16, VDDP  
AD16,  
AE16,  
AF16,  
D22,  
-
-
Port Power Supply (3.3V)  
C23,  
B24,  
A25,  
D14,  
D7, K4  
H23,  
H24,  
H25,  
H26,  
M23,  
T23,  
VDDEBU  
-
-
EBU Port Power Supply (2.5V - 3.3V)  
Y23,  
AC18,  
AC22  
R1  
VDDE(SB)  
-
-
Emulation Stand-by SRAM Power Supply  
(1.5V) (Emulation device only)  
Note: This pin is N.C. in a productive device.  
Data Sheet  
115  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
AC10, VSS  
AC17,  
AC19,  
AC23,  
W23,  
R23,  
-
-
Digital Ground (outer balls)  
L23,  
D23,  
C24,  
B25,  
A26,  
D15,  
D8,  
J4, T4  
K10,  
K11,  
K12,  
K13,  
K14,  
K15,  
K16,  
K17  
VSS  
VSS  
VSS  
-
-
-
-
-
-
Digital Ground (center balls)  
L10,  
L11,  
L12,  
L13,  
L14,  
L15,  
L16,  
L17  
Digital Ground (center balls cont’d)  
M10,  
M11,  
M12,  
M13,  
M14,  
M15,  
M16,  
M17  
Digital Ground (center balls cont’d)  
Data Sheet  
116  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
N10,  
N11,  
N12,  
N13,  
N14,  
N15,  
N16,  
N17  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
-
-
-
Digital Ground (center balls cont’d)  
Digital Ground (center balls cont’d)  
Digital Ground (center balls cont’d)  
Digital Ground (center balls cont’d)  
P10,  
P11,  
P12,  
P13,  
P14,  
P15,  
P16,  
P17  
R10,  
R11,  
R12,  
R13,  
R14,  
R15,  
R16,  
R17  
T10,  
T11,  
T12,  
T13,  
T14,  
T15,  
T16,  
T17  
Data Sheet  
117  
V1.1, 2009-05  
TC1197  
Pinning  
Table 4  
Pin  
Pin Definitions and Functions (BGA-416 Package) (cont’d)  
Symbol Ctrl. Type Function  
Digital Ground (center balls cont’d)  
U10,  
U11,  
U12,  
U13,  
U14,  
U15,  
U16,  
U17  
VSS  
-
-
1) This pin is also connected to the analog power supply for comparator of the ADC module.  
Legend for Table 4  
Column “Ctrl.”:  
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X00B  
O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1)  
O2 = Output with IOCR bit field selection PCx = 1X10B (ALT2)  
O3 = Output with IOCR bit field selection PCx = 1X11B (ALT3)  
Column “Type”:  
A1 = Pad class A1 (LVTTL)  
A2 = Pad class A2 (LVTTL)  
F = Pad class F (LVDS/CMOS)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PD = with pull-down device connected during reset (PORST = 0)  
TR = tri-state during reset (PORST = 0)  
3.1.2  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 5  
List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
Pull-up  
PORST = 1  
all GPIOs, TDI, TESTMODE  
PORST, TRST, TCK, TMS  
Pull-down  
Data Sheet  
118  
V1.1, 2009-05  
TC1197  
Pinning  
Table 5  
Pins  
List of Pull-Up/Pull-Down Reset Behavior of the Pins  
PORST = 0  
PORST = 1  
Pull-up2)  
ESR0  
The open-drain driver is  
used to drive low.1)  
ESR1  
TDO  
Pull-down2)  
Pull-up  
High-impedance  
1) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter  
for details.  
2) See the SCU_IOCR register description.  
Data Sheet  
119  
V1.1, 2009-05  
TC1197  
Identification Registers  
4
Identification Registers  
The Identification Registers uniquely identify a module or the whole device.  
Table 4-1  
Short Name  
ADC0_ID  
ADC1_ID  
ADC2_ID  
ASC0_ID  
ASC1_ID  
CAN_ID  
TC1197 Identification Registers 1)  
Value  
Address  
Stepping  
0059 C000H  
0059 C000H  
0059 C000H  
0000 4402H  
0000 4402H  
002B C051H  
0000 6350H  
1015 A083H  
0015 C007H  
000A C006H  
001A C004H  
0008 C005H  
0014 C009H  
0027 C003H  
0053 C001H  
0055 C001H  
0054 C003H  
0029 C005H  
0029 C005H  
000F C005H  
000C C006H  
002A C005H  
001B C001H  
0025 C007H  
0025 C007H  
0028 C003H  
0028 C003H  
F010 1008H  
F010 1408H  
F010 1808H  
F000 0A08H  
F000 0B08H  
F000 4008H  
F000 0408H  
F000 0464H  
F7E0 FF08H  
F7E1 FE18H  
F000 3C08H  
F87F FC08H  
F800 0008H  
F010 0408H  
F800 2008H  
F800 4008H  
F7E1 A020H  
F000 1808H  
F000 2008H  
F87F FE08H  
F87F FF08H  
F000 2808H  
F010 C208H  
F010 C008H  
F010 C108H  
F000 0808H  
F000 0908H  
CBS_JDPID  
CBS_JTAGID  
CPS_ID  
CPU_ID  
DMA_ID  
DMI_ID  
EBU_ID  
FADC_ID  
FLASH0_ID  
FLASH1_ID  
FPU_ID  
GPTA0_ID  
GPTA1_ID  
LBCU_ID  
LFI_ID  
LTCA2_ID  
MCHK_ID  
MLI0_ID  
MLI1_ID  
MSC0_ID  
MSC1_ID  
Data Sheet  
Intro, V1.5  
4-120  
V1.1, 2009-05  
TC1197  
Identification Registers  
Table 4-1  
Short Name  
PCP_ID  
TC1197 Identification Registers (cont’d)1)  
Value  
Address  
Stepping  
0020 C006H  
000B C005H  
0050 C001H  
0051 C001H  
0000 6A0CH  
0000 9001H  
0052 C001H  
0000 1820H  
0000 0003H  
0000 4511H  
0000 4511H  
0000 C006H  
F004 3F08H  
F87F FD08H  
F800 0508H  
F800 6008H  
F000 0108H  
F000 0640H  
F000 0508H  
F000 0644H  
F000 0648H  
F010 0108H  
F010 0208H  
F000 0208H  
PMI_ID  
PMU0_ID  
PMU1_ID  
SBCU_ID  
SCU_CHIPID  
SCU_ID  
SCU_MANID  
SCU_RTID  
SSC0_ID  
SSC1_ID  
STM_ID  
AC only  
1) Valid for all design steps except if explicitely defined.  
Data Sheet  
Intro, V1.5  
4-121  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5
Electrical Parameters  
5.1  
General Parameters  
5.1.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the TC1197  
and partly its requirements on the system. To aid interpreting the parameters easily  
when evaluating them for a design, they are marked with an two-letter abbreviation in  
column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics which are a distinctive feature of  
the TC1197 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements which must provided by the  
microcontroller system in which the TC1197 designed in.  
Data Sheet  
122  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.1.2  
Pad Driver and Pad Classes Summary  
This section gives an overview on the different pad driver classes and its basic  
characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1.  
Table 6  
Pad Driver and Pad Classes Overview  
Class Power Type  
Supply  
Sub Class Speed Load Leakage1) Termination  
Grade  
A
3.3 V  
LVTTL A1  
6 MHz 100 pF 500 nA  
No  
I/O,  
(e.g. GPIO)  
LVTTL  
outputs  
A2  
(e.g. serial  
I/Os)  
40  
MHz  
50 pF 6 μA  
50 pF 6 μA  
Series  
termination  
recommended  
B
2.375 - LVTTL B1  
3.6 V2) I/O  
(e.g. Ext.  
40  
MHz  
No  
Bus  
Interface)  
B2  
75  
35 pF  
Series  
(e.g. Bus  
Clock)  
MHz  
termination  
recommended  
(for f > 25 MHz)  
F
3.3 V  
5 V  
LVDS/  
CMOS  
50  
MHz  
Parallel  
termination3),  
100 Ω ± 10%  
DE  
ADC  
see Table 11  
1) Values are for TJmax = 150 °C.  
2) AC characteristics for EBU pins are valid for 2.5 V ± 5% and 3.3 V ± 5%.  
3) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or  
properly terminated with the differential parallel termination of 100 Ω ± 10%.  
Data Sheet  
123  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.1.3  
Absolute Maximum Ratings  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device  
at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > related VDD or VIN < VSS) the  
voltage on the related VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Table 7  
Absolute Maximum Rating Parameters  
Symbol Values  
Min. Typ. Max.  
Parameter  
Unit Note /  
Test Con  
dition  
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
TST  
TJ  
SR -40  
125  
150  
150  
2.25  
°C  
°C  
°C  
V
Under bias  
SR -65  
SR -40  
Under bias  
Voltage at 1.5 V power supply VDD  
pins with respect to VSS  
1)  
SR  
Voltage at 3.3 V power supply VDDEBU  
3.75  
5.5  
V
V
V
2)  
pins with respect to VSS  
VDDP SR  
Voltage at 5 V power supply VDDM SR –  
pins with respect to VSS  
Voltage on any Class A input VIN  
pin and dedicated input pins  
with respect to VSS  
SR -0.5 –  
V
DDP + 0.5  
Whatever  
is lower  
or max. 3.7  
Voltage on any Class B input VIN  
pin with respect to VSS  
SR -0.5 –  
-0.5 –  
V
DDEBU + 0.5 V  
Whatever  
is lower  
or max. 3.7  
Voltage on any Class D  
analog input pin with respect VAREFx  
to VAGND  
VAIN  
V
V
DDM + 0.5  
DDM + 0.5  
V
V
SR  
Voltage on any shared Class VAINF  
-0.5 –  
D analog input pin with  
VFAREF  
respect to VSSAF, if the FADC  
is switched through to the pin.  
SR  
Data Sheet  
124  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 7  
Absolute Maximum Rating Parameters  
Symbol Values  
Min. Typ. Max.  
Parameter  
Unit Note /  
Test Con  
dition  
CPU Frequency  
PCP Frequency  
fCPU SR –  
fPCP SR –  
180  
150  
MHz Derivative  
dependent  
180  
150  
MHz Derivative  
dependent  
1) Applicable for VDD, VDDOSC, VDDPF, and VDDAF  
.
2) Applicable for VDDP, VDDEBU, VDDFL3, DPF3, and VDDMF  
V
.
5.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1197. All parameters specified in the following table refer to these  
operating conditions, unless otherwise noticed.  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1197. All parameters specified in the following table refer to these  
operating conditions, unless otherwise noted.  
Table 8  
Operating Condition Parameters  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
Digital supply voltage1) VDD  
SR 1.42  
1.582)  
V
V
V
VDDOSC SR  
VDDP  
3.13  
3.473)  
For Class A pins  
(3.3 V ± 5%)  
SR  
V
DDOSC3 SR  
VDDEBU SR 3.13  
3.473)  
2.625  
For Class B  
(EBU) pins  
2.375  
VDDFL3 SR 3.13  
3.473)  
3.473)  
1.582)  
5.25  
V
V
V
V
Analog supply voltages VDDMF SR 3.13  
FADC  
FADC  
VDDAF SR  
1.42  
VDDM  
SR 4.75  
For Class DE  
pins, ADC  
Digital ground voltage  
VSS  
TA  
SR 0  
V
Ambient temperature  
under bias  
SR -40  
+125 °C  
Data Sheet  
125  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 8  
Operating Condition Parameters  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
Analog supply voltages –  
See separate  
specification  
Page 133,  
Page 138  
4)  
Overload current at  
class D pins  
IOV  
-1  
3
mA  
Sum of overload current Σ|IOV|  
at class D pins  
10  
mA per single ADC  
0 < IOV < 3 mA  
Overload coupling  
KOVAP  
5×10-  
5
factor for analog inputs5)  
KOVAN  
5×10-  
4
-1 mA< IOV < 0  
CPU & LMB Bus  
Frequency  
fCPU SR  
fPCP SR  
fSYS SR  
180  
150  
MHz Derivative  
dependent  
PCP Frequency  
180  
150  
MHz Derivative  
dependent6)  
6)  
FPI Bus Frequency  
Short circuit current  
90  
+5  
20  
MHz  
7)  
ISC  
SR -5  
mA  
Absolute sum of short  
circuit currents of a pin  
group (see Table 9)  
Σ|ISC_PG  
|
mA See note  
SR  
Inactive device pin  
current  
IID  
SR -1  
1
mA All power supply  
voltages VDDx = 0  
mA See note4)  
Absolute sum of short  
circuit currents of the  
device  
Σ|ISC_D  
|
100  
SR  
External load  
capacitance  
CL  
SR –  
pF  
Dependingonpin  
class. See DC  
characteristics  
1) Digital supply voltages applied to the TC1197 must be static regulated voltages which allow a typical voltage  
swing of ±5%.  
2) Voltage overshoot up to 1.7 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 μs and the cumulated summary of the pulses does not exceed 1 h.  
3) Voltage overshoot to 4 V is permissible at Power-Up and PORST low, provided the pulse duration is less than  
100 μs and the cumulated summary of the pulses does not exceed 1 h  
Data Sheet  
126  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
4) See additional document “TC1767 Pin Reliability in Overload“ for definition of overload current on digital pins.  
5) The overload coupling factor (kA) defines the worst case relation of an overload condition (IOV) at one pin to  
the resulting leakage current (IleakTOT) into an adjacent pin: IleakTOT = ±kA × |IOV| + IOZ1.  
Thus under overload conditions an additional error leakage voltage (VAEL) will be induced onto an adjacent  
analog input pin due to the resistance of the analog input source (RAIN). That means VAEL = RAIN ×  
|IleakTOT|.  
The definition of adjacent pins is related to their order on the silicon.  
The Injected leakage current always flows in the opposite direction from the causing overload current.  
Therefore, the total leakage current must be calculated as an algebraic sum of the both component leakage  
currents (the own leakage current IOZ1 and the optional injected leakage current).  
6) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
7) Applicable for digital outputs.  
Table 9  
Pin Groups for Overload / Short-Circuit Current Sum Parameter  
Pins  
Group  
1
P4.[7:0]  
2
P4.[15:8]  
3
P10.[5:0]  
4
P15.[0, 1, 7:4, 11, 12]  
P15.[3:0, 8, 13], P16.3  
P15.9, P16.2, P15.10, P15.[15:14]  
P14.[15:10]  
5
6
7
8
P14.[9:8]  
9
P14.[7:2]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P14.[1:0], P13.[15:14]  
P13.[13:12]  
P13.[11:6]  
P13.[5:2]  
P13.[1:0], P12[5:4]  
P12.[3:0]  
P11.[15:12]  
P11.[11:8]  
P11.[7:4]  
P11.[3:0]  
P12.[7:6]  
Data Sheet  
127  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 9  
Group  
21  
Pin Groups for Overload / Short-Circuit Current Sum Parameter  
Pins  
P9.[14:13, 10:9]  
P9.[12:11, 8:7, 2]  
P9.[6:5, 3, 1]  
P9.[0, 4], P5.[10, 11]  
P5.[15:14, 9:8]  
P5.[13:12, 6, 4]  
P5.[7:5, 3, 0]  
P3.[7:0]  
22  
23  
24  
25  
26  
27  
28  
29  
P3.[15:8]  
30  
P0.[7:0]  
31  
P0.[15:8]  
32  
P2.[15:9]  
33  
P2.[8:4]  
34  
P2.[3:2], P6[9:8]  
P6[11, 6:4]  
35  
36  
P6.[15:12, 10, 7]  
P8.[7:0]  
37  
38  
P1.[15:13, 11:8, 5]  
P1.[12, 7, 6, 4, 3]  
P1.[1:0], P7.0  
P7.[5:1]  
39  
40  
41  
42  
P7.[7:6]  
Data Sheet  
128  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.2  
DC Parameters  
5.2.1  
Input/Output Pins  
Table 10  
Input/Output DC-Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
General Parameters  
Pull-up current1)  
|IPUH  
|
10  
5
100  
85  
μA VIN < VIHAmin  
;
CC  
class A1/A2/F/Input pads.  
μA VIN < VIHBmin  
;
class B1/B2 pads.  
Pull-down  
current1)  
|IPDL  
|
10  
150  
μA VIN >VILAmax  
;
CC  
CC  
class A1/A2/F/Input pads.  
VIN > VILBmax  
class B1/B2 pads  
pF f = 1 MHz  
;
Pin capacitance1) CIO  
(Digital I/O)  
10  
TA = 25 °C  
Input only Pads (VDDP = 3.13 to 3.47 V = 3.3 V ± 5%)  
Input low voltage VILI  
-0.3  
0.36 ×  
VDDP  
V
V
SR  
Input high voltage VIHI  
0.62 × –  
VDDP  
+
Whatever is lower  
SR VDDP  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
CC 0.58  
Input high voltage VIHJ  
TRST, TCK  
0.64 × –  
SR VDDP  
VDDP  
+
V
Whatever is lower  
0.3 or  
max.  
3.6  
4)  
Input hysteresis  
HYSI  
0.1 ×  
CC VDDP  
V
Input leakage  
current  
IOZI  
±3000 nA ((VDDP/2)-1) < VIN <  
CC  
±6000  
((VDDP/2)+1)  
Otherwise2)  
Data Sheet  
129  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 10  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Spike filter always tSF1  
blocked pulse  
duration  
10  
ns  
CC  
CC  
Spike filter pass- tSF2  
through pulse  
100  
ns  
duration  
Class A Pads (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Output low voltage VOLA  
0.4  
V
V
V
IOL = 2 mA for medium  
and strong driver mode,  
IOL = 500 μA for weak  
driver mode  
3)  
CC  
Output high  
voltage2) 3)  
VOHA  
2.4  
I
OH = -2 mA for medium  
and strong driver mode,  
OH = -500 μA for weak  
driver mode  
OH = -1.4 mA for medium  
and strong driver mode,  
OH = -400 μA for weak  
CC  
I
V
0.4  
DDP - –  
I
I
driver mode  
Input low voltage VILA  
Class A1/2 pins  
-0.3  
0.36 ×  
VDDP  
V
V
SR  
Input high voltage VIHA1  
0.62 × –  
VDDP  
+
Whatever is lower  
Class A1 pins  
SR VDDP  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
CC 0.58  
Class A1 pins  
Input high voltage VIHA2  
Class A2 pins  
0.60 × –  
SR VDDP  
VDDP  
+
V
Whatever is lower  
0.3 or  
max.  
3.6  
Ratio VIL/VIH  
Class A2 pins  
CC 0.6  
4)  
Input hysteresis  
HYSA  
0.1 ×  
V
CC VDDP  
Data Sheet  
130  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 10  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Input leakage  
current Class A2  
pins  
IOZA2  
±3000 nA ((VDDP/2)-1) < VIN <  
((VDDP/2)+1)  
±6000  
CC  
Otherwise2)  
Input leakage  
current  
IOZA1  
±500  
nA 0 V <VIN < VDDP  
CC  
Class A1 pins  
Class B Pads (VDDEBU = 2.375 to 3.47 V)  
Output low voltage VOLB CC –  
0.4  
V
V
IOL = 2 mA  
IOL = 2 mA  
Output high  
voltage  
VOHB  
VDDEBU  
CC - 0.4  
Input low voltage VILB  
Input high voltage VIHB  
-0.3  
0.34 ×  
VDDEBU  
V
V
SR  
0.64 × –  
SR VDDEBU  
VDDEBU  
+ 0.3 or  
max.  
Whatever is lower  
3.6  
Ratio VIL/VIH  
CC 0.53  
4)  
Input hysteresis  
HYSB  
0.1 ×  
V
CC VDDEBU  
Input leakage  
current  
Class B pins  
IOZB  
±3000 nA ((VDDEBU/2)-0.6) < VIN  
CC  
±6000  
<
((VDDEBU/2)+0.6)5)  
Otherwise2)  
Class F Pads, LVDS Mode (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Output low voltage VOL CC 875  
mV Parallel termination  
100 Ω ± 1%  
Output high  
voltage  
VOH CC  
1525  
400  
1325  
140  
mV Parallel termination  
100 Ω ± 1%  
Output differential VOD CC 150  
voltage  
mV Parallel termination  
100 Ω ± 1%  
Output offset  
voltage  
VOS CC 1075  
mV Parallel termination  
100 Ω ± 1%  
Output impedance R0 CC 40  
Ω
Data Sheet  
131  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 10  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
Class F Pads, CMOS Mode (VDDP = 3.13 to 3.47 V = 3.3V ± 5%)  
Input low voltage VILF  
-0.3  
0.36 ×  
V
Class F pins  
SR  
VDDP  
Input high voltage VIHF  
Class F pins  
0.60 × –  
SR VDDP  
VDDP  
+
V
Whatever is lower  
0.3 or  
max.  
3.6  
Input hysteresis  
Class F pins  
HYSF  
0.05 × –  
V
CC VDDP  
Input leakage  
current Class F  
pins  
IOZF  
±3000 nA ((VDDP/2)-1) < VIN  
<
±6000  
((VDDP/2)+1)  
Otherwise2)  
Output low voltage VOLF  
0.4  
V
IOL = 2 mA  
6)  
CC  
Output high  
voltage2) 6)  
VOHF  
2.4  
CC  
V
V
IOH = -2 mA  
V
DDP - –  
IOH = -1.4 mA  
0.4  
Class D Pads  
See ADC Characteristics  
1) Not subject to production test, verified by design / characterization.  
2) Only one of these parameters is tested, the other is verified by design characterization  
3) Maximum resistance of the driver RDSON, defined for P_MOS / N_MOS transistor separately:  
25 / 20 Ω for strong driver mode, IOH / L < 2 mA,  
200 / 150 Ω for medium driver mode, IOH / L < 400 uA,  
600 / 400 Ω for weak driver mode, IOH / L < 100 uA,  
verified by design / characterization.  
4) Function verified by design, value verified by design characterization.  
Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce.  
It cannot be guaranteed that it suppresses switching due to external system noise.  
5) VDDEBU = 2.5 V ± 5%. For VDDEBU = 3.3 ± 5% see class A2 pads.  
6) The following constraint applies to an LVDS pair used in CMOS mode: only one pin of a pair should be used  
as output, the other should be used as input, or both pins should be used as inputs. Using both pins as outputs  
is not recommended because of the higher crosstalk between them.  
Data Sheet  
132  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.2.2  
Analog to Digital Converters (ADC0/ADC1/ADC2)  
All ADC parameters are optimized for and valid in the range of VDDM = 5V ± 5%.  
Table 11  
ADC Characteristics (Operating Conditions apply)  
Symbol Values Unit Note /  
Test Condition  
Parameter  
Min.  
Typ. Max.  
Analog supply  
voltage  
VDDM SR 4.75  
5
5.25 1)  
V
V
V
3.13  
3.3  
1.5  
3.47  
1.582)  
VDD  
SR 1.42  
Power supply for  
ADC digital part,  
internal supply  
Analog ground  
voltage  
VSSM SR -0.1  
0.1  
V
V
Analogreference VAREFx SR  
V
AGNDx+1 VDDM VDDM+  
voltage16)  
V
0.05  
1)3)4)  
Analogreference VAGNDx SR VSSMx  
-
0
V
1V  
AREF - V  
ground16)  
0.05V  
Analog input  
voltage range  
VAIN  
SR VAGNDx  
VAREFx  
V
Analogreference VAREFx  
-
V
DDM/2  
VDDM + V  
0.05  
voltage range5)16) VAGNDx SR  
Converter Clock fADC SR  
1
90  
10  
MHz –  
MHz –  
Internal ADC  
clocks  
fADCI  
CC 0.5  
Sample time  
tS  
CC 2  
257  
TAD –  
CI  
Total unadjusted TUE6) CC –  
error5)  
±4  
LSB 12-bit conversion,  
without noise7)8)  
±2  
±1  
LSB 10-bit conversion8)  
LSB 8-bit conversion8)  
DNL error9) 5)  
INL error9)5)  
EADNL  
EAINL  
±1.5 ±3.0  
LSB 12-bit conversion  
without noise8)10)  
CC  
CC  
±1.5 ±3.0  
LSB 12-bit convesion  
without noise8)10)  
Data Sheet  
133  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 11  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
Gain error9)5)  
Offset error9)5)  
EAGAIN  
±0.5 ±3.5  
LSB 12-bit conversion  
without noise8)10)  
CC  
EAOFF  
±1.0 ±4.0  
LSB 12-bit converson  
without noise8)10)  
CC  
Input leakage  
current at analog  
IOZ1 CC  
-300  
-100  
-100  
100  
200  
300  
±1.5  
nA  
nA  
nA  
μA  
(0% VDDM) < VIN <  
(3% VDDM  
(3% VDDM) < VIN <  
(97% VDDM  
(97% VDDM) < VIN <  
)
inputs of ADC0/1  
11) 12) 13)  
)
(100% VDDM  
)
Input leakage  
current at  
IOZ2  
CC –  
0 V < VAREF  
<
V
DDM, no conversion  
VAREF0/1/2,  
running  
per module  
Input current at IAREF CC –  
35  
20  
75  
40  
μA  
0 V < VAREF  
<
16)  
14)  
VAREF0/1/2  
,
rms VDDM  
per module  
8)  
Total  
CAREFTOT  
pF  
capacitance of  
the voltage  
reference  
CC  
inputs15)16)  
8)17)  
Switched  
CAREFSW  
15  
30  
pF  
capacitance at  
the positive  
reference  
CC  
voltage input16)  
Resistance of  
the reference  
voltage input  
path15)  
RAREF  
500 1000  
Ω
500 Ohm increased  
for AN[1:0] used as  
reference input8)  
CC  
CC  
1)8)  
Total  
CAINTOT  
25  
30  
pF  
capacitance of  
the analog  
inputs15)  
Data Sheet  
134  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 11  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
20  
Unit Note /  
Test Condition  
Min.  
8)18)  
Switched  
CAINSW  
7
pF  
capacitance at  
the analog  
CC  
voltage inputs  
8)  
ON resistance of RAIN  
the transmission  
gates in the  
CC –  
700 1500  
Ω
analog voltage  
path  
ON resistance  
for the ADC test  
(pull-down for  
AIN7)  
RAIN7T CC 180  
550 90019)  
Ω
Test feature  
available only for  
AIN78) 20)  
Current through IAIN7T CC –  
resistanceforthe  
ADC test (pull-  
15  
30  
mA  
Test feature  
available only for  
AIN78)  
rms peak  
down for AIN7)  
1) Voltage overshoot to tbd. V are permissible, provided the pulse duration is less than 100 μs and the cumulated  
summary of the pulses does not exceed 1 h.  
2) Voltage overshoot to 1.7 V are permissible, provided the pulse duration is less than 100 μs and the cumulated  
summary of the pulses does not exceed 1 h.  
3) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoot).  
4) If  
the  
reference  
voltage  
VAREF  
increases  
or  
the  
VDDM  
decreases,  
so  
that  
V
AREF = (VDDM + 0.05 V to VDDM + 0.07V), then the accuracy of the ADC decreases by 4LSB12.  
5) If a reduced reference voltage in a range of VDDM/2 to VDDM is used, then the ADC converter errors increase.  
If the reference voltage is reduced with the factor k (k<1), then TUE, DNL, INL Gain and Offset errors increase  
with the factor 1/k.  
If a reduced reference voltage in a range of 1 V to VDDM/2 is used, then there are additional decrease in the  
ADC speed and accuracy.  
6) TUE is tested at VAREF = 5.0 V, VAGND = 0 V and VDDM = 5.0 V  
7) ADC module capability.  
8) Not subject to production test, verified by design / characterization.  
9) The sum of DNL/INL/Gain/Offset errors does not exceed the related TUE total unadjusted error.  
10) For 10-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with factor 0.25.  
For 8-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with 0.0625.  
11) The leakage current definition is a continuous function, as shown in Figure 19. The numerical values defined  
determine the characteristic points of the given continuous linear approximation - they do not define step  
function.  
Data Sheet  
135  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
12) Only one of these parameters is tested, the other is verified by design characterization.  
13) The leakage current decreases typically 30% for junction temperature decrease of 10oC.  
14) IAREF_MAX is valid for the minimum specified conversion time. The current flowing during an ADC conversion  
with a duration of up to tC = 25 µs can be calculated with the formula IAREF_MAX = QCONV / tC. Every conversion  
needs a total charge of QCONV = 150 pC from VAREF  
.
All ADC conversions with a duration longer than tC = 25µs consume an IAREF_MAX = 6µA.  
15) For the definition of the parameters see also Figure 18.  
16) Applies to AINx, when used as auxiliary reference inputs.  
17) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage  
at once. Instead of this smaller capacitances are successively switched to the reference voltage.  
18) The sampling capacity of the conversion C-Network is pre-charged to VAREF / 2 before the sampling moment.  
Because of the parasitic elements the voltage measured at AINx deviates from VAREF/2, and is typically 1.35 V.  
19) RAIN7T = 1400 Ohm maximum and 830 Ohm typical in the VDDM = 3.3 V ± 5% range.  
20) The DC current at the pin is limited to 3 mA for the operational lifetime.  
clock  
generation  
ADC kernel  
f
ADC  
interrupts,  
etc.  
divider for  
divider for  
fADCI  
f
ADCD  
digital clock  
analog clock  
f
ADCI  
f
ADCD  
registers  
analog part  
arbiter  
ADC_clocking  
Figure 17  
ADC0/ADC1 Clock Circuit  
Table 12  
Conversion Time (Operating Conditions apply)  
Parameter  
Symbol Value  
Unit Note  
Conversion  
time with  
tC CC 2 × TADC + (4 + STC + n) × TADCI μs  
n = 8, 10, 12 for  
n - bit conversion  
post-calibration  
T
T
ADC = 1 / fADC  
ADCI = 1 / fADCI  
Conversion  
2 × TADC + (2 + STC + n) × TADCI  
time without  
post-calibration  
Data Sheet  
136  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Analog Input Circuitry  
RAIN, On  
REXT  
ANx  
VAIN  
CEXT  
CAINSW  
=
C
AINTOT - CAINSW  
VAGNDx  
RAIN7T  
Reference Voltage Input Circuitry  
RAREF, On  
VAREFx  
VAREF  
C
AREFTOT - CAREFSW  
CAREFSW  
VAGNDx  
Analog_InpRefDiag  
Figure 18  
ADC0/ADC1 Input Circuits  
Ioz1  
300nA  
200nA  
100nA  
V IN [V D D M % ]  
-100nA  
-300nA  
3%  
97% 100%  
AD C Leakage 10.vsd  
Figure 19  
ADC0/ADC1Analog Inputs Leakage  
Data Sheet  
137  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.2.3  
Fast Analog to Digital Converter (FADC)  
All parameters apply to FADC used in differential mode, which is the default and the  
intended mode of operation, and which takes advantage of many error cancelation  
effects inherent to differential measurements in general.  
Table 13  
FADC Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Test Condition  
Min.  
Typ. Max.  
9)  
DNL error  
EFDNL CC –  
EFINL CC –  
±1  
±4  
±5  
LSB  
LSB  
%
9)  
INL error  
Gradient error9)  
EFGRAD  
Without calibration  
gain 1, 2, 4  
CC  
±6  
%
Without calibration  
gain 8  
Offset error9)1)  
EFOFF  
EFREF  
±203)  
±903)  
±60  
mV  
mV  
mV  
With calibration1)  
Without calibration  
2)  
CC  
Reference error of  
internal VFAREF/2  
CC  
Analog supply  
voltages  
VDDMF SR 3.13  
VDDAF SR 1.42  
3.474)  
1.585)  
0.1  
V
V
V
Analog ground  
voltage  
VSSAF  
-0.1  
SR  
SR  
Analog reference  
voltage  
VFAREF  
VFAGND  
3.13  
3.474)6)  
V
Nominal 3.3 V  
Analog reference  
ground  
V
SSAF - –  
V
SSAF + V  
SR 0.05 V  
0.05 V  
Analog input voltage VAINF  
VFAGND  
VDDMF  
V
range  
SR  
Analog supply  
currents  
IDDMF SR –  
IDDAF SR –  
15  
mA  
mA  
7)  
12  
Input current at  
VFAREF  
IFAREF  
120  
μA  
rms  
Independent of  
conversion  
CC  
CC  
CC  
Input leakage current IFOZ2  
±500  
±8  
nA  
0 V < VIN < VDDMF  
8)  
at VFAREF  
Input leakage current IFOZ3  
μA  
0 V < VIN < VDDMF  
8)  
at VFAGND  
Data Sheet  
138  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Table 13  
FADC Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Test Condition  
Min.  
CC –  
Typ. Max.  
Conversion time  
Converter Clock  
tC  
21  
CLK  
For 10-bit conv.  
of fADC  
fFADC SR –  
90  
MHz  
9)  
Input resistance of  
the analog voltage  
path (Rn, Rp)  
RFAIN  
100  
200  
kΩ  
CC  
Channel Amplifier  
Cutoff Frequency9)  
fCOFF  
tSET  
2
5
MHz  
CC  
Settling Time of a  
Channel Amplifier  
after changing ENN  
or ENP9)  
CC –  
μs  
1) Calibration should be performed at each power-up. In case of continuous operation, calibration should be  
performed minimum once per week, or on regular basis in order to compensate for temperature changes.  
2) The offset error voltage drifts over the whole temperature range maximum ±6 LSB.  
3) Applies when the gain of the channel equals one. For the other gain settings, the offset error increases; it must  
be multiplied with the applied gain.  
4) Voltage overshoots up to 4 V are permissible, provided the pulse duration is less than 100 μs and the  
cumulated summary of the pulses does not exceed 1 h.  
5) Voltage overshoots up to 1.7 V are permissible, provided the pulse duration is less than 100 μs and the  
cumulated sum of the pulses does not exceed 1 h.  
6) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoots).  
7) Current peaks of up to 40 mA with a duration of max. 2 ns may occur  
8) This value applies in power-down mode.  
9) Not subject to production test, verified by design / characterization.  
The calibration procedure should run after each power-up, when all power supply  
voltages and the reference voltage have stabilized. The offset calibration must run first,  
followed by the gain calibration.  
Data Sheet  
139  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
FADC Analog Input Stage  
RN  
FAINxN  
-
+
VFAREF/2  
VFAGND  
+
RP  
FAINxP  
-
FADC Reference Voltage  
Input Circuitry  
VFAREF  
IFAREF  
VFAREF  
VFAGND  
FADC_InpRefDiag  
Figure 20  
FADC Input Circuits  
Data Sheet  
140  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.2.4  
Oscillator Pins  
Table 14  
Oscillator Pins Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ. Max.  
Frequency Range  
fOSC CC 4  
40  
MHz Direct Input Mode  
selected  
8
25  
MHz External Crystal  
Mode selected  
Input low voltage at VILX SR -0.2  
0.3 ×  
VDDOSC3  
V
XTAL11)  
Input high voltage at VIHX SR 0.7 ×  
VDDOSC3  
+ 0.2  
V
XTAL11)  
VDDOSC3  
Input current at  
XTAL1  
IIX1 CC –  
±25  
μA  
0 V < VIN < VDDOSC3  
1) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.3 × VDDOSC3 is  
necessary.  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal  
supplier.  
5.2.5  
Temperature Sensor  
Table 15  
Temperature Sensor Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Temperature sensor range TSR SR  
-40  
150 °C  
Junction  
temperature  
Temperature sensor  
measurement time  
tTSMT SR  
100 μs  
Start-up time after reset  
Sensor accuracy  
tTSST SR  
TTSA CC  
10  
μs  
±6  
°C  
Calibrated  
Data Sheet  
141  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
The following formula calculates the temperature measured by the DTS in [oC] from the  
RESULT bitfield of the DTSSTAT register.  
(1)  
DTSSTATRESULT 619  
Tj = -----------------------------------------------------------------  
2, 28  
Data Sheet  
142  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.2.6  
Power Supply Current  
The default test conditions (differences explicitly specified) are:  
VDD=1.58 V, VDD=3.47 V, fCPU=180 MHz, Tj=150oC  
Table 16  
Power Supply Currents (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Core active mode  
supply current1)2)  
IDD  
CC –  
600 mA  
f
CPU=180 MHz  
fCPU/fSYS = 2:1  
Realistic core active  
430 mA  
VDD = 1.53 V,  
mode supply current 3) 4)  
TJ = 150oC  
PLL 1.5 V supply  
PLL 3.3 V supply  
IDDPF  
CC –  
4
mA  
mA  
mA  
4)  
IDDPF3 CC –  
IDDMF CC –  
5
FADC 3.3 V analog  
supply current  
15  
4)  
FADC 1.5 V analog  
supply current  
IDDAF  
CC –  
12  
mA  
Flash memory 3.3 V  
supply current  
IDDFL3R CC –  
IDDFL3E CC –  
125 mA continuously reading  
the Flash memory 5)  
120 mA Flash memory  
erase-verify 6)  
4)  
Oscillator 1.5 V supply IDDOSC CC –  
Oscillator 3.3 V supply IDDOSC3 CC –  
3
mA  
mA  
4)  
10  
30  
30  
54  
LVDS 3.3 V supply  
ILVDS  
IDDP  
mA in total for four pairs  
4) 7)  
Pad currents, sum of  
CC –  
mA  
mA  
V
DDP 3.3 V supplies  
IDDP_FP CC –  
I
DDP including Data  
Flash programming  
current 7) 8)  
ADC 5 V power supply IDDM  
CC –  
SR –  
6
mA ADC0/1/2  
Maximum Average  
Power Dissipation1)  
PD  
1800 mW worst case  
TA = 125oC,  
PD × RΘJA < 25oC  
1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each custom  
application will most probably be lower than this value, but must be evaluated separately.  
2) The IDD decreases typically by 120 mA if the fCPU decreases by 50 MHz, at constant TJ = 150oC, for the  
Infineon Max Power Loop.  
The dependency in this range is, at constant junction temperature, linear.  
Data Sheet  
143  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
3) The IDD decreases by typically 70 mA if the fCPU is decreased by 50 MHz, at constant TJ = 150oC, for the  
Realistic Pattern.  
The dependency in this range is, at constant junction temperature, linear.  
4) Not tested in production separately, verified by design / characterization.  
5) This value assumes worst case of reading flash line with all cells erased. In case of 50% cells written with “1”  
and 50% cells written with “0”, the maximum current drops down to 95 mA.  
6) Relevant for the power supply dimensioning, not for thermal considerations.  
In case of erase of Data Flash, internal flash array loading effects may generate transient current spikes of up  
to 15 mA for maximum 5 ms.  
7) No GPIO and EBU activity, LVDS off  
8) This value is relevant for the power supply dimensioning. The currents caused by the GPIO and EBU activity  
depend on the particular application and should be added separately. If two Flash modules are programmed  
in parallel, the current increase is 2 × 24 mA.  
Data Sheet  
144  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3  
AC Parameters  
All AC parameters are defined with the temperature compensation disabled. That  
means, keeping the pads constantly at maximum strength.  
5.3.1  
Testing Waveforms  
VDDP  
VDDEBU  
90%  
90%  
10%  
10%  
VSS  
tR  
tF  
rise_fall  
Figure 21  
Rise/Fall Time Parameters  
VDDP  
VDDEBU  
VDDE / 2  
VDDE / 2  
Test Points  
VSS  
mct04881_a.vsd  
Figure 22  
Testing Waveform, Output Delay  
VLoad+ 0.1 V  
VLoad- 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VOL - 0.1 V  
MCT04880_new  
Figure 23  
Testing Waveform, Output High Impedance  
Data Sheet  
145  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.2  
Output Rise/Fall Times  
Table 17  
Output Rise/Fall Times (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Class A1 Pads  
Rise/fall times1)  
t
RA1, tFA1  
50  
140  
18000  
150  
550  
ns  
ns  
Regular (medium) driver, 50 pF  
Regular (medium) driver, 150 pF  
Regular (medium) driver, 20 nF  
Weak driver, 20 pF  
Weak driver, 150 pF  
Weak driver, 20 000 pF  
65000  
Class A2 Pads  
Rise/fall times  
tRA2, tFA2  
3.7  
7.5  
7
18  
Strong driver, sharp edge, 50 pF  
Strong driver, sharp edge, 100pF  
Strong driver, med. edge, 50 pF  
Strong driver, soft edge, 50 pF  
Medium driver, 50 pF  
1)  
50  
140  
18000  
150  
550  
65000  
Medium driver, 150 pF  
Medium driver, 20 000 pF  
Weak driver, 20 pF  
Weak driver, 150 pF  
Weak driver, 20 000 pF  
Class B Pads 3.3V ± 5%  
Rise/fall times tRB, tFB  
3.0  
3.7  
7.5  
ns  
ns  
35 pF  
50 pF  
100 pF  
1)2)  
Class B Pads 2.5V ± 5%  
Rise/fall times tRB, tFB  
3.7  
4.6  
9.0  
35 pF  
50 pF  
100 pF  
1)3)  
Class F Pads  
Rise/fall times  
Rise/fall times  
t
RF1, tRF1  
RF2, tRF2  
2
ns  
ns  
LVDS Mode  
t
60  
CMOS Mode, 50 pF  
1) Not all parameters are subject to production test, but verified by design/characterization and test correlation.  
2) Parameter test correlation for VDDEBU = 2.5 V ± 5%  
3) Parameter test correlation for VDDEBU = 2.5 V ± 5%  
Data Sheet  
146  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.3  
Power Sequencing  
V
+-5%  
5V  
VAREF  
+-5%  
3.3V  
1.5V  
-12%  
+-5%  
0.5V  
-12%  
0.5V  
0.5V  
t
VDDP  
PORST  
power  
down  
power  
fail  
t
Power-Up 8.vsd  
Figure 24  
5 V / 3.3 V / 1.5 V Power-Up/Down Sequence  
The following list of rules applies to the power-up/down sequence:  
• All ground pins VSS must be externally connected to one single star point in the  
system. Regarding the DC current component, all ground pins are internally directly  
connected.  
• At any moment,  
each power supply must be higher than any lower_power_supply - 0.5 V, or:  
VDD5 > VDD3.3 - 0.5 V; VDD5 > VDD1.5 - 0.5 V;VDD3.3 > VDD1.5 - 0.5 V, see  
Figure 24.  
• During power-up and power-down, the voltage difference between the power supply  
pins of the same voltage (3.3 V, 1.5 V, and 5 V) with different names (for example  
VDDP, VDDFL3 ...), that are internally connected via diodes, must be lower than  
100 mV. On the other hand, all power supply pins with the same name (for example  
Data Sheet  
147  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
all VDDP ), are internally directly connected. It is recommended that the power pins  
of the same voltage are driven by a single power supply.  
• The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.5, and VAREF  
power-supplies and the oscillator have reached stable operation, within the normal  
operating conditions.  
• At normal power down the PORST signal should be activated within the normal  
operating range, and then the power supplies may be switched off. Care must be  
taken that all Flash write or delete sequences have been completed.  
• At power fail the PORST signal must be activated at latest when any 3.3 V or 1.5 V  
power supply voltage falls 12% below the nominal level. The same limit of 3.3 V-12%  
applies to the 5 V power supply too. If, under these conditions, the PORST is  
activated during a Flash write, only the memory row that was the target of the write  
at the moment of the power loss will contain unreliable content. In order to ensure  
clean power-down behavior, the PORST signal should be activated as close as  
possible to the normal operating voltage range.  
• In case of a power-loss at any power-supply, all power supplies must be powered-  
down, conforming at the same time to the rules number 2 and 4.  
• Although not necessary, it is additionally recommended that all power supplies are  
powered-up/down together in a controlled way, as tight to each other as possible.  
• Aditionally, regarding the ADC reference voltage VAREF:  
– VAREF must power-up at the same time or later than VDDM, and  
– VAREF must power-down eather earlier or at latest to satisfy the condition  
VAREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF  
filter capacitance through the ESD diodes through the VDDM power supply. In  
case of discharging the reference capacitance through the ESD diodes, the  
current must be lower than 5 mA.  
Data Sheet  
148  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.4  
Power, Pad and Reset Timing  
Table 18  
Power, Pad and Reset Timing Parameters  
Parameter  
Symbol  
Values  
Unit Note /  
Test Con  
Min.  
Typ. Max.  
dition  
Min. VDDP voltage to ensure  
V
DDPPA CC 0.6  
V
defined pad states1)  
Oscillator start-up time2)  
tOSCS CC –  
SR 10  
10  
ms  
ms  
Minimum PORST active time tPOA  
after power supplies are stable  
at operating levels  
ESR0 pulse width  
tHD  
CC Program –  
mable3)5)  
fSYS  
PORST rise time  
tPOR  
tPOS  
SR –  
SR 0  
50  
ms  
ns  
Setup time to PORST rising  
edge4)  
TESTMODE  
TRST  
Hold time from PORST rising tPOH  
edge  
SR 100  
SR 0  
ns  
ns  
ns  
ns  
Setup time to ESR0 rising  
edge  
tHDS  
tHDH  
tPIP  
HWCFG  
Hold time from ESR0 rising  
edge  
SR 16 ×  
5)  
1/fSYS  
Ports inactive after PORST  
reset active6)7)  
CC –  
CC –  
150  
Ports inactive after ESR0 reset tPI  
8 × 1/ ns  
active (and for all logic)  
fSYS  
Power on Reset Boot Time8) tBP  
CC –  
2.5  
ms  
Application Reset Boot Time tB  
CC 125  
575  
μs  
at fCPU=180MHz9)  
1) This parameter is valid under assumption that PORST signal is constantly at low level during the power-  
up/power-down of the VDDP  
.
2) tOSCS is defined from the moment when VDDOSC3 = 3.13 V until the oscillations reach an amplitude at XTAL1 of  
0,3 × VDDOSC3. This parameter is verified by device characterization. The external oscillator circuitry must be  
optimized by the customer and checked for negative resistance as recommended and specified by crystal  
suppliers.  
3) Any ESR0 activation is internally prolonged to SCU_RSTCNTCON.RELSA FPI bus clock (fFPI) cycles.  
Data Sheet  
149  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
4) Applicable for input pins TESTMODE and TRST.  
5) fFPI = fCPU/2  
6) Not subject to production test, verified by design / characterization.  
7) This parameter includes the delay of the analog spike filter in the PORST pad.  
8) The duration of the boot-time is defined between the rising edge of the PORST and the moment when the first  
user instruction has entered the CPU and its processing starts.  
9) The duration of the boot time is defined between the following events:  
1. Hardware reset: the falling edge of a short ESR0 pulse and the moment when the first user instruction has  
entered the CPU and its processing starts, if the ESR0 pulse is shorter than  
SCU_RSTCNTCON.RELSA × TFPI  
.
If the ESR0 pulse is longer than SCU_RSTCNTCON.RELSA × TFPI, only the time beyond should be added to  
the boot time (ESR0 falling edge to first user instruction).  
2. Software reset: the moment of starting the software reset and the moment when the first user instruction  
has entered the CPU and its processing starts  
VDDP -12%  
VDDPPA  
VDDPPA  
VDDP  
VDD  
VDD -12%  
t
POA  
t
POA  
PORST  
t
t
POH  
POH  
TRST  
TESTMODE  
t
t
hd  
hd  
ESR0  
t
t
HDH  
t
t
HDH  
HDH  
PI  
HWCFG  
t
t
PIP  
PIP  
t
PI  
Pads  
t
t
t
PI  
PI  
PI  
t
PIP  
Pad-state undefined  
Tri-state or pull device active  
As programmed  
reset_beh2  
Figure 25  
Power, Pad and Reset Timing  
Data Sheet  
150  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.5  
Phase Locked Loop (PLL)  
Note: All PLL characteristics defined on this and the next page are not subject to  
production test, but verified by design characterization.  
Table 19  
PLL Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Con  
Min.  
Typ. Max.  
dition  
Accumulated jitter  
|Dm|  
7
ns  
VCO frequency range  
fVCO  
400  
8
800  
16  
MHz –  
MHz –  
MHz –  
VCO input frequency range fREF  
PLL base frequency1)  
fPLLBASE  
tL  
50  
200  
320  
200  
PLL lock-in time  
μs  
1) The CPU base frequency with which the application software starts after PORST is calculated by dividing the  
limit values by 16 (this is the K2 factor after reset).  
Phase Locked Loop Operation  
When PLL operation is enabled and configured, the PLL clock fVCO (and with it the LMB-  
Bus clock fLMB) is constantly adjusted to the selected frequency. The PLL is constantly  
adjusting its output frequency to correspond to the input frequency (from crystal or clock  
source), resulting in an accumulated jitter that is limited. This means that the relative  
deviation for periods of more than one clock cycle is lower than for a single clock cycle.  
This is especially important for bus cycles using waitstates and for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is negligible.  
Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in  
[ns] dependent on the K2 - factor, the LMB clock frequency fLMB in [MHz], and the  
number m of consecutive fLMB clock periods.  
for  
(K2 100)  
and  
(m ≤ (fLMB[MHz]) ⁄ 2)  
(1 – 0, 01 × K2) × (m – 1)  
0, 5 × fLMB[MHz] – 1  
(2)  
(3)  
740  
--------------------------------------------  
----------------------------------------------------------------  
+ 0, 01 × K2  
Dm[ns] =  
+ 5 ×  
K2 × fLMB[MHz]  
740  
--------------------------------------------  
+ 5  
else  
Dm[ns] =  
K2 × fLMB[MHz]  
Data Sheet  
151  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
With rising number m of clock cycles the maximum jitter increases linearly up to a value  
of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum  
accumulated jitter remains at a constant value. Further, a lower LMB-Bus clock  
frequency fLMB results in a higher absolute maximum jitter value.  
Figure 26 gives the jitter curves for several K2 / fLMB combinations.  
±10.0  
Dm  
ns  
fLMB = 50 MHz (K2 = 8)  
fLMB = 100 MHz (K2 = 4)  
±8.0  
±7.0  
±6.0  
fLMB = 180 MHz (K2 = 4)  
fLMB = 150 MHz (K2 = 4)  
±4.0  
fLMB = 100 MHz (K2 = 8)  
fLMB = 50 MHz (K2 = 16)  
±2.0  
±1.0  
±0.0  
0
20  
40  
60  
80  
100  
120  
oo  
m
D
m = Max. jitter  
m
K2  
= Number of consecutive fLMB periods  
= K2-divider of PLL  
TC1797_PLL_JITT_M  
Figure 26  
Approximated Maximum Accumulated PLL Jitter for Typical LMB-  
Bus Clock Frequencies fLMB  
Note: The specified PLL jitter values are valid if the capacitive load per output pin does  
not exceed CL = 20 pF with the maximum driver and sharp edge. In case of  
applications with many pins with high loads, driver strengths and toggle rates the  
specified jitter values could be exceeded.  
Note: The maximum peak-to-peak noise on the pad supply voltage, measured between  
V
V
DDOSC3 at pin E26 and VSSOSC at pin F25, is limited to a peak-to-peak voltage of  
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise  
frequencies above 300 KHz.  
The maximum peak-to peak noise on the pad supply votage, measured between  
V
V
DDOSC at pin F26 and VSSOSC at pin F25, is limited to a peak-to-peak voltage of  
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise  
frequencies above 300 KHz.  
Data Sheet  
152  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
These conditions can be achieved by appropriate blocking of the supply voltage  
as near as possible to the supply pins and using PCB supply and ground planes.  
Data Sheet  
153  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.6  
BFCLKO Output Clock Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%,;  
TA = -40 °C to +125 °C; CL = 35 pF  
Table 20  
BFCLK0 Output Clock Timing Parameters1)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Con  
Min.  
BFCLKO CC 13.332)  
Typ. Max.  
dition  
BFCLKO clock period  
BFCLKO high time  
BFCLKO low time  
BFCLKO rise time  
BFCLKO fall time  
t
ns  
ns  
ns  
ns  
ns  
%
t5  
t6  
t7  
t8  
CC 3  
CC 3  
CC –  
3
3
CC  
BFCLKO duty cycle t5/(t5 + t6)3) DC  
45  
50  
55  
1) Not subject to production test, verified by design/characterization.  
2) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
3) The PLL jitter is not included in this parameter. If the BFCLKO frequency is equal to fCPU, the K divider has to  
be regarded.  
tBFCLKO  
0.9 VDD  
0.5 VDDP05  
BFCLKO  
0.1 VDD  
t8  
t7  
t5  
t6  
MCT04883_mod  
Figure 27  
BFCLKO Output Clock Timing  
Data Sheet  
154  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.7  
JTAG Interface Timing  
The following parameters are applicable for communication through the JTAG debug  
interface. The JTAG module is fully compliant with IEEE1149.1-2000.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 21  
JTAG Interface Timing Parameters  
(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
25  
12  
10  
Typ.  
Max.  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
TCK low time  
TCK clock rise time  
TCK clock fall time  
TDI/TMS setup  
6
to TCK rising edge  
TDI/TMS hold  
t7 SR  
6
ns  
after TCK rising edge  
TDO valid after TCK falling t8 CC  
2
13  
3
ns  
ns  
ns  
CL = 50 pF  
CL = 20 pF  
edge1) (propagation delay)  
t8 CC  
TDO hold after TCK falling t18 CC  
edge1)  
TDO high imped. to valid t9 CC  
14  
ns  
ns  
CL = 50 pF  
CL = 50 pF  
from TCK falling edge1)2)  
TDO valid to high imped. t10 CC  
13.5  
from TCK falling edge1)  
1) The falling edge on TCK is used to generate the TDO timing.  
2) The setup time for TDO is given implicitly by the TCK cycle time.  
Data Sheet  
155  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
t1  
0.9 VDDP  
0.5 VDDP  
0.1 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 28  
Test Clock Timing (TCK)  
TCK  
t6  
t7  
TMS  
t6  
t7  
TDI  
t9  
t8  
t10  
TDO  
t18  
MC_JTAG  
Figure 29  
JTAG Timing  
Data Sheet  
156  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.8  
DAP Interface Timing  
The following parameters are applicable for communication through the DAP debug  
interface.  
Note: These parameters are not subject to production test but verified by design and/or  
characterization.  
Table 22  
DAP Interface Timing Parameters  
(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
DAP0 clock period  
DAP0 high time  
t11 SR  
t12 SR  
t13 SR  
t14 SR  
t15 SR  
t16 SR  
12.5  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
4
4
6
DAP0 low time  
DAP0 clock rise time  
DAP0 clock fall time  
DAP1 setup  
to DAP0 rising edge  
DAP1 hold  
after DAP0 rising edge  
t17 SR  
t19 SR  
t19 SR  
6
ns  
ns  
ns  
DAP1 valid  
8
80 MHz,  
CL = 20 pF  
per DAP0 clock period1)  
10  
40 MHz,  
CL = 50 pF  
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
t11  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t15  
t14  
t12  
t13  
MC_DAP0  
Figure 30  
Test Clock Timing (DAP0)  
Data Sheet  
157  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
DAP0  
DAP1  
t16  
t17  
MC_DAP1_RX  
Figure 31  
DAP Timing Host to Device  
t11  
DAP1  
t19  
MC_DAP1_TX  
Figure 32  
DAP Timing Device to Host  
Data Sheet  
158  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.9  
EBU Timings  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;  
TA = -40 °C to +125 °C; CL = 35 pF for address/data; CL = 40pF for the control lines.  
5.3.9.1 EBU Asynchronous Timings  
For each timing, the accumulated PLL jitter of the programed duration in number of clock  
periods must be added separately. Operating conditions apply and CL = 35 pF.  
Table 23  
Common timing parameters for all asynchronous timings1)  
Symbol Limit Values Unit Edge  
Parameter  
Setting  
min  
max  
1.5  
1
Pulse width deviation from the ideal  
programmed width due to the A2 pad  
asymmetry, strong driver mode,  
rise delay - fall delay. CL = 35 pF.  
ta  
CC -1  
ns  
sharp  
-2  
medium  
AD(31:0) output delay to ADV rising edge, t13  
CC -5.5  
CC -5.5  
2
2
multiplexed  
AD(31:0) output delay  
t14  
read / write  
1) Not subject to production test, verified by design/characterization.  
Data Sheet  
159  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Read Timings  
Table 24  
Asynchronous read timings, multiplexed and demultiplexed1)  
Symbol Limit Values  
Parameter  
Unit  
min  
CC -2.5  
CC -2.5  
CC -2  
max  
2.5  
2.5  
2.5  
4.5  
2.5  
A(23:0) output delay  
A(23:0) output delay  
CS rising edge  
to RD rising edge,  
deviation from the ideal  
programmed value.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
ns  
ADV rising edge  
BC rising edge  
CC -1.5  
CC -2.5  
SR 12  
SR 0  
WAIT input setup  
WAIT input hold  
Data input setup  
Data input hold  
SR 12  
SR 0  
MR / W output delay  
CC -2.5  
1.5  
1) Not subject to production test, verified by design/characterization.  
Data Sheet  
160  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Multiplexed Read Timing  
Address  
Phase  
Address Hold  
Phase (opt.) Delay Phase  
Command  
Command  
Phase  
Recovery  
Phase (opt.)  
New Addr.  
Phase  
EBU  
STATE  
Control Bitfield:  
ADDRC  
1...15  
AHOLDC  
0...15  
CMDDELAY  
0...7  
RDWAIT  
1...31  
RDRECOVC  
0...15  
ADDRC  
1...15  
Duration Limits in  
EBU_CLK Cycles  
Next  
A[23:0]  
Valid Address  
Addr.  
pv +  
pv +  
pv +  
t2  
t0  
ta  
t1  
CS[3:0]  
CSCOMB  
pv +  
pv +  
t3  
ta  
ADV  
pv +  
pv +  
ta  
RD  
pv +  
ta  
t4  
ta  
BC[3:0]  
pv +  
t5  
t6  
WAIT  
pv +  
t14  
pv +  
t13  
t7  
t8  
Address Out  
AD[31:0]  
MR/W  
Data In  
pv +  
t9  
pv = programmed value,  
new_MuxRD_Async_10.vsd  
T
EBU_CLK * sum (correponding bitfield values)  
Figure 33  
Multiplexed Read Access  
Data Sheet  
161  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Demultiplexed Read Timing  
Address  
Phase  
Address Hold  
Phase (opt.)  
Command  
Phase  
Recovery  
Phase (opt.)  
New Addr.  
Phase  
EBU  
STATE  
Control Bitfield:  
ADDRC  
1...15  
AHOLDC  
0...15  
RDWAIT  
1...31  
RDRECOVC  
0...15  
ADDRC  
1...15  
Duration Limits in  
EBU_CLK Cycles  
Next  
A[23:0]  
Valid Address  
pv +  
Addr.  
pv +  
t2  
t0  
t1  
pv +  
ta  
CS[3:0]  
CSCOMB  
pv +  
pv +  
t3  
ta  
ADV  
pv +  
ta  
RD  
pv +  
ta  
t4  
pv +  
ta  
BC[3:0]  
pv +  
t5  
t6  
WAIT  
t7  
t8  
AD[31:0]  
MR/W  
Data In  
pv +  
t9  
pv = programmed value,  
TEBU_CLK * sum (correponding bitfield values)  
new_DemuxRD_Async_10.vsd  
Figure 34  
Demultiplexed Read Access  
Data Sheet  
162  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Write Timings  
Table 25  
Asynchronous write timings, multiplexed and demultiplexed1)  
Symbol Limit Values  
Parameter  
Unit  
min  
t30 CC -2.5  
t31 CC -2.5  
t32 CC -2  
t33 CC -2  
t34 CC -2.5  
t35 SR 12  
t36 SR 0  
max  
2.5  
2.5  
2
A(23:0) output delay to RD/WR rising edge,  
ns  
deviation from the ideal  
programmed value.  
CS rising edge  
A(23:0) output delay  
ADV rising edge  
BC rising edge  
4.5  
2
WAIT input setup  
WAIT input hold  
Data output delay  
Data output delay  
MR / W output delay  
t37 CC -5.5  
t38 CC -5.5  
t39 CC -2.5  
2
2
1.5  
1) Not subject to production test, verified by design/characterization.  
Data Sheet  
163  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Multiplexed Write Timing  
Data  
Hold Phase  
Address  
Phase  
Address Hold  
Phase (opt.)  
Command  
Phase  
Recovery  
Phase (opt.)  
New Addr.  
Phase  
EBU  
STATE  
Control Bitfield:  
ADDRC  
1...15  
AHOLDC  
0...15  
RDWAIT  
1...31  
DATAC  
0...15  
RDRECOVC  
0...15  
ADDRC  
1...15  
Duration Limits in  
EBU_CLK Cycles  
Next  
A[23:0]  
Valid Address  
Addr.  
pv +  
t30  
pv +  
t31  
pv +  
ta  
pv +  
t32  
CS[3:0]  
CSCOMB  
pv +  
t33  
pv +  
ta  
ADV  
pv +  
ta  
RD/WR  
BC[3:0]  
pv +  
ta  
pv +  
ta  
t34  
t35  
WAIT  
t36  
t14  
t37  
pv +  
pv +  
t13  
t38  
AD[31:0]  
Data Out  
Address Out  
pv +  
t39  
MR/W  
pv = programmed value,  
TEBU_CLK * sum (correponding bitfield values)  
new_MuxWR_Async_10.vsd  
Figure 35  
Multiplexed Write Access  
Data Sheet  
164  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Demultiplexed Write Timing  
Data  
Hold Phase  
Address  
Phase  
Address Hold  
Phase (opt.)  
Command  
Phase  
Recovery  
Phase (opt.)  
New Addr.  
Phase  
EBU  
STATE  
Control Bitfield:  
ADDRC  
1...15  
AHOLDC  
0...15  
RDWAIT  
1...31  
DATAC  
0...15  
RDRECOVC  
0...15  
ADDRC  
1...15  
Duration Limits in  
EBU_CLK Cycles  
Next  
A[23:0]  
Valid Address  
Addr.  
pv +  
t30  
pv +  
t31  
pv +  
ta  
pv +  
t32  
CS[3:0]  
CSCOMB  
pv +  
t33  
pv +  
ta  
ADV  
pv +  
ta  
RD/WR  
BC[3:0]  
pv +  
ta  
pv +  
ta  
t34  
t35  
WAIT  
t36  
t37  
pv +  
t38  
AD[31:0]  
MR/W  
Data Out  
pv +  
t39  
pv = programmed value,  
TEBU_CLK * sum (correponding bitfield values)  
new_DemuxWR_Async_10.vsd  
Figure 36  
Demultiplexed Write Access  
Data Sheet  
165  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.9.2 EBU Burst Mode Access Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;  
TA = -40 °C to +125 °C; CL = 35 pF;  
Table 26  
EBU Burst Mode Read / Write Access Timing Parameters1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
Output delay from BFCLKO  
active edge2)  
t10 CC -2  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RDandRD/WRactive/inactive t12 CC -2  
2
after BFCLKO active edge3)  
CSx output delay from  
BFCLKO active edge3)  
t21  
t22  
CC -2.5  
CC -2  
1.5  
2
ADV active/inactive after  
BFCLKO active edge4)  
BAA active/inactive after  
BFCLKO active edge4)  
t22a CC -2.5  
1.5  
Data setup to BFCLKI rising  
edge5)  
t23  
SR 3  
SR 0  
SR 3  
SR 0  
Data hold from BFCLKI rising t24  
edge5)  
WAIT setup (low or high) to  
BFCLKI rising edge5)  
t25  
WAIT hold (low or high) from t26  
BFCLKI rising edge5)  
1) Not subject to production test, verified by design/characterization.  
2) This is a default parameter which are applicable to all timings which are not explicitly covered by the other  
parameters.  
3) An active edge can be rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and clock  
divider ratio.  
Negative minimum values for these parameters mean that the last data read during a burst may be corrupted.  
However, with clock feedback enabled, this value is oversampling not required for the LMB transaction and  
will be discarded.  
4) This parameter is valid for BUSCONx.EBSE = 1 and BUSAPx.EXTCLK = 00B.  
For BUSCONx.EBSE = 1 and other values of BUSAPx.EXTCLK, ADV and BAA will be delayed by 1 / 2 of the  
LMB bus clock period TCPU = 1 / fCPU  
.
For BUSCONx. EBSE = 0 and BUSAPx.EXTCLK = 11B, add 2 LMB clock periods.  
For BUSCONx. EBSE = 0 and other values of BUSAPx.EXTCLK add 1 LMB clock period.  
Data Sheet  
166  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5) If the clock feedback is not enabled, the input signals are latched using the internal clock in the same way as  
at asynchronous access. So t5, t6, t7 and t8 from the asynchronous timings apply.  
Address  
Phase(s)  
Command  
Phase(s)  
Burst  
Phase(s)  
Burst  
Phase(s)  
Recovery  
Phase(s)  
Next Addr.  
Phase(s)  
BFCLKI  
1)  
BFCLKO  
t10  
t10  
Next  
A[23:0]  
ADV  
Burst Start Address  
Addr.  
t22  
t22  
t22  
t21  
t21  
t21  
CS[3:0]  
CSCOMB  
t12  
t12  
t22a  
t24  
RD  
RD/WR  
t22a  
BAA  
t24  
t23  
t23  
D[31:0]  
(32-Bit)  
Data (Addr+0)  
Data (Addr+4)  
D[15:0]  
(16-Bit)  
Data (Addr+0)  
Data (Addr+2)  
t26  
t25  
WAIT  
1)  
Output delays are always referenced to BCLKO. The reference clock for input  
characteristics depends on bit EBU_BFCON.FDBKEN.  
EBU_BFCON.FDBKEN = 0: BFCLKO is the input reference clock.  
EBU_BFCON.FDBKEN = 1: BFCLKI is the input reference clock (EBU clock  
feedback enabled).  
BurstRDWR_4.vsd  
Figure 37  
EBU Burst Mode Read / Write Access Timing  
Data Sheet  
167  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.9.3 EBU Arbitration Signal Timing  
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;  
TA = -40°C to +125 °C; CL = 35 pF;  
Table 27  
EBU Arbitration Signal Timing Parameters1)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Con  
Min.  
CC –  
SR 11  
SR 2  
Typ. Max.  
dition  
Output delay from BFCLKO  
rising edge  
t27  
t28  
t29  
3
ns  
ns  
ns  
Data setup to BFCLKO  
falling edge  
Data hold from BFCLKO  
falling edge  
1) Not subject to production test, verified by design/characterization.  
BFCLKO  
t27  
t27  
HLDA Output  
t27  
t27  
BREQ Output  
BFCLKO  
t28  
t29  
t28  
t29  
HOLD Input  
HLDA Input  
EBUArb_1  
Figure 38  
EBU Arbitration Signal Timing  
Data Sheet  
168  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.10  
Peripheral Timings  
Note: Peripheral timing parameters are not subject to production test. They are verified  
by design/characterization.  
5.3.10.1 Micro Link Interface (MLI) Timing  
MLI Transmitter Timing  
t13  
t14  
t10  
t12  
TCLKx  
t11  
t15  
t15  
TDATAx  
TVALIDx  
t16  
t17  
TREADYx  
MLI Receiver Timing  
t23  
t24  
t20  
t22  
RCLKx  
t21  
t25  
t26  
RDATAx  
RVALIDx  
t27  
t27  
RREADYx  
MLI_Tmg_2.vsd  
Figure 39  
MLI Interface Timing  
Data Sheet  
169  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
Note: The generation of RREADYx is in the input clock domain of the receiver. The  
reception of TREADYx is asynchronous to TCLKx.  
Table 28  
MLI Timings (Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Co  
Min.  
Max.  
ndition  
MLI Transmitter Timing  
TCLK clock period  
TCLK high time  
1)  
t10  
t11  
t12  
t13  
t14  
t15  
CC 2 × TMLI  
ns  
2)3)  
0.45 × t10 0.5 × t10 0.55 × t10 ns  
CC  
2)3)  
TCLK low time  
CC 0.45 × t10 0.5 × t10 0.55 × t10 ns  
4)  
TCLK rise time  
CC –  
CC –  
CC -3  
ns  
ns  
ns  
4)  
TCLK fall time  
TDATA/TVALID output  
delay time  
4.4  
TREADY setup time to  
TCLK rising edge  
t16  
t17  
SR 18  
SR 0  
ns  
ns  
TREADY hold time from  
TCLK rising edge  
MLI Receiver Timing  
RCLK clock period  
RCLK high time  
1)  
t20  
t21  
t22  
SR 1 × TMLI  
SR –  
ns  
ns  
ns  
5)6)  
5)6)  
0.5 × t20  
RCLK low time  
SR –  
0.5 × t2 –  
0
7)  
7)  
RCLK rise time  
RCLK fall time  
t23  
R
S
S
S
S
C
4
ns  
ns  
ns  
ns  
ns  
t24  
R
4
RDATA/RVALID setup  
time to RCLK falling edge  
t25  
R
4.2  
2.2  
0
RDATA/RVALID hold time t26  
from RCLK rising edge  
R
RREADY output delay time t27  
16  
C
1) TMLImin. = TSYS = 1/fSYS. When fSYS = 90 MHz, t10 = 22.22 ns and t20 = 11.11 ns.  
2) The following formula is valid: t11 + t12 = t10  
Data Sheet  
170  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
3) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be  
regarded additionally to t11 / t12.  
4) For high-speed MLI interface, strong driver sharp or medium edge selection (class A2 pad) is recommended  
for TCLK.  
5) The following formula is valid: t21 + t22 = t20  
6) The min. and max. value of is parameter can be adjusted by considering the other receiver timing parameters.  
7) The RCLK max. input rise/fall times are best case parameters for fSYS = 90 MHz. For reduction of EMI, slower  
input signal rise/fall times can be used for longer RCLK clock periods.  
Data Sheet  
171  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.10.2 Micro Second Channel (MSC) Interface Timing  
Table 29  
MSC Interface Timing (Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Con  
Min.  
Max.  
dition  
3)  
FCLP clock period1)2)  
t40 CC 2 × TMSC  
t45 CC -10  
ns  
ns  
SOP/ENx outputs delay  
from FCLP rising edge  
10  
SDI bit time  
SDI rise time  
SDI fall time  
t46 CC 8 × TMSC  
t48 SR  
ns  
ns  
ns  
100  
100  
t49 SR  
1) FCLP signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) FCLP signal high and low can be minimum 1 × TMSC  
.
3) TMSCmin = TSYS = 1 / fSYS. When fSYS = 90 MHz, t40 = 22,2ns  
t40  
0.9 VDDP  
0.1 VDDP  
FCLP  
t45  
t45  
SOP  
EN  
t48  
t49  
0.9 VDDP  
0.1 VDDP  
SDI  
t46  
t46  
MSC_Tmg_1.vsd  
Figure 40  
MSC Interface Timing  
Note: The data at SOP should be sampled with the falling edge of FCLP in the target  
device.  
Data Sheet  
172  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.3.10.3 SSC Master/Slave Mode Timing  
Table 30  
SSC Master/Slave Mode Timing  
(Operating Conditions apply), CL = 50 pF  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Con  
dition  
Min.  
Master Mode Timing  
1)2)3)  
SCLK clock period  
t50  
t51  
CC 2 × TSSC  
8
ns  
MTSR/SLSOx delay from  
SCLK rising edge  
0
ns  
ns  
ns  
CC  
3)  
MRST setup to SCLK  
falling edge  
t52  
t53  
SR 13  
SR 0  
3)  
MRST hold from SCLK  
falling edge  
Slave Mode Timing  
SCLK clock period  
SCLK duty cycle  
1)3)  
t54  
SR 4 × TSSC  
ns  
%
t55/t54 SR 45  
55  
3)4)  
MTSR setup to SCLK  
latching edge  
t56  
t57  
t58  
t59  
t60  
SR TSSC + 5  
ns  
3)4)  
3)  
MTSR hold from SCLK  
latching edge  
SR TSSC + 5  
SR TSSC + 5  
SR 7  
ns  
ns  
ns  
ns  
ns  
SLSI setup to first SCLK  
shift edge  
SLSI hold from last SCLK  
latching edge  
MRST delay from SCLK  
shift edge  
CC 0  
15  
12  
SLSI to valid data on MRST t61  
CC –  
1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) SCLK signal high and low times can be minimum 1 × TSSC  
.
3) TSSCmin = TSYS = 1/fSYS. When fSYS = 90 MHz, t50 = 22.2 ns.  
4) Fractional divider switched off, SSC internal baud rate generation used.  
Data Sheet  
173  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
t50  
SCLK1)2)  
MTSR1)  
t51  
t51  
t52  
t53  
Data  
valid  
MRST1)  
SLSOx2)  
t51  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
2) The transition at SLSOx is based on the following setup: SSOTC.TRAIL = 0  
and the first SCLK high pulse is in the first one of a transmission.  
SSC_TmgMM  
Figure 41  
SSC Master Mode Timing  
t54  
First latching  
SCLK edge  
Last latching  
SCLK edge  
First shift  
SCLK edge  
SCLK1)  
t55  
t55  
t56  
t56  
t57  
t57  
Data  
valid  
Data  
valid  
MTSR1)  
MRST1)  
SLSI  
t60  
t60  
t61  
t59  
t58  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_TmgSM  
Figure 42  
SSC Slave Mode Timing  
Data Sheet  
174  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.4  
Package and Reliability  
5.4.1  
Package Parameters  
Table 31  
Device  
Thermal Characteristics of the Package  
Package  
RΘJCT1) RΘJCB1) Unit  
Note  
TC1197  
PG-BGA-416-10  
4
6
K/W  
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined  
with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate  
the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the  
case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are  
under user responsibility.  
The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA  
is the total thermal resistance between the junction and the ambient. This total junction ambient resistance  
R
TJA can be obtained from the upper four partial thermal resistances.  
Data Sheet  
175  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.4.2  
Package Outline  
25 x 1 = 25  
A26  
A1  
AF1  
1
+0.07  
416x  
ø0.63  
-0.13  
M
ø0.25  
A B C  
C
0.15  
C
M
ø0.1  
A
Index Marking  
0.2  
0.5  
0.2  
20  
24  
27  
Index Marking  
(sharp edge)  
B
PG-BGA-416-4, -10, -13, -14-PO V02  
Figure 43  
Package Outlines PG-BGA-416-10, Plastic (Green) Ball Grid Array  
Data Sheet  
176  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
You can find all of our packages, sorts of packing and others in Infineon Internet Page.  
5.4.3  
Flash Memory Parameters  
The data retention time of the TC1197’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Table 32  
Flash Parameters  
Symbol  
Parameter  
Values  
Unit  
Note /  
Test Condition  
Min.  
Typ. Max.  
Program Flash  
tRET  
20  
years Max. 1000  
erase/program  
Retention Time,  
CC  
Physical Sector1)2)  
cycles  
Program Flash  
Retention Time  
Logical Sector1)2)  
tRETL  
20  
years Max. 100  
CC  
CC  
CC  
erase/program  
cycles  
Data Flash  
Endurance  
(64 KB)  
NE  
30 000 –  
120000 –  
cycles Max. data  
retention time  
5 years  
Data Flash Endurance, NE8  
EEPROM Emulation  
(4 × 16 KB)  
cycles Max. data  
retention time  
5 years  
Programming Time  
per Page3)  
tPR  
5
ms  
s
CC  
CC  
CC  
CC  
Program Flash Erase  
Time per 256-KB Sector  
tERP  
5
f
CPU = 180 MHz  
CPU = 180 MHz  
Data Flash Erase Time tERD  
for 2 × 32-KB Sectors  
2.5  
s
f
Wake-up time  
tWU  
4000/fCPU μs  
+ 180  
1) Storage and inactive time included.  
2) At average weighted junction temperature Tj = 100oC, or  
the retention time at average weighted temperature of Tj = 110oC is minimum 10 years, or  
the retention time at average weighted temperature of Tj = 150oC is minimum 0.7 years.  
3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The  
reprogramming takes additional 5 ms.  
Data Sheet  
177  
V1.1, 2009-05  
TC1197  
Electrical Parameters  
5.4.4  
Quality Declarations  
Table 33  
Quality Parameters  
Symbol  
Parameter  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Operation  
Lifetime1)  
tOP  
24000 hours –2) 3)  
ESD susceptibility VHBM  
according to  
2000  
V
Conforming to  
JESD22-A114-B  
Human Body  
Model (HBM)  
ESD susceptibility VHBM1  
of the LVDS pins  
500  
500  
V
V
ESD susceptibility VCDM  
according to  
Conforming to  
JESD22-C101-C  
Charged Device  
Model (CDM)  
Moisture  
Sensitivity Level  
MSL  
3
Conforming to Jedec  
J-STD-020C for 240°C  
1) This lifetime refers only to the time when the device is powered on.  
2) For worst-case temperature profile equivalent to:  
2000 hours at Tj = 150oC  
16000 hours at Tj = 125oC  
6000 hours at Tj = 110oC  
3) This 30000 hours worst-case temperature profile is also covered:  
300 hours at Tj = 150oC  
1000 hours at Tj = 140oC  
1700 hours at Tj = 130oC  
24000 hours at Tj = 120oC  
3000 hours at Tj = 110oC  
Data Sheet  
178  
V1.1, 2009-05  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TC1197256F180EACKXUMA1

RISC Microcontroller, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TC11IB

32-Bit Single-Chip Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TC11L

CMOS GATE ARRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TC11V

500 mW DO-35 Hermetically Sealed Glass Zener Voltage Regulators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11V.TB

Zener Diode, 11V V(Z), 5%, 0.5W, Silicon, Unidirectional, DO-35, HERMETIC SEALED, GLASS PACKAGE-2

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11V.TR

Zener Diode, 11V V(Z), 5%, 0.5W, Silicon, Unidirectional, DO-35, HERMETIC SEALED, GLASS PACKAGE-2

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11VB

Zener Diode, 11V V(Z), 2%, 0.2W, Silicon, Unidirectional, ROHS COMPLIANT, PLASTIC, SIMILAR TO SC-90, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11VC

Zener Diode, 11V V(Z), 5%, 0.2W, Silicon, Unidirectional, ROHS COMPLIANT, PLASTIC, SIMILAR TO SC-90, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11VRL

Zener Diode,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11VTA

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC11VTA2

Zener Diode,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAK_CHEONG

TC12

LOW COST, ONE WIRE DIGITAL THERMOMETER WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM